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Temporal association in neural networks at finite temperatures
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Temporal association in neural networks, which retrieves time sequences of stored patterns, is made possible
by introducing asymmetry in the synaptic coupling. Such temporal association in the asymmetric Hopfield
model is first considered, with particular attention to the finite-temperature effects on the retrieval capability.
We then turn to the dynamic model, which is the main topic of this paper, and investigate its temporal
association properties both analytically and numerically. The phase diagram is obtained in the three-
dimensional parameter space, and its structure is discussed according to the storage and other parameter values.
[S1063-651X98)10212-X]

PACS numbd(s): 87.10+¢€, 64.60.Cn, 89.76.c

I. INTRODUCTION temporal association in the Hopfield model and in the dy-
namic model, with emphasis on the effects of finite storage
The study of the thermodynamic properties of neural netand temperatures. In the Hopfield model the phase diagram
works has focused mostly on the systems with symmetri¢s obtained in the plane of the temperature and the degree of
couplings[1—3], which makes the dynamics of the network asymmetry, for various storage values. The dynamic model
relatively simple. The system relaxes to the states which ari$ also made capable of temporal association by introducing
local minima of a global energy function and remains stablesymmetric couplings in a similar way to the Hopfield
at low temperatures. Thus symmetric networks cannot promodel. In addition to the temperature and the degree of
vide temporal associationwhich retrieves a sequence of em- asymmetry, there exists one more parameter of relevance in
bedded patterns successively. Such a capability of recallinhe dynamic model—the ratio of the refractory period to the
temporal sequences or cycles of patterns can be endowed Bgtion potential duration. The corresponding phase diagram
introducing asymmetric Coup“ngs in the network, which in the three-dimensional parameter space is obtained via sta-
may prevent the system from approaching a stable attractdtility analysis and compared with the results of numerical
in the configurational spack4—8]. Note that the synaptic Simulations. . _
connections in real biological systems indeed have a high This paper is organized as follows. In Sec. II, we intro-
degree of asymmetry. It is also natural to allow time delay induce temporal association in the asymmetric Hopfield model
the asymmetric part of the synaptic couplifg]: It is desir- and study numerically its properties at finite temperatures
able to have a controlled set of transitions in such a way tha&nd finite storage capacity. The phase diagram is obtained in
the system stays in one state for a finite period of time aftef® plane of the temperature and the degree of asymmetry.
which a transition is made to the next quasiequilibrium stateSection Il is devoted to the investigation of the temporal
in the sequence. Without the time delay, the system wouldssociation in the dynamic model, presenting the main re-
make transitions among quasiequilibrium states at once. Sults of this paper. We first derive analytic phase boundaries
In the Hopfield-type neural networks, the desired feature®y means of stability analysis, and also perform numerical
of temporal association have been successfully demonstrat&inulations to obtain the phase diagram. The two phase dia-
with the asymmetric couplinfs]; the important role played 9rams, obtained via stability analysis and from numerical
by the transmission delay has also been observed. Howeveiimulations, are drawn in the three-dimensional parameter
the study is restricted to the low-loading and zero-SPace, and found to display good agreement with each other.
temperature limit, and the behavior at finite storage and finitéinally, a brief summary is given in Sec. IV.
temperatures has not been investigated. Furthermore, the to-
ta”y asynChronOUS character of the dynamiCS in the Hopfleld II. ASYMMETRIC HOPEIELD MODEL
model does not describe the real biological situation very
well. On the other hand, the dynamic model proposed by one We follow Ref.[4] and consider a network ®f two-state
of us[10] deals with usual continuous time rather than digi-neurons, where the state of tite neuron is described by the
tal and takes into account the existence of relevant tim&ariables;(==1). Temporal association is accomplished by
scales in the nervous system such as the refractory periothitroducing two kinds of synaptic couplings as well as a time
time duration of the action potential, and retardation of theconstantr characterizing the dynamic memory. Synapses of
signal propagation. In particular, the dynamic model posthe first kind are symmetric, given by Hebb’s rule
sesses time delay inherently, and is apparently adequate for
studying temporal association. 1 P
In this paper, we study both analytically and numerically Jﬁ=ﬁ 21 ey (i #j) 1)
=
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A3 sively to the next pattern aftay and finally constitutes a
Jﬁzﬁ E g{”lgjﬁ (i#]), (2 cycle of temporal association. The time inter¢gland the
n=1 critical value\ . depend on the specific form of the memory

which defines the order among thé<p) patterns. The rela- function w.(t). Here, for convenience, we consider the
tive strength of the asymmetric part controls the degree ofSimple casew,(t)=4(t—7), which is expected to display
asymmetry, and cycles can be incorporated by segffig ~ témporal association for all values bflarger than\ [4,6].
:fil in Eq. (2). At zero temperature, i.e., in the absence ofAS thg storagex is increased from zero, fluctuations in the
stochastic noise, the system evolves in time as follows: Thécal fields produced by nonzere has been suggested to
state of therandomly chosenith neuron is updated in such induce transitions even for smaller thus lowering the criti-
a way thats, has the same sign as the local fidg  cal value\. At high temperatures, on the other hand, large
==,J;;s;. The local field consists of the two contributions, fluctuations tend to mix the patterns and to yield random
overlaps among the patterns, which deteriorates the capabil-
N s N a— ity of the network to recall the proper patterns. Accordingly,
h :le Jijs; +j21 Jijs; 3 temporal association is suppressed and the critical vali®
expected to increase with.
with To investigate these properties in detail, we have per-
formed numerical simulations of the system at various tem-
S = jtdt’w (t—t')s/ peratures and storage values. The behavior of the ovarjap
o T I obtained from the simulations of the system witl=1000
and p=q=10 is displayed in Fig. 1. At zero temperature
wheres/ represents the state of thj¢h neuron at timet’.  (T=0) the characteristics of temporal association are shown
Here w_(t) denotes the dynamic memory characterized byin Figs. 1a) and ib): When \ is less tharh, (=~0.78 for
the time-delay constant It is non-negative and normalized 4=0.01) [11], the system stays in the initial pattegi=*
to be [ydtw,(t)=1. The effects of noise can be taken into indefinitely, yielding a stationary state, while for>X\,,
account by updating theith neuron probabilistically. transitions to the next patterns occur successively with the
Namely, the value;= + 1 is assigned according to the prob- time intervalt, equal tor. At nonzero but low temperatures,
ability 2~ %(1+tanhgh)), where the “temperatureT=p"1 the state determined by the local fieldg} for 0<t<r will
measures the noise strend®]; this is essentially the stan- have an overlap with the pattegi=! less than unity and
dard Monte Carlo process. nonzero overlaps with other patterns, i.m,#0 even for
The analysis of the emergent dynamic features of the nety+ 1. Accordingly, small fluctuations tend to induce the tran-
work becomes particularly simple in the limM—c with  sition even at the value of less than unity, as shown in
finite p. In this zero-storage caser&p/N—0) the local Figs. 4c) and 1d). In other words, the critical valug, in
field takes the form general decreases as the temperaluie raised from zero.
o a iAt higfr|1er tempeSEatures, howevger), allhthe ov;rl)?ps dirs]play
” 1 arge fluctuationd compare Fig. with Fig. 1(c)]. Suc
hi:; § mvﬂ‘gl & m,, ) large fluctuations suppress temporal association in the sys-
tem, making it necessary to have a large valua ébr tem-
poral association. It is thus concluded that the critical value
N\ at first decreases with temperature but eventually in-
creases as the temperature is raised further.
N To determine the phase boundaries between the state with
m,=N"1> &'si, stationary memory such ds) and that with temporal asso-
=1 ciation such agd), we use the following criterion: The sys-
. tem is considered to have stationary memory if the memory
m EJ dt'w (t—t")m’ of a single pattern is dominant during the simulation time,
"o 7 g ie., ifl,>%,.,l1,. Herel, is the number of time steps in
the simulation during whicim,, is the maximum. Similarly,
with m;, being the overlap at tim¢’. The overlap of the the fluctuating state without memory is distinguished accord-
order unity,m,~1, which implies that the state of the net- ing to whether the maximum overlap is smaller than the sum
work is strongly correlated with one of the embedded pat-of the next two overlaps during more than half the simulation
terns(i.e., with theuth one, describes the state with station- time.
ary memory. On the other hand, in the state without memory Figure 2 presents the schematic phase boundaries in the
all the average overlaps are inappreciable and of the order of-T plane, separating the stationary-memory st8fd), the
N~Y2 Thus the no-memory state is characterizedrby temporal-association sta@A), and the no-memory state
~Q for all v (=1, ... ,p), implying that the system is not (NM), for several values of. For small values ok and«,
correlated with any embedded pattern. the system displays stationary memory of a single pattern at
At zero temperature it has been shown that the systerfow temperatures. As the temperatudras raised, however,
which initially learns the first embedded pattern might transitoverlaps with other patterns become increased, inducing
to the second one after a finite-time duratigrif A exceeds transitions into other patterns. Accordingly, the system dis-
a certain critical value\. [4]. The transition occurs succes- plays temporal association. At even higher temperatures,

wherem,, is the overlap with thesth pattern andﬁy is the
time average ofm,,:
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FIG. 1. Behavior of the overlam, (u=1, ... p) in the asymmetric Hopfield model with the memory functioft) = 6(t— 7). The
parameter values used in the simulationsdre1000,p=10, and(a) T=0,A=0.7; (b) T=0,A=1.0; (c) T=0.3,A=0.1; (d) T=0.3,\
=0.3; (e) T=0.7,A=0.3. Timet has been measured in units of the Monte Carlo steps per néMi©8) and the time delay set equal to
100 MCS.

however, random overlaps destroy the memory in the syse. for given \: «.=0.1, 0.05, 0.01, and 0.001 fox

tem. Thus the network, starting from the stationary-memory=~0.42, 0.53, 0.78, and 0.95, respectively. In this way it is
state at low temperatures, first makes a transition to theevealed that as is raised from zero, the storage capacity
temporal-association state and then to the no-memory statdecreases markedly from 0.138, the value in the symmetric
as the temperature is increased. Note that the two boundariegtwork (\=0) [2].

separating the temporal-association state from the stationary- Here the finite-size effects have been checked for each
memory one and from the no-memory one do not meet ayalue of «, and systems of sizes which appear to display
A=0. This leads to a narrow interval d@fin which the net- asymptotic behavior have been used in obtaining Fig. 2. The
work undergoes double transitions &sis increased from typical behavior of the system according to the system size is
zero, from the stationary-memory state to the no-memoryisplayed in Fig. 3, fore=0.01 andN=500, 1000, 2000,
one and subsequently to the temporal-association state. It éhd 4000. It is observed that the system apparently reaches
also of interest to observe the shift of the boundaries with thehe asymptotic regime fdl=2000. Even the system of size
storagea: With increasinge, the stationary memory is sup- N= 1000 already displays negligible finite-size effects except
pressed at low temperatures, which reflects that fluctuationst very low temperatures.

in the local fields tend to induce transitions between patterns.
At high temperatures, on the other hand, large fluctuations
tend to mix all the patterns and to give random overlaps, thus
suppressing temporal association. Further, Fig. 2 shows how The dynamic model employs continuous-time dynamics,
the storage capacity, changes withh. Namely, the bound- which is neither totally synchronous nor totally asynchro-
ary at T=0 between the stationary-memory state and thenous, and is more realistic than the Hopfield models in view
temporal-association one, which gives the critical valye of the biological situation. At the price of this, however, the
for given a, can be considered to give the storage capacitynodel lacks the Hamiltonian which governs the equilibrium

IIl. ASYMMETRIC DYNAMIC MODEL
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FIG. 2. Schematic phase boundaries of the asymmetric Hopfield _FlG' 3. PhaseEoundaries of the asymmetric Hopfield model for
model with noise for various values of the storageThe size of @~ 0-01 and forN=500, 1000, 2000, and 4000. Even the system

the network is N=10000. 4000. 1000. and 1500 for of size N=1000 already displays negligible finite-size effects ex-
=0.001, 0.01, 0.05, and 0.1, respectively. Each line represents tHf¢ggPt at very low temperatures.
least-square fit of the corresponding data, the typical error bar of

which is about the size of the symbol. P

1 < +1 c
=g 2, HEry 2 T ikl

state and, accordingly, the methods of equilibrium statistical

mechanics are not applicable. Instead, the dynamic model %here a cvelic sequence is again incorporated by settin
neural networks is described by the master equation for th y q 9 P y 9

joint probability P({s;},t;{s{},t— 7q) that the system is in g' ¢i - We consider the casg=p, and make use of the

state[s'} at timet— 74 and in statds;} at timet, wherer is mean-field approximation in E@5), which is expected to be

. . ) . ) correct for the infinite-range interaction. EquatitB) then
the time delay in the signal propagation. The resulting mastef 9 quatics)

equation leads the evolution equations for physical quantities

to assume the form of appropriate differential-difference 1doyt) (1 1 1
equationg 10]. For example, the activity of thkth neuron, i :(__ )— st+a|o(t)+ s[1—oy(t)]
ok(t)E<sk)tzE{si},{sir}skP({si},t;{si’},t—Td), satisfies the b dt 2 2 2
equation P
xtanhi B2, [&m,(t—1)
Ldot) (1 1 o
b dt |2 3 (zt3jet 5
. +AE M, (1=, @)
+ 5«1_ s)tanhgh(t—1)), (5)

where theorder parameter m(t)=N"13;¢"o(t) describes
wherea andb are the ratios of the refractory period to the the average overlap between the network andtheembed-

action potential duration and of the delay time to the refracded pattern, and denotes the time delay of the asymmetric

tory period, respectively, and timehas been rescaled in coupling (relative to that of the symmetric one,). Multi-

units of the delay timery . plying Eq.(7) by N™1£* and summing over, we obtain the
The simple case of the symmetric couplings both at zer@quation for the order parameter, :

and at finite storages has been shown to display desirable

features similar to those of the Hopfield moddl0,12: 1 gm (1)

There exists the critical temperatufg(«) depending on the b th

storagea, below which there emerges macroscopic coher-

ence between the network state and one of the embedded P

patterns. In particular, the storage capaeity for memory Xtanr{ﬁz [&'m,(t—1)

retrieval at zero temperature is given by that of the Hopfield v=1

model divided by (¥ a?). The phase diagram drawn in the

(T,a,a) space exhibits a variety of interesting behaviors, +)\§iv+lmv(t—~7)]}, (8

depending on the value of the parameters. For sufficiently

small « and a less than 1/2, the network undergoes two

successive transitions as the temperature is lowered, whereasich, together with Eq(7), governs the time evolution of

for large @, only a single transition occurs regardless of thethe network.

value of a. The casea=1/2 deserves particular attention It is obvious that Eq.8) possesses the trivial solution

since the memory capacity in this case takes its maximunm,(t)=0 for all u, corresponding to the disordered state,

value at zero temperature and the critical temperature fore., the state without memory. The stability of this trivial

memory retrieval reaches the highest value at zero storagesolution can easily be examined by linearizing the equation,
We now introduce the asymmetric Hebb rule, as in theand it turns out that the null solution is asymptotically stable

preceding section: at temperatures higher thai=4a/(1+2a)2. Note thatT,

1
- m, (1) + 55 2 1= ai(b)]

1+
Ea
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FIG. 4. Behavior of the functiog(x) for given\, together with
the straight liney=x, (a) for a>a. and(b) for a<a.. The behav-
ior at given temperaturd betweenT;(A=1) and T,(A=2) is
shown in(c) for various values oh, indicating thatT, is an in-
creasing function of.

is independent ok and in particular the same as the value
for the symmetric couplingN=0) obtained in Ref[10].

For T<T,, on the other hand, Eq$7) and (8) allow
nontrivial solutions. We investigate the Mattis solution
which is fully correlated with just one of the learned patterns
ie.,

9

m,=mé, ;.

In this Mattis solutionm is given by the nonzero solution of

| )

g'tant B(&M+ N E5)m]
1+ 2a+tani B(£1+ N E2)m]

4a /
m= 1+2a\
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FIG. 5. Existence of the solution in th& (@,\) space. A, B,
and C denote the regions of the null solution, the Mattis solution,
and the mixed-state solution, respectively, whereas PQ represents
the tricritical line.

ties. It is then straightforward to perform the average in Eq.
(10), which yields

2atani B(1+A)m]
m:
(1+2a)2—tanFf[ B(1+\)m]

2atani B8(1—N)m]
=9(

(1+2a)2—tanh’-[/3(l—)\)m]= -

(11)

Figure 4 shows two kinds of solution of E(lL1) accord-
ing to the value ofa: (a) a>a.,=(y/3—1)/2 and(b) a
<a.. Here a. is determined by the nonlinear equation
g”(0)=0 and does not depend an Fora>a., the Mattis
solution exists only at temperatures lower than and dis-
appears continuously as the temperaflrs raised toT,.

For a<a., the Mattis solution still exists at low tempera-
tures (T<T,); at intermediate temperature3 <T<T,),

on the other hand, the null solution and the Mattis one coex-
ist with different basins of attraction. AEis increased fur-
ther, the average overlapin general decreases and vanishes
abruptly atT=T,. Thus there appears a discontinuous tran-
'sition at temperatur&,, which is determined by the coupled
equationsg(x*)=x* andg’(x*)=1. At given temperature
the behavior ofy(x) for various values oh is displayed in
Fig. 4(c), which indicates thal ; is an increasing function of
\. In particular, it is obvious that Fig.(d) exhibits the be-
havior at temperatures betwedn(A=1) and T;(A=2).
Accordingly, for a<a, the network is expected to exhibit
successive transitions dsis lowered: a discontinuous tran-
sition at T{(\) from the null state to the mixed state fol-
lowed by a continuous transition @ to the ordered state.

With varying A, we have examined the basins of attrac-
tion, and obtain Fig. 5, which displays two surfac&s; T,
and T=T,, meeting at the straight line=a.. Regions A
above the two surfaces, B below the two, and C between the

where((- - -)) stands for the average taken with respect totwo correspond to the existence of the null solution, of the
the distribution of{¢/}. Here we have replaced the averageMattis solution, and of the mixed state, respectively.

over the neurons by that over the distribution of the memo
ries: N™1Z,f(&)=((f(&))). This self-averaging property
should be valid foN—-oc and fixedp, if the distribution of
the patterns is essentially random. For simplici§f;s are
assumed to take the valuesl and— 1 with equal probabili-

Whereas region B is separated from A or from C via the
continuous transition surfacB=T,, the boundary between
A and C, existing only foe<a., constitutes the discontinu-
ous transition surfacd=T,. In the limit a—0, both sur-
faces approach the lin€=0 but with different slopes. On
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0.5
v=1
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v>1
FIG. 6. Upper bound of the phase boundary separating the Mat- 0 L—
tis state in the T,a,\) space. The thick solid line on the=0
plane represents the continuous transition Tige 0 : . : : 7000
(a) t
line PQ, which is given bya=a, and T=4a./(1+2a.)?, 05 ' ' . .
the two surfaces meet. Accordingly, PQ may be regarded as vl
a tricritical line. N ]

Note that these solutions existing in various regions do
not necessarily correspond to the physical solutions since
their stability is not guaranteed. It is known that they are in
general stable in the absence of the asymmetric coupling
(A=0) [10]. To examine the stability of the Mattis solution
in the presence of the asymmetric coupling40), we con-
sider a small deviation from the Mattis solution in regions B
and C and pum,(t)=m,+ém,(t) [and correspondingly, :
oi(t)=o;+ do;(t)]. Substituting into Eqs(7) and (8), to- 0 ' ' ' ' 1000

gether withémM~eW, leads to the stability determined by (b) t

the exponenty,,. Here the stable Mattis solution should be

accompanied by the exponengs with negative real parts 0.5 :

for all w=1,...p. However, the resultingp coupled Xj_

differential-difference equations are too complicated to allow
general analysis. We thus consider the simple cggse v,
and compute the surface confining the region where the over-

lap mis finite andy has a negative real part in the long time m,
limit.
The obtained boundary surface in th€,4,\) space is
displayed in Fig. 6. In the symmetric case=0), the sta-
bility boundary is expected to coincide with the transition
line T, [10]. Figure 6 shows that the stability boundary for © ' 1000

A=0, given by the locus of the surface on tfiea plane,

indeed agrees well with the continuous transition lifig FIG. 7. Behavior of the overlap* (x=1, . .. p) in the asym-

represented by the thick solid line. For general values,of metric dynamic model for the parameteéds- 1000, p= 10, and(a)

on the other hand, it should be noted that due to the restricF=0.2,A\=0.2; (o) T=0.2,A=0.8; (c) T=0.6,A=0.2. Timet has

tion y,= v, the obtained boundary in Fig. 6 comprises anbeen measured in units of one-tenth of the delay timer40.1

upper bound for the true phase boundary. We thus regard 5

Fig. 6 as the approximate phase diagram for the Mattis stateenienceb is set equal to unity. The relative time delays

in the (T,a,\) space. Nevertheless it shows clearly thakas observed not to affect the asymptotic behavior and set equal

increases, the Mattis state becomes unstable and replaced toy unity throughout the simulations. Figure 7 displays the

the disordered state or by the nonstationary state. typical behaviors of the average overlaps in the system start-
The above analytic investigation is limited to the equilib- ing from the initial patterré”=1: Here the transition from the

rium (fixed-poiny behavior in the thermodynamic limit with stationary-memory state at loWwand for smallx [shown in

finite p. Unlike the symmetric network, however, the asym-(a)] to either the temporal-association stashown in (b)]

metric one is expected to exhibit a variety of dynamicsupon increasing. or to the no-memory stafeshown in(c)]

which may not be obtained via the analyfiequilibrium) upon raisingT can be observed. It is of interest that the

analysis. In addition, the zero-storage limit=p/N—O0 is  average overlap in the no-memory state decays to zero as

far from practical in real networks of finite sizes. To inves- shown in(c); this is in contrast with the asymmetric Hopfield

tigate the dynamic behavior of the asymmetric network withmodel, displaying large fluctuations.

finite storage capacity, we thus resort to numerical methods In order to describe the ability of the asymmetric dynamic

and perform simulations of the coupled differential- model to recall a learned pattern or a full cycle, we have

difference equation&’) and(8). The solutions of the coupled performed extensive simulations and obtained the complete

equations and the corresponding phases are investigated fonase diagrams for various valuesagfwhich are displayed

various values of the parametefs,\, anda, while for con-  in Fig. 8. Each phase diagram consists of two surfaces in the
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FIG. 9. Comparison of the analytic results obtained in the limit
a—0 (solid-line surfacgand simulations performed far=0.002
(dotted-line surface The thick solid line on the.=0 plane again
represents the continuous phase-transition boundary.

with the storagex, which plays a role similar to that of the
temperaturel. While for small « the temporal association
S . becomes optimal around the temperaflisg¢see(a) and(b)],
.}:::'::‘:'::'3:— = 4 (c) reveals the drastic deterioration of the memory capability
= as « is increased toward the storage capaeity| <a.(M\
=0)~0.138/(1+a?)].

The simulation result foer=0.002 and the analytic one
(a—0) are compared in Fig. 9, which shows good agree-
ment with each other except for smaland highT. Since the
analytic result gives only an upper bound for the precise
phase diagram in the limik— 0, the true boundary of the
Mattis state fora=0 is expected to be located between the
two surfaces in Fig. 9.

IV. SUMMARY

The characteristics of temporal association in neural net-
works have been investigated both analytically and numeri-
cally, with emphasis on the effects of finite storage and tem-
peratures. We have first considered the asymmetric Hopfield
model in the presence of noise, and presented several simu-
lation results. The phase diagram has been obtained in the
plane of the temperature and the degree of asymmetry, for

FIG. 8. Phase diagram of the asymmetric dynamic model in thevarious storage values. We have then turned to the dynamic
(T,a,\) space, for(a) «=0.001, N=5000; (b) «=0.01, N model, which has also been made capable of temporal asso-
=2000; (c) «=0.05, N=600. The dashed lines on the bottom ciation by introducing asymmetric couplings in a similar way
plane represent the contours of constant to the Hopfield model. In the dynamic model, the raiof

the refractory period to the action potential duration is a rel-
(T,a,\) space: one separating the stationary-menm{&#) evant parameter, in addition to the temperature and the de-
state and the other the no-memofM) state from the gree of asymmetry, and the phase diagram in the correspond-
temporal-associatiofiTA) state, respectively. Here the sys- ing three-dimensional parameter space has been obtained via
tem has been considered to be in the stationary-memory staggability analysis in the zero storage limit. We have further
and in the no-memory state ih,>>,. m, for a single performed extensive numerical simulations, which have
memory u and if m,=O(N~Y? for all v=1,2,...p, re- yielded the phase diagram for vario@®nzerg storage val-
spectively. As in the asymmetric Hopfield model, there alscues. It has been observed that the memory capability of the
exists a very narrow interval of in which the system un- network reaches its maximum arounc-1/2, regardless of
dergoes double transitions asis increased from zero, from the storage or the strength of the asymmetric coupling. It is
the stationary-memory state to the no-memory one and sulf interest to note that the refractory period and the action
sequently to the temporal-association state, although the n@otential duration are indeed comparable to each other in the
memory state occupies only a tiny region of smallust real biological system, which is optimal according to our
above zero and cannot be observed clearly in Fig. 8. Figure Results.
shows that the contours of constantrepresented by the
dashed lines on the bottom plane lead to the maximum val-
ues of T arounda=1/2. Accordingly, the optimal memory
capability is reached when the refractory period and the ac- This work was supported in part by the Basic Science
tion potential duration are of the same order, regardless dResearch Institute Program, Ministry of Education of Korea,
the strength of the asymmetric coupling. It can also be oband in part by the Korea Science and Engineering Founda-
served that the region of the stationary-memory state shrinkiion through the SRC program.
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