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Optimal path in two and three dimensions
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We apply the Dijkstra algorithm to generate optimal paths between two given sites on a lattice representing
a disordered energy landscape. We study the geometrical and energetic scaling properties of the optimal path
where the energies are taken from a uniform distribution. Our numerical results for both two and three
dimensions suggest that the optimal path for random uniformly distributed energies is in the same universality
class as the directed polymers. We present physical realizations of polymers in a disordered energy landscape
for which this result is relevanfS1063-651X98)08212-9

PACS numbd(s): 61.43.Bn, 46.10tz, 62.30+d

Recently, there has been much interest in the problem ofenter of the sphere while the other is free. The radius of the
finding the optimal path in a disordered energy landscapesphere isr <N [see Fig. 1a)]. The section of the polymer
The optimal path can be defined as follows. Consider anside the sphere will reach the lowest energy path, which is
d-dimensional lattice, where each bond is assigned with @he optimal path studied here, i.e., with a self-affine struc-
random energy value taken from a given distribution. Theture.(ii) Consider a polymer in d-dimensional energy land-
optimal path between two sites is defined as the path oscape which is divided into alternating strips of disordered
which the sum of the energies is minimal. This problem is oflow and high energiegsee Fig 1b)]. In the strips of high
relevance to various fields, such as spin glagégsprotein  energies the polymer is expected to behave like the optimal
folding [2], paper rupturg 3], and the traveling salesman path.
problem[4]. Though much effort has been devoted to study- The Dijkstra algorithm enables one to find the optimal
ing this problem, a general solution is still lacking. There path from a given source site to each site airdimensional
exist two approaches developed recently to study this probattice. During the execution of the algorithm, each site on
lem. Cieplaket al. [5] applied the max-flow algorithm for a the lattice belongs to one of three sé&ege Fig. 2 (i) The
two-dimensional energy landscape. Another approach is téirst set includes sites for which their optimal path to the
restrict the path to be directed, that is, the path cannot tursource site has already been foufid. The second set in-
backwards. This approach is the directed polymer problencludes sites that are relaxed at least once, but their optimal
which has been extensively studied in the past years; sepath to the source has not yet been determined. This set is the
e.g., Refs[6-8|. perimeter of the first setiii) The third set includes all sites

In this paper we adapt th@ijkstra algorithmfrom graph  on the lattice which have not been visited yet.
theory[9] for generating the optimal path on a lattice with  The algorithm itself consists of two parts, initialization
randomly distributed positive energies assigned to the bondsind the main loop. The main loop, in its turn, is composed of
This algorithm enables us to generate the optimal path bghe search and the relaxation processes.
tween any two sites on the lattice, not restricted to directed In the initialization part we prepare the lattice in the fol-
paths. We study the geometrical and energetic properties ¢pwing way. Each bond is assigned with a random energy
the optimal paths ird=2 and 3 dimensions in a random Vvalue taken from a_giye_n distribgtion. Each sit_e is assign_ed
uniform distribution of energies. We calculate the scaling®” energy value of infinity. We pick up a certain source site

exponents for the width and the energy fluctuations of the

optimal path. We find that for botth=2 and 3 the exponents //‘\\ RN e 0
are very close to those of directed polymers, suggesting tha\ — ~ =
the nondirected optimal pafiNDOP) is in the same univer- _ ™ o
sality class as the directed polym@~P). Our results are in T S
agreement with those found by Cieplekal.[5] for the two- ~ ’\1/@
dimensional case. This result indicates that, in the case o @;\“\\ X
uniformly distributed energies, NDOP’s are self-affine, and S\ Ol
overhangs do not play an important role in the geometry of (/ ~> \’ —
NDOP’s. \ / 3
Our results are relevant, for example, in the following (5 N /,/ (b) ;

polymer realizationsii) Consider ad-dimensional energy
landscape in which there is a spherical regime of randomly F|G. 1. Schematic illustrations of sections of a polymer having
distributed high energies, while outside this sphere the enekhe structure of an optimal patte) Within the circle, energies are
gies are zero or have very low values. Consider as well alistributed. Outside the circle, zero or very low energies are distrib-
polymer of lengthN, one of whose ends is attached to theuted.(b) Alternating strips of high and low distributed energies.
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FIG. 2. lllustration of the first four steps of the Dijkstra algo-
rithm applied to a square lattice. Numbers along the bonds represent FIG. 3. The sets of all directe@he upper oneand nondirected
the random energy assigned to them. Numbers inside circles repréh€ lower ong optimal paths witht=300 obtained for the same
sent the energies of sites, i.e., the total energy of the path connedg@lization of quenched randomness in the lattice. The global opti-
ing this site to the source. Empty sites possess infinite energy anf@@l path, which is the minimal energy path among all the paths
belong to the third set, thick circles belong to the first set, and alWith the samé, is shown by a thick line. In this particular case the
other circles belong to the second set. Note, e.g., that the sitdirected and nondirected global optimal paths do not overlap. In
marked 6 in(c) was relaxed one more time and became Sdn other cases they might overlap significantly, though the rest of tree
During this second relaxation we broke its previous connection td00ks somewhat different.
the site with energy 2, and connected it to the site with energy 3. At

each time step we identify the optimal path from each site in thehe following way. Letx andy be the horizontal and vertical
first set to the source by going along the thick bonds. axes. We choose the origin to be the source site, and study
L . L the optimal paths connecting it with all the sites on the line
and assign it an energy value of zero and insert it into theoetweer[Ot] and[t,0] for different values ot. The gener-

second set. o . . i .
After that we enter the main loop. We perform the SearchaI|zat|on to three dimensions is straightforward. The random

among the sites from the second set, and find the one wit ne_rgies ass_igned to bonds are ta"e_” from a uniform dis_tri-
the minimal energy value. Then we add it to the first set an l..ItIOI.’]. We find that our results are independent of the dis-
proceed to the relaxation process. This site is called th&iPution interval. _ _

addedsite. The relaxation process deals with sites neighbor- N Fig. 3 we compare a configuration of DP and NDOP on
ing the added site that do not belong to the first set. the same disordered energy landscape. It is seen that in the

In the relaxation process we compare two values: the efNDOP only very few overhangs exist. To test the effect of
ergy value of the neighboring site and the sum of twothe overhangs we calculate the mean end-to-end distance
values—the energy value of the added site and the energ3f the global optimal patiithick line in Fig. 3 as a function
value of the bond between these sites. If the value of the surf its lengthl. The global optimal path is the minimal energy
is smaller, then@ we assign it to the neighboring sitéh) path among all the paths with the same valug.ddur nu-
we connect the neighboring and the added site by a patimerical results clearly indicate the asymptotic relation
(thick bond in Fig. 2; (c) if the neighboring site belongs to |1~R, showing that the NDOP’s are self-affifg]. We
the second set, we break its previous connection to anothghould compare this result to the strong disorder limit, where
site (thick bond; and (d) if the neighboring site does not
belong to the second set, we insert it into the second set. The
first four steps are demonstrated in Fig. 2. Normally, the TABLE I. Width and energy fluctuation exponents of DP and
main loop stops when the second set is empty; however, oreéDOP in two and three dimensions. The exponents were derived
might wish to break the loop earlier, e.g., at the momentrom the slopes of the corresponding data points shown in Fig. 4.
when the first set reaches the edge of the lattice in order t®he error bar was estimated from taking ten ensembles btao-

avoid boundary effects. figurations each fod=3, and 500 configurations each for 3.
Each site that belongs to the first set is connected to the

source by a permanent patthick bond$ that does not d=2 d=3

change during the execution of the algorithm; so, if we stop DP NDOP DP NDOP

the algorithm at any given time, the first set will still be

valid 3 0.66+0.02 0.670.02 0.6G:-0.05 0.630.05

We simulate both DP’s and NDOP'’s on a square lattice ing 0.32:0.02 0.32:0.02 0.18-0.07 0.18-0.07
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FIG. 4. The width and energy fluctuation as a functiort oh a double logarithmic plot ia) two and(b) three dimensions. Circles are
used for directed polymers, and squares for nondirected optimal path&@)HAdP systems of linear size up te=300 are used, and fdb)
5000 systems of linear size uptte 75. The dashed lines are given as a guide to the eye, and have slopes equal to the exponents known for
DP: §=% and §:% for d=2 and£=0.62 and{=0.24 ford=3 [6]. For all cases we used a uniform distribution of energies betdgen
=1 andE,=1000. We also tested other energy intervals and found the same results.

the paths can be regarded as self-similar fractals, with Sent the exponents of theDP. Our results indicate that the
~R%pt where dop=1.22 ind=2 anddgp~1.42 ind=3 exponents for the NDOP are very close to those of (Bt
[10,11. also Table ).

In order to compare NDOP to DP we study several prop- Our results may be related to recent findifigg] that the
erties, such as the roughness exporgrihe energy fluctua- roughness exponent of the minimal energy of the domain
tion exponent? for two and three dimensions of DP and wall in the random Ising model and fracture interface are the
NDOP. The above exponents are defined by the relationsame[3] in d=2. In these cases, similar to our case, al-
W=(h?)¥2~t¢ and AE=((E—(E))?)Y2~t¢. Hereh is the  though overhangs may occur, they do not play an important
transverse fluctuation of the global optimal path, which is therole.
distance between its end point and the livey; E is the In summary, our results suggest that the optimal path in
energy of the global optimal path which is the sum of allthe case of uniformly distributed energies, for any energy
bond energies along the path. The average is taken over difaterval, is in a different universality class from the strong
ferent realizations of randomness. Figure 4 shows the deperisorder limit, but in the same universality class as directed
dence of the widthV and energy fluctuatiod E of the DP  polymers. This result is relevant to several questions regard-
and NDOP ort in two and three dimensions. The points areing the equilibrium state of polymers in different realizations
the data for both DP and NDOP, and the dashed lines repref a disordered energy landscape.
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