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Critical viscoelastic behavior of colloids
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The linear and nonlinear frequency-dependent viscoelastic response of a suspension of spherical colloids in
the vicinity of the gas-liquid critical point is analyzed in the mean-field region. Explicit expressions for the
shear rate and frequency dependence of the static structure factor are derived, starting from theN-particle
Smoluchowski equation, which is the fundamental equation of motion for the probability density function of
the position coordinates of the spherical colloids. Microscopic expressions for the anomalous parts of the linear
and nonlinear response functions are derived, which are then expressed as wave-vector integrals weighted with
the static structure factor. These integrals are evaluated in part numerically, leading to explicit results for the
viscoelastic response functions. The critical enhancement of both the linear and nonlinear viscoelastic response
functions is found to be far more pronounced than for molecular systems as a result of long-ranged hydrody-
namic interactions between the colloidal particles. Viscoelastic response functions are found to diverge with
the same exponent as the correlation length of the quiescent, unsheared suspension. The frequency spectrum of
the linear response functions is found to be extremely broad, while nonlinearity affects only the low-frequency
behavior of the lowest-order response functions. The lowest-order response functions attain their linear re-
sponse values at higher frequencies even far into the nonlinear regime. Nonlinear effects are thus absent at
higher frequencies. For these higher frequencies the lowest-order response functions are found to vary with the
frequencyv asv21/4 close to the critical point and cross over to av21/2 dependence further away from the
critical point. In addition to the viscoelastic response of an otherwise quiescent suspension, the viscoelastic
response of a stationary sheared suspension is discussed. The response of such a stationary sheared system to
a superimposed oscillatory shear flow probes the dynamics of the partially distorted microstructure by the
stationary shear flow. The frequency spectrum of the linear viscoelastic response functions is found to be
strongly affected by the microstructure distortion due to the stationary shear flow.@S1063-651X~98!15512-5#

PACS number~s!: 82.70.Dd, 05.70.Jk, 51.20.1d, 64.60.Ht
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I. INTRODUCTION

The critical exponentzh that relates the zero-shear an
zero-frequency shear viscosityh of molecular systemsto the
correlation lengthj of the unsheared, quiescent system
h;jzh is known to be as small as 0.06@1#, in accord with
mode-coupling and renormalization group calculations@2#.
The experimentally measurable critical enhancement of
viscosity is therefore only about 10–20 % relative to t
background viscosity. Forcolloidal systems, the mean-field
critical exponent has recently been shown to be as larg
zh51, both theoretically@3# and experimentally@4#. The rea-
son for this much stronger enhancement in the vicinity of
gas-liquid critical point is the interaction between colloid
particles that is mediated via the solvent, so-called hydro
namic interaction. This type of interaction between the c
loidal particles is sufficiently long ranged to lead to a stro
critical divergence of the shear viscosity. It is therefore
teresting to study the full frequency dependence of the sh
viscosity of colloidal systems near the critical point. Mor
over, since the range of shear rates where the respon
linear vanishes on approach of the critical point, due to
development of long-range correlations and slowing down
density fluctuations, it is also interesting to ask about
nonlinear response.

The role of hydrodynamic interactions between the coll
dal particles is twofold. First of all, it enters the microscop
PRE 581063-651X/98/58~6!/7710~23!/$15.00
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expression for the viscoelastic response functions. These
croscopic expressions are ensemble averages of phase
tions, among which are the hydrodynamic interaction fun
tions. As pointed out above, these hydrodynamic interac
functions are long ranged and are responsible for the str
divergence of the viscoelastic response functions for collo
as compared to molecular systems. Second, the ense
average that represents the viscoelastic response func
must be evaluated with respect to the shear rate disto
pair-correlation function. The shear rate dependence of
probability density function is the result of an interplay b
tween equilibrium restoring forces and shear forces. The
terplay between these forces is modified by hydrodyna
interactions, but the essential features of the shear distor
of the pair-correlation function is retaining when neglecti
hydrodynamic interactions. Thus, in deriving a microsco
expression for the viscoelastic response functions one ha
include hydrodynamic interactions, while for the calculati
of the shear distorted pair-correlation function hydrodynam
interactions are not essential.

The viscoelastic response functions will turn out to
equal to two distinct additive contributions: an anomalo
and a background contribution. The anomalous contribut
is that part of the viscoelastic response function that diver
at the critical point due to the development of long-ran
correlations. This is the interesting part of response fu
tions, for which predictions are made in the present pap
7710 © 1998 The American Physical Society
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The background contribution to the viscoelastic respo
functions is the viscosity that would have been measure
the absence of long-range correlations. This contribution
well behaved right up to the critical point. The backgrou
contribution must be subtracted from experimental viscoe
tic response functions to obtain their anomalous contribut
which may then be compared to theoretical predictions. N
linear viscoelastic response functions do not have a ba
ground contribution because background contributions ar
their linear response regime even when long-range corr
tions are affected in a nonlinear fashion.

We address linear and nonlinear response functions f
purely oscillatory shear flow and the linear reponse functi
to an oscillatory shear flow orthogonally superimposed
stationary shearing motion. The results presented here a
for the analysis of a nonlinear response to oscillatory sh
flow superimposed on a stationary shear flow. We rest
ourselves here to the linear response regime with respe
the superimposed oscillatory shear flow since the idea i
probe the dynamics of the stationary sheared microstruc
without disrupting it too much by the oscillatory flow. Onl
orthogonally superimposed oscillatory shearing motion
considered, although the entire analysis is easily adapte
the case of a parallel superimposed oscillatory shear flow

A microscopic evaluation of the viscosity consists of thr
steps: the calculation of the shear distorted pair-correla
function, the derivation of microscopic expressions for t
viscoelastic response functions~where they are expressed
terms of an ensemble average of appropriate phase f
tions!, and the explicit evaluation of these microscopic e
pressions with the use of the earlier derived pair-correla
function.

This paper is organized as follows. The flow field is d
fined in Sec. II. Section III contains an analysis of the str
ture factor under shear flow~step 1 referred to above!. In
Sec. III A the equation of motion for the structure factor
derived. Its solution without shear flow is shown to repr
duce the well-known Ornstein-Zernike structure factor
Sec. III B. The equation of motion is written in dimensio
less form in Sec. III C, and the important ‘‘dressed’’ Pe´clet
numbers and Deborah number are introduced. The dim
sionless equation of motion is solved for a stationary sh
flow, in the absence of an oscillatory shear flow, in S
III D, while the most general equation of motion for the ca
of an oscillatory flow, orthogonally superimposed on a s
tionary shear flow, is solved in Sec. III E. The more simp
case of a pure oscillatory shear flow is considered in S
III F. In Sec. IV the linear and nonlinear viscoelastic r
sponse functions are defined and microscopic expression
these response functions are derived~step 2 referred to
above!. These microscopic expressions are evaluated
terms of the structure factor in Sec. V~step 3 referred to
above!, which are then expressed in terms of dimensionl
scaling forms in Sec. V A. Explicit analytical and numeric
results for these scaling forms of the viscoelastic respo
functions are presented in Secs. VI and VII. Section V
considers pure oscillatory flow in the linear regime, S
VI B carries this further to the nonlinear regime, and Sec.
is concerned with the linear response to an oscillatory sh
flow, orthogonally superimposed on a stationary shear fl
e
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II. FLOW FIELD

The flow field considered in the present paper is a stati
ary simple shear flow with an orthogonally superimpos
oscillatory shear flow. The couette cell geometry correspo
ing to such a flow is depicted in Fig. 1. The inner~or the
outer! cylinder is rotating with a constant angular frequen
v0 and in addition exerts an oscillatory up-and-down moti
with frequencyv. The fluid flow velocityu(r ) at a pointr
within the gap of the couette cell is now given by

u~r !5G•r , ~1!

where the velocity gradient matrixG is equal to

G5S 0 ġ 0

0 0 0

0 ġscos$vt% 0
D , ~2!

with ġ andġs the shear rates corresponding to the station
and oscillatory components of the flow, respectively.
terms of geometrical parameters of the couette cell we h
ġ5v0r 0 / l ~wherer 0 is the radius of the inner cylinder andl
is the gap width! andġs5vA/ l ~whereA is the amplitude of
oscillation for the up-and-down motion of the inner cylin
der!.

In writing Eqs.~1! and~2! it is assumed that the velocit
of the wall of the oscillating cylinder is instantaneous
transferred to the entire suspension within the gap of
rheometer. Both the viscous penetration depth and the w
length of the induced oscillatory motion of the suspens
are thus assumed to be at least of the order of the gap w
The penetration depth and wavelength are both equa
A2h/rv, where h is the shear viscosity andr the mass
density of the suspension@5#. For suspensions with a viscos
ity of a few times that of water or larger, the penetrati
depth and wavelength are of the order of or larger than 1
for frequenciesv,10 Hz. The relevant frequencies fo
near-critical systems are small due to critical slowing dow
It should therefore be possible to perform meaningful exp
ments that probe the frequencies of interest as far as
properties are concerned. A description of the experime

FIG. 1. Couette geometry corresponding to the velocity grad
tensor in Eq.~2!.
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setup with which superimposed flow experiments can be
formed is given in Refs.@6,7#.

In a surface loading experiment,ġs in Eq. ~2! would be an
exponentially decreasing function of the distance to the w
of the oscillating cylinder. Such high-frequency experime
are not considered here.

In the present paper we address the viscoelastic resp
to the oscillatory motion. Two different cases are consider
the linear and nonlinear viscoelastic response in the abs

of the stationary component of the shear flow (ġ50) and the
linear viscoelastic response of a stationary sheared sys
The former case is the more common situation of wha
usually referred to as the dynamic viscoelastic response
the latter case we restrict ourselves to the linear respo
with respect to the orthogonally superimposed oscillat
shear flow since the idea here is to probe the dynamics
microstructure under stationary shear with a minimum p
turbing effect of the oscillatory shear flow. The stationa
shear rateġ can be large, however, such that the microstr
ture is nonlinearly affected by the stationary flow. The re
tively most simple case of viscous response to a station
shear flow, in the absence of the oscillatory flow, has b
considered elsewhere@3# and is reproduced here as the ze
frequency limit of the pure oscillatory viscoelastic respon

III. STRUCTURE FACTOR UNDER SHEAR FLOW

In order to calculate the viscoelastic response of a sus
sion, an expression for the shear flow distorted pa
correlation function is needed, or, equivalently, its Four
transform, which is essentially the structure factor. Nota
theoretical approaches to describe shear flow effects o
microstructure are due to Onukiet al. @8,9#, Schwarzl and
Hess @10#, Ronis @11#, and Wagner and Russel@12#. The
approach taken in the present section is specific for collo
systems near their gas-liquid critical point. This apprao
leads to an equation of motion with an explicit expression
the effective diffusion coefficient and the dressed Pe´clet
numbers and Deborah number in terms of the shear rate
the correlation length of the unsheared, quiescent dispers

This section is organized as follows. First of all, an equ
tion of motion for the structure factor is derived in Sec. III A
starting from the Smoluchowski equation. Without she
flow this equation of motion is solved in Sec. III B. Th
solution reproduces the well-known Ornstein-Zernike e
pression. In Sec. III C the equation of motion is written
dimensionless form, giving rise to dressed Pe´clet numbers,
which measure the effect of shear flow on critical dens
fluctuations, and a dressed Deborah number, which cha
terizes the frequency at which critical fluctuations cease
adapt instantaneously to the applied oscillatory shear fl
The dimensionless equation of motion is then solved in S
III D for the case of a stationary shear flow~where ġs50)
and for the general case of an orthogonally superimpo
oscillatory shear flow in Sec. III E. Section III F discusses
more simple case of a pure oscillatory shear flow~whereġ
50). In all cases the expressions that are derived for
structure factor are not limited to the linear regime but e
tend to the nonlinear response regime.
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A. Derivation of the equation of motion

The fundamental equation of motion that needs be sol
is the Smoluchowski equation, which is the equation of m
tion for the probability density functionP of the position
coordinates$r j%, j 51, . . . ,N of the N colloidal particles in
the suspension@13–16#,

]P

]t
5D0(

j 51

N

¹j•@¹j P1bP~¹jF!#2(
j 51

N

¹j•@G•r j P#,

~3!

where D0 is the single-particle diffusion coefficient
b51/kBT ~with kB Boltzmann’s constant andT the tempera-
ture!, ¹j is the gradient operator with respect tor j , andF is
the total potential energy of the assembly of colloidal p
ticles. In this equation of motion we neglected hydrodynam
interactions between the colloidal particles. To describe
effect of hydrodynamic interactions on the critical behav
of P it would be sufficient to include only the long-rang
contributions to the hydrodynamic interaction function
However, the essential features of the shear distorted st
ture are already described by Eq.~3! as the result of the
interplay between equilibrium restoring direct and Browni
forces@represented by the first term on the right-hand side
Eq. ~3!# and shear forces@the last term in Eq.~3!#. Hydrody-
namic interactions will modify the details of the interpla
between these forces but do not change the essential fea
of the shear induced distortion. The inclusion of hydrod
namic interactions is a future challenge.

An equation of motion for the shear-rate-dependent p
correlation functiong can be obtained from theN-particle
Smoluchowski equation~3!, noting that for a homogeneou
system

g~r1 ,r2 ,t !5V2E dr3•••E drNP~r1 ,r2 ,r3 ,•••rN ,t !,

~4!

with V the volume of the system. Integration of the Smo
chowski equation ~3! with respect to the coordinate
r3 , . . . rN , assuming a pairwise additive potential energy
pair potentialsV, gives~with r5r12r2 and¹r the gradient
operator with respect tor )

]g~r ,t !

]t
52D0¹r•$¹rg~r ,t !1bg~r ,t !@¹rV~r !2Find~r ,t !#%

2¹r•@G•rg~r ,t !#, ~5!

where~with r 85r12r3)

Find~r ,t !52 r̄E dr 8@¹r 8V~r 8!#
g3~r ,r 8,t !

g~r ,t !
, ~6!

is the shear-rate-dependentindirect force. This is the force
between two colloidal particles located atr1 and r2 , medi-
ated by the remaining colloidal particles. Herer̄5N/V is the
number density of colloidal particles andg3 is the three-
particle correlation function, which is defined similarly to th
pair-correlation function in Eq.~4! as
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g3~r1 ,r2 ,r3 ,t !5V3E dr4•••E drN

3P~r1 ,r2 ,r3 ,r4 , . . . ,rN ,t !. ~7!

Notice that since the equation of motion~5! is invariant un-
der inversion~wherer j→2r j ), the pair-correlation function
is an even function, i.e.,g(r ,t)5g(2r ,t). To obtain a
closed equation of motion we have to express the th
particle correlation functiong3 in Eq. ~6! in terms of pair-
correlation functions. The most commonly used, and
many purposes quite accurate closure, is the superpos
approximation

g3~r ,r 8,t ![g3~r12r2 ,r12r3 ,t !

5g~r12r2 ,t !g~r22r3 ,t !g~r12r3 ,t !

[g~r ,t !g~r 82r ,t !g~r 8,t !. ~8!

This closure assumes pairwise independent pair correlati
thus neglecting the effect of a third particle on the correlat
between two other particles. Close to the critical point t
approximation can be improved. Actually, as was poin
out by Fixman@17#, the improvement we are going to dis
cuss is necessary in order to obtain a divergent correla
length at the critical point. The superposition approximat
~8! as it stands is a poor approximation close to the criti
point ~and also close to the off-critical part of the spinoda!.
A closure relation is needed for distancesr 85r12r3 , which
are equal to or smaller than the rangeRV of the pair-
interaction potential since in the integral in Eq.~6!
¹r 8V(r 8)50 for distancesr 8.RV . On the other hand, we
are interested here only in the long-range behavior of
pair-correlation function since long-range correlations are
sponsible for the critical behavior of the suspension. O
interest is thus in the asymptotic solution of the equation
motion~5! for distancesr 5ur12r2u@RV . A typical configu-
ration of particles for which a closure relation is needed
shown in Fig. 2. The neighboring particles 1 and 3 are
within a distanceRV from each other, while the particles
and 3 are separated from particle 2 by a distance large c
pared toRV . The effect of the distant particle 2 is that
enhances the density around particles 1 and 3 since for t
large distances the pair-correlation function is a smo
function of the distance. Therefore, the effect of particle 2
the correlation between the neighboring particles 1 an
can, for our purpose, be described by taking into accou

FIG. 2. Typical configuration for which a closure relation for th
three-particle correlation function is needed. Particles 1 and 3
separated to within a distance at most equal to the rangeRV of the
pair-interaction potential, while the distance between particles 1
3 and particle 2 is much larger thanRV .
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number density enhancement around particles 1 and 3.
density enhancement due to the presence of particle
equal to r̄h„r22(r11r3)/2,t…5 r̄h(r2 1

2 r 8,t), where h5g
21 is the total-correlation function. The pair-correlatio
functiong(r12r3 ,t)5g(r 8,t) in Eq. ~8! should therefore be
evaluated at the enhanced densityr̄1 r̄h(r2 1

2 r 8,t). Further-
more, since our interest here is in the asymptotic behavio
the pair-correlation functiong(r ,t) for large distancesr
@RV and h(r ,t)→0 for r→`, the equation of motion can
be linearized with respect toh(r2r 8,t) and h(r2 1

2 r 8,t).
The linearized form of the pair-correlation functiong(r 8) at
the enhanced density reads

g~r 8,t ! uat the enhanced density
5g~r 8,t !1

dg~r 8,t !

dr̄
r̄h~r2 1

2 r 8,t !,

~9!

where the correlation functions on the right-hand side re
to the system with particle number densityr̄. Substitution of
Eqs.~8! and ~9! into the equation of motion~5! and further
linearization with respect toh yields

]h~r ,t !

]t
52D0¹r•F¹rh~r ,t !1b$h~r ,t !11%S @¹rV~r !#

1 r̄E dr 8@¹r 8V~r 8!#g~r 8,t ! D
1br̄E dr 8@¹r 8V~r 8!#S g~r 8,t !h~r2r 8,t !

1
dg~r 8,t !

dr̄
r̄hS r2

1

2
r 8,t D D G2¹r•@G•rh~r ,t !#.

~10!

For r @RV and r 8,RV , both h(r2r 8) and h(r2 1
2 r 8) are

smooth functions ofr 8 on the length scaleRV , which can
therefore be Taylor expanded as

h~r2r 8,t !5h~r ,t !2r 8•¹rh~r ,t !1 1
2 r 8r 8:¹r¹rh~r ,t !

2 1
6 r 8r 8r 8A¹r¹r¹rh~r ,t !•••,

h~r2 1
2 r 8,t !5h~r ,t !2 1

2 r 8•¹rh~r ,t !1 1
8 r 8r 8:¹r¹rh~r ,t !

2 1
48 r 8r 8r 8A¹r¹r¹rh~r ,t !•••.

Furthermore, since the interest here is in the distortion
long-range correlations, we neglect the shear induced dis
tions of short-range correlations: long range correlations
much more sensitive to shear flow than short-range corr
tions because at short distances shear forces are smalle
the counterbalancing, equilibrium restoring interactions
stronger. The amount of distortion of correlations with
range RV or less is measured by the bare Pe´clet number
Pe05ġRV

2/2D0 for the stationary shear flow and Pes
0

5ġsRV
2/2D0 for the superimposed oscillatory shear comp

nent of the fluid flow. The shear rates are supposed to
small enough that these bare Pe´clet numbers are small@18#.
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7714 PRE 58JAN K. G. DHONT AND GERHARD NÄGELE
The pair-correlation functiong(r 8,t) in the above integrals is
therefore set equal to the equilibrium pair-correlation fun
tion geq(r 8), that is, the pair-correlation function in the a
sence of shear flow. Substitution of the above Taylor exp
sions into Eq.~10! and performing angular integrations lea
to

]h~r ,t !

]t
5D0¹r•H b$h~r ,t !11%@¹rV~r !#1b

dP

dr̄
¹rh~r ,t !

2bS¹r¹r
2h~r ,t !J 2¹r•@G•rh~r ,t !#, ~11!

where

P5 r̄kBT2
2p

3
r̄2E

0

`

dr8r 83
dV~r 8!

dr8
geq~r 8! ~12!

is precisely the osmotic pressure of the suspension and

S5
2p

15
r̄E

0

`

dr8r 85
dV~r 8!

dr8
H geq~r 8!1

1

8
r̄

dgeq~r 8!

dr̄
J

~13!

is a positive constant, proportional to the Cahn-Hillia
square gradient coefficient. A Fourier transformation of E
~11! and subtraction of the equation without shear flow,
ing Eq. ~2! for the velocity gradient matrix, yields

]S~k,t !

]t
5@ ġk11ġscos$vt%k3#

]S~k,t !

]k2

22Deff~k!k2$S~k,t !2Seq~k!%, ~14!

wherekj is the j th component of the wave vectork and

S~k,t !511 r̄E drh~r ,t !exp$2 ik•r % ~15!

is the static structure factor, whileSeq is the structure factor
without shear flow. FurthermoreDeff(k) is a wave-vector-
dependent effective diffusion coefficient equal to

Deff~k!5D0bFdP

dr̄
1k2SG . ~16!

The first term on the right-hand side of Eq.~14! describes
shear flow distortion, while the last term describes the dif
sion limited tendency to restore the equilibrium microstru
ture. Close to the critical point~and also close to the off
critical part of the spinodal!, wherebdP/dr̄ is small, the
effective diffusion coefficient is small for small wave ve
tors, a phenomenon that is commonly referred to as crit
slowing down.

As we will show, the general solution of the equation
motion~14! can be expressed in terms of explicit expressio
for structure factors for two more simple cases: the struc
factor in the absence of shear flowSeq and under stationary
shear flowSstat, in the absence of the oscillatory shear flo
These two more simple cases will be considered in the
lowing, before solving the full equation of motion~14!.
-
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The above equations relate to the mean-field behavio
the structure factor. This is due to linearization of the eq
tion of motion ~5! with respect to the total-correlation func
tion h. On linearization, terms of orderh2 are neglected
against the important linear termhbdP/dr̄. Very close to
the critical point, wherebdP/dr̄ is a very small number, the
nonlinear terms become equally important as the mentio
linear term. Beyond the mean-field region one has to so
nonlinear equations of motion. Such nonlinear equations
not considered in the present paper.

It is important to realize that the shear induced shift of t
spinodal and the critical point is related to the distortion
correlations over distances less than the rangeRV of the pair-
interaction potential@19#. These short-range distortions a
neglected in deriving the above equation of motion a
therefore the shift of the critical point playes no role he
Notice, however, that a very small shift of the critical poi
in the phase diagram is unimportant only when that shif
much smaller than the distance of the unsheared syste
the critical point. Since we restrict ourselves here to
mean-field region it is probably safe to neglect the sm
shear induced shift of the critical point.

B. Equilibrium structure factor Seq
„k…

The equilibrium structure factorSeq can be calculated
from the stationary form of the equation of motion~11!,
which reduces without shear and forr @RV , where¹rV(r )
50, to

S¹r
2heq~r !5

dP

dr̄
heq~r !. ~17!

The solution of this equation is the well-known Ornstei
Zernike total-correlation function

heq~r !5~ARV!
exp$2r /j%

r
, ~18!

where the correlation lengthj is equal to

j5ASY dP

dr̄
~19!

andA is a dimensionless integration constant. The releva
of the correlation length is that it measures the range o
which colloidal particles in the unsheared system are co
lated. SincedP/dr̄→0 on approach of the critical poin
~and also on approach of the off-critical part of the spinoda!,
the correlation length diverges. This means that at the crit
point each colloidal particle in the system is correlated w
all other colloidal particles. One may imagine that it will tak
an infinite force to break up these many correlations in or
to make the system flow, which means that the viscos
diverges on approach of the spinodal.

Substitution of Eq.~18! into the defining expression~15!
for the structure factor gives

Seq~k!5114pr̄~ARV!
1

j221k2
. ~20!
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Since atk50 the equilibrium structure factor is equal
kBT/(dP/dr̄), it follows that the integration constant i
equal to

ARV5
1

4pr̄

1

j2H Fb
dP

dr̄
G21

21J .

Substitution into Eq.~20! gives

Seq~k!5
~bS!21j21~kj!2

11~kj!2
. ~21!

In the neighborhood of the critical pointbS is estimated
from Eqs.~12! and ~13! to be of the orderRV

2 @20#. In addi-
tion, the above equations are valid only for small wave v
tors k!2p/RV , so that Eq.~21! reduces to

Seq~k!5
1

bS

j2

11~kj!2
, ~22!

which is the well-known Ornstein-Zernike structure fact
@21#.

C. Dimensionless form of the equation of motion

With Eq. ~19! for the correlation length and Eq.~16! for
the effective diffusion coefficient, the equation of motio
~14! can be written more elegantly in a dimensionless fo
by introducing the dimensionless wave vector

K5kj ~23!

and the dimensionless time

t52Deff~k50!j22t52D0bSj24t. ~24!

The dimensionless equation of motion~14! reads

]S~K ,t!

]t
5@lK11lscos$Vt%K3#

]S~K ,t!

]K2
2K2@11K2#

3$S~K ,t!2Seq~K !%, ~25!

where the following ‘‘dressed Pe´clet numbers’’ are intro-
duced:

l5
ġj4

2D0bS
5

ġj2

2Deff~k50!
, ls5

ġsj
4

2D0bS
5

ġsj
2

2Deff~k50!
,

~26!

and V is a dimensionless frequency~or a dressed Debora
number!,

V5
vj4

2D0bS
5

vj2

2Deff~k50!
. ~27!

The dimensionless numbersl and ls measure the long
wavelength shear induced distortion of the structure fac
The crossover from the weak shear regime, where shea
fects are small, to the strong shear regime, where shea
fects are significant, occurs atl'1 for the stationary shea
flow and atls'1 for the superimposed oscillatory comp
-

r.
ef-
ef-

nent of the flow. A significant phase shift of the structu
factor response relative to the external field; cos$vt% will
be found forV.1, while forV,1 the viscous response wi
be almost instantaneous. Notice thatl, ls , andV, for given
ġ, ġs , and v, become larger on approach of the critic
point because of the increasing correlation lengthj. The
effect of shear flow for given shear ratesġ and ġs is thus
more pronounced closer to the critical point. This is due
the increasing sizej of ‘‘clusters of correlated particles’’ on
approach of the critical point since larger clusters are m
easily affected by shear flow. Furthermore, the dynamics
these larger clusters is slow so that the typical frequencv
where the response of the structure factor will have an o
of-phase component with the applied field occurs at sma
frequencies.

D. Stationary sheared structure factorSstat
„k…„ġs50…

Let us consider the relatively simple case of a station
shear flow, whereġs50 @16#. The dimensionless equation o
motion reduces for this case to

05lK1

]Sstat~K !

]K2
2K2@11K2#$Sstat~K !2Seq~K !%.

~28!

The solution of this equation of motion can be obtained
integration with respect toK2 . The solution is constructed in
Appendix A, where thed-distribution representation~A1!
plays an essential role. The following expression for t
Ornstein-Zernike structure factor under stationary shear fl
is found:

Sstat~K !5Seq~K !F11
1

lK1
E

K2

6`

dX@K22K2
21X2#

3@K2
22X2#expH 2

F~K uX!

lK1
J G , ~29!

whereSeq is given by Eq.~22! and

F~K uX!5E
K2

X

dY@K22K2
21Y2#@11K22K2

21Y2#

5@X2K2#@K22K2
2#@11K22K2

2#

1
1

3
@X32K2

3#@112K222K2
2#1

1

5
@X52K2

5#.

~30!

The upper integration limit in Eq.~29! is equal to1` when
lK1.0 and equal to2` when lK1,0. As can be seen
from Eq. ~28!, for l50 and/orK150, the stationary struc-
ture factor becomes equal to the equilibrium structure fac
That the solution in Eq.~29! satisfies this requirement i
shown in Appendix A. Perpendicular to the flow directio
whereK150, there is thus no effect of shear flow andSstat

5Seq. Distortions in directions whereK150 may occur be-
yond mean-field, where instead of the linear equation of m
tion ~28! a nonlinear equation should be considered. In ad
tion, such distortions may result from hydrodynam
interactions, which are neglected in the present theory



n
a

h
a

e
c

he
te
de
ra
ta

or
wi
u

o

n

in
ie

rt.
or
th

uc-

not
ld
the
s a
s

e-
er
that
-

l

to
of
the
re-
e

the

es
fast
ig.
or

f
ld,
ear
tory
-

er
ome

m
se
-

7716 PRE 58JAN K. G. DHONT AND GERHARD NÄGELE
may be the result of distortions of short-range correlatio
that couple to the long-range structure. The shear rates
assumed here to be small enough to be able to neglect t
short-range distortions. Short-range correlations are not
fected by the stationary shear flow when the ‘‘bare Pe´clet
number’’ Pe05ġRV

2/2D0 is small @18#. Since j@RV and
Deff(k50)!D0 , l can be a large number while at the sam
shear rate Pe0 is a small number. Hence large-scale stru
tures are already severely affected by shear flow at s
rates where small-scale structures are virtually unaffec
Figure 3 shows the highly anisotropic microstructure un
shear flow for various values of the dimensionless shear
l. For comparison, the rightmost figure is an experimen
result.

E. Structure factor under orthogonally superimposed
shear flow

The structure factor under an oscillatory shear flow,
thogonally superimposed onto a stationary shear flow,
be an alternating function of time around the stationary str
ture factor as given in Eq.~29!. To obtain this alternating
solution it is more convenient to start from an equation
motion for the difference

DS~K ,t![S~K ,t!2Sstat~K !. ~31!

From Eqs.~25! and~28! one obtains the equation of motio
for this difference

]DS~K ,t!

]t
5@lK11lscos$Vt%K3#

]DS~K ,t!

]K2

2K2@11K2#DS~K ,t!1
lsK3

lK1
K2@11K2#

3cos$Vt%$Sstat~K !2Seq~K !%. ~32!

The solution of this equation of motion is constructed
Appendix B. The alternating solution, after transients d
out, reads

FIG. 3. Static structure factor as a function ofK1 andK2 with
K350 ~upper figures! and of K1 and K3 with K250 ~lower fig-
ures!, for l510 and 100. The leftmost figure is the equilibriu
Ornstein-Zernike static structure factor. A value of 1/100 is cho
for the quantity (RV /j)2(bS/RV

2). The rightmost figure is an ex
perimental scattering pattern~with K250).
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S~K ,t!5Sstat~K !1
lsK3

lK1
E

2`

t

dt8cos$Vt8%G2~t8!

3@11G2~t8!#$Sstat~G~t8!!2Seq~G~t8!!%

3exp$2H~t8!%, ~33!

where the vectorG is equal to

G~t8!5S K1 ,K21lK1~t2t8!1
lsK3

V
@sin$Vt%

2sin$Vt8%#,K3D , ~34!

G(t8) is its length and the functionH(t8) in the exponent is
equal to

H~t8!5E
t8

t

dt9G2~t9!@11G2~t9!#. ~35!

The latter integral can be done analytically with some effo
Nothing is learned from this very long explicit expression f
H and therefore it is not displayed here. Notice that bo
G(t8) andH(t8) are functions oft andK as well.

A few features about the above expression for the str
ture factor are to be noted.

~i! The time dependence of the microstructure does
instantaneously follow that of the applied flow fie
~;cos$Vt%!. There is in general a phase shift between
response of the microstructure and the applied field, a
result of the finite diffusivity of the colloidal particles. Thi
is illustrated in Fig. 4~a!, where2DS5Sstat2S is plotted as
a function of Vt for a wave vector equal toK
5(1/A3,1/A3,1/A3) and for three choices of the applied fr
quency V50.1, 1, and 10. For this wavevector a high
shear rate leads to a decrease of the structure factor, so
2DS will be in phase with the external field for low frequen
cies. The dimensionless shear ratesl andls are taken equa
to 1 and 0.1, respectively. The response2DS is scaled with
its minimum or maximum value so as to limit its values
the interval@21,1#. As can be seen, for a small value
ls50.1, the microstructural response is almost linear in
applied field. The crossover from a linear to a nonlinear
sponse occurs atls'1. The time lag of the microstructur
with respect to the applied field becomes significant forV
'1. This phase shift gives rise to an elastic component of
viscous reponse.

With increasing frequenciesV the responseDS, i.e., the
oscillatory shear induced additional distortion, becom
smaller as the microstructure is not able to respond
enough to the rapidly varying external field. Note that in F
4~a! the response is scaled with respect to its maximum
minimum value, so that this decrease ofDS with increasing
frequency is not visible in that figure.

~ii ! As can be seen from Fig. 4~b!, the time dependence o
the structure factor is not sinusoidal, like the applied fie
whenls becomes larger than 1. This is due to the nonlin
dependence of the structure factor on the applied oscilla
shear ratelscos$Vt%. Higher-order Fourier components be
come relevant at largerls , but they disappear again at larg
applied frequencies. The nonlinear effects seem to bec

n
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FIG. 4. External field ~dashed line! and the temporal response of the normalized structure factor for the wave vectK
5(1/A3,1/A3,1/A3) ~solid lines!. The dimensionless shear rate for the stationary shear flow in these figures isl51. ~a! The linear response
regime (ls50.1) with increasing frequency.~b! Nonlinear response regime (ls510) with increasing frequency.~c! Low frequency (V
50.1) with increasing oscillatory shear amplitude.
m
se

ry

. A
e
th
ry

w

1

e

el-

y-
es,
uch
re-

-
n-
ay
w

in

w,
less pronounced at larger frequencies. The transition fro
linear response to a nonlinear response is most clearly
in Fig. 4~c!, wherels is increased from top to bottom from
0.1 to 1 up to 10.

~iii ! In Eq. ~33! the dimensionless shear amplitudels ap-
pears always as a product withK3 . This implies that in di-
rections whereK350 there is no effect on the stationa
sheared microstructure. Directions corresponding toK350
are directions perpendicular to the oscillatory shear flow
little thought shows that the morphology of density wav
extending in these directions is indeed unaffected by
straining motion induced by the oscillatory flow. Oscillato
shear induced distortions in directions whereK350 could
become important when the oscillatory shear rateġs is so
large that short-range correlations are also affected. This
be the case when the bare Pe´clet number Pes

05ġsRV
2/2D0

corresponding to the oscillatory shear flow is larger than
The above expressions are valid when this bare Pe´clet num-
ber is smaller than 1@18#. The same comments hold for th
stationary structure factor in Eq.~29!, whereK150 is the
a
en

s
e

ill

.

direction perpendicular to the stationary flow, and the r
evant bare Pe´clet number is Pe05ġRV

2/2D0 . Distortions per-
pendicular to a flow direction can also be the result of h
drodynamic interactions between the colloidal particl
which are neglected in the present theory. Furthermore, s
distortions may become relevant beyond the mean-field
gion, even for small bare Pe´clet numbers and without a hy
drodynamic interaction. Beyond the mean-field region no
linear equations of motion should be considered, which m
give rise to relevant distortions perpendicular to the flo
direction.

~iv! At first sight it may seem that there is a divergence
the expressions~29! and ~33! for Sstat andDS, respectively,
in the caselK1→0. However, forl50 and/orK150 one
hasSstat5Seq, as explained in the previous note~iii ! and, in
mathematical terms, at the end of Appendix A.

F. Structure factor under pure oscillatory shear flow „l50…

Consider the case of a purely oscillatory shear flo
where the stationary shear component is absent, i.e.,ġ50
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5l. The structure factor now reduces to the equilibriu
structure factor whenġs50 instead of the stationary struc
ture factor as in Sec. III E. The equation of motion~25!, now
for DS[S2Seq, reads

]DS~K ,t!

]t
5lscos$Vt%K3

]DS~K ,t!

]K2
2K2@11K2#

3DS~K ,t!1lscos$Vt%K3

]Seq~K !

]K2
. ~36!

This equation of motion can be solved in exactly the sa
way as Eq.~32!. Following the steps outlined in Appendix B
we obtain

S~K ,t!5Seq~K !22lsK3E
2`

t

dt8cos$Vt8%
Seq

„G0~t8!…

11G0
2~t8!

3FK21
lsK3

V
~sin$Vt%2sin$Vt8%!G

3exp$2H0~t8!%, ~37!

with Seq given by Eq.~22!. The functionH0(t8) in the ex-
ponent is equal to
a
lt

r
ti

er

o
is

e
e

f
e

l
h
ly
e

H0~t8!5E
t8

t

dt9G0
2~t9!@11G0

2~t9!#, ~38!

whereG0 is the length of the vector

G0~t8!5S K1 ,K21
lsK3

V
@sin$Vt%2sin$Vt8%#,K3D .

~39!

The index 0 refers to the zero value of the stationary sh
rate ġ.

An alternative route to arrive at this expression is
evaluateSstat

„G(t8)…2Seq
„G(t8)… in the integrand in Eq.

~33! to linear order inl using Eq.~28!. It should be noticed
that such a linear expansion is valid only when consider
the limiting expression forġ→0 since Eq.~28! is singularly
perturbed by the stationary shear flow.

The above result simplifies considerably in the linear
sponse regime. Since the integral in Eq.~37! is multiplied by
ls , the linear response result is obtained by settingls50 in
G0 . Since forls50 we haveG05K , Eq. ~37! is easily seen
to reduce to
S~K ,t!5Seq~K !F12
2lsK2K3

11K2 E
2`

t

dt8cos$Vt8%exp$2~t2t8!K2~11K2!%G
5Seq~K !F12

2lsK2K3@K2~11K2!cos$Vt%1Vsin$Vt%#

~11K2!@V21K4~11K2!2#
G . ~40!
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This result can also be obtained from a linear response an
sis of the equation of motion~36!. The linear response resu
makes sense only when used to calculate viscoelastic
sponse functions in the linear response regime. The equa
of motion ~36! is singularly perturbed with a boundary lay
of width ;Als around K50. In this boundary layer the
linear reponse expression~40! is invalid. For vanishingls
the width of the boundary layer vanishes and therefore d
not contribute to wave vector integrals representing v
coelastic response functions.

The above expression for the structure factor under sh
flow can be used to predict the dynamic viscous respons
a near-critical suspension once a microscopic expression
the viscosity is derived. This is the subject of the subsequ
section.

IV. MICROSCOPIC EXPRESSION FOR THE ANOMALOUS
VISCOELASTIC RESPONSE FUNCTIONS

The range of correlationsj is large close to the critica
point and ultimately diverges. This implies that close to t
critical point many colloidal particles interact simultaneous
ly-

e-
on

es
-

ar
of
or
nt

e

and at the critical point each colloidal particle interacts w
all other colloidal particles in the system. This is the mech
nism that leads to very large and ultimately infinite forc
that are required to induce relative displacements of collo
particles, corresponding to a large and ultimately diverg
shear viscosity. In addition, the dynamics slows down c
siderably on approach of the critical point, leading to a d
matically changing dynamic viscous response of the syst
We have to find a microscopic expression for the viscosity
order to quantitatively predict this anomalous behavior as
result of the development of long-range correlations.

Batchelor@22# derived a microscopic expression for th
effective stress of suspensions that is valid for arbitrary c
centrations and frequencies~not exceeding the inverse of th
viscous relaxation time!. Only a few terms in that expressio
are responsible for the anomalous behavior of the visc
response. The remaining terms contribute only to a w
behaved so-called background viscosity, which is the visc
ity that would have been measured in the absence of
long-range correlations. In the following we shall rederi
the term in Batchelor’s expression that is responsible
anomalous behavior in a quite straighforward and elemen
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way and revisit the definition of various viscoelastic r
sponse functions in the nonlinear regime.

First consider the linear viscoelastic response of the s
pension. LetU̇ be the rate at which energy is dissipated a
stored per unit volume, due to the up-and-down oscillat
motion of the inner~or outer! cylinder. LetF(t) denote the
force that is applied to the oscillating cylinder in order
sustain a prescribed velocityġscos$vt%l relative to a station-
ary cylinder ~where l is the gap width!. The rate of energy
dissipation and storage isġscos$vt%lF(t). In the linear regime
the force is sinusoidal, like the velocity of the oscillatin
cylinder, but there may be a time lag between the two. T
force F(t) will therefore be of the form

F~ t !/A5ġs@h8~v!cos$vt%1h9~v!sin$vt%#, ~41!

with A the surface area of the oscillating cylinder. The
phase viscosityh8(v) and the out-of-phase viscosityh9(v)
thus describe the linear viscoelastic response of the sus
sion. For low frequencies, whereV,1, the microstructure
will follow the applied field (;cos$vt%) instantaneously, so
that h9(v50)50. It thus follows that

U̇5ġscos$vt% lF ~ t !/ lA

5ġs
2cos$vt%@h8~v!cos$vt%

1h9~v!sin$vt%#. ~42!

The in-phase viscosityh8(v) measures the dissipated e
ergy, while the out-of-phase componenth9(v) measures the
elastically stored energy.

Let us extend the above result to the nonlinear regim
For larger shear ratesġs the force F(t) is an alternating
function of time that is generally not sinusoidal, due to t
nonlinear response of the microstructure, as depicted in F
4~b! and 4~c!. The alternating forceF(t), necessary to sus
tain the oscillatory motion of frequencyv, now exhibits
higher-order frequencies. In this case the ter
h8(v)cos$vt% and h(v)9sin$vt% in Eq. ~42! should be re-
placed by a Fourier cosine and sine series, respectively,
is,

h8~v!cos$vt%→(
n51

`

hn8~v!cos$nvt%

and

h9~v!sin$vt%→(
n51

`

hn9~v!sin$nvt%.

In the linear response regime onlyh18(v) and h19(v) sur-
vive, which are then equal toh8(v) and h9(v), respec-
tively. The linear response result~42! for the energy dissipa
tion thus generalizes to
s-
d
y

e

-

en-

e.

s.

s

at

U̇5ġscos$vt% lF ~ t !/ lA

5ġs
2cos$vt% (

n51

`

@hn8~v!cos$nvt%

1hn9~v!sin$nvt%#. ~43!

In an experiment in the nonlinear regime one often consid
only the first few higher order Fourier components.

The dissipated and stored energy can also be express
terms of the hydrodynamic forcesFi

h that the fluid exerts on
the colloidal particlesi 51,2 . . . ,N and theextra velocity
DV i

s that each particle attains as a result of the superimpo
oscillatory shear field,

U̇5
1

V (
i 51

N

^DV i
s
•Fi

h&, ~44!

with V the volume of the system and angular brackets den
ing ensemble averaging with respect to the shear-r
dependent probability density function. Hence, from E
~43!,

(
n51

`

@hn8~v!cos$nvt%1hn9~v!sin$nvt%#

5
1

ġs
2cos$vt%V

(
i 51

N

^DV i
s
•Fi

h&. ~45!

Let us denote the velocity gradient matrix corresponding
the flow induced by the superimposed oscillatory motion
Gs , that is,

Gs5ġscos$vt%Ĝs with Ĝs5S 0 0 0

0 0 0

0 1 0
D . ~46!

The oscillatory shear induced velocity of a colloidal partic
i is the local velocity of the fluid in the absence of colloid
particles Gs•r i , with r i the position coordinate of thei th
colloidal particle, plus a contribution due to the disturban
of the local fluid flow by the other colloidal particles. Th
incident flow fieldGs•r is scattered by the cores of each
the colloidal particles, thereby affecting the motion of t
other colloidal particles~see Fig. 5!. This contribution is de-
noted asCi8 :Gs . Hence

FIG. 5. Particle 2 experiences not only the incident shear fi
but also the flow field due to scattering of the shear field by the c
of particle 1.
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DV i
s5Gs•r i1Ci8~r1 ,r2 , . . . ,rN!:Gs . ~47!

Thedisturbance matricesCj8 of rank 3 are complicated func
tions of all the position coordinates of the colloidal particle
Leading-order terms in an expansion with respect to the
verse distance between the colloidal particles can be der
@23,16#. The way in which the ensemble average in Eq.~44!
diverges on approach of the critical point is determined
the behavior of the phase functionDV i

s
•Fi

h at large distances
It is therefore sufficient to use the asymptotic form ofCj8 at
large distances. This asymptotic form is simply the first te
in an expansion with respect to the inverse distances betw
colloidal particles, which is nothing but the expression
Cj8 on the pair level. The higher-order many-body interact
contributions toCj8 vanish at infinity more rapidly than its
two-particle contributions. Using the two-particle form ofCj8
does not mean that one performs an expansion to lea
order in the density, which would be completely wrong ne
the critical point. Instead, this two-particle form is the lea
ing term for large distances, whose contribution determi
the way in which viscoelastic response functions diver
The disturbance matrix is now a sum of matricesC depend-
ing on just two position coordinates (r i j 5r i2r j ),

Ci85 (
j 51,j Þ i

N

C~r i j !. ~48!

For the evaluation of the effective viscosity we will need t
explicit leading-order expression for the divergence of
vectorC:Gs , which reads

¹i•@C~r i j !:Gs#5
75

2 S a

r i j
D 6

~ r̂ i j •Gs• r̂ i j !, ~49!

where r̂ i j 5r i j /r i j and a is the core radius of the spheric
colloidal particles.

On the Smoluchowski time scale, the inertial force
each colloidal particle is negligibly small, so that the hydr
dynamic forcesFi

h are equal to minus the sum of the dire
force

Fi
I52¹iF ~50!

and the Brownian force

Fi
Br52kBT¹i lnP, ~51!

with F the total potential energy of the colloidal particle
andP the ~shear-rate-dependent! probability density function
of the position coordinates. In equilibrium, without she
flow, these two forces add up to zero, yielding the Bol
mann probability density functionP;exp$2F/kBT%. In a
sheared system there is an unbalance between these
forces, soP is no longer equal to the Boltzmann exponenti
This effect of shear flow on the pair-correlation function o
equivalently, on the structure factor, has been analyze
Sec. III. The ensemble average in Eq.~45! is to be taken with
respect to this shear-rate-dependent probability density fu
tion. Substitution of Eq.~47! for the oscillatory shear in-
duced velocity and Eqs.~50! and ~51! with Fi

h52Fi
I2Fi

Br

for the hydrodynamic force into Eq.~45! gives
.
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(
n51

`

@hn8~v!cos$nvt%1hn9~v!sin$nvt%#

5
1

ġsV
(
i 51

N

^~Ĝs•r i1Ci8 :Ĝs!•~¹iF1kBT¹i lnP!&.

~52!

There are further contributions to the viscosity that st
from direct interactions of solvent molecules with the collo
dal particles,the hydrodynamic viscosity, and from interac-
tions between solvent molecules. These contributions
not be considered here since they contribute only to the w
behaved background viscosity. Only the interactions betw
colloidal particles become long ranged upon approach of
critical point, while the other interactions remain sho
ranged and therefore do not contribute to the anomalous
havior of the effective viscosity.

The various viscoelastic response functions now foll
from Eq. ~52! as

H hn8~v!

hn9~v!
J 5

v

pġsV
(
i 51

N E
0

2p/v

dtH cos$nvt%

sin$nvt% J
3^~Ĝs•r i1Ci8 :Ĝs!•~¹iF1kBT¹i lnP!&.

~53!

Using the expressions for the structure factor as derived
Sec. III, these microscopic expressions are evaluated ex
itly in Sec. V. Numerical results are given in Secs. VI a
VII.

In an experiment one typically measures the forceF(t) on
the cylinder that is needed to sustain a prescribed veloc
According to Eq.~43!, this force is equal to

F~ t !/A5ġs(
n51

`

@hn8~v!cos$nvt%1hn9~v!sin$nvt%#.

~54!

The various viscoelastic response functions are therefore
perimentally obtained from a Fourier series analysis as

H hn8~v!

hn9~v!
J 5

v

pġs
E

0

2p/v

dtH cos$nvt%

sin$nvt% J F~ t !/A. ~55!

These experimental data can then be compared to the t
retical predictions following from Eq.~53!.

V. EVALUATION OF THE VISCOELASTIC RESPONSE
FUNCTIONS

The quantity of interest in the microscopic expressi
~53! for the viscoelastic response functions is

N~ t ![
1

ġsV
(
i 51

N

^~Ĝs•r i1Ci8 :Ĝs!•~¹iF1kBT¹i lnP!&.

~56!

For convenience this quantity is written as the sum of fo
terms

N~ t !5NC
F~ t !1Nr

F~ t !1NC
Br~ t !1Nr

Br~ t !, ~57!
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with

NC
F~ t !5

1

ġsV
(
i 51

N

^~Ci8 :Ĝs!•¹iF&,

Nr
F~ t !5

1

ġsV
(
i 51

N

^~Ĝs•r i !•¹iF&,

NC
Br~ t !5

1

ġsV
(
i 51

N

^~Ci8 :Ĝs!•kBT¹i lnPN&,

Nr
Br~ t !5

1

ġsV
(
i 51

N

^~Ĝs•r i !•kBT¹i lnPN&, ~58!

where the superscripts Br andF refer to the Brownian and
direct force terms respectively, and the subscriptsC andr to
the terms involvingCi8 and Ĝs•r i .

Most of the terms here probe the short range distortion
correlations, which do not contribute to the anomalous p
of the response functions. These terms are regular funct
of the bare Pe´clet number Pes

05ġsRV
2/2D0 that measures

these short-range distortions. Such terms contribute onl
the background viscosity, which is the viscosity that wou
have been measured in the absence of long-range cor
tions.

Let us consider each of the contributions toN(t) in Eq.
~57! separately. For convenience we shall not denote
time dependence of probability density functions in the f
lowing.

(i) The contribution NC
F(t). Substitution of Eq.~48! for

Ci8 , assuming a pairwise additive potential energy and id
tical colloidal particles, yields

NC
F~ t !5

r̄2

ġs
E dR g~R!@C~R!:Ĝs#•¹RV~R!

1
r̄3

ġs
E drE dRg3~R,r !@¹rV~r !#•@C~R!:Ĝ#.

The first integral on the right-hand side probes the shear
dependence of the short-ranger dependence of the pair
correlation function since it is multiplied by¹rV(r ). The
first integral therefore does not contribute to the anomal
behavior of the viscosity. The second integral may be eva
ated as follows. In order to separate the anomalous part f
the background contribution, the total-correlation function
decomposed in a long-range and a short-range contribu
hl andhs , respectively,

g~r !511hl~r !1hs~r !. ~59!

Formally, the long-range parthl of the total-correlation func-
tion is defined as the asymptotic solution of the Smo
chowski equation for large distances as found in Sec. III. T
remainder is the short-range parths , which is 0 for distances
larger than a few timesRV . What is important is that the
f
rt
ns

to

la-

e
-

-

te

s
-
m

s
on

-
e

short-range parths does not contribute to the anomalous p
of the viscosity since the anomalous behavior is the resu
long-range correlations.

First of all, linearization with respect to the long-rang
contributionshl is allowed since the total-correlation func
tion goes to zero at infinity. After substitution of the decom
position~59! into the closure relation~8! and~9! for g3 , with
r replaced byR and r 8 by r , such a linearization leads to

NC
F~ t !5

r̄3

ġs
E drE dR@11hl~R2r !1hl~R!

1hl~R!hs~R2r !1hs~R2r !1hs~R!hl~R2r !

1hs~R!hs~R2r !#H g~r !1
dg~r !

dr̄
r̄Fhl S R2

1

2
r D

1hsS R2
1

2
r D G J @¹rV~r !#•@C~R!:Ĝs#.

The underlined terms probe only the short-range distortion
the correlation functions and therefore do not contribute
the anomalous part of the viscosity. For example, the fi
underlined term;hs(R2r ) is only nonzero for uR2r u
smaller than a few timesRV . Since the factor¹rV(r ) limits
the integration range ofr to r<RV , this implies that the
integration range ofR is also limited to a few timesRV .

Second, sincer<RV , the correlation functionshl(R2r )
andhl(R2 1

2 r ) are smooth functions ofr for large distances
R. These correlation functions may therefore be Taylor
panded to first order in gradients

hl~R2r !5hl~R!2r•¹Rhl~R!,

hl~R2 1
2 r !5hl~R!2 1

2 r•¹Rhl~R!.

Substitution of these expansions and a further lineariza
with respect tohl yields

NC
F~ t !5

r̄3

ġs
E drE dRFg~r !~112hl~R!2r•¹Rhl~R!#

1
dg~r !

dr̄
r̄S hl~R!2

1

2
r•¹Rhl~R! D G

3@¹rV~r !#•@C~R!:Ĝs#.

The underlined terms do not contribute upon integrat
since the corresponding integrand is an odd function of eit
r or R @note that both¹rV(r ) andC(R) are odd functions#.
Finally, g(r ) may be replaced by the equilibrium pai
correlation functiongeq(r ) since it is multiplied in the inte-
gral by ¹rV(r ). The spherical angular integrations with r
spect tor can now be performed to yield

NC
F~ t !5

r̄2

ġs
FdP

dr̄
2kBTG E dR@C~R!:Ĝs#•¹Rhl~R!,

~60!
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whereP is the osmotic pressure of the quiescent, unshea
suspension@see Eq.~12!#. Since the hydrodynamic interac
tion matrix C goes to zero asR22 for R→`, the above
integral probes the long-range behavior of the tot
correlation function and therefore may contribute to t
anomalous behavior of the effective viscosity.

(ii) The contribution Nr
F(t). Using that the pair-

interaction potential and the pair-correlation function a
even functions and assuming again identical colloidal p
ticles, it is found that

Nr
F~ t !5

1

2

r̄2

ġs
E dRg~R!~Ĝs•R!•¹RV~R!. ~61!

Only the short-range behavior ofg(R) is probed here sinceg
is multiplied in the integrand by¹RV(R). Therefore,Nr

F(t)
does not contribute to the anomalous behavior.

(iii) The contribution NC
Br(t). In order to evaluate this

contribution, we use the superposition approximation on
N-particle level, that is,PN is approximated as

PN5
1

VN )
i , j 51
i , j

N

g~r i2r j !. ~62!

This approximation becomes exact on the pair level and
scribes the essential features of higher-order interaction
an approximate way. This approximation implies that

¹1ln$PN%5(
j 52

N

¹1lng~r12r j !.

Substitution of this expression together with Eq.~48! into
Eq. ~58! for NC

Br(t) readily leads to

NC
Br~ t !5

r̄2

ġs

kBTE dR@C~R!:Ĝs#•¹Rg~R!

1
r̄3

ġs

kBTE dRE drg~R!g~r2R!

3¹rg~r !•@C~R!:Ĝs#. ~63!

The first term on the right-hand side cancels against a term
NC

F(t) in Eq. ~60!. The second term may be evaluated
decomposing each of the pair-correlation functions in
short- and long-range parts as in Eq.~59!. The integrand in
the second integral in Eq.~63! is thus written as

$11hl~R!1hs~R!%$11hl~r2R!1hs~r2R!%

3$¹rhl~r !1¹rhs~r !%.

Products of the short-range parts give rise to a regular c
tribution to the viscosity and may be disregarded. Furth
more, odd functions ofr may be disregarded since the
yield a zero result upon integration. Linearization of t
ed

-

r-

e

e-
in

in

s

n-
r-

above product with respect to the long-range parts t
leaves the following terms to be analyzed:

hl~r2R!¹rhs~r !, hl~r2R!hs~R!¹rhs~r !,

hl~R!hs~r2R!¹rhs~r !, hs~r2R!¹rhl~r !,

hs~R!hs~r2R!¹rhl~r !.

In the first termhl(r2R) may be Taylor expanded aroun
r50 sincehs(r ) is short ranged. Noting thatC(R) is an odd
function of R, this term yields the following contribution to
the viscosity:

The first term is

2kBT
r̄3

ġs
E dr r ¹rhs~r !:

3E dR@C~R!:Ĝs#•¹Rhl~R!.

The second, third, and last terms are nonzero only when b
ur u and uRu are less than or at most a few timesRV and
therefore contribute only to the background viscosity. In t
fourth termhl(r ) may be Taylor expanded aroundr5R to
first order in gradients. Finally,hs(r ) may be replaced by the
equilibrium short-range parths

eq(r ) of the total-correlation
function since by definition this function is short range
This leads to the following contribution to the viscosity:

The fourth term is

kBT
r̄3

ġs
E drE dRhs~r2R!

3@C~R!:Ĝs#•¹Rhl~R!

5kBT
r̄3

ġs
E dr 8hs~r 8!

3E dR@C~R!:Ĝs#•¹Rhl~R!.

Putting things together, we arrive at the following express
for the anomalous contributionNC

Br(t) to the shear viscosity

NC
Br~ t !5kBT

r̄2

ġs

@12Cs#E dR@C~R!:Ĝs#•¹Rhl~R!,

~64!

where

Cs524pr̄E
0

`

drr 2Fhs
eq~r !2

1

3
r

dhs
eq~r !

dr G . ~65!

This expression forCs is accurate up to linear order in th
bare Pe´clet numbers Pe0 and Pes

0 . Being related to the short
range part of the total correlation function,Cs is a well-
behaved function at the critical point.

(iv) The contribution Nr
Br(t). For identical colloidal par-

ticles, Eq.~58! for Nr
Br(t) is easily reduced to

Nr
Br~ t !5

1

2

r̄2

ġs

kBTE
R.d

dR~Ĝs•R!•¹Rhl~R!.
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Here it is noted that only the long-range contributionhl to
the total-correlation function is relevant. An application
Gauss’s integral theorem leads to a surface integral over
spherical surface with a radiusd, the hard-core diameter o
the colloidal particles, since¹R•(Ĝs•R)50. This integral
probes the distortion of the total-correlation function at d
tances equal tod and therefore contributes only to the bac
ground viscosity.

There are two terms that possibly lead to anomalous
havior: the terms in Eqs.~60! and~64!. Summing these term
yields

N~ t !5kBT
r̄2

ġs
Fb

dP

dr̄
2CsG E dR@C~R!:Ĝ#•¹Rhl~R!.

SincebdP/dr̄→0 on approach of the critical point, whil
Cs remains finite, the term;bdP/dr̄ may be neglected
The relevant expression forN(t) that includes all the anoma
lous behavior is therefore

N~ t !5kBT
r̄2

ġs

CsE
R.d

dR@h~R!2hstat~R!#¹R•@C~R!:Ĝs#,

~66!

where the indexl on the total-correlation functions is omi
ted. Here Gauss’s integral theorem is applied~the surface
integral atuRu5d is omitted since it contributes only to th
background viscosity! and

E
R.d

dRhstat~R!¹R•@C~R!:Ĝs#50.

is used. This follows from the fact tha
hstat(x,y,z)5hstat(x,y,2z) and ¹•@C(R):Ĝs#;yz @see Eq.
~49!#, so that the integrand is an odd function ofz. From the
defining equation~15! of the structure factor it follows tha
the Fourier transform ofh(R)2hstat(R) is equal to@S(k,t)
2Sstat(k)#/ r̄. Explicit expressions forS(k) andSstat(k,t) are
given in Eqs.~29! and ~33!, respectively. We therefore re
write Eq. ~66! with the help of Parseval’s theorem as

N~ t !5
1

8p3
kBT

r̄

ġs

CsE dk$S~k,t !2Sstat~k!%I ~k!,

~67!

with @using Eq.~49!#

I ~k!5E
R.d

dR$¹R•@C~R!:Ĝs#%exp$2 ik•R%

52
5p

4
a3

k•Ĝs•k

k2
~kd!2f ~kd!, ~68!

where the cutoff functionf is equal to

f ~x!5@~5x5210x32120x!cosx1~5x4230x2

1120!sinx#/16x52
5

16
xE

x

`

dz
sinz

z
. ~69!
he

-

e-

The cutoff function is unity forx50: f (0)51. That the
integralI (k) is indeed equal to the expressions~68! and~69!
is shown in Appendix C. The functionf is called a cutoff
function because it limits the integration range in the integ
in Eq. ~67! for N(t) to small wave vectors. As can be see
from Fig. 6, wheref is plotted, the cutoff function effectively
limits the integration range to wave vectorskd,4, while the
major contribution is from wave vectorskd,2. This is in-
deed the wavevector range for which the expression for
shear flow distorted structure factor as derived in Sec. II
valid. If the cutoff function would have had a longer rang
extending to wave vectors for whichkd.6, corresponding to
wavelengths of the orderd'RV and smaller, we would have
been forced to introduce in anad hocmanner a finite upper
limit for the wave-vector integration range in Eq.~67!. For-
tunately the introduction of such an uncontrolable cut
wave vector is not necessary.

The final expressions for the viscoelastic response fu
tions follow from substitution of the result~67! into Eq.~53!,

H hn8~v!

hn9~v!
J 5

vCsr̄kBT

8p4ġs
E

0

2p/v

dtH cos$nvt%

sin$nvt% J E dk$S~k,t !

2Sstat~k!%I ~k!. ~70!

This expression will be rewritten in a dimensionless form
the next subsection.

A. Scaling forms for the viscoelastic response functions

The amplitude ofS(k,t)2Sstat(k) is proportional toj2.
This follows from the linear relationship betweenSstat and
Seq @see Eq.~29!# and that ofS in Eq. ~33! with Sstat andSeq,
while Seq is proportional toj2, according to Eq.~22!. This
can be made explicit by introducing the ‘‘relative distortion

Cs~k,t !5
S~k,t !2Sstat~k!

Seq~k!
. ~71!

This function is at most of order 1 in the entire~mean-field!
vicinity of the critical point. An appropriate scaling relatio
for the response functions can be obtained from Eq.~70! by
transforming thek integration to aK5kj integration, by
introducing the dimensionless shear ratesl andls @Eq. ~26!#

FIG. 6. Cutoff functionf (x) in Eq. ~69!.
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7724 PRE 58JAN K. G. DHONT AND GERHARD NÄGELE
and the dimensionless timet and frequencyV @Eqs. ~24!
and ~27!#. The viscoleastic response functions~70! are now
written as

H hn8~v!/h0

hn9~v!/h0
J 5CH Nn8~l,ls ,V,j21d!

Nn9~l,ls ,V,j21d!
J , ~72!

whereh0 is the shear viscosity of the solvent,

C5
45

256p2
wS d

RV
D 4

~bS/RV
2 !22Cs ~73!

is a constant, independent of shear rates, frequency, and
relation length, andw5(4p/3)a3r̄ is the volume fraction of
colloidal particles. The viscoelastic response scaling fu
tions Nn8 and Nn9 are thus simply proportional to the vis
coelastic response functionshn8(v) andhn9(v), respectively.
The microscopic expressions for these viscoelastic resp
scaling functions follow from Eqs.~70! and ~71!,

H Nn8~l,ls ,V,j21d!

Nn9~l,ls ,V,j21d!
J

5
2V

ls~j21d!p
E

0

2p/V

dtH cos$nVt%

sin$nVt% J
3E dK K2K3

Cs~K ,tul,ls ,V!

11K2
f~Kj21d!, ~74!

where the relative distortionCs is now expressed in terms o
dimensionless quantities and its shear rate and frequenc
pendence are denoted explicitly.

Explicit expressions for the relative structure factor d
tortion Cs follow from Eq. ~33! in the most general case of
superimposed oscillatory shear flow. Numerical results
the viscoleastic response functions in Eq.~74! must be ob-
tained by numerical integration.

From the experimental point of view it is more convenie
to express data as functions of a bare Pe´clet number;ġs
instead of the dressed Pe´clet numberls since the latter de-
pends also on the distance from the critical point. A m
convenient bare Pe´clet number is perhaps the following ‘‘al
ternative bare Pe´clet number’’

Pes
![ls~j21d!45

1

bS/RV
2 S d

RV
D 4

Pes
0 . ~75!

On the one hand, this bare Pe´clet number is equal to a prod
uct of two of the dimensionless numbersls and (j21d)4,
which are relevant quantaties in the theory, while on
other hand it is directly proportional to the experimenta
easily accessible bare Pe´clet number Pes

0 with a proportion-
ality constant that is independent of the distance to the c
cal point.

It should be noted that the expression~74! represents only
the anomalous parts of the response functions. The exp
mentally measured response functions are the sum of
anomalous contribution and a background contribution.
or-
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fore comparing experimental results to the above predictio
these background contributions should be subtracted.

VI. RESPONSE TO A PURE OSCILLATORY SHEAR FLOW

In the following subsections we first consider the line
viscoelastic response to a pure oscillatory shear flow~where
ġ50) and then discuss nonlinear response characteris
Numerical results for the viscoelastic response scaling fu
tions are accurate to within 2%, or 0.002 for values of the
functions smaller than about 0.05.

A. Linear response to pure oscillatory shear flow„l50…

In the absence of the stationary component of the sh
flow (ġ50) the viscoelastic response functions can be fou
from Eq. ~74!, where the relative structure factor distortio
now follows from Eq.~37!. The integrations can be don
analytically only in the linear response regime, where
relative structure factor distortion reduces to simple analy
functions that follow from Eq.~40!. Substitution of Eq.~40!
into Eq. ~74! leads to

N18~l50,ls→0,V,j21d!

5
8p

15~j21d!
E

0

`

dK
K8f ~Kj21d!

~11K2!@V21K4~11K2!2#
,

~76!

N19~l50,ls→0,V,j21d!

5
8pV

15~j21d!
E

0

`

dK
K6f ~Kj21d!

~11K2!2@V21K4~11K2!2#
.

~77!

The limiting expressions for these response functions on
proach of the critical point, wherej21d→0, are obtained by
simply setting the cutoff function equal to unity: For ve
small values ofj21d the integral has already converged fork
values such thatKj21d is still small and hencef (Kj21d)
'1. Hence

N18~l50,ls→0,V,j21d→0!

5
8p

15~j21d!
E

0

`

dK
K8

~11K2!@V21K4~11K2!2#
,

~78!

N19~l50,ls→0,V,j21d→0!

5
8pV

15~j21d!
E

0

`

dK
K6

~11K2!2@V21K4~11K2!2#
.

~79!

These results predict a divergence of the viscositiesh8 and
h9 as strong as the correlation length

h8h9;j. ~80!
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This behavior is illustrated in Fig. 7, where double logari
mic plots of N8(V50) andN9(V5Vmax) as functions of
the inverse correlation length are shown. HereVmax is the
dressed Deborah number whereN9 exhibits its maximum.
The scaling behavior in Eq.~80! is found to hold, on a
double logarithmic scale, forj/d.3. The divergence ofh8
as predicted in Eq.~80! for a stationary shear flow (V50)
was already predicted in Ref.@3# and experimentally verified
for a colloid/polymer mixture in Ref.@4#. The critical expo-
nent zh in h8(ġs→0,v50);jzh for molecular systems is
known to be as small as 0.06@1#. The much stronger diver
gence withzh51 of the steady shear, linear viscosity f
colloidal systems is due to the long-range character of
fluid mediated interactions between the colloidal particl
The interactions of the colloidal particles through scatter
of the incident flow field, quantified by the disturbance m
trix in Eq. ~47! and depicted in Fig. 5, indeed gives rise
the only surviving contribution to the anomalous part of t
viscoelastic response functions in the mean-field reg
Also shown in Fig. 7 is the frequencyVmax whereN9 attains
its maximum. As can be seen,Vmax is almost constant for
j/d.3, again on a double logarithmic scale. From the de
ing equation~27! for V it follows that

vmax;j24. ~81!

The frequencyvmax at which h9 exhibits its maximum is
thus predicted to shift to smaller values on approach of
critical point like j24.

For large frequencies the integrands in Eqs.~78! and~79!
have polesK2;AV. It is easily seen from the residua the
rem that both integrals now vary like;V21/4;v21/4. An
alternative derivation of this result, without the use of t
residua theorem, is given in Appendix D. This hig
frequency behavior is in contrast to the frequency dep
dence that has been found in case of hard-sphere-like
pensions without hydrodynamic interactions@26–29#, where
h8 decays at high frequencies as;v21/2. Further away from
the critical point, where Eqs.~76! and ~77! are the proper
expressions for the response functions, there is a faster d
with increasing frequency. This is most clearly seen in Fi

FIG. 7. Double logarithmic plots of the frequencyVmax, where
N9 exhibits its maximum, and ofN8(V50) andN9(V5Vmax) as
functions of the inverse correlation length.
-

e
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e
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8~a! and 8~b! where double logarithmic plots ofN8 andN9
versusV are shown. The frequency dependence ofN8, away
from the critical point, resembles an;V21/2 kind of decay.
There is thus a gradual cross-over from an;V21/4 depen-
dence close to the critical point to an;V21/2 decay farther
away from the critical point. In an experiment it will b
difficult to achieve values ofj21d less than about 0.01, but
should still be possible to measure the approach toward
;v21/4 behavior. The reason for this kind of frequency d
pendence is as follows. Very close to the critical point t
relaxation ratesG5Deffk25D0b@dP/dr̄1k2S#k2 varies
effectively like ;k4 since therebdP/dr̄ is a very small
number. Further away from the critical pointbdP/dr̄ be-
comes larger, so that relaxation ratesG vary effectively like
;k2. Thus critical slowing down is responsible for the p
culiar ;v21/4 behavior very close to the critical point. Math
ematically the crossover behavior can be seen fr

FIG. 8. Double logarithmic plots of~a! N8 and ~b! N9 as func-
tions of the frequencyV for various distances from the critica
point ~values ofj21d are indicated in the figures!.



e

f
y

ec
e

-

as
he

pec-

nt

nt
ay

is
int,
the
om

to
nce

tion

qs.

on-

at
in-
II E
Fig.

ear
unc-

5,

s
-

se

7726 PRE 58JAN K. G. DHONT AND GERHARD NÄGELE
Eqs. ~76!–~79!. In the expressions~78! and ~79!, which are
valid close to the critical point, the major contribution to th
integral stems from largerK values whenV is large, so that
in the denominator one may replace 11K2 between the
square brackets byK2. This amounts to the neglect o
bdP/dr̄ in the effective diffusion coefficient. Further awa
from the critical point, where Eqs.~76! and ~77! are the
appropriate expressions, the cutoff function limits the eff
tive integration range to smallerK values, so that the sam
term 11K2 becomes essentially equal to 1.

Figure 9~a! shows the frequency dependence of (j21d)N8

FIG. 9. ~a! Plots of (j21d)N8 and (j21d)N9 versus the fre-
quency ~on a logarithmic scale! for various correlation lengths
~from top to bottomj21d50.001, 0.002, 0.005, 0.01, 0.02, 0.0
0.1, 0.2, and 0.3!. ~b! Plots ofN8 andN9 versus the frequency~on
a logarithmic scale! after normalization to their maximum value
N8(V50) andN9(V5Vmax), respectively, for the same correla
tion lengths as in~a!.
-

and (j21d)N9 for various correlation lengths. What is re
markable about the frequency dependence is that bothh8
and h9 are non-zero over a very large frequency range
compared to systems far away from the critical point. T
frequency dependence becomes pronounced atV'1, as ex-
pected, but then the maximum forh9 occurs at relatively
large frequencies. The reason for this broad frequency s
trum is as follows. Close to the critical point,Deff(k50) is
small compared to the single-particle diffusion coefficie
D0 sincebdP/dr̄ is small @see Eq.~16!#. A slight increase
of the wave vectork then increases the diffusion coefficie
Deff(k) considerably, as indicated in Fig. 10. Further aw
from the critical point, wherebdP/dr̄ is larger, the relative
increase of the diffusion coefficient for finite wave vectors
less pronounced. Therefore, on approach of the critical po
a larger range of relaxation times comes into play and
frequency spectrum broadens. This is particularly clear fr
Fig. 9~b!, whereN8 andN9 are normalized to their maximum
values: The frequency spectrum forj21d50.001 is seen to
be a few decades broader than forj21d50.3. For frequen-
cies smaller thanVmax, the response functions normalized
their maximum value are almost independent of the dista
to the critical point.

B. Nonlinear response to a pure oscillatory shear flow„l50…

On increasing the dimensionless shear ratels beyond 1,
the viscoelastic response to the oscillatory shearing mo
becomes nonlinear. For a given correlation lengthj21d
50.01, viscoelastic response functions as obtained from E
~37!–~39! and ~74!, where in Eq.~71! Sstat5Seq sinceġ50
are given in Fig. 11. It turns out that the even-indexed n
linear response functionsN2n9 andN2n8 with n51,2, . . . are

0. Figure 11~a! shows thatN18 decreases with increasingġs

for low frequencies, but retains its linear response value
higher frequencies. The diminishing nonlinear effects on
creasing the frequency was already mentioned in Sec. I
concerning the response of the structure factor. Notice in
11~a! the large plateau value ofN18 as a function of the fre-
quency, almost right up to the frequency where nonlin
effects disappear. The nonlinear viscoelastic response f
tion N38 is plotted in Fig. 11~b!. This response function is
nonzero only for frequencies where the response functionN18
differs from its linear response value. Figure 11~c! shows a

FIG. 10. Schematic illustration of the relative large increa
;k2 of the effective diffusion coefficientDeff(k) at finite wave
vectors very close to the critical point.
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FIG. 11. Viscoelastic response functions as a function of the frequency for a given valuej21d50.01 of the correlation length:~a! N18 ,
~b! N38 , ~c! N19 , and~d! N39 . In each figure the thick solid curve corresponds to linear response wherels→0. The values ofls are indicated
in the figures.
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similar behavior for the elastic response functionN19 . There

is a decrease of this function with increasing shear rateġs up
to a certain frequency beyond which the linear response
ues are retained. The frequency range beyond whichN18 re-
tains its linear response values is smaller than the co
sponding frequency range forN19 . The nonlinear elastic
response functionN39 is plotted in Fig. 11~d!. Notice that the
effect of increasingls beyond about 10 is a shift of th
higher-order response functionsN38 and N39 to higher fre-
quencies rather than an increase of their amplitude, cont
to the lowest-order functionsN18 and N19 which are not
shifted but are only changed in amplitude.

Notice that since the bare Pe´clet number Pes
0 is a small

number, the background viscoelastic response functions
in their linear response regime, despite the strong nonlin
response of the anomalous contribution of the response f
tions. The background contribution is related to stresses g
erated by the distortion of short-range correlations, while
anomalous contribution is due to the distortion of long-ran
correlations. Therefore, the background contribution to
nonlinear response functions is absent and experimental
l-

e-

ry

re
ar
c-
n-
e
e
e
n-

linear response functions can be compared directly to th
retical predictions, without having to subtract a backgrou
contribution.

VII. ORTHOGONALLY SUPERIMPOSED OSCILLATORY
SHEAR FLOW

In order to study the dynamic response of a station
sheared microstructure by applying a superimposed osc
tory shear flow, the perturbing effect of the latter should
small. We therefore consider thelinear viscoelastic response
of a stationary sheared suspension to a superimposed o
latory shear flow. The dressed Pe´clet numberls correspond-
ing to the oscillatory flow is thus small, but the Pe´clet num-
berl corresponding to the stationary flow can be large. As
the preceding section, numerical results for the viscoela
reponse scaling functions are accurate to within about 2
or 0.002 for values of these functions smaller than ab
0.05.

The viscoelastic response functionsN8 and N9 can be
calculated from Eq.~74!, where the relative structure facto
distortion in Eq.~71! follows from Eqs.~33!–~35!, with ls
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set equal to 0 in Eqs.~34! and ~35!. Keeping thels depen-
dence in Eqs.~34! and~35! corresponds to the more gener
case where the stationary sheared microstructure is affe
by the oscillatory flow in a nonlinear fashion.

Numerical results for the linear response functions fo
correlation lengthj21d50.01 and for several values ofl are
given in Fig. 12. There is a striking resemblance of the
curves and the curves shown in Figs. 11~a! and 11~c!, where
the response functions of an otherwise quiescent suspen
(l50) are plotted for values ofls where the response i
highly nonlinear. Indeed we find the remarkable approxim
relations

FIG. 12. Linear viscoelastic response functions for a given va
j21d50.01 of the correlation length of a stationary sheared sys
for dressed Pe´clet numbersl as indicated in the figure:~a! N8 and
~b! N9. The thick solid line corresponds tol5,0.
ed

a

e

ion

e

h8~ ġ,ġs→0,v,j21d!'h18~ ġ50,ġs,v,j21d!,

h9~ ġ,ġs→0,v,j21d!'h19~ ġ50,ġs,v,j21d!, ~82!

with ġ5ġs , where the first relation is found to be valid t
within about 5% and the second to within about 10%. T
linear viscoelastic response functions of a nonlinearly, s
tionary sheared system are thus approximately equal to
lowest-order response functions of an otherwise quiesc
nonlinear oscillatory sheared system.

VIII. SUMMARY AND CONCLUSIONS

The Smoluchowski equation allows a relatively straig
forward derivation of the equation of motion for the lon
range behavior of the pair-correlation function in the vicin
of the gas-liquid critical point. Fourier transformation yield
an equation of motion for the structure factor@Eq. ~25!#,
which contains three dimensionless parameters that cha
terize the flow field: two dressed Pe´clet numbers, pertaining
to the stationary componentl @Eq. ~26!# and the oscillatory
componentls @Eq. ~26!# of the shear flow, and a dresse
Deborah numberV @Eq. ~27!#. This equation forS(k,t) can
be solved analytically@Eqs. ~33!–~35!#. This expression re-
duces to simpler expressions for the case of pure statio
shear flow@Eqs.~29! and~30!# and in the case of pure osci
latory shear flow@Eqs.~37!–~39!#. Further simplification for
a pure oscillatory shear flow in the case of linear respo
explicitly reveals the in-phase and out-of-phase compon
of the structure factor@Eq. ~40!#: the out-of-phase componen
leads to an elastic component of the viscous response o
system. The nonlinear response of the microstructure oc
when the corresponding dressed Pe´clet numbers are large
than 1, while a significant frequency dependence is fou
when the dressed Deborah number is larger than 1.
dressed Pe´clet numbers vary likel;ġj24 andls;ġsj

24,
where ġ and ġs are the shear rates for the stationary a
oscillatory components of the flow, respectively. Similar
the dressed Deborah number varies likeV;vj24, with v
the frequency of oscillation. In each casej is the correlation
length of the quiescent, unsheared system. These scalin
lations imply that on approach of the critical point a nonli
ear response and frequency dependence will be found a
creasing shear rates and frequencies. In particular,
frequency where the elastic componenth9(v) exhibits its
maximum in a linearly, pure oscillatory sheared system sh
to lower frequencies like;j24.

Microscopic expressions for~linear and nonlinear! vis-
coelastic response functions are equal to various Fou
components of a phase function@Eq. ~53!# that can be evalu-
ated explicitly in terms of a wave-vector integral@Eq. ~74!#
of the relative structure factor distortion@defined in Eq.~71!#
and a cutoff function@Eq. ~69!#. The cutoff function emerges
naturally from the evaluation of the above-mentioned ph
function as the Fourier transform of~the divergence of! the
scattering contribution to the velocity of a colloidal partic
@see Eq.~68!#. This cutoff function limits the wave-vecto
integration to wave vectorsk,4/d, with d the core diameter
of the spherical colloidal particles. The scattering contrib
tion to the velocity of a colloidal particle is the addition

e
m
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velocity that that colloidal partcile attains as a result of t
solvent flow field generated by the cores of the remain
colloidal particles through scattering of the incident line
shear field. This solvent mediated interaction~referred to in
colloid science as a ‘‘hydrodynamic interaction’’! is long
ranged and leads to a much stronger divergence of visco
tic response functions as compared to molecular syste
e.g., binary fluid mixtures. The critical exponentzh for the
zero-shear and zero-frequency viscosityh in h;jzh is found
to be equal to 1 in our mean-field treatment and should
contrasted with the very small value of 0.06 for molecu
systems. Such a strong divergence is found both for the
ear and the nonlinear viscoelastic response functions.

One may expect a gradual crossover of the critical ex
nentzh from 1 to 0.06 when the dissolved particles beco
smaller and ultimately become equal in size to the solv
particles. The values 1 and 0.06 are the extreme values
zh in the case of a colloidal system, where there is a cl
separation in time scales for relaxation of microstructure
colloidal particles and of the solvent molecules, and in
case of binary fluid mixtures, where these relaxation tim
for both species are about equal. For polymer and pro
solutions, for example, the exponentzh is probably some-
where in between 1 and 0.06.

The lowest-order frequency-dependent viscoelastic
sponse functions are found to attain their linear response
ues for larger frequencies. The nonlinear response thus
appears on increasing the frequency. At large frequencies
frequency dependence of the lowest-order response func
is found to vary like;v21/4 in the direct vicinity of the
critical point and crosses over to a;v21/2 behavior further
away from the critical point. The;v21/2 behavior is also
found for hard-sphere-like colloids in the absence of hyd
dynamic interactions, which do not exhibit a gas-liquid cri
cal point. The crossover from av21/2 to av21/4 behavior on
approach of the critical point is the result of critical slowin
down. The relevant diffusion coefficient isDeff

5D0b@dP/dr̄1k2S#, whereD0 is the single-particle dif-
fusion coefficient,P is the osmotic pressure,r̄ is the number
density of colloidal particles, andS is a constant that is wel
behaved at the critical point@see Eq.~16!#. Further away
from the critical point and for the small wave vectors
interest,Deff'D0b(dP/dr̄), while close to the critical point
Deff'D0bk2S since thenbdP/dr̄ is a small number. This
different wave-vector dependence of the diffusion coeffici
away from the critical point and close to it is responsible
the different frequency dependence of the lowest-order
coelastic response functions.

The explicit expressions derived in the present paper
low for the calculation of the entire frequency dependence
linear and nonlinear response functions~see Sec. VI for pure
oscillatory flow and Sec. VII for superimposed shear flow!.
A surprising feature is that, to within about 10%, the line
viscoelastic response functions corresponding to an ortho
nally superimposed oscillatory shear flow for systems s
jected to a stationary shear flow are equal to the lowest-o
response functions for a pure oscillatory shear flow, wheġ

for the former case is equal toġs in the latter case@see Eq.
~82!#.

The predicted strong divergence of the zero-shear
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zero-frequency shear viscosity has been confirmed exp
mentally@4#. Experiments concerned with the frequency d
pendence and the nonlinear response have not been
formed so far. Furthermore, the crossover behavior fromzh
51 to zh50.06 on decreasing the size of the dissolved s
cies from the colloidal range to the molecular range has
been investigated experimentally.
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APPENDIX A: SOLUTION OF EQ. „28…

In order to solve Eq.~28! we will need the following
representation of thed distribution: Let f (X) denote a func-
tion in R, with f 8(X)[d f(X)/dX.0 and limX→` f (X)
5`; then

d~X2X0!5H~X2X0!lim
e↓0

f 8~X!

e
expH 2

f ~X!2 f ~X0!

e J ,

~A1!

whereH(X)50 for X,0 andH(X)51 for X>0, the Heavi-
side unit step function.

The differential equation~28! is solved by variation of
constants. First consider the homogeneous equation, w
Seq is omitted,

lK1

]Sstat~K !

]K2
5K2@11K2#Sstat~K !.

Straightforward integration yields

Sstat~K !5C~K1 ,K3!expH 1

lK1
E

0

K2
dY@K1

21Y21K3
2#

3@11K1
21Y21K3

2#J .

HereC is an integration constant that is in general a funct
of K1 andK3 since we have integrated with respect toK2 .
Substitution of the above expression into the differen
equation, withC understood to be a function ofK2 as well,
yields a differential equation forC, which is easily integrated
to obtain

Sstat~K !5C8expH 1

lK1
E

0

K2
dY@K1

21Y21K3
2#@11K1

21Y2

1K3
2#J 2

1

lK1
EK2

dX@K1
21X21K3

2#

3@11K1
21X21K3

2#Seq~AK1
21X21K3

2!

3expH 1

lK1
E

X

K2
dY@K1

21Y21K3
2#

3@11K1
21Y21K3

2#J .

This expression is finite for allK ’s when the integration
constantC8 is 0 and the unspecified lower integration lim
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is 2` in caselK1,0 and1` in caselK1.0. With X0

5K2 , e5l, and f (X)5(1/K1)*0
XdY@K1

21Y21K3
2#@11K1

2

1Y21K3
2# in the representation~A1! for the d distribution,

the above expression~with C850) is easily seen to becom
equal toSeq(K) for l→0, as it should. Subtraction ofSeq(K)
from both sides, using thed distribution representation~A1!,
and substitution of the expression~22! for the equilibrium
structure factor leads to Eqs.~29! and ~30! for the static
structure factor.

APPENDIX B: SOLUTION OF EQ. „32…

In order to solve the equation of motion~32!, we write the
structure factor as a function ofK1 , the combinationK8
5K21lK1t1(ls /V)K3sin$Vt%, K3 , andt. In terms of the
new coordinates (K 8,t)5(K1 ,K8,K3 ,t) the equation of
motion ~32! reduces to,

]DS~K 8,t!

]t
52G2@11G2#DS~K 8,t!

1
lsK3

lK1
G2@11G2#cos$Vt%

3$Sstat~K1 ,K2→K82F,K3!2Seq~G!%,

where

F5lK1t1
ls

V
K3sin$Vt%

and

G5AK1
21~K82F !21K3

2.

In the argument of the stationary structure factor, the str
of symbols ‘‘K2→K82F ’’ means ‘‘replace in the expres
sion ~29! K2 by K82F. ’’ This equation can be solved b
variation of constants. The solution is found to be equal

DS~K 8,t!5
lsK3

lK1
E

2`

t

dt8cos$Vt%G2~t8!@11G2~t8!#

3$Sstat~K1 ,K2→K82F~t8!,K3!

2Seq
„G~t8!…%expH 2E

t8

t

dt9G2~t9!

3@11G2~t9!#J .

The initial conditions are eliminated by taking the lower i
tegration limit in the outer integral equal to2`. The above
expression is thus the limiting solution of the equation
motion after transients have died out. Returning to the or
nal coordinates, and introducing the functions as define
Eqs.~34! and ~35! gives the representation in Eq.~33!.
g

f
i-
in

APPENDIX C: EVALUATION OF THE CUTOFF
FUNCTION

In this appendix we evaluate the integral

I ~k!5E
R.d

dR$¹R•@C~R!:G#%exp$2 ik•R%,

which appears in Eq.~67! for N(t). Substitution of Eq.~49!
for the divergence of the hydrodynamic function leads to

I ~k!5
75

2
a6Ĝs :E

R.d
dR R24 R dR̂R̂R̂exp$2 ik•RR̂%,

~C1!

where the integralrdR̂( ) with respect to the spherical an
gular coordinates ranges over the entire unit spherical
face. This integral is equal to

R dR̂R̂R̂exp$2 ik•RR̂%52
1

R2
¹k¹k R dR̂exp$2 ik•RR̂%

52
4p

R2
¹k¹k

sin$kR%

kR
,

with ¹k the gradient operator with respect tok. Now using
that ¹kg(k)5 k̂dg(k)/dk, with k̂5k/k, for a differentiable
function g of k5uku, yields

¹k¹k

sin$kR%

kR
5 ÎR2

1

kR

d

d~kR!

sin$kR%

kR
1kkR4

1

kR

d

d~kR!

3F 1

kR

d

d~kR!

sin$kR%

kR G .
Substitution of this result into Eq.~C1! and using that
Ĝs : Î50 yields Eq.~68!

I ~k!52
5p

4
a3

k•Ĝs•k

k2
~kd!2f ~kd!,

where~with z5kR)

f ~x!515xE
x

`

dz
1

z3

d

dzF1

z

d

dz

sin$z%

z G .
Two partial integrations gives

f ~x!515xF2
cos$x%

x5
2

2sin$x%

x6
115E

x

`

dz
sin$z%

z7 G .

~C2!

This function may seem to be divergent atx50 at first sight.
However, the sum of the divergent contributions from t
three separate terms add up to 0. This is most easily see
rewriting the integral by means of successive partial integ
tions
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E
x

`

dz
sin$z%

z7
52

1

6Ex

`

dzsin$z%
d

dz
z26

5
1

6

sin$x%

x6
1

1

6Ex

`

dz
cos$z%

z6

5
1

6

sin$x%

x6
2

1

30Ex

`

dzcos$z%
d

dz
z255•••

5sin$x%S 1

6x6
2

1

120x4
1

1

720x2D 1cos$x%

3S 1

30x5
2

1

365x3
1

1

720xD
2

1

720Ex

`

dz
sin$z%

z
.

Substitution of this expression for the integral into Eq.~C2!
for the functionf yields Eq.~69!. The value of this function
a

ti-

. J

e

for x50 may now be evaluated by Taylor expansion of t
sine and cosine functions and is thus found to be equal t

APPENDIX D: HIGH-FREQUENCY BEHAVIOR

The asymptotic high-frequency behavior ofh8 close to
the critical point in the case of pure oscillatory shear flo
can be found from Eq.~78! as follows. ForV@1 the integral
converges forK@1, so that Eq.~78! can be approximated by

h8;E
0

`

dK
K6

V21K8
.

Introducing the integration variablex5V21/4K leads to

h8;V21/4E
0

`

dx
x6

11x8
;V21/4.

The same analysis applies toh9 as given by Eq.~79!. This
asymptotic behavior for large frequencies also follows fro
the residua theorem as stated in the main text.
c-
e

-
all.
les,
al-

.

n

l

ate
gral

of
@1# J. C. Nieuwoudt and J. V. Sengers, J. Chem. Phys.90, 457
~1989!. This is a reevaluation of the viscosity exponent for
number of experiments on binary fluids.

@2# P. C. Hohenberg and B. I. Halperin, Rev. Mod. Phys.49, 435
~1977!. This is a review on earlier theories on dynamical cri
cal phenomena.

@3# J. K. G. Dhont, J. Chem. Phys.103, 7072~1995!.
@4# I. Bodnár and J. K. G. Dhont, Phys. Rev. Lett.77, 5304

~1996!.
@5# L. D. Landau and E. M. Lifshitz,Fluid Mechanics~Pergamon,

Oxford, 1979!, paragraph 24, p. 88.
@6# D. van den Ende, J. Mellema, and C. Blom, Rheol. Acta31,

194 ~1992!.
@7# J. Zeegers, D. van den Ende, C. Blom, E. G. Altema, G

Beukema, and J. Mellema, Rheol. Acta34, 606 ~1995!.
@8# A. Onuki, K. Yamazaki, and K. Kawasaki, Ann. Phys.~N.Y.!

131, 217 ~1981!.
@9# A. Onuki, J. Phys.: Condens. Matter9, 6119~1997!.

@10# J. F. Schwarzl and S. Hess, Phys. Rev. A33, 4277~1986!.
@11# D. Ronis, Phys. Rev. A29, 1453~1984!.
@12# N. J. Wagner and W. B. Russel, Physica A155, 475 ~1989!.
@13# R. M. Mazo, J. Stat. Phys.1, 89 ~1969!; 1, 101 ~1969!; 1, 559

~1969!.
@14# J. M. Deutch and I. J. Oppenheim, J. Chem. Phys.54, 3547

~1971!.
@15# T. J. Murphy and J. L. Aguirre, J. Chem. Phys.57, 2098

~1972!.
@16# J. K. G. Dhont, An Introduction to Dynamics of Colloids

~Elsevier, Amsterdam, 1996!, Chap. 4.
@17# M. Fixman, J. Chem. Phys.33, 1357~1960!.
@18# More precisely, these Pe´clet numbers are assumed to b

smaller thanRVud ln$g%/dru1
u, with d ln$g%/dru1

the contact
.

value of the slope of the logarithm of the pair-correlation fun
tion. This follows from a comparison of the magnitude of th
term ;¹rg between the curly brackets in Eq.~5! and G–rg,
the last term in Eq.~5!. When the latter term is small in com
parison to the former, shear-induced distortions are sm
Since the slope at contact may be large for attractive partic
short-range distortions may be negligible even for larger v
ues of the bare Pe´clet numbers.

@19# J. K. G. Dhont, Phys. Rev. Lett.76, 4269~1996!.
@20# M. Fixman, Adv. Chem. Phys.6, 175 ~1964!. This estimate is

obtained as follows. Whenever (RV2d)/d!1 ~with d the core
diameter of the colloidal particles! we may approximate Eq
~13! as

bS/RV
2'b

2p

15
r̄E

0

`

dr8r83
dV~r8!

dr8
Hgeq~r 8!1

1

8
r̄

dgeq~r 8!

dr̄
J

since the integration effectively ranges fromd to RV . Close to

the critical pointbdP/dr̄ is small, so that, from Eq.~12!,

d

dr̄
Fb 2p

3
r̄2E

0

`

dr8r83
dV~r8!

dr8
geq~r 8!G'1.

It follows that b S/RV
2'1/10, which is to be regarded as a

order of magnitude estimate.
@21# H. E. Stanley,Introduction to Phase Transitions and Critica

Phenomena~Oxford University Press, New York, 1971!,
Chap. 7.

@22# G. K. Batchelor, J. Fluid Mech.83, 97 ~1977!.
@23# G. K. Batchelor, J. Fluid Mech.56, 375 ~1972!.
@24# The effect of the hydrodynamic interaction on the shear r

dependence of the total-correlation function makes the inte
nonabsolutely convergent~see @22# and @25#!. Since we ne-
glected hydrodynamic interaction as far as the distortion



e
ev.

. D.

7732 PRE 58JAN K. G. DHONT AND GERHARD NÄGELE
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