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Critical viscoelastic behavior of colloids
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The linear and nonlinear frequency-dependent viscoelastic response of a suspension of spherical colloids in
the vicinity of the gas-liquid critical point is analyzed in the mean-field region. Explicit expressions for the
shear rate and frequency dependence of the static structure factor are derived, starting fhbpattiele
Smoluchowski equation, which is the fundamental equation of motion for the probability density function of
the position coordinates of the spherical colloids. Microscopic expressions for the anomalous parts of the linear
and nonlinear response functions are derived, which are then expressed as wave-vector integrals weighted with
the static structure factor. These integrals are evaluated in part numerically, leading to explicit results for the
viscoelastic response functions. The critical enhancement of both the linear and nonlinear viscoelastic response
functions is found to be far more pronounced than for molecular systems as a result of long-ranged hydrody-
namic interactions between the colloidal particles. Viscoelastic response functions are found to diverge with
the same exponent as the correlation length of the quiescent, unsheared suspension. The frequency spectrum of
the linear response functions is found to be extremely broad, while nonlinearity affects only the low-frequency
behavior of the lowest-order response functions. The lowest-order response functions attain their linear re-
sponse values at higher frequencies even far into the nonlinear regime. Nonlinear effects are thus absent at
higher frequencies. For these higher frequencies the lowest-order response functions are found to vary with the
frequencyw asw ™ ** close to the critical point and cross over tawa*? dependence further away from the
critical point. In addition to the viscoelastic response of an otherwise quiescent suspension, the viscoelastic
response of a stationary sheared suspension is discussed. The response of such a stationary sheared system to
a superimposed oscillatory shear flow probes the dynamics of the partially distorted microstructure by the
stationary shear flow. The frequency spectrum of the linear viscoelastic response functions is found to be
strongly affected by the microstructure distortion due to the stationary shearl 86963-651X98)15512-5
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I. INTRODUCTION expression for the viscoelastic response functions. These mi-
croscopic expressions are ensemble averages of phase func-
The critical exponent,, that relates the zero-shear and tions, among which are the hydrodynamic interaction func-
zero-frequency shear viscosityof molecular system® the  tions. As pointed out above, these hydrodynamic interaction
correlation lengthé of the unsheared, quiescent system agunctions are long ranged and are responsible for the strong
n~ & is known to be as small as 0.0&], in accord with  divergence of the viscoelastic response functions for colloids
mode-coupling and renormalization group calculatipps  as compared to molecular systems. Second, the ensemble
The experimentally measurable critical enhancement of thaverage that represents the viscoelastic response functions
viscosity is therefore only about 10—20% relative to themust be evaluated with respect to the shear rate distorted
background viscosity. Forolloidal systemsthe mean-field pair-correlation function. The shear rate dependence of this
critical exponent has recently been shown to be as large gaobability density function is the result of an interplay be-
z,=1, both theoretically3] and experimentally4]. The rea-  tween equilibrium restoring forces and shear forces. The in-
son for this much stronger enhancement in the vicinity of theterplay between these forces is modified by hydrodynamic
gas-liquid critical point is the interaction between colloidal interactions, but the essential features of the shear distortion
particles that is mediated via the solvent, so-called hydrodyef the pair-correlation function is retaining when neglecting
namic interaction. This type of interaction between the col-hydrodynamic interactions. Thus, in deriving a microscopic
loidal particles is sufficiently long ranged to lead to a strongexpression for the viscoelastic response functions one has to
critical divergence of the shear viscosity. It is therefore in-include hydrodynamic interactions, while for the calculation
teresting to study the full frequency dependence of the sheaf the shear distorted pair-correlation function hydrodynamic
viscosity of colloidal systems near the critical point. More- interactions are not essential.
over, since the range of shear rates where the response is The viscoelastic response functions will turn out to be
linear vanishes on approach of the critical point, due to theequal to two distinct additive contributions: an anomalous
development of long-range correlations and slowing down ofind a background contribution. The anomalous contribution
density fluctuations, it is also interesting to ask about thas that part of the viscoelastic response function that diverges
nonlinear response. at the critical point due to the development of long-range
The role of hydrodynamic interactions between the colloi-correlations. This is the interesting part of response func-
dal particles is twofold. First of all, it enters the microscopic tions, for which predictions are made in the present paper.
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The background contribution to the viscoelastic response Y, cos{wt}
functions is the viscosity that would have been measured in -
the absence of long-range correlations. This contribution is Ay o A=gg’2:%'|gltligﬁ of
well behaved right up to the critical point. The background - )
contribution must be subtracted from experimental viscoelas- § I=gap width
tic response functions to obtain their anomalous contribution, re=radius inner
which may then be compared to theoretical predictions. Non- cylinder
linear viscoelastic response functions do not have a back- .
R R : Y.=0wA/l

ground contribution because background contributions are in L s
their linear response regime even when long-range correla- <§ T=0g0, /1
tions are affected in a nonlinear fashion. . (@, = angular velocity

We address linear and nonlinear response functions for a - Y of inner cylinder)
purely oscillatory shear flow and the linear reponse functions | @Y

to an oscillatory shear flow orthogonally superimposed on
stationary shearing motion. The results presented here alloygn
for the analysis of a nonlinear response to oscillatory shear
flow superimposed on a stationary shear flow. We restrict
ourselves here to the linear response regime with respect to
the superimposed oscillatory shear flow since the idea is to The flow field considered in the present paper is a station-
probe the dynamics of the stationary sheared microstructur@'y simple shear flow with an orthogonally superimposed
without disrupting it too much by the oscillatory flow. Only oscillatory shear flow. The couette cell geometry correspond-
orthogonally superimposed oscillatory shearing motion igng to such a flow is depicted in Fig. 1. The inn@r the
considered, although the entire analysis is easily adapted ®@Hted cylinder is rotating with a constant angular frequency
the case of a parallel superimposed oscillatory shear flow. @o @nd in addition exerts an oscillatory up-and-down motion
A microscopic evaluation of the viscosity consists of thregWith frequencyw. The fluid flow velocityu(r) at a pointr
steps: the calculation of the shear distorted pair-correlatioNithin the gap of the couette cell is now given by
function, the derivation of microscopic expressions for the
viscoelastic response functiofshere they are expressed in u(r)=r-r, )
terms of an ensemble average of appropriate phase func-
tions), and the explicit evaluation of these microscopic ex-Where the velocity gradient matrik is equal to
pressions with the use of the earlier derived pair-correlation
function. 0 y 0
This paper is organized as follows. The flow field is de- r=| o 0 0 2
fined in Sec. Il. Section Il contains an analysis of the struc- - ’
ture factor under shear flowstep 1 referred to aboyeln 0 ycodwt} O
Sec. lll A the equation of motion for the structure factor is
derived. Its solution without shear flow is shown to repro-

FIG. 1. Couette geometry corresponding to the velocity gradient
sor in Eq(2).

Il. FLOW FIELD

) ) ~"with y and y, the shear rates corresponding to the stationary
duce the well-known Ornstein-Zernike structure factor iNnd oscillatory components of the flow, respectively. In

iig' fl;lrrli. izhge?ﬂ?t('fnaﬁg Ec:'?nqurtﬁwttigrglsggf é};on' t_erms of geometrica! paramet.ers of the. couette.cell we have
numbers and Deborah number are introduced. The dimer¥= @ofo/l (wherer, is the radius of the inner cylinder aihd
sionless equation of motion is solved for a stationary sheais the gap widthandys= wA/l (whereA is the amplitude of
flow, in the absence of an oscillatory shear flow, in Secoscillation for the up-and-down motion of the inner cylin-
Il D, while the most general equation of motion for the caseden.

of an oscillatory flow, orthogonally superimposed on a sta- In writing Egs.(1) and(2) it is assumed that the velocity
tionary shear flow, is solved in Sec. Il E. The more simpleof the wall of the oscillating cylinder is instantaneously
case of a pure oscillatory shear flow is considered in Sedransferred to the entire suspension within the gap of the
lIIF. In Sec. IV the linear and nonlinear viscoelastic re- rheometer. Both the viscous penetration depth and the wave-
sponse functions are defined and microscopic expressions f&@ngth of the induced oscillatory motion of the suspension
these response functions are derivesiep 2 referred to are thus assumed to be at least of the order of the gap width.
above. These microscopic expressions are evaluated ifhe penetration depth and wavelength are both equal to
terms of the structure factor in Sec. (¢tep 3 referred to 2#n/pw, where 7 is the shear viscosity ang the mass
above, which are then expressed in terms of dimensionlesslensity of the suspensidb]. For suspensions with a viscos-
scaling forms in Sec. V A. Explicit analytical and numerical ity of a few times that of water or larger, the penetration
results for these scaling forms of the viscoelastic responsdepth and wavelength are of the order of or larger than 1 mm
functions are presented in Secs. VI and VII. Section VIAfor frequenciesw<10 Hz. The relevant frequencies for
considers pure oscillatory flow in the linear regime, Sec.near-critical systems are small due to critical slowing down.
VI B carries this further to the nonlinear regime, and Sec. VIIIt should therefore be possible to perform meaningful experi-
is concerned with the linear response to an oscillatory sheanents that probe the frequencies of interest as far as bulk
flow, orthogonally superimposed on a stationary shear flowproperties are concerned. A description of the experimental
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setup with which superimposed flow experiments can be per- A. Derivation of the equation of motion

formed is given in Refs6,7. The fundamental equation of motion that needs be solved
In a surface loading experiment, in Eq. (2) would be an  is the Smoluchowski equation, which is the equation of mo-
exponentially decreasing function of the distance to the waltion for the probability density functiof® of the position
of the oscillating cylinder. Such high-frequency experimentscoordinates(r;},j=1, ... N of the N colloidal particles in
are not considered here. the suspensiofil3-1§,
In the present paper we address the viscoelastic response N N
to the oscillatory motion. Two different cases are considered: aP

the linear and nonlinear viscoelastic response in the absence dt Dogl Vi [VjPJFﬁP(qu))]_;l vi-trnPl,

of the stationary component of the shear flow=(0) and the (€
linear viscoelastic response of a stationary sheared system. i ) _ . .
The former case is the more common situation of what idvheré Do is the single-particle diffusion coefficient,
usually referred to as the dynamic viscoelastic response. If = 1&sT (with kg Boltzmann’s constant ariithe tempera-
the latter case we restrict ourselves to the linear respon ﬁre), Vj is the gradient operator with respectrig and® is

with respect to the orthogonally superimposed oscillator e total potential energy of the assembly of colloidal par-

shear flow since the idea here is to probe the dynamics of g’cles. In this equation of motion we neglected hydrodynamic

microstructure under stationary shear with a minimum per_mteractions between the colloidal particles. To describe the

turbing effect of the oscillatory shear flow. The stationaryg;f?ftito\];vgzﬁ;oggnsirpﬁ'giérr']tte{scitr']%rlf dgnot:§ f&'gﬁilnz?rg?‘\ggr
shear ratey can be large, however, such that the miCrostruc<,nyihytions to the hydrodynamic interaction functions.
ture is nonlinearly affected by the stationary flow. The rela-qyever, the essential features of the shear distorted struc-
tively most simple case of viscous response to a stationary, . are already described by E®) as the result of the
shear dflovx(/j, lT thehabgencz of the 0§Clllagor:y flow, Eas beefhterplay between equilibrium restoring direct and Brownian
CONSICErea eisew efé] and is reprocuced here as the Zero'forces[represented by the first term on the right-hand side in
frequency limit of the pure oscillatory viscoelastic reSponsegq (3)] and shear forcelthe last term in Eq(3)]. Hydrody-
namic interactions will modify the details of the interplay
between these forces but do not change the essential features
. STRUCTURE FACTOR UNDER SHEAR FLOW of the shear induced distortion. The inclusion of hydrody-

In order to calculate the viscoelastic response of a suspelji'—amIC Interactions Is a future challenge. .
sion, an expression for the shear flow distorted pair- An equation of motion for the shear-rate-dependent pair-

correlation function is needed, or, equivalently, its FourierS0'élation functiong can be obtained from thak-particle

transform, which is essentially the structure factor. Notable>M0luchowski equatiofi3), noting that for a homogeneous

theoretical approaches to describe shear flow effects on gystem

microstructure are due to Onuki al. [8,9], Schwarzl and

Hess[10], Ronis[11], and Wagner and Russg12]. The g(rl,rz,t)=V2f dr3"'fdrNP(r11r2|r3!"'rNit)!
approach taken in the present section is specific for colloidal

systems near their gas-liquid critical point. This appraoch (4)

leads to an equation of motion with an explicit expression for . )
the effective diffusion coefficient and the dressecclee With V the volume of the system. Integration of the Smolu-

numbers and Deborah number in terms of the shear rate argfOWski equation(3) with respect to the coordinates

the correlation length of the unsheared, quiescent dispersiohg- - - -'n» @ssuming a pairwise additive potential energy of
This section is organized as follows. First of all, an equaPal potentialsv, gives (with r=r,—r; andV, the gradient

tion of motion for the structure factor is derived in Sec. Il A, OPerator with respect to)

starting from the Smoluchowski equation. Without sheara ()

flow this equation of motion is solved in Sec. IlIB. The 29(r.1)

solution reproduces the well-known Ornstein-Zernike ex- 4t =2DoV,-{V,g(r,t)+ Bg(r,t)[V,V(r) = Fing(r,t) I}

pression. In Sec. IlIC the equation of motion is written in

dimensionless form, giving rise to dressecclee numbers, = Ve [T-rg(r,n)], ®)

which measure the effect of shear flow on critical density ]

fluctuations, and a dressed Deborah number, which chara¥there(with r’=r;—r3)

terizes the frequency at which critical fluctuations cease to

adapt instantaneously to the applied oscillatory shear flow.

The dimensionless equation of motion is then solved in Sec.

Il D for the case of a stationary shear flowhere y,=0)
and for the general case of an orthogonally superimposets$ the shear-rate-dependantlirect force This is the force
oscillatory shear flow in Sec. Il E. Section Il F discusses thebetween two colloidal particles located mtandr,, medi-

more simple case of a pure oscillatory shear flovherey  ated by the remaining colloidal particles. Here N/V is the
=0). In all cases the expressions that are derived for theaumber density of colloidal particles arg} is the three-
structure factor are not limited to the linear regime but ex-particle correlation function, which is defined similarly to the
tend to the nonlinear response regime. pair-correlation function in Eq4) as

_ , "t
Fmd<r,t>=—pj dr'[vrrvu')]gz((rr—ft)), ®)
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1 number density enhancement around particles 1 and 3. This
0 density enhancement due to the presence of particle 2 is
r<R ° equal toph(r,—(r;+r3)/2t)=ph(r—3r’,t), whereh=g
3 —1 is the total-correlation function. The pair-correlation
) functiong(r,—r3,t)=g(r’,t) in Eq. (8) should therefore be
evaluated at the enhanced dengity ph(r — 3r’,t). Further-
r>>R, more, since our interest here is in the asymptotic behavior of
the pair-correlation functiorg(r,t) for large distances
FIG. 2. Typical configuration for which a closure relation for the >R, and h(r,t)—0 for r—o, the equation of motion can
three-particle correlation function is needed. Particles 1 and 3 arge |inearized with respect th(r—r’,t) and h(r—%r’,t).

separated to within a distance at most equal to the ré&qgef the The linearized form of the pair-correlation functiggr’) at
pair-interaction potential, while the distance between particles 1 angho enhanced density reads

3 and particle 2 is much larger thay, .

dg(r’,t)—
g(r’,t)+g(d——)ph(r—%r’,t),

p
9

where the correlation functions on the right-hand side refer

Notice that since the equation of moti@h) is invariant un-  to the system with particle number density Substitution of
der inversion(wherer;— —r;), the pair-correlation function Egs.(8) and(9) into the equation of motioi5) and further
is an even function, i.e.g(r,t)=g(—r,t). To obtain a linearization with respect tb yields

closed equation of motion we have to express the three-
particle correlation functiory; in Eq. (6) in terms of pair- ah(r,t)
correlation functions. The most commonly used, and for
many purposes quite accurate closure, is the superposition
approximation

a(

r',t =
! )lat the enhanced density

93(r1:|’2'r3,t)=V3f dr4-~fdrN

XP(ri,ry,r3,ra, ...t 7

:ZDOVI"

Vrh(r,t)+ﬁ{h(r,t)+1}([VrV(f)]

+Ff dr'[vr/vu')]g(r',t))

gs(r,r',t)=gs(ry—ry,ry—rs,t)

=g(r1—r2,1)g(ra—rs,t)g(ry—rs,t) +13;f dr’[V,,V(r’)]( g(r’ ,Hh(r=r’ 1)
=g(r,t)g(r'—r.,t)g(r’,1). tS)
_ o . . dg(r',t>—( 1 ))
This closure assumes pairwise independent pair correlations, +——=>ph{r—5r',t| | |=V.-[T-rh(r,t)].
thus neglecting the effect of a third particle on the correlation dp 2
between two other particles. Close to the critical point this (10)

approximation can be improved. Actually, as was pointed
out by Fixman[17], the improvement we are going to dis- Eqr r>Ry andr’'<Ry, bothh(r—r’) andh(r—3r’) are

cuss is necessary in order to obtain a divergent correlatioBmooth functions of ' on the length scal®,, which can
length at the critical point. The superposition approximationtherefore be Taylor expanded as

(8) as it stands is a poor approximation close to the critical

point (and also close to the off-critical part of the spingdal h(r—r’,t)=h(r,t)—r’-V,h(r,t)+ 2r'r":V,V,h(r,t)

A closure relation is needed for distangés=r,;—r5, which L

are equal to or smaller than the rang§g of the pair- —5r'r'r" ViV, Vih(r,t)- -,

interaction potential since in the integral in Ed6)

V,.V(r')=0 for distancesr’ >Ry . On the other hand, we  h(r—3r’,t)=h(r,t)— 2r'-V,h(r,t)+2r'r":V,V,h(r,t)

are interested here only in the long-range behavior of the .

pair-correlation function since long-range correlations are re- —al'r'r i ViViVih(r,t)- - -

sponsible for the critical behavior of the suspension. Our

interest is thus in the asymptotic solution of the equation of urthermore, since the interest here is in the distortion of
motion (5) for distances = |r,—r,|>Ry . A typical configu- Ipng—range correlations, we peglect the shear mduce_d distor-
ration of particles for which a closure relation is needed istions of short-range correlations: long range correlations are
shown in Fig. 2. The neighboring particles 1 and 3 are tcmuch more sensitive to ;hear flow than short-range correla-
within a distanceR, from each other, while the particles 1 tions because at s_hort dlst_a_nc_es shear f_orce_s are s_maller and
and 3 are Separated from partide 2 by a distance |arge Corﬁhe COUnterbalanClng, eqUIII_brlun_W restorlng |nte-raCt|0n-S are
pared toR, . The effect of the distant particle 2 is that it stronger. The ampunt of distortion of cor(elat|ons with a
enhances the density around particles 1 and 3 since for the§@19€ Ry or less is measured by the bareckee number
large distances the pair-correlation function is a smoottP€=yR3/2D, for the stationary shear flow and Pe
function of the distance. Therefore, the effect of particle 2 on= 'ySR\Z,IZDO for the superimposed oscillatory shear compo-
the correlation between the neighboring particles 1 and 3ent of the fluid flow. The shear rates are supposed to be
can, for our purpose, be described by taking into account amall enough that these barecRe numbers are smdllL8].
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The pair-correlation functiog(r’,t) in the above integralsis ~ The above equations relate to the mean-field behavior of
therefore set equal to the equilibrium pair-correlation func-the structure factor. This is due to linearization of the equa-
tion g®%r’), that is, the pair-correlation function in the ab- tion of motion(5) with respect to the total-correlation func-
sence of shear flow. Substitution of the above Taylor expantion h. On linearization, terms of orden® are neglected
sions into Eq(10) and performing angular integrations leads against the important linear tertm3dII/dp. Very close to

to the critical point, WheresdH/d;is a very small number, the
ah(r 1) dIl nonlinear terms become equally important as the mentioned
r, i F ;
=DgV,-{ BIh(r,H)+ L[V, V(r)]+ B—=V,h(r 1) Ilnea_r term. Beyond the mean field region one has to solve
ot dp nonlinear equations of motion. Such nonlinear equations are

not considered in the present paper.
) It is important to realize that the shear induced shift of the
— B2V Vrh(r.t) ( =V, [T-rh(r,t)], (1D spinodal and the critical point is related to the distortion of
correlations over distances less than the raRgef the pair-
where interaction potentia[19]. These short-range distortions are
neglected in deriving the above equation of motion and
_ 27— [ V(r') therefore the shift of the critical point playes no role here.
= pkgT— ?PZJ dr'r’®———=g°{r’) (120  Notice, however, that a very small shift of the critical point
0 dr in the phase diagram is unimportant only when that shift is
much smaller than the distance of the unsheared system to
the critical point. Since we restrict ourselves here to the
1 dgey(r’) mean-field region it is probably safe to neglect the small,
g%qr’)+ P = shear induced shift of the critical point.

dp
(13

is precisely the osmotic pressure of the suspension and

27— dv(r’
T dr'r’® (')

S=—
15" Jo dr’

B. Equilibrium structure factor S°%(k)

is a pOSitive Constant, prOpOI’tiona| to the Cahn-Hilliard The equi”brium structure factoseq can be calculated
square gradient coefficient. A Fourier transformation of Eq.from the Stationary form of the equation of mot“jml)’
(11 and subtraction of the equation without shear flow, us\yhich reduces without shear and fior Ry, whereV,V(r)

ing Eq. (2) for the velocity gradient matrix, yields =0, to
as(k,t) . . aS(k,t) dI1
ol A5 Ry VsCOS{wt}ks]ﬁ—kz zvfhetl(r)zd—_he"(r). (17)
p

—2D*"(k)k*{S(k,t) = S*(K)}, (14 . . o .
The solution of this equation is the well-known Ornstein-
wherek; is the jth component of the wave vectarand Zernike total-correlation function
— . exp{—r/
Sk=1+p [ dihrve-ikr} (19 neqr) = (AR B8, 18
is the static structure factor, whig*?is the structure factor |\ here the correlation length is equal to
without shear flow. FurthermorB®f(k) is a wave-vector-

dependent effective diffusion coefficient equal to dIl
=\ = (19
dp

eff dIl 2
Def(k)=DB d—;+k S (16)

andA is a dimensionless integration constant. The relevance

The first term on the right-hand side of E44) describes of the correlation length is that it measures the range over
which colloidal particles in the unsheared system are corre-

shear flow distortion, while the last term describes the diffu- _ — - _
sion limited tendency to restore the equilibrium microstruc-lated. Sincedll/dp—0 on approach of the critical point
ture. Close to the critical pointand also close to the off- (and also on approach of the off-critical part of the spinndal
critical part of the spinodal where gdIT/dp is small, the the correlation length diverges. This means that at the critical
effective diffusion coefficient is small for small wa\;e vec- point each colloidal particle in the system is correlated with

tors, a phenomenon that is commonly referred to as critica‘fiJIII (_)th_er colloidal particles. One may imagine thqt It W!” take
slowing down an infinite force to break up these many correlations in order

As we will show, the general solution of the equation ofto make the system flow, which means that the viscosity

motion (14) can be expressed in terms of explicit expressionsd'verges. on approach of Fhe spmoda}._ .

for structure factors for two more simple cases: the StruCtur?orStﬁgsst;trldg?&gf]‘::%rlg)i\l/g? the defining expressiofL5)
factor in the absence of shear fl&%® and under stationary 9

shear flowS™® in the absence of the oscillatory shear flow.

These two more simple cases will be considered in the fol- SYk)=1+4mp(AR))
lowing, before solving the full equation of motida4). £724K2

(20
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Since atk=0 the equilibrium structure factor is equal to nent of the flow. A significant phase shift of the structure

kgT/(dIT/dp), it follows that the integration constant is factor response relative to the external fietdcogwt} will

equal to be found for(A>1, while for <1 the viscous response will
be almost instantaneous. Notice that\ g, and(}, for given

_1 . g
v, vs, and w, become larger on approach of the critical
—1r. point because of the increasing correlation lengthThe

effect of shear flow for given shear ratgsand vys is thus
Substitution into Eq(20) gives more pronounced closer to the critical point. This is due to
s ) the increasing sizgc.)f “clus.ters.of correlated particles” on
k) = (BY) ~¢°+(ké) 21) approach of the critical point since larger clusters are more
1+ (k&)? ' easily affected by shear flow. Furthermore, the dynamics of
these larger clusters is slow so that the typical frequancy
In the neighborhood of the critical poing2 is estimated Wwhere the response of the structure factor will have an out-
from Egs.(12) and(13) to be of the ordeR\Z, [20]. In addi- of-phase_component with the applied field occurs at smaller
tion, the above equations are valid only for small wave vecfrequencies.
torsk<2w/Ry, so that Eq(21) reduces to

D. Stationary sheared structure factor S°@(k) (ys=0)

2
k) = 1 3 (22) Let us consider the relatively simple case of a stationary

BE 1+ (k&)?’ shear flow, where/,=0 [16]. The dimensionless equation of

L . . motion reduces for this case to
which is the well-known Ornstein-Zernike structure factor

21 . sta
[21] 0=)\K1£?S(9—KKK)—K2[1+KZ]{SStaKK)—Se"(K)}.
2

C. Dimensionless form of the equation of motion (28

With Eq. (19) for the correlation length and EGL6) for ~ 1he sojution of this equation of motion can be obtained by
the effective diffusion coefficient, the equation of motion jneqration with respect ti,. The solution is constructed in
(14) can be written more elegantly in a dimensionless formapnendix A, where thes-distribution representatiofAl)
by introducing the dimensionless wave vector plays an essential role. The following expression for the

K=ké (23) gr%sjﬁ:;-Zermke structure factor under stationary shear flow

and the dimensionless time

stal — Qe - = 2_ k2 2
7=2D°(k=0)¢ %t=2D B3 £ 1. (24) SO =S 15 |, XK+ X
The dimensionless equation of moti¢td) reads F(K|X
q ><[K§—X2]exp:— (MJ )” (29
P Kyt aecod 0 rKal ™) o1+ K2 '
ar [MK1Hhscod 7K ] K, [ ! whereS*%is given by Eq.(22) and
X{S(K,7)—S*(K)}, (25 X
t s F(K|X)=f dY[K2— K2+ Y2][1+K2—K3+Y?]
where the following “dressed Rkt numbers” are intro- Kz
duced: =[X=KI[K*=K3][1+K?*=K3]
¢ & 7sé* ¥st’ 1 1
)\: = , = = , —_ 3_ 3 2_ 2 — 5_ 5 .
2DoBE  2D°M(k=0)' ° 2DoBY 2D(k=0) T 3X KL+ 2K 2K [+ 5 LXK
and () is a dimensionless frequencyr a dressed Deborah Tpe upper integration limit in Eq29) is equal to+ % when
numbey, AK;>0 and equal to— when \K;<0. As can be seen
4 ) from Eq. (28), for A=0 and/orK,=0, the stationary struc-
Q w§ w§ (27) lure factor becomes equal to the equilibrium structure factor.

That the solution in Eq(29) satisfies this requirement is
shown in Appendix A. Perpendicular to the flow direction,
The dimensionless numbeps and A measure the long- whereK;=0, there is thus no effect of shear flow agt*
wavelength shear induced distortion of the structure factor=S®% Distortions in directions wherk ;=0 may occur be-
The crossover from the weak shear regime, where shear efjond mean-field, where instead of the linear equation of mo-
fects are small, to the strong shear regime, where shear efion (28) a nonlinear equation should be considered. In addi-
fects are significant, occurs at=1 for the stationary shear tion, such distortions may result from hydrodynamic
flow and atAg~1 for the superimposed oscillatory compo- interactions, which are neglected in the present theory, or

T 2D0BY  2D°f(k=0)
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S(K,7)=S"{(K)+

)\SKSJT d7'cogQ T’}GZ( 7’)
MKy )

X[1+GH ) YS™HG(7'))—SAG(7))}
xexp{—H(7")}, (33

where the vecto is equal to

AKg
[sifQ 7}

G(T,):(Kl,Kz'f')\Kl(T_T,)'f‘ o)

—Sin{QT’}],Kg), (34)
FIG. 3. Static structure factor as a functionkf andK, with

Ks=0 (upper figuresand of K, andKj with K,=0 (lower fig- (1) js its length and the functioH (') in the exponent is
ure9, for A=10 and 100. The leftmost figure is the equilibrium equal to

Ornstein-Zernike static structure factor. A value of 1/100 is chosen

for the quantity Ry/&)?(B2/RZ). The rightmost figure is an ex- T
perimental scattering pattefwith K,=0). H(r")= f ,dT"GZ(HI)[l"‘ G*()]. (35

may be the result of distortions of short-range correlationsThe latter integral can be done analytically with some effort.
that couple to the long-range structure. The shear rates aMgothing is learned from this very long explicit expression for
assumed here to be small enough to be able to neglect thepeand therefore it is not displayed here. Notice that both
short-range distortions. Short-range correlations are not als(7') andH(7') are functions ofr andK as well.

fected by the stationary shear flow when the “barelee A few features about the above expression for the struc-
number” Pé’z'yR\z,/ZDo is small [18]. Since £&>Ry and ture factor are to be noted.

D®f(k=0)<Dy, \ can be a large number while at the same (i) The time dependence of the microstructure does not
shear rate Peis a small number. Hence large-scale struc-instantaneously follow that of the applied flow field
tures are already severely affected by shear flow at shedr-cog()7}). There is in general a phase shift between the
rates where small-scale structures are virtually unaffectedesponse of the microstructure and the applied field, as a
Figure 3 shows the highly anisotropic microstructure underresult of the finite diffusivity of the colloidal particles. This
shear flow for various values of the dimensionless shear rats illustrated in Fig. 4a), where— AS=S@"S is plotted as

\. For comparison, the rightmost figure is an experimentah function of QO+ for a wave vector equal toK
result. =(1/y/3,1//3,1///3) and for three choices of the applied fre-
quency (1=0.1, 1, and 10. For this wavevector a higher
shear rate leads to a decrease of the structure factor, so that
— ASwill be in phase with the external field for low frequen-

) cies. The dimensionless shear rateand\  are taken equal

The structure factor under an oscillatory shear flow, org 1 and 0.1, respectively. The responsa S is scaled with
thogonally superimposed onto a stationary shear flow, willis minimum or maximum value so as to limit its values to
be an alternating function of time around the stationary strucgne interval[ —1,1]. As can be seen, for a small value of
ture factor as given in Eq29). To obtain this alternating )\ —0.1, the microstructural response is almost linear in the
solution it is more convenient to start from an equation ofyhjieq field. The crossover from a linear to a nonlinear re-
motion for the difference sponse occurs atg~1. The time lag of the microstructure

— _ oSt with respect to the applied field becomes significant (or
AS(K,7)=S(K,7) = S(K). 3D ~ 1. This phase shift gives rise to an elastic component of the
viscous reponse.

With increasing frequencieQ the responsas, i.e., the
oscillatory shear induced additional distortion, becomes
smaller as the microstructure is not able to respond fast
dAS(K, 1) JAS(K,7) enough to the rapidly varying external field. Note that in Fig.
T:D‘Kﬁ)‘SCOS{QT}Kﬂa—KZ 4(a) the response is scaled with respect to its maximum or
minimum value, so that this decrease/$ with increasing
frequency is not visible in that figure.

(i) As can be seen from Fig(H), the time dependence of
the structure factor is not sinusoidal, like the applied field,

X cod QTHS™(K) - S*K)}. B2 when \s becomes larger than 1. This is due to the nonlinear
dependence of the structure factor on the applied oscillatory
The solution of this equation of motion is constructed inshear ratex ;co§Q7}. Higher-order Fourier components be-
Appendix B. The alternating solution, after transients diedcome relevant at largev,, but they disappear again at larger
out, reads applied frequencies. The nonlinear effects seem to become

E. Structure factor under orthogonally superimposed
shear flow

From Egs.(25) and(28) one obtains the equation of motion
for this difference

oK
~ KA1+ K2IAS(K, 7) + 3 KA 14K
1
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FIG. 4. External field(dashed ling and the temporal response of the normalized structure factor for the wave wector
= (1/\/§, 1/J§, 1/\/§) (solid lineg. The dimensionless shear rate for the stationary shear flow in these fighred iga) The linear response
regime (\s=0.1) with increasing frequencyb) Nonlinear response regime.{=10) with increasing frequencyc) Low frequency ()
=0.1) with increasing oscillatory shear amplitude.

less pronounced at larger frequencies. The transition from direction perpendicular to the stationary flow, and the rel-
linear response to a nonlinear response is most clearly se@Want bare Bdet number is P&= '7R\2//2D0_ Distortions per-
in Fig. 4(c), where\ is increased from top to bottom from pendicular to a flow direction can also be the result of hy-
0.1to 1 up to 10. drodynamic interactions between the colloidal particles,
(iii) In Eq. (33) the dimensionless shear amplitudgap-  which are neglected in the present theory. Furthermore, such
pears always as a product wiky. This implies that in di- distortions may become relevant beyond the mean-field re-
rections whereK;=0 there is no effect on the stationary gion, even for small bare Bt numbers and without a hy-
sheared microstructure. Directions correspondindg<te=0 drodynamic interaction. Beyond the mean-field region non-
are directions perpendicular to the oscillatory shear flow. Alinear equations of motion should be considered, which may
little thought shows that the morphology of density wavesgive rise to relevant distortions perpendicular to the flow
extending in these directions is indeed unaffected by thelirection.
straining motion induced by the oscillatory flow. Oscillatory  (iv) At first sight it may seem that there is a divergence in
shear induced distortions in directions whé¢g=0 could the expression&29) and(33) for S*®andAS, respectively,
become important when the oscillatory shear ragdis so  in the case\K;—0. However, forh=0 and/orK;=0 one
large that short-range correlations are also affected. This willasS**= S, as explained in the previous ndfié) and, in

be the case when the barécie number P29=5’5R\2//2Do mathematical terms, at the end of Appendix A.
corresponding to the oscillatory shear flow is larger than 1.
The above expressions are valid when this baeP@um- _ _
ber is smaller than 118]. The same comments hold for the ~ Consider the case of a purely oscillatory shear flow,
stationary structure factor in Eq29), whereK,=0 is the  where the stationary shear component is absent, 20

F. Structure factor under pure oscillatory shear flow (A=0)
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=\. The structure factor now reduces to the equilibrium , T .
structure factor whery;=0 instead of the stationary struc- Ho(7')= Jr,df Go(7)[1+Go(7)], (38)
ture factor as in Sec. Il E. The equation of moti@5), now

for AS=S—S®9 reads _
whereGy is the length of the vector

JAS(K,7) JAS(K,T)
TTz)\sCOE{QT}KsTZT—KZ[l—FKz] K
aSeU(K) Go(T,):(Kl,K2+ Q [Sin{QT}_Sin{QT,}],K3>.
XAS(K,T)‘F)\SCOS{QT}KQ,(?—KZ. (36) (39

This equation of motion can be solved in exactly the samerpe jndex 0 refers to the zero value of the stationary shear
way as Eq(32). Following the steps outlined in Appendix B, rate

we obtain . . . L
An alternative route to arrive at this expression is to
. SAGy( ') evaluate S"™®(G(7'))—S*YG(7')) in the integrand in Eq.
s(K,T)zseq(K)—z)\sst dr’cos{Qr’}—2 (33) to linear order in\ using Eq.(28). It should be noticed
— 1+Gp( ") that such a linear expansion is valid only when considering
NeK the limiting expression foy— 0 since Eq(28) is singularly
Q (sifQ7}—sin{Q7'}) perturbed by the stationary shear flow.
The above result simplifies considerably in the linear re-
X exp{—Ho(7)}, (37) sponse regime. Since the integral in E8j7) is multiplied by
\s, the linear response result is obtained by setligg 0 in
with S®9 given by Eq.(22). The functionHy(7') in the ex- Gg. Since for\s=0 we haveGy=K, Eq.(37) is easily seen

X|Ky+

ponent is equal to to reduce to
2)\5K2K3 T
S(K,7)=S*(K) 1——1 KZJ dr’cod Q7' texp{ — (7— 7" )KA(1+K?)}
—+ — o0
2N KK [K2(1+K2)cod Q 7} + QsinfQ
— SYK)| 1— KoK [ K“( ycog Q1 7} n{ 7'}]. (40)

(1+KH[Q%+K*(1+K?)?]

This result can also be obtained from a linear response analgand at the critical point each colloidal particle interacts with
sis of the equation of motio(86). The linear response result all other colloidal particles in the system. This is the mecha-
makes sense only when used to calculate viscoelastic reérism that leads to very large and ultimately infinite forces
sponse functions in the linear response regime. The equatiqfat are required to induce relative displacements of colloidal
of motion (36) is singularly perturbed with a boundary layer particles, corresponding to a large and ultimately diverging
of width ~\\g aroundK=0. In this boundary layer the shear viscosity. In addition, the dynamics slows down con-
linear reponse expressiqd0) is invalid. For vanishing\s  siderably on approach of the critical point, leading to a dra-
the width of the boundary layer vanishes and therefore doegatically changing dynamic viscous response of the system.
not contribute to wave vector integrals representing Visyye have to find a microscopic expression for the viscosity in

coelastic response functions. order to quantitatively predict this anomalous behavior as the

The above expression for the structure factor under Shefi‘%sult of the development of long-range correlations.
flow can be used to predict the dynamic viscous response o Batchelor[22] derived a microscopic expression for the

&Qe\,?srggi'tcailssgzﬁsgjlOph%niietﬁergféfftogf'(t:hixspﬂiisélOﬂefn ffective stress of suspensions that is valid for arbitrary con-
section Yy ) J AUeMNentrations and frequenciésot exceeding the inverse of the

viscous relaxation time Only a few terms in that expression
are responsible for the anomalous behavior of the viscous

IV. MICROSCOPIC EXPRESSION EOR THE ANOMALOUS response. The remaining terms cont_ribute_onl_y to a_well-
VISCOELASTIC RESPONSE FUNCTIONS _behaved so-called background V|scos¢y, which is the viscos-
ity that would have been measured in the absence of the

The range of correlation§ is large close to the critical long-range correlations. In the following we shall rederive
point and ultimately diverges. This implies that close to thethe term in Batchelor's expression that is responsible for
critical point many colloidal particles interact simultaneously anomalous behavior in a quite straighforward and elementary
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way and revisit the definition of various viscoelastic re-
sponse functions in the nonlinear regime.
First consider the linear viscoelastic response of the sus- .1

pension. LetJ be the rate at which energy is dissipated and
stored per unit volume, due to the up-and-down oscillatory )
motion of the inner(or outey cylinder. LetF(t) denote the *

force that is applied to the oscillating cylinder in order to

sustain a prescribed veIoci'éyScos{wt}l relative to a station-
ary cylinder(wherel is the gap width The rate of energy

dissipation and storage j&cogwt}IF(t). In the linear regime FIG. 5. Particle 2 experiences not only the incident shear field
the force is sinusoidal, like the velocity of the oscillating but also the flow field due to scattering of the shear field by the core
cylinder, but there may be a time lag between the two. Thef particle 1.

force F(t) will therefore be of the form

S [
AV, =T_.r,+C',:T

U= yscoq wt}IF (t)/I1A
F()/A=y{ 7' (w)codwt}+ 7"(w)sifot}],  (41) _ >
= Vﬁcos{wt}nzl [ 70(w)cognwt}
with A the surface area of the oscillating cylinder. The in-
phase viscosity;' (w) and the out-of-phase viscosity’' (w) + 7n(w)sin{nwt}]. (43
thus describe the linear viscoelastic response of the suspen-

sion. For low frequencies, whei® <1, the microstructure In an experiment in the nonlinear regime one often considers

will follow the applied field (~cogwt}) instantaneously, so only the first few higher order Fourier components.
that 7" (w=0)=0. It thus follows that The dissipated and stored energy can also be expressed in

terms of the hydrodynamic force?*?‘ that the fluid exerts on
the colloidal particles=1,2... N and theextra velocity

U=ycodwt}IF (t)/1A AV; that each particle attains as a result of the superimposed
. , oscillatory shear field,
= y2coq wt}[ ' (w)cod wt} y
N
+7"(w)sinfwt}]. (42) 0=2S (Avs.Eh, (a4
=1

The in-phase viscosity)’(w) measures the dissipated en- i v/ the volume of the system and angular brackets denot-

ergy, while the out-of-phase componeyit(w) measures the " ansemble averaging with respect to the shear-rate-

elastically stored energy. dependent probability density function. Hence, from Eq.
Let us extend the above result to the nonlinear reg|me(43)

For larger shear rateg, the force F(t) is an alternating

function of time that is generally not sinusoidal, due to the *

nonlinear response of the microstructure, as depicted in Figs. > [7(w)cognwt}+ 7 (w)sinnwt}]

4(b) and 4c). The alternating forc&(t), necessary to sus- n=1

tain the oscillatory motion of frequency, now exhibits

higher-order frequencies. In this case the terms 2 (45)
7' (w)cogwt! and 7(w)"sin{wt} in Eq. (42) should be re- 7500iwt}V =

placed by a Fourier cosine and sine series, respectively, that
Let us denote the velocity gradient matrix corresponding to

=z

is,
the flow induced by the superimposed oscillatory motion as
- I'g, that is,
ﬂ’(w)COS{wt}HnZl nh(w)cognot} 0 0 o
I'.=ycodot}ly with T,=|0 0 0]. (4¢)
and 010

The oscillatory shear induced velocity of a colloidal particle
_ ) i is the local velocity of the fluid in the absence of colloidal
7"(w)sinfwt}— 21 Mn(w)sin{not}. particlesI's-r;, with r; the position coordinate of thith
" colloidal particle, plus a contribution due to the disturbance
of the local fluid flow by the other colloidal particles. The
In the linear response regime only,(w) and 77(w) sur- incident flow fieldI's-r is scattered by the cores of each of
vive, which are then equal t@'(w) and 7"(w), respec- the colloidal particles, thereby affecting the motion of the
tively. The linear response resi#t2) for the energy dissipa- other colloidal particleg¢see Fig. $. This contribution is de-
tion thus generalizes to noted asC{ :T's. Hence
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AVP=Tg1;+C/(ry,r5, ... rn):Ts. (47) -
i=Lls it i(ry,r N s Z [ 7p(w)cognwt}+ 7 (w)si{nwt}]
Thedisturbance matrice€; of rank 3 are complicated func- =t

tions of all the position coordinates of the colloidal particles. N

Leading-order terms in an expansion with respect to the in- = 2 <(fs. ri+C/ ifs)'(Vi‘D+kBTVi|ﬂP)>-

verse distance between the colloidal particles can be derived YsV i=1

[23,16. The way in which the ensemble average in E) (52)
diverges on approach of the critical point is determined by

the behavior of the phase functidiv/®. |:ih at large distances. There are further contributions to the viscosity that stem

It is therefore sufficient to use the asymptotic formGjf at from direct interactions of solvent molecules with the colloi-
large distances. This asymptotic form is simply the first termdal particlesthe hydrodynamic viscositynd from interac-
in an expansion with respect to the inverse distances betwedipns between solvent molecules. These contributions will
colloidal particles, which is nothing but the expression fornot be considered here since they contribute only to the well-
CJ-' on the pair level. The higher-order many-body interactionbehaved bac.kground viscosity. Only the interactions between
contributions toC/ vanish at infinity more rapidly than its colloidal particles become long ranged upon approach of the

two-particle contributions. Using the two-particle form@f critical point, while the other interactions remain short

. . ranged and therefore do not contribute to the anomalous be-
does not mean that one performs an expansion to Iead'qgavior of the effective viscosity

order in the density, which would be completely wrong near ; . X .

. . X X . The various viscoelastic response functions now follow
the critical point. Instead, this two-particle form is the lead-
. X A . from Eq.(52) as
ing term for large distances, whose contribution determines

the way in which viscoelastic response functions diverge. () o N rode cognwt}
The disturbance matrix is now a sum of matriceslepend- { ] = f t{ }

ing on just two position coordinates;(=r;—r;), (@)  myV =1 Jo sinwt}
N X{([g-ri+Cl:T) - (V;®+kgTV;InP)).
C/ = C(ryi). 48
(= 2, G (49 53

For the evaluation of the effective viscosity we will need the Using the expressions fqr the structure factor as derived n
Sec. lll, these microscopic expressions are evaluated explic-

explicit leading-order expression for the divergence of the>=" : ; .
vectorC:T',, which reads itly in Sec. V. Numerical results are given in Secs. VI and

VII.
6 ~ In an experiment one typically measures the fd¥¢g) on
Vi-[C(rij):Ts]= 7(:) (rij-Ts rij), (49)  the cylinder that is needed to sustain a prescribed velocity.
" According to Eq.(43), this force is equal to
where Fi,- =r;;/rij anda is the core radius of the spherical oo
colloidal particles. F()/A=7y,>, [nh(w)codnwt}+ 7! (w)sin{nwt}].
On the Smoluchowski time scale, the inertial force on n=1
each colloidal particle is negligibly small, so that the hydro- (54)
dynamic forcess;' are equal to minus the sum of the direct The various viscoelastic response functions are therefore ex-
force perimentally obtained from a Fourier series analysis as

Fl=-V,® (50 () w fzw/w cognwt}
=— ty .
7n(®) sifnot}
FB'= —KgTV,InP (51 These experimental data can then be compared to the theo-
' e retical predictions following from Eq(53).
with & the total potential energy of the colloidal particles
andP the (shear-rate-dependemrobability density function V- EVALUATION OF THE VISCOELASTIC RESPONSE
of the position coordinates. In equilibrium, without shear FUNCTIONS

flow, these two forces add up to zero, yielding the Boltz- 1o guantity of interest in the microscopic expression

mann probability density functio®~exp{—®/ksT}. In @ (53 for the viscoelastic response functions is
sheared system there is an unbalance between these two

: JF(I)/A. (55)
and the Brownian force TYs) 0

forces, sdP is no longer equal to the Boltzmann exponential. 1 N R

This effect of shear flow on the pair-correlation function or, N(t)=-— E ((Pg-r;+Cf :Tg) - (Vi@ +kgTV;InP)).
equivalently, on the structure factor, has been analyzed in YsV i=1

Sec. lll. The ensemble average in E45) is to be taken with (56)

respect to this shear-rate-dependent probability density fung=or convenience this quantity is written as the sum of four
tion. Substitution of Eq(47) for the oscillatory shear in- terms
B

duced velocity and Eqg50) and (51) with F'= —F —FF' o © . .
for the hydrodynamic force into E¢45) gives N(t)=Nc(t)+N; (1) +Nc () + N (1), (57
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with short-range pathg does not contribute to the anomalous part
of the viscosity since the anomalous behavior is the result of
o 1 N ) long-range correlations.
Nc(t)=-— 2 ((Ci:I'g)-Vid), First of all, linearization with respect to the long-range
YsV =1 contributionsh, is allowed since the total-correlation func-

tion goes to zero at infinity. After substitution of the decom-
position(59) into the closure relatiof8) and(9) for g5, with

N
1
q) = —— I . . . .
N (D= izzl ((Trri)- Vi @), r replaced byR andr’ by r, such a linearization leads to

YsV

N

3

NE(H) = —— S ((C! T ke TVInPy), Ng(t)=%f drf dR[1+h(R—T1)+h(R)

YV i=1 S
+h(R)hg(R—1)+hy(R—1)+hg(R)h(R—T)

N
NP (t) =

1 - dg(r) 1
— 2, ((Pg1)) - kgTViInPy), (58) +hs(R)hs(R—r)][g(r)+——4hu(R——f)
YoV =1 — dp 2
where the superscripts Br arl refer to the Brownian and 1

direct force terms respectively, and the subscrpendr to R- Er

the terms involvingC/ andls-r;.

Most of the terms here probe the short range distortion ofrhe underlined terms probe only the short-range distortion of
correlations, which do not contribute to the anomalous parthe correlation functions and therefore do not contribute to
of the response functions. These terms are regular functionge anomalous part of the viscosity. For example, the first
of the bare Pelet number P&=y,RZ/2D, that measures underlined term~hy(R—r) is only nonzero for|R—r|
these short-range distortions. Such terms contribute only temaller than a few timeR,,. Since the factoW,V(r) limits
the background viscosity, which is the viscosity that wouldthe integration range of to r<Ry, this implies that the
have been measured in the absence of long-range correlategration range oR is also limited to a few timeg®,, .
tions. Second, since<Ry, the correlation function,(R—r)

Let us consider each of the contributionsNgt) in Eq.  andh,(R— 3r) are smooth functions af for large distances
(57) separately. For convenience we shall not denote th®. These correlation functions may therefore be Taylor ex-
time dependence of probability density functions in the fol-panded to first order in gradients
lowing.

+hg [V,V(r)]-[C(R):T].

(i) The contribution Ni(t). Substitution of Eq(48) for h/(R-r)=h(R)—r-Vgh/(R),
C/, assuming a pairwise additive potential energy and iden-
tical colloidal particles, yields h(R=3r)=h,(R)—3r-Vgh/(R).

Substitution of these expansions and a further linearization

—
Doy P T
Ne(t)= yJ dR(RI[C(R):I's]- VRV(R) with respect toh, yields

-3 -3
+’.J—J drfngg(R,r)[V,V(r)].[C(R):f]. Ng’(t)z’.'—f drde g(r)(1+2h,(R) = r - Vah (R)]
Ys Vs -
The first integral on the right-hand side probes the shear rate dg(r) h 1 h
dependence of the short-rangedependence of the pair- + d;_P (R) =51 Vehi(R)
correlation function since it is multiplied by, V(r). The
first integral therefore does not contribute to the anomalous X[VrV(r)]-[C(R):fS].

behavior of the viscosity. The second integral may be evalu-
ated as follows. In order to separate the anomalous part fromine ynderlined terms do not contribute upon integration
the background contribution, the total-correlation function isgjnce the corresponding integrand is an odd function of either
decomposed in a'long—range and a short-range contribution 5 g [note that botHV,V(r) andC(R) are odd functioris
h; andhg, respectively, Finally, g(r) may be replaced by the equilibrium pair-
correlation functiong®{r) since it is multiplied in the inte-
g(r)=1+h(r)+hy(r). (59 gral by V,V(r). The spherical angular integrations with re-

. spect tor can now be performed to yield
Formally, the long-range pal of the total-correlation func- P P 4

tion is defined as the asymptotic solution of the Smolu- [ 411

. : . . p .
chowski equation for large distances as found in Sec. Ill. The NE(t)= — ——KgT f dR[C(R):T]- Ve (R),
remainder is the short-range phgt, which is O for distances s dp

larger than a few timeR, . What is important is that the (60
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wherell is the osmotic pressure of the quiescent, unshearedbove product with respect to the long-range parts then
suspensiorisee Eq.(12)]. Since the hydrodynamic interac- leaves the following terms to be analyzed:

tion matrix C goes to zero aR ? for R—«, the above _ _

integral probes the long-range behavior of the total- i (r =R)Vehs(r), - i(r=R)hs(R)V:hs(r),

correlation function and therefore may contribute to the h(R)h(r—R)V,hy(r), hy(r—R)V,h(r),
anomalous behavior of the effective viscosity.
(i) The contribution I\'I"(t). Using that the pair- hy(R)hs(r—R)V,h(r).

interaction potential and the pair-correlation function are, e first termh (r—R) may be Taylor expanded around
even functions and assuming again identical colloidal par-_ - . h | h yd Y h panc dd
ticles. it is found that r=0sincehg(r) is short ranged. Noting th&(R) is an o

' function of R, this term yields the following contribution to

the viscosity:

0. 1p? R , .
[\ (t)=§.—f dRg(R)(I's-R)- VRV(R). (61  The first term is
Vs

-3
p .
Only the short-range behavior g{R) is probed here sincg B kBTZJ drr Vehg(r):

is multiplied in the integrand by gV(R). Therefore,N;I’(t)
doe__s_ not contribqte to the (rsmomalous behavior. _ « f dR[C(R):T,]- Veh/(R).
(iii) The contribution I\E (t). In order to evaluate this

contribution, we use the superposition approximation on therpg secong, third, and last terms are nonzero only when both

N-particle level, that isPy is approximated as Ir| and |R| are less than or at most a few tim& and
therefore contribute only to the background viscosity. In the

1 N fourth termh,(r) may be Taylor expanded aroumekR to
PN:W H g(ri—rj). (62 first order in gradients. Finally),(r) may be replaced by the
'}J<_j1 equilibrium short-range pamYr) of the total-correlation

function since by definition this function is short ranged.
This approximation becomes exact on the pair level and deThlS leads to the folIOWII’lg contribution to the viscosity:

scribes the essential features of higher-order interactions “?he fourth term is
an approximate way. This approximation implies that

-3
N kBTl.)—f drf dRhy(r—R)
Vlln{PN}:Z2 Vilng(ry—r)). s
J X[C(R):T'g]- Vehi(R)

Substitution of this expression together with E¢8) into ;3
Eq. (58) for N&'(t) readily leads to =kgT— J dr’hg(r")
Vs
P2 .
N(B;(t)=.—kBTf dR[C(R):T's]- VRg(R) XJdR[C(R):FJVRm(R)-
Vs
— Putting things together, we grri\ée at the following gxpre_ssion
+ f’_kBTf dRJ drg(R)g(r—R) for the anomalous contributioNZ'(t) to the shear viscosity:
Vs ;2
XV,0(r)-[C(R): R, 63 Ngr“):kBTg[l_cs]fdR[C(R)‘Fs]'VRh'(R)’
(64)
The first term on the right-hand side cancels against a term i\'?vhere
N&(t) in Eq. (60). The second term may be evaluated by
decomposing each of the pair-correlation functions in its —( 1 dhg4r)
short- and long-range parts as in E§9). The integrand in Cs= —477Pf0 drr?[ hg{r)— 3 |- (69

the second integral in E@63) is thus written as
This expression foCg is accurate up to linear order in the

{1+h(R)+hgR)H1+h(r—R)+hy(r—R)} bare Pelet numbers Peand Pé. Being related to the short-
range part of the total correlation functio@g is a well-
X{Vih(r)+V hg(r)}. behaved function at the critical point.

(iv) The contribution I\S’(t). For identical colloidal par-
Products of the short-range parts give rise to a regular corficles, Eq.(58) for NP'(t) is easily reduced to
tribution to the viscosity and may be disregarded. Further- —
more, odd functions of may be _disreg_ardeql si_nce these NBr(t)_EF_’_kBTJ dR(T,-R)- Vgh((R).
yield a zero result upon integration. Linearization of the 2y,
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Here it is noted that only the long-range contributionto
the total-correlation function is relevant. An application of

Gauss's integral theorem leads to a surface integral over the

spherical surface with a radiub the hard-core diameter of

the colloidal particles, sinc&/g- (f‘s- R)=0. This integral
probes the distortion of the total-correlation function at dis-
tances equal td and therefore contributes only to the back-
ground viscosity.

There are two terms that possibly lead to anomalous be-

havior: the terms in Eq$60) and(64). Summing these terms
yields

2
N(t) = kg To-

Vs

de[C(R):f]-VRh,(R).

BdH c
dp °

Since BdII/dp—0 on approach of the critical point, while
C, remains finite, the term- gdII/dp may be neglected.
The relevant expression fd(t) that includes all the anoma-
lous behavior is therefore

2
N(t)=ksTo—C,

f dRIN(R) ~ h¥(R) |- [C(R): T,
Ys R>d

(66)

where the index on the total-correlation functions is omit-
ted. Here Gauss’s integral theorem is appligtte surface
integral at|R|=d is omitted since it contributes only to the
background viscosifyand

f dothstatR)vR-[C(R):fs]=o.
R>

is used. This follows from the fact that
hs®{x,y,z) =h%®{x,y,—z) and V-[C(R):I'{]~yz [see Eq.
(49)], so that the integrand is an odd functionzofrom the
defining equatior(15) of the structure factor it follows that
the Fourier transform ofi(R) —hs®(R) is equal to[ S(k,t)
—S™8{(k)]/p. Explicit expressions fog(k) andS™{(k,t) are
given in Egs.(29) and (33), respectively. We therefore re-
write Eq. (66) with the help of Parseval's theorem as

Ll _ cota
N(t)—sﬂskBT.ysCSf dk{S(k,t)— Sk} (K),

(67)
with [using Eq.(49)]
|(k)=f dR{Vg-[C(R):T's]}exp{ —ik-R}
R>d
57 __k-Tgk 2t (e o6
= & 5 (kd(ka), (68)
where the cutoff functiorf is equal to
f(x)=[(5x°>— 10x®>— 120x) cosx+ (5x*— 30x?
+120)sinx]/16x° > fwd sl 69
) Sinx] BET ) . (69
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FIG. 6. Cutoff functionf(x) in Eq. (69).

The cutoff function is unity forx=0: f(0)=1. That the
integrall (k) is indeed equal to the expressid6s) and(69)
is shown in Appendix C. The functiohis called a cutoff
function because it limits the integration range in the integral
in Eq. (67) for N(t) to small wave vectors. As can be seen
from Fig. 6, wherd is plotted, the cutoff function effectively
limits the integration range to wave vectdd<<4, while the
major contribution is from wave vectoisd<<2. This is in-
deed the wavevector range for which the expression for the
shear flow distorted structure factor as derived in Sec. Ill is
valid. If the cutoff function would have had a longer range,
extending to wave vectors for whi&d> 6, corresponding to
wavelengths of the ordet~R,, and smaller, we would have
been forced to introduce in ad hocmanner a finite upper
limit for the wave-vector integration range in E&7). For-
tunately the introduction of such an uncontrolable cutoff
wave vector is not necessary.

The final expressions for the viscoelastic response func-
tions follow from substitution of the resul67) into Eq. (53),

7(®)|  wCepkgT (27w (Cos{nwt}}
e = i | PRI
=S (k). (70)

This expression will be rewritten in a dimensionless form in
the next subsection.

A. Scaling forms for the viscoelastic response functions

The amplitude ofS(k,t) —S%8(k) is proportional to&2.
This follows from the linear relationship betwe&i® and
S*[see Eq(29)] and that ofSin Eq. (33) with S**andS®,
while S is proportional tog?, according to Eq(22). This
can be made explicit by introducing the “relative distortion”

S(k,t) - S*¥(k)

Py (k,t)= =

(71)

This function is at most of order 1 in the entiimean-field
vicinity of the critical point. An appropriate scaling relation
for the response functions can be obtained from (26) by
transforming thek integration to aK=k¢ integration, by
introducing the dimensionless shear ratesndA; [Eq. (26)]
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and the dimensionless time and frequency) [Egs.(24)  fore comparing experimental results to the above predictions,
and(27)]. The viscoleastic response functiof¥) are now these background contributions should be subtracted.
written as

77;1((‘))/7]0 Né()\v)\SIQigild)
(@) 7o) [ NA(N A, Q,& 1)

VI. RESPONSE TO A PURE OSCILLATORY SHEAR FLOW

], (72 In the following subsections we first consider the linear
viscoelastic response to a pure oscillatory shear flotere
y=0) and then discuss nonlinear response characteristics.
Numerical results for the viscoelastic response scaling func-
d\4 tions are accurate to within 2%, or 0.002 for values of these
(R_v> (BE/R\Z/YZCS (73 functions smaller than about 0.05.

where 7, is the shear viscosity of the solvent,

oo 45
25612 ¢

. . A. Linear response to pure oscillatory shear flom(A=0
is a constant, independent of shear rates, frequency, and cor- P P y W )

relation length, ancb=(47-r/3)a3;is the volume fraction of In t_he absence of the stationary component of the shear
colloidal particles. The viscoelastic response scaling funcflow (y=0) the viscoelastic response functions can be found
tions er1 and N;‘,I are thus S|mp|y proportiona| to the vis- from Eq (74), where the relative structure factor distortion
coelastic response functiong(w) and 7/(), respectively. NOW f(_)llows from_ Eq.(37_). The mtegraﬂons_can be done
The microscopic expressions for these viscoelastic respond@alytically only in the linear response regime, where the

scaling functions follow from Eqs(70) and (71) relative structure factor distortion reduces to simple analytic
' functions that follow from Eq(40). Substitution of Eq(40)
qu()\,)\s,Q,f_ld) into Eqg. (74) leads to
[N;(x,xs,ﬂ,gld)] N;(A=0As—0,2,¢ 1d)
-Q fzw/n [cos{nQT}J 8w fw < K8 (K& 1d)
= T . = !
A€ )7 Jo si{n{ 7} 157 d)Jo T (1+K2[Q2+KA(1+K?)?]
T (K, 7|\, Q) 1 (76)
x [ kK, SENke ), (74
K NI(A=0As—0,Q,& 1d)
where the relative distortioW ¢ is now expressed in terms of 870 % KO (K& 1d)
dimensionless quantities and its shear rate and frequency de- = 1 f ot oA 5o
pendence are denoted explicitly. I8¢ 7d)Jo (I+KHTQHKAL+K)T]
Explicit expressions for the relative structure factor dis- (77)

tortion W follow from Eq. (33) in the most general case of a

superimposed oscillatory shear flow. Numerical results forThe limiting expressions for these response functions on ap-

the viscoleastic response functions in E@4) must be ob-  proach of the critical point, wherg 1d— 0, are obtained by

tained by numerical integration. simply setting the cutoff function equal to unity: For very
From the experimental point of view it is more convenientsmall values o~ d the integral has already converged kor

to express data as functions of a barelPenumber~y,  values such thak¢ 'd is still small and hencé (K& 'd)

instead of the dressed &et number\ since the latter de- ~1. Hence
pends also on the distance from the critical point. A most
convenient bare Rtet number is perhaps the following “al- Ni(A=0A¢—0.,£ 1d—0)
ternative bare Reet number”
_ 8w Och K8
. d\* T 15&4d fo 1+K2)[Q2+K4(1+K?)?]’
Pe = (¢ 1d) = R_) g - 5 'd)Jo (1K) (1+K??]
BIRG\ Ry (79)
On the one hand, this bare ddet number is equal to a prod- NZ(A=0A¢—0,Q,& 1d—0)
uct of two of the dimensionless numbexs and ¢ 1d)?,
which are relevant quantaties in the theory, while on the 870 % K6
other hand it is directly proportional to the experimentally = 1 f dK 22 2 LA 227"
easily accessible bare &et number P%,-with a proportion- 18¢77d)Jo - (1+KHTO +KA(L+KT]
ality constant that is independent of the distance to the criti- (79

cal point.
It should be noted that the expressi@d) represents only These results predict a divergence of the viscosiiesand
the anomalous parts of the response functions. The expery” as strong as the correlation length
mentally measured response functions are the sum of this
anomalous contribution and a background contribution. Be- 7' n'~&. (80)
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FIG. 7. Double logarithmic plots of the frequen€d,a,, Where 2 ' é ’ :‘
N” exhibits its maximum, and di’ (2=0) andN"(Q=0Q,,) as log. (Q)
10

functions of the inverse correlation length.

This behavior is illustrated in Fig. 7, where double logarith- £'d= (b)

mic plots of N'(Q2=0) andN"(Q=Q.) as functions of log, (N") oo
the inverse correlation length are shown. Hérg,, is the 2r®
dressed Deborah number whedg exhibits its maximum. 14 ™~

The scaling behavior in Eq@80) is found to hold, on a

double logarithmic scale, fag/d>3. The divergence of’ N
as predicted in Eq80) for a stationary shear flom(=0)

was already predicted in Rdf3] and experimentally verified 1} 0.01

for a colloid/polymer mixture in Refl4]. The critical expo-

nentz, in 7' (ys—0,0=0)~ & for molecular systems is 0.02

known to be as small as 0.Q&]. The much stronger diver-

gence withz,=1 of the steady shear, linear viscosity for 0.05

colloidal systems is due to the long-range character of the ok

fluid mediated interactions between the colloidal particles. 0.1

The interactions of the colloidal particles through scattering -1/2 ™

of the incident flow field, quantified by the disturbance ma- 5 . 3 . ‘-‘

trix in Eq. (47) and depicted in Fig. 5, indeed gives rise to
the only surviving contribution to the anomalous part of the Iogm(Q)
viscoelastic response functions in the mean-field region.
AISO shpwn in Fig. 7is the frequen@maxwhereN attains tions of the frequency) for various distances from the critical
its maximum. As can be seef),,, is almost constant for point (values ofé~d are indicated in the figuris

&/d>3, again on a double logarithmic scale. From the defin-
ing equation(27) for Q) it follows that

FIG. 8. Double logarithmic plots aofa) N’ and(b) N” as func-

8(a) and &b) where double logarithmic plots ¢f’ andN”
Omax~ & (81)  versus() are shown. The frequency dependencdlbf away
from the critical point, resembles anQ) ~ Y2 kind of decay.
There is thus a gradual cross-over from -aif) ~ 4 depen-
Bence close to the critical point to an) ~ 12 decay farther
away from the critical point. In an experiment it will be
difficult to achieve values of ~*d less than about 0.01, but it
should still be possible to measure the approach toward the
~ o~ Y4 behavior. The reason for this kind of frequency de-

The frequencyway at which %" exhibits its maximum is
thus predicted to shift to smaller values on approach of th
critical point like & 4.

For large frequencies the integrands in EJ®) and(79)
have polek?~ Q. It is easily seen from the residua theo-
rem that both integrals now vary like Q™ Y*~ oY% An
alternative derivation of this result, without the use of thepengence is as follows. Very close to the critical point the
residua theorem, is given in Appendix D. This high- :  effL2 — . Lo<aL2 .
frequency behavior is in contrast to the frequency depentSlaxation ratesl’=D=k"=Dop[dIl/dp+k 2]k* varies
dence that has been found in case of hard-sphere-like susffectively like ~k* since theregdIl/dp is a very small
pensions without hydrodynamic interactigri6—29, where  number. Further away from the critical poigdIl/dp be-

n' decays at high frequencies asv~ Y2 Further away from comes larger, so that relaxation ralevary effectively like

the critical point, where Eqg76) and (77) are the proper ~k?. Thus critical slowing down is responsible for the pe-
expressions for the response functions, there is a faster decayliar ~ w ~** behavior very close to the critical point. Math-
with increasing frequency. This is most clearly seen in Figsematically the crossover behavior can be seen from



7726 JAN K. G. DHONT AND GERHARD NAGELE PRE 58

1.0 -
(&-1d) N’ [0.02 N
g Ean
0.1
int
: | close @ cr'\t'\ca\ poin
>l é- d=0.001

FIG. 10. Schematic illustration of the relative large increase
~k? of the effective diffusion coefficienD®(k) at finite wave
vectors very close to the critical point.

and ¢ 1d)N” for various correlation lengths. What is re-
markable about the frequency dependence is that kdth
and %" are non-zero over a very large frequency range as
compared to systems far away from the critical point. The
frequency dependence becomes pronouncéd-af,, as ex-
pected, but then the maximum foy” occurs at relatively
large frequencies. The reason for this broad frequency spec-
trum is as follows. Close to the critical poirdD"(k=0) is
small compared to the single-particle diffusion coefficient

D, sinceBdIl/dp is small[see Eq.(16)]. A slight increase
of the wave vectok then increases the diffusion coefficient
D®(k) considerably, as indicated in Fig. 10. Further away

from the critical point, wherggdIl/dp is larger, the relative
increase of the diffusion coefficient for finite wave vectors is
less pronounced. Therefore, on approach of the critical point,
a larger range of relaxation times comes into play and the
frequency spectrum broadens. This is particularly clear from
Fig. 9b), whereN’ andN” are normalized to their maximum
values: The frequency spectrum fér1d=0.001 is seen to

be a few decades broader than for'd=0.3. For frequen-
cies smaller that ..., the response functions normalized to
their maximum value are almost independent of the distance
to the critical point.

B. Nonlinear response to a pure oscillatory shear flow(A =0)

FIG. 9. (a) Plots of (¢ 'd)N’ and ¢ 'd)N” versus the fre- . . . .
quency (on a logarithmic sca)efor various correlation lengths On increasing the dimensionless shear pagdeyond 1,

(from top to bottomé~*d=0.001, 0.002, 0.005, 0.01, 0.02, 0.05, the viscoelasti(_: response to t_he osciIIatory_ shearing motion

0.1, 0.2, and 0.8 (b) Plots ofN" andN" versus the frequencion becomeg nonlme_ar. For a given correlation _Iengfhld

a logarithmic scaleafter normalization to their maximum values = 0-01, viscoelastic response functions as obtained from Egs.

N’(Q=0) andN"(Q=0Q,,,), respectively, for the same correla- (37)—(39) and(74), where in Eq.(71) S*®=S* since y=0

tion lengths as in@). are given in Fig. 11. It turns out that the even-indexed non-
linear response functiorid;, andN,,, with n=1,2, ... are

Egs. (76)—(79). In the expression&78) and (79), which are 0. Figure 11a) shows thatN; decreases with increasing
valid close to the critical point, the major contribution to the for low frequencies, but retains its linear response value at
integral stems from largef values wher!} is large, so that higher frequencies. The diminishing nonlinear effects on in-
in the denominator one may replacet K? between the creasing the frequency was already mentioned in Sec. Il E
square brackets by?. This amounts to the neglect of concerning the response of the structure factor. Notice in Fig.
BdI1/dp in the effective diffusion coefficient. Further away 11(a) the large plateau value ®f; as a function of the fre-
from the critical point, where Eqg(76) and (77) are the quency, almost right up to the frequency where nonlinear
appropriate expressions, the cutoff function limits the effec£ffects disappear. The nonlinear viscoelastic response func-
tive integration range to smallé¢ values, so that the same tion N is plotted in Fig. 11b). This response function is
term 1+ K? becomes essentially equal to 1. nonzero only for frequencies where the response fundtipn
Figure 9a) shows the frequency dependence &t {d)N’ differs from its linear response value. Figure(dlshows a
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FIG. 11. Viscoelastic response functions as a function of the frequency for a givengvdide 0.01 of the correlation lengtlia) N,
(b) N3, (c) N7, and(d) N3. In each figure the thick solid curve corresponds to linear response wher8. The values of ¢ are indicated
in the figures.

similar behavior for the elastic response functidf. There linear response functions can be compared directly to theo-

is a decrease of this function with increasing shear yatep retical predictions, without having to subtract a background
to a certain frequency beyond which the linear response vaentribution.

ues are retained. The frequency range beyond whitlne-

tains its linear response values is smaller than the correV!l. ORTHOGONALLY SUPERIMPOSED OSCILLATORY
sponding frequency range fdX;. The nonlinear elastic SHEAR FLOW

response functiol; is plotted in Fig. 11d). Notice that the In order to study the dynamic response of a stationary
effect of increasing\s beyond about 10 is a shift of the sheared microstructure by applying a superimposed oscilla-
higher-order response functiom$; and N3 to higher fre-  tory shear flow, the perturbing effect of the latter should be
guencies rather than an increase of their amplitude, contrarsmall. We therefore consider thiaear viscoelastic response
to the lowest-order function®N; and N7 which are not of a stationary sheared suspension to a superimposed oscil-
shifted but are only changed in amplitude. latory shear flow. The dresseddket numben ¢ correspond-
Notice that since the bare” €let number Pgais a small ing to the oscillatory flow is thus small, but the dket num-
number, the background viscoelastic response functions akeer\ corresponding to the stationary flow can be large. As in
in their linear response regime, despite the strong nonlineahe preceding section, numerical results for the viscoelastic
response of the anomalous contribution of the response funteponse scaling functions are accurate to within about 2%,
tions. The background contribution is related to stresses gemr 0.002 for values of these functions smaller than about
erated by the distortion of short-range correlations, while thed.05.
anomalous contribution is due to the distortion of long-range The viscoelastic response functiohE and N” can be
correlations. Therefore, the background contribution to thecalculated from Eq(74), where the relative structure factor
nonlinear response functions is absent and experimental nodistortion in Eq.(71) follows from Egs.(33)—(35), with A
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1.0

7' (¥, 75— 0,0, 1d)~ 71 (y=0,y5 0, 1d),

7'(7,75~00,6 td)~5j(y=0ys0,§ 'd), (82
€'d N o | . .
with y= 1y, where the first relation is found to be valid to
within about 5% and the second to within about 10%. The
linear viscoelastic response functions of a nonlinearly, sta-
tionary sheared system are thus approximately equal to the
lowest-order response functions of an otherwise quiescent,
nonlinear oscillatory sheared system.

0.5

VIIl. SUMMARY AND CONCLUSIONS

The Smoluchowski equation allows a relatively straight-
forward derivation of the equation of motion for the long-
range behavior of the pair-correlation function in the vicinity
of the gas-liquid critical point. Fourier transformation yields
00— 4 6 an equation of motion for the structure factdq. (25)],

log_ (Q) which contains three dimensionless parameters that charac-
10 terize the flow field: two dressed &let numbers, pertaining
—— T to the stationary component[Eq. (26)] and the oscillatory
p (b) component\¢ [Eq. (26)] of the shear flow, and a dressed
§ d=0.01 Deborah numbef) [Eq. (27)]. This equation foiS(k,t) can
be solved analyticallyEgs. (33)—(35)]. This expression re-
» duces to simpler expressions for the case of pure stationary
(§ d)N” shear flow[Egs.(29) and(30)] and in the case of pure oscil-
latory shear flowWEgs.(37)—(39)]. Further simplification for
a pure oscillatory shear flow in the case of linear response
explicitly reveals the in-phase and out-of-phase component
of the structure factdrEqg. (40)]: the out-of-phase component
leads to an elastic component of the viscous response of the
system. The nonlinear response of the microstructure occurs
when the corresponding dressedcle numbers are larger
than 1, while a significant frequency dependence is found

10 when the dressed Deborah number is larger than 1. The

§8 dressed Raet numbers vary liken ~y&~* and Ao~ ys& %,

where y and "ys are the shear rates for the stationary and
0.00 L L oscillatory components of the flow, respectively. Similarly,
-2 0 2 4 6 the dressed Deborah number varies like- w&™*, with w
|0910(Q) the frequency of oscillation. In each ca&és the correlation
length of the quiescent, unsheared system. These scaling re-

FIG. 12. Linear viscoelastic response functions for a given valud&tions imply that on approach of the critical point a nonlin-
£ 1d=0.01 of the correlation length of a stationary sheared systen@@r response and frequency dependence will be found at de-
for dressed Reet numbers\ as indicated in the figuréa) N’ and ~ Creasing shear rates and frequencies. In particular, the
(b) N”. The thick solid line corresponds to= <0. frequency where the elastic componeyit(w) exhibits its
maximum in a linearly, pure oscillatory sheared system shifts

to lower frequencies like- £~ 4.

Microscopic expressions foflinear and nonlinearvis-
coelastic response functions are equal to various Fourier
components of a phase functifiag. (53)] that can be evalu-

0.151

0.101

>
n

(&}

apaQo

0.05

set equal to 0 in Eqg34) and(35). Keeping thex; depen-
dence in Eqs(34) and(35) corresponds to the more general
case where the stationary sheared microstructure is affecteg, explicitly in terms of a wave-vector integf&q. (74)]

by the oscillatory flow in a nonlinear fashion. _ of the relative structure factor distortigdefined in Eq(71)]
Numerical results for the linear response functions for agq 5 cutoff functiodEqg. (69)]. The cutoff function emerges
correlation lengt ™ ‘d=0.01 and for several values Bfare  naturally from the evaluation of the above-mentioned phase
given in Fig. 12. There is a striking resemblance of thesgunction as the Fourier transform @he divergence 9fthe
curves and the curves shown in Figs(dland 11c), where  scattering contribution to the velocity of a colloidal particle
the response functions of an otherwise quiescent suspensipsee Eq.(68)]. This cutoff function limits the wave-vector
(A=0) are plotted for values oks where the response is integration to wave vectors<4/d, with d the core diameter
highly nonlinear. Indeed we find the remarkable approximatef the spherical colloidal particles. The scattering contribu-
relations tion to the velocity of a colloidal particle is the additional
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velocity that that colloidal partcile attains as a result of thezero-frequency shear viscosity has been confirmed experi-
solvent flow field generated by the cores of the remainingnentally[4]. Experiments concerned with the frequency de-
colloidal particles through scattering of the incident linearpendence and the nonlinear response have not been per-
shear field. This solvent mediated interactioeferred to in  formed so far. Furthermore, the crossover behavior fegm
colloid science as a “hydrodynamic interactionfs long =1 toz,=0.06 on decreasing the size of the dissolved spe-
ranged and leads to a much stronger divergence of viscoelasies from the colloidal range to the molecular range has not
tic response functions as compared to molecular systembgen investigated experimentally.
e.g., binary fluid mixtures. The critical exponexny for the
zero-shear and zero-frequency viscosjtin »~ &7 is found ACKNOWLEDGMENTS
to be equal to 1 in our mean-field treatment and should be
contrasted with the very small value of 0.06 for molecular
systems. Such a strong divergence is found both for the lin
ear and the nonlinear viscoelastic response functions.

One may expect a gradual crossover of the critical expo- .
nentz, from 1 to 0.06 when the dissolved particles become APPENDIX A: SOLUTION OF EQ. (28)
smaller and ultimately become equal in size to the solvent |n order to solve Eq(28) we will need the following
particles. The values 1 and 0.06 are the extreme values f@epresentation of thé distribution: Letf(X) denote a func-
z, in the case of a colloidal system, where there is a cleafion in 9%, with f'(X)=df(X)/dX>0 and lim_..f(X)
separation in time scales for relaxation of microstructure of=c: then
colloidal particles and of the solvent molecules, and in the ,
case of binary fluid mixtures, where these relaxation times — . (X) p{ f(x)_f(XO)]

Y ' 2 S(X—=Xg)=H(X—=Xg)lim exp — ———,

for both species are about equal. For polymer and protein elo € €
solutions, for example, the exponenj is probably some- (A1)

where in between 1 and 0.06. . . whereH(X) =0 for X<0 andH(X) =1 for X=0, the Heavi-
The lowest-order frequency-dependent viscoelastic r'ide unit step function.

sponse functions are found to attain their linear response val- The differential equatior(28) is solved by variation of

ues for larger frequencies. The nonlinear response thus digqngtants. First consider the homogeneous equation, where
appears on increasing the frequency. At large frequencies t@q is omitted

frequency dependence of the lowest-order response functions cta

is found to vary like~w~* in the direct vicinity of the K 9S*%{(K)
critical point and crosses over to~aw~ Y2 behavior further LK,
away from the critical point. The-w ™" behavior is also gy aightforward intearation vields

found for hard-sphere-like colloids in the absence of hydro- g g yl

dynamic interactions, which do not exhibit a gas-liquid criti- stay e | _ fKZ 2. 2. w2
cal point. The crossover froma *?to aw~ Y4 behavior on S™(K)=C(Ky.Kg)ex AK1Jo dY[KI+YTHKS]
approach of the critical point is the result of critical slowing
down. The relevant diffusion coefficient isD®f
=DoB[dIl/dp+k?3], whereDy is the single-particle dif-
fusion coefficient]I is the osmotic pressurp,is the number HereC is an integration constant that is in general a function
density of colloidal particles, antl is a constant that is well of K; andK; since we have integrated with respectitg.
behaved at the critical poirfsee Eq.(16)]. Further away Substitution of the above expression into the differential
from the critical point and for the small wave vectors of equation, withC understood to be a function &f, as well,

interest,D®"~D,B(dI1/dp), while close to the critical point Yields a differential equation fda€, which is easily integrated

D®~D oAk since thengdII/dp is a small number. This 0 obtain
different wave-vector dependence of the diffusion coefficient
p{mf

This work has benefited from discussions with Professor
N. Wagner (University of Delawarg and Professor J.
Mellema (University of Twente, The Netherlands

=K 1+K?]S{(K).

X[1+K2+Y2+ K%]].

K
AY[K2+ Y24 K21+ K2+ Y2
0

away from the critical point and close to it is responsible for SS®{K)=C’ex
the different frequency dependence of the lowest-order vis-
coelastic response functions.

or ; ) . 1 (K
The explicit expressions derived in the present paper al- +K§] — _f 2dX[K§+ X2+ Kg]
low for the calculation of the entire frequency dependence of MKy
linear and nonlinear response functigeee Sec. VI for pure
P d P X[ 1+ K2+ X2+ K252 K2+ X2+ K2)

oscillatory flow and Sec. VII for superimposed shear flow

A surprising feature is that, to within about 10%, the linear 1 (K,

viscoelastic response functions corresponding to an orthogo- X exp[ )\TJ dY[K3+Y2+K3]
nally superimposed oscillatory shear flow for systems sub- 1JX

jected to a stationary shear flow are equal to the lowest-order

response functions for a pure oscillatory shear flow, when X[1+KE+Y2+KE] .

for the former case is equal tg in the latter cas¢see Eq.

(82)]. This expression is finite for alk’s when the integration

The predicted strong divergence of the zero-shear andonstantC’ is 0 and the unspecified lower integration limit
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is —o in caseAK;<0 and +« in casexK;>0. With X,
=K,, e=\, and f(X)=(1/K,) [3dY[KZ+ Y2+ K3][1+K2
+Y?2+ K%] in the representatiofAl) for the & distribution,
the above expressiowith C’
equal toS*(K) for A— 0, as it should. Subtraction &%YK)

from both sides, using thé distribution representatiofil),

and substitution of the expressid@B@2) for the equilibrium
structure factor leads to Eq$29) and (30) for the static
structure factor.

APPENDIX B: SOLUTION OF EQ. (32

In order to solve the equation of motig82), we write the
structure factor as a function d€;, the combinationK’
=Ko+ AK 7+ (Ns/Q)K3sin{Q 7}, K3, andr. In terms of the
new coordinates K',7)=(K,K’,K3,7) the equation of
motion (32) reduces to,

JAS(K',
SN Go1te?iasik, )
ar
2 2
)\K G1+G*“]codQ7}
X{S*(Ky,K,—K'—F,K5) = S*(G)},
where
Ns
F:)\K1T+5K38|n{97—}
and

G=Ki+(K'—F)%2+K3.
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PRE 58

APPENDIX C: EVALUATION OF THE CUTOFF
FUNCTION

In this appendix we evaluate the integral
I(k):f dR{Vg-[C(R):T'T}exg —ik-R},
R>d

which appears in Eq67) for N(t). Substitution of Eq(49)
for the divergence of the hydrodynamic function leads to

75 A ) R
I(k)= a6F f dRR™* 39 dRRRexp —ik-RR},
R>d
(C1
where the integrafdR() with respect to the spherical an-

gular coordinates ranges over the entire unit spherical sur-
face. This integral is equal to

. . 1 . R
51@ dRRRexp( —ik-RR} =~ —V,¥ ff; dRexp{—ik-RR}

41

sifkR}
?Vkvk

kR

with V, the gradient operator with respectko Now using

that V,g(k) =kdg(k)/dk, with k=k/k, for a differentiable
function g of k=|k|, yields

v sifkRt - , 1 d sinfkR} kKR d
K'KKR T kRd(kR) kR ﬁd(kR)
1 d sinfkR}

“|kRA(kR) kR

Substitution of this result into Eq(C1) and using that

In the argument of the stationary structure factor, the strind's:/ =0 Yields Eq.(68)

of symbols “K,—K’'—F" means

sion (29) K, by K'—

)\SK3
K,

AS(K',7)= J d7' cod QG+ )[ 1+ G3(7)]
X{SStaYKl,Kz—)K,_F(T,),Kg)
- seﬂ(e(r'))}exp< - fidr”Gz(H’)

><[1+G2(7J’)]}.

“replace in the expres-
F.” This equation can be solved by
variation of constants. The solution is found to be equal to

57 k-T
I(k)=——-a° k;

k 2
4 (kd)?f(kd),

where(with z=kR)

1d sm{z}

zdz z

f(x)= 15xj dz——
Two partial integrations gives

F(x)=15¢ — coix} B 23ir;{x}

+15dezsm{72}].
X z

(C2

The initial conditions are eliminated by taking the lower in-

tegration limit in the outer integral equal tocc. The above This function may seem to be divergentxat O at first sight.
expression is thus the limiting solution of the equation ofHowever, the sum of the divergent contributions from the
motion after transients have died out. Returning to the origithree separate terms add up to 0. This is most easily seen by
nal coordinates, and introducing the functions as defined imewriting the integral by means of successive partial integra-
Egs.(34) and (35) gives the representation in E3). tions
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» sinfz
fdz n{}___f dzsm{z}
X dz
1 sin{x 1(= codz
:_M+_f 4082
6 x6 6 Jx pa
1sin{x} 1 (= d .
ARG —%L dzcos{z}d—zz =...
infx) = | codx)
=sj —— | +cogx
6x6  120¢ 720
1 1 1
“| 306 365¢ | 720
wd sm{z}
~720), 942

Substitution of this expression for the integral into E§2)
for the functionf yields Eq.(69). The value of this function
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for x=0 may now be evaluated by Taylor expansion of the
sine and cosine functions and is thus found to be equal to 1.

APPENDIX D: HIGH-FREQUENCY BEHAVIOR

The asymptotic high-frequency behavior ¢f close to
the critical point in the case of pure oscillatory shear flow
can be found from Eq.78) as follows. For)>1 the integral
converges foK>1, so that Eq(78) can be approximated by

)

7]’~J' dK
0

Introducing the integration variabbe= Q=YK leads to

NQ—1/4fde
0

The same analysis applies i as given by Eq(79). This
asymptotic behavior for large frequencies also follows from
the residua theorem as stated in the main text.

K6

Q2+K®

6
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