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Growth of disorder about point defects in a two-dimensional foam
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The evolution about isolated point defects of various kinds in two-dimensional liquid foam has been studied
experimentally. As the foam about the defect coarsens it becomes disordered, the degree of disorder growing
with time. This is broadly in line with recent simulations of defects in two-dimensional froths. The limitations
on this comparison with theory are discussed. In the case of multiple dislocations in the foam the evolution
leads ultimately to a decrease in disorder, which may be relevant to the changes found in the approach of
relatively ordered soap froths to a scaling state. Tests of various topological correlations for the disordered
foam about the defects suggest that it does not achieve statistical equilibrium during the experiments.
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[. INTRODUCTION within a hexagonal cell, the required sixfold coordination of
ideal 2D foams can be achievgt3]. It is possible to create

The temporal evolution of two-dimensional soap frothsvarious defects in the foafri3] to address the specific point
has been the subject of much recent attenfiba3]. These at issue in the recent simulations: the behavior of an other-
cellular structures are of interest as models for the threewise ideal 2D system containing a single defect.
dimensional case, which is considerably harder to study both In a previous papdrl4], we reported such an experimen-
experimentally and theoretically. Foam is a nonequilibriumtal study for perfect 2D foam containing one bubble large
system which, in 2D, evolves under von Neumann’'s law.enough to have more than six nearest neighbors. This study
This relates the rate of change of the area of a @Itp the  afforded qualitative support to the recent simulatigg}
number of its neighborsn also referred to as its topological However, various types of defect are possible and must con-
class: tribute to the temporal evolution of the relatively ordered

froths, including the initial transien8]. It thus seems desir-
able to study the growth of disorder about all possible types
a:k(”_G)' oy of defect. The only other study of which we are aware in-
volved, apart from the case of single large bubhleith
wherek is a system-dependent constant. Previous i@  conclusions broadly similar to those [df4]), foams incorpo-
has shown that relatively ordered soap froth exhibits an inifating groups of larger or smaller bubblgkb]. While such
tial transient in its evolution to a final scaling state, which isgroups may well exist in relatively ordered froths, there must
independent of the initial state of the foam; this transient is2lso be point defects such as dislocations. Grain boundaries,
absent for initially disordered foam. In a recent theoreticaWhich will also be present, form a special case and we defer
study, Levitan studied the growth of disorder due to a singléheir consideration to a future paper.
defect in an otherwise ideal hexagonal fr¢f]. His results The present paper concerns an experimental investigation
Suggested that the |0ng_time topo]ogica| distribution funC_Of the temporal evolution of |deaIIy sixfold-coordinated 2D
tion, while of stable form, differed from that for generic ini- foams incorporating all possible types of point defect. The
tial conditions(random 2D froth. This excited some contro- focus is largely on the topological properties of the area of
versy[6,7], and stimulated subsequent computer simulationsdisorder around the defect, as the metrical properties behave
which suggested that more conventional ideas are mor&ather similarly to those for the isolated large bubbles previ-
likely correct[8—11]. This debate creates interest in the ex-0usly considered14]. We also consider briefly how the
perimental investigation of the evolution of a single defect inareas of disordered foam that develop about spatially sepa-
an otherwise ideal 2D foam. rated defects interact with each other.

Most experimental studies of the evolution of 2D froths
have involved bubbles confined between two closely spaced
parallel glass plate3,4]. However, it appears very difficult
to create perfectly ordered foam in such an apparatus, mak- The relevant simulationgs,8,9 all involve dry froth. As
ing it difficult to carry out the studies of interest. However, noted above, we use an adaptation of Bragg’s bubble raft
Forteset al. [12] have advocated bubble rafts on soap solu{16] to permit formation of perfectly ordered 2D foams.
tions as model 2D foams. By restricting such a bubble raftThese foams are, of course, wet, but we hope that their be-

havior may reflect at least some of the generic aspects of the
evolution of 2D froth. Our methods have been fully de-

Il. EXPERIMENTAL METHODS

*Electronic address: j.earnshaw@qub.ac.uk scribed elsewhergl3], and only an outline is needed here.
"Established at the Queen’s University of Belfast and University Bubble rafts trapped between a soap solution and a glass
College Dublin. cover plate endure essentially indefinitely as diffusion of the
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gas from the bubbles to the atmosphere is inhibjtéd].
Temporal evolution is restricted to that due to coarsening of
the bubbles, driven by differences in Laplace overpressure
between bubbles of different radii. By forming such bubble
rafts within a hexagonal cell, we enforce ordering of the 2D
foam[13]. The glass cover is supported on top of this cell,
1-3 mm above the soap solution. The 2D foam is formed by
bubbling N, into the solution below the cell via a long hy-
podermic needle. The bubbles are attracted to the cell wall
and to each other by comparatively long-ranged capillary
forces[17]. It is possible, with practice, to create within a
hexagonal cell 6 cm on a side, as used in the present work, a
perfectly sixfold-coordinated lattice comprising=3000
bubbles about 2 mm in diameter. While there must be minor
variations in bubble diameter within a given lattice, these are
not large enough to affect the regularity of packing to any
noticeable degree. FIG. 1. Pictures of a typical evolving foam containing a dislo-
We follow the growth of disorder in the system induced cation.(a) As formed ¢=0) and after(b) t=10, (c) t=15, and(d)
by introducing one or more defects into such 2D fod™].  t=20 h.
The defect is introduced by interrupting the process when the

foam is half made, forming the defect, and then completing,yise regular hexagonal foam. Before presenting our re-
the regular foam around it. Different types of defect requirég, ;s we consider some points that are generally relevant.
d'ﬁ?fe”t t_echnlques_ for their creatlcﬁﬁi%_]__ ) Except for vacancies, which cannot occur in soap froths,
_ () Adislocation is created by part filling the cell with an o compare our data with the results of recent computer
ideal lattice, then making two portions of lattice separated b%imulations[2,5,9|. We defer detailed discussion of various
a narrow channel but in register with the initial partial lattice. ; itations on these comparisons to Sec. IV. We follow Jiang
The channel fills in as the cell is subsequently filled with o o [8] and our previous papét4] in studying the evolu-
bub_l_ales, quntaneously fo”“'F‘g t_he dislocafiag]. _ tion of that set of bubbles around the initial point defect
(||)_ Impurity bubbles comprise isolated bub_bles of dn‘f_er- having at least one nonhexagonal neighfpailed “the clus-
ent size from those for.mlng .the foam. We dgfme tOpOIOQ'Ca.Iter”). However, foams containing an impurity bubble are
defects here as large impurity bubbles having more than siiiia )y entirely sixfold coordinated, so we define the cluster
nearest neighborésuch other point defects as dislocations;, s case as the first shell of bubbles around the impurity
are of course topological defects, but we restrict our usage Oﬁlus the impurity bubble itself.
the term to that just defingdimpurity bubbles cross overto ™ 1ig gefinition of the cluster is somewhat arbitrary. How-
topological defects when the bubble is about 40% larger iny ey an alternative definitidi®], excluding the outer belt of
diameter than the lattice bubblgs3]. All these defects are i ¢o1q-coordinated bubbles, leads to distributions of topo-
formed by_lnjectlng an isolated bubble of dlﬁgrent size ,tological classesP(n), which are not unimodal, and for which
those forming the 2D foam, and then completing the latticpe statistics of interest are subject to greater fluctuations.
arog__nd It . _ . . The arbitrary nature of the cluster implies that the absolute
(i) Both vacancies and bound pairs of dislocations arg ;65 of these statistics may not be very significant; we

cr.eated In two stages. The first stage is to create a 2D lat_t'ct?]erefore focus principally upon their temporal evolution.
with a single dislocation. The second stage involves adding As time progresses, the disorder increases due to coarsen-

bubbles into one of the missing half layers of bubbles formy, “yhe first observable changes occurring after 10-13 h
ing the d!slocatlon. If one less bubble is added than the n“"_‘(Fig_ 1). At early stages, the disorder is localized round the
ber required to complete the extra half layer, a vacancy ig,ia| gefect, propagating outwards with time. As pointed
introduced, if one more than this number, a bound pair ofy,\+ 1)y, jianget al.[8], three distinct topological regions may
dislocations is created. A dislocation involves ne|ghb0(|ngtbe identified at any instant around a defect: the “core” of the
f'\./efOId'. and sevenfold—coordma'ted bubbles. A bound pair Olgefect(for example, the isolated large bubble in the case of
dislocations thus involves two fivefold- and two sevenfold-the topological defegta “boundary” of cells having at least
coo_rdmate_d bubbles. This defect differs from the bound paif,o neighbor that is not sixfold-coordinated, and the remain-
of dislocations that results from an element@gyprocessl]  qyor of the foam, unaffected by the defect. In simulations a
in an ideally sixfold-coordinated foam. In the latter case the.q)| within the latter region will remain ideally sixfold-
two sevenfold-coordinated cells must be ad!a.cent. Using Outyrdinated until the disorder around the defect penetrates to
methods it see_ms_|mp05_5|ble to achieve _th_'_s” rathe_r itis thg |0 our experiments, however, inevitable tiny differences in
two bubbles with five neighbors that are initially adjacent. 14 size of the “ordered” bubbles in the body of the foam
lead to coarsening, so that generalized disorder appears over
time scales of the order of days. This limits the time over
which we can follow the changes due to the defect, as even-
In this study we present data from a series of experimenttually the growing cluster meets this generalized disorder.
with a hexagonal cell of side 6 cm. These experiments enAll the data presented here relate to times before this oc-
compass the evolution of the various point defects in an otheurred. At late times in some experiments the behavior de-
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parts from the trend evident at earlier times, perhaps due tc 1.0 —— . K . , , : ‘

the generalized disorder affecting the local packing around e ne=10

the cluster in such a way that the cluster can grow unusually ggl ; o ng=15 ]
fast towards this different region of foam. This feature does /\ ——ne=17 ]
not seem to perturb any of the present data. 06 L / /%\\ ]

In the simulations timet] could be used as an indepen- & i m \ ]
dent variable[8,9]. However, as we will see, experimental & [ /] A\ ]
factors can influence the time evolution of the foam. The size %4 * I A\ g

of the cluster increases with time, both experimentfll| :
and in simulation$8], and so it seems reasonable to use the 02|
number of bubbles in the clusten() as the independent [
variable, instead of time itself. We do not claim thmtde- 00!
pends linearly ot (although in simulations this is found to 2 6 , 8 10 12
be the case for at least certain types of def8ft just that it
provides a measure of the evolution of time in the system.  FIG. 2. Topological class distributionB(n) for an evolving
Experimentln grows wit e, as doesthe number (447 SN 8 eralo e B s 1 e e e
of bubbles adjoining the initial large bubble) for foams

containing large bubbles. In that case the two quantities argayiors the topological evolution for both cases was broadly
related[14], supporting the conclusion of the simulatid®§  he same. We show their data together for ease of compari-
that the outward propagation of the disorder in the foam justgp,
follows the growth of the impurity bubble. This reflects the  The second type of behavior was usually observed when
fact that the boundary is usually only some two bubbles widehe bubbles were less compactly packed than for the first
(see Fig. 4 beloy as found in the simulatior{8]. Whilen.  case. This allowed the bubbles to relax with time, and a line
generally seems to be a smooth functiomgf towards the of bubbles ending close to a corner of the hexagonal cell
end of an experiment, may increase relative to the general could slide relative to this corndperhaps due to the stress
trend [14]. As noted above, this may occur as the clusterfield of the dislocatioh to form two extra half-layers of
approaches the regions of generalized disorder, although weaubbles.
cannot presently confirm this. Figure 2 shows the topological class distributiin), of

The two basic topological transformations in foaffy( the cluster about a dislocation, and its evolutiBin) peaks
neighborhood switching, arifl,, cell disappearandd]) un- ~ atn==6; as the cluster age?(6) falls andP(n) gets wider.
derlie the temporal behavior described here. In particular, foS Sixfold-coordinated cells can be regarded as “ordered,”
certain types of defect unique patterns in the early stages &f(6) is @ measure of order whereas the widt#¢h) (quan-
evolution can be understood in terms of distinct sequences dffied via its second central momeni,) is a measure of
T, processes. In such regimes the distribution of topologicaflisorder. The decrease #(6) and the widening of(n)
classes in the cluster is deterministic, and so its moments af8Us indicate that the cluster is becoming more disordered
exact.T, processes tend to occur more reluctantly than in 2pVith time. _ . .
soap froths, due to the very small surface area of the TheseP(n)—which are broadly typical of those in all our
threefold-coordinated bubbles, which are tiny compared t&Xperiments—are rather different from those reported for
those bubbles comprising the body of the foam. many 2D cellular netvyorks, as illustrated by comparison

We should note another complication of our wet foams:With P(n) for a Voronoi network based on 1000 points ran-
the plateau borders between the bubbles can lose their triadomly distributed in a plangFig. 2). In our foam, P(6)
gular shape, multiple borders forming as threefold border§e€mains comparatively high, while the populations of
merge[18]. Such multiple borders potentially lead to some threefold-coordinated bubbles and at largerquickly be-

ambiguity concerning adjacency of bubbles, but in practicecome relatively large. Such a populationnat 3 is unusual;
this can always be resolved unambiguously. in conventional 2D froths such bubbles disappear through

the T, process[1], leaving a rather smalP(3). In the

present foam the threefold-coordinated bubbles are small,
A. General development and topological class distribution and they tend to lie around large bubbles. The difference
from 2D froths clearly lies in the wetness of our foams. The
area of contact available for diffusive interchange of i¢-

For dislocations we distinguish between two types. Fortween the smallest bubbles and their neighbors falls more
one, the initial changes in the foam after 10—13 h involverapidly (area=r?) for the present quasispherical bubbles
growth of disorder around the 5/7-coordinated pair ofthan in 2D frothgwhere a threefold-coordinated cell forms a
bubbles constituting the dislocatipRig. 1(b)]. However, for  triangular prism; areasr), hindering the final stages of evo-
the other the first chang@fter a similar time involves the  lution leading to theT, process.
creation of one or two new dislocations elsewhere in the Figure 3 shows the temporal evolution @§. This statis-
foam, followed by the growth of disorder around the originaltic is initially 0.20, as the cluster comprises eight sixfold-
dislocation. In the latter case, we studied only the evolutiorcoordinated bubbles and a single fivefold- and sevenfold-
of disorder about the original defect; that about the new diseoordinated pair. It increases deterministically as the 5,7 pair
locations was generally similar. After the different initial be- changes to one fourfold- and two sevenfold-coordinated

1. Dislocations
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FIG. 3. Variation ofu,, the second moment of the cluster with L 1
n. as different foamgdifferent symbol$ containing a dislocation ’
evolve. 15[ .
;N [ ;
. . . B
bubbles(Fig. 1) and then increases less predictably to react = 44 I ]
a value~ 1.4 but eventually starts to decline. While the sec-
ond type of dislocation evolves faster than the first, the be [
havior of u, with n, is basically the samésimilar values of 05 - ]
uo are reached at large, in both cases i
00 PV — | I WA NP RT ST SRS [T ST SN0 YU SR AN SR S SRR N
2. Impurity bubbles 0 20 40 60 g 100
Figure 4 shows the typical evolution of an impurity "

bubble. The second moment B{(n) starts at zero, as ini- i, 5. () Variation of u, with n, for foams containing an
tially all bubbles in the cluster are sixfold-coordinated, andimpyrity. (b) Evolution of ), the second moment of the cluster

increases wit, to quite large values, but may ultimately poundary. The initial values qi, and u} are zero.
decline[Fig. 5@)]. The large values oft, are basically due
to the impurity bubble itself §=n,) and so may not be

characteristic of the disorder induced in the foam by the deaefse léfsh dlg‘ﬁ’l uer('jtyagg\?: lﬁé?;\gblfév'% Ssrt’réhirttggcllﬁg'g%_
fect. Restricting ourselves to the boundary of the clu&isr : P y rep

defined by Jianget al. [8]: the cluster minus the large lution of foams containing such topological defects having

. . . n, from 8 to 16[14]. These data were somewhat inconclu-
bubblg yields more rgpresen,tat_lve resulisig. 5b)]. The sive in that, as just noted for impurity bubbles, the long-time
second moment for this casg{) increases to a lower value

than that for the whole cluster, and again may later declinebehawor of u might or might npt ha\{e involved a S“g.ht
somewhat. decrease. We have, therefore, investigated the behavior of

topological defects for largey, (19 or 20 to probe the long
time limit more conclusively. The second moment of the
cluster u, increases withn, reaching rather large values
[Fig. 6(@)], as found in the earlier experimerptst, 15 and in
simulations[8]. However, it then clearly falls, forming a
peak. Similarlyu, grows to a value of about 2 before de-
clining [Fig. 6(b)].

The clearer peaks in, and u; for foams containing
topological defects witm,=19 or 20 are due to the higher
rate of gas diffusion between the large central bubble and its
neighbors, reflected in von Neumann'’s |aqg. (1)]. Some
5/ : of the neighboring bubbles become very small in a relatively
| short time, and thus have time to disappear before the cutoff
| due to the generalized disorder. The slower evolution for
‘ lower n, makes such decisive experiments more difficult.
These peaks im, and u; do not appear in simulations,

Cc ¢ d where both statistics increase more or less steadily with time
[8,9]. We relate the observed decline gf and w5 to the

FIG. 4. Pictures of a typical evolving foam that contains andelay to late times of the disappearance of threefold-
initial isolated larger bubble, constituting an impurity defect@r  coordinated bubbles around the initial large bubble; it is,
t=0, (b) 19, (c) 32, and(d) 43 h. therefore, not surprising to find such discrepancies from the
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2 i i FIG. 7. Pictures of a foam containing a bound pair of disloca-
3 1 tions.(a) The initial state {=0) and after(b) t=20, (c) t=27, and

| } }% H 1 (dt=35h.
* tlot

i { { { | Ultimately u, appears to increase roughly linearly witp.

L {  This broadly agrees with the results of simulations of the

1 evolution of foam containing a single defect formed by an

I i ~ 1 elementaryT; procesq9]. The difference in the initial state
0l e e between our experiment and that of the simulatiG@eri-
20 40 60 80 100 120 mentally fivefold-coordinated cells are adjacent, aftetthe
n sevenfold-coordinated cells ar@ppears not to affect the de-
¢ velopment ofu,.

FIG. 6. As Fig. 5, for large topological defects.
4. Vacancy

simulation results T, processes occur easier in froths and so  For the vacancyFig. 9), the initial cluster has 18 bubbles
will be more randomly distributed in time This point is  (six fivefold-coordinated surrounding the actual vacancy, and
significant, as it implies that the decreasegnand u; that  twelve sixfold-coordinatedi,=0.22. The vacancy first col-
we observe are not related to that in the transient found bjapses as the bubbles around it grow, leading to one of two
Stavans and Glazier for relatively ordered fog®h different topological arrangements in the clustéhree
The above data relate to impurity bubbles larger tharfivefold-, three sevenfold-, and twelve sixfold-coordinated or
those forming the foam. We have also studied impuritytwo fivefold-, two sevenfold-, and twelve sixfold-
bubbles smaller than those comprising the lattice. In thicoordinatedl In the first caseP(6) stays the same while,
case, while the impurity bubble shrinks rather than growingjncreases to 0.33, while for the oth@&{(6) increases because
o follows a trend much as for larger bubbles. However, itn. falls and ., increases to only 0.24This indicates the
does not reach as high a value as in that ¢&sg 5a)], as  approximate nature d?(6) andu, as measures of order and
seems reasonable given that those high values are due to thigorder. While these two statistics are usually inversely cor-
largen,. However, over the limited range af, the data are
consistent with those for larger impurities. ST T T L

3. Pair of dislocations 4

Turning to the bound pair of dislocations, the early devel-
opment of the cluste(Fig. 7) follows a clear deterministic 3l
sequence ofT; processes. The initial cluster has two ~ |
fivefold-, two sevenfold-, and twelve sixfold-coordinated 3
bubbles. The first change involves the fivefold-coordinated
bubbles becoming fourfold-coordinated and the sevenfold-
coordinated bubbles becoming eightfold-coordinated. This is
followed by two simultaneoud’; processes, the fourfold- [
and eightfold-coordinated bubbles becoming, respectively, oL . .+ . . . v . . 0oL
threefold- and ninefold-coordinated, while two pairs of 10 15 20 25 30 35
fivefold- and sevenfold-coordinated cells appear. Thereafter, n
the evolution of the system is no longer deterministic. ¢

The second moment, grows monotonically from 0.286 FIG. 8. The variation ofu, with n. for bound pairs of disloca-
(Fig. 8. The initial increase occurs without changeng. tions.

- [\V)
T
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2

CHRPOGDOD G e & m(n)=(n)—a+ <nm(n)>_r<]n>2+<n>a-

This law embodies two relations, the semiempirical Aboav’s
law [19]

_ B
m(n)=A+ o 3)

and Weaire's rigorous sum ruj@2]
(nm(n))=(n)?+ p,. (4)

For infinite networks Euler’s rule implieén)=6 and the
Aboav-Weaire law reduces to the form usually quoted:

6a+
m(n)=6-—a+ n,uz. (5

FIG. 9. A typical evolving foam with a vacancy &) t=0, (b)

t=16, (c) t=23, and(d) t=33 h. . .
© @ Aboav’s law can be derived from arguments based on maxi-

mum entropy[23], and hence may represent an expression
that a cellular structure obeying it is in statistical equilib-
rium. While the parametea is generally found to be=1,

related, special cases may show the opposite tendeBalp-
sequentlyu, grows monotonically withn; to quite high val-

ue%for both ?adseGFig. 1(.))‘ 0 . .these arguments do not predict its value. We note, however,
ne set of data in Fig. 10 represents an experiment iy, + e ‘Aboav-Weaire law involves in both the intercept

which the surface of the solution was in contact with theand gradient of the linear dependencemgih) uponn [19]
glass covering the hexagonal cell, rather than leaving a ga%ermitting a check upon consistency of the data. '

removing the capillary attraction between the bubBE3]. - )
This delayed the evolution of the foam by about 12 h, after For a finite network oN cells Buler's rule become24]

which time the data paralleled those for other foams contain- 12

ing a vacancy. However, all the data collapse on a common (n)<6-— N (6)
variation when plotted against.. It is such experimental

effects that lead us to usg as a measure of time. All our data for the evolved clusters obey this relation, using

n. for N (certain initial states do not obey Euler’s rul&he
data also all agree with Weaire's sum rule to within 1%.
Now m(n) does not vary much witlm, so that the com-
For cellular structures it is known that adjoining cells aremon practice of plotung’] m(n) versusn can Concea| devia_
correlated: few-sided cells have many-sided neighbors anfons from the law[Weaire (private communication. It is
vice ver_se[l].. We therefore now turn to various topological preferable to test the form of the law by plottingn) versus
correlations in the clusters. _ _ n—L. This is done in Fig. 11 for the various point defects. For
According to the Aboav-Weaire 1aW19,20, a widely  cjarity only one state of foam for each type of point defect is
obeyed sem.iempirical formglr_:x,_for finit_e networl_<s the meanspown, usually that at largest, (time) as the cluster must
number of sides of cells adjoining amsided cell is[21] then have evolved some way towards equilibrium. While in-
dividual cases are probably not statistically significant, the
same trends were always observed for the different types of
defect, suggesting that the variations shown are indeed rep-
resentative.
Dislocations and vacancies yield linear relationships
2 i ] [Figs. 1Xa) and 11b)]. In both cases values af derived
l ] from the slope and intercept of a linear fit are mutually con-

B. Topological correlations

g sistent(Table ), enabling us to claim agreement with the
I ] Aboav-Weaire law. The values af are, however, different
1L { J 1 in the two cases. This, and the differences from unity of the
estimates of for the vacancy, is not surprising, as only for
{ { E ] foams dominated by, processes or cell divisioimpos-
I ] sible her¢ shoulda= 1 [Rivier (private communicatiox.
0 P S S However, the bound pair of dislocations and impurity
15 20 25 30 35 bubbles(both large and small, and including topological de-
n fects consistently gives nonlinear plofsigs. 11c) and
11(d)]. We initially associated these departures from linear-
FIG. 10. Variation ofu, with n. for foams with a vacancysee ity with the tiny threefold-coordinated bubbles. However,
text for discussion even when we ignore the presence of such bubbles, the plots
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| ] (@) 56_' H§ (b)‘;

m(n)
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1/n

FIG. 11. Then dependence of the average number of sides of cells neighborimgsated cell in clusters about single defedfs)
dislocation,(b) vacancy,(c) bound pair of dislocations, and) impurity.

retain the same general form. In both cases there are large As the clusters which evolve about defects are still rather
bubbles 6=7) in contact with each other: the correlations ordered structures, we investigated a sample &oé£60
are not as described by the Aboav-Weaire law. This positivéoubbles randomly chosen from the whole foam at a late
association of large bubbles with each other causés  time, when it appeared generally very disordered. For this
=7) to be larger than expected from the trend for lomer sampleP(n) is much more consistent with literature data for
For dislocations and vacancies the evolution evidently doesoap froths[3] and the Aboav-Weaire law is smooth and
not lead to such associations. linear (Fig. 12. The values of are again mutually consis-
The disagreements with the Aboav-Weaire law, which wetent (Table ).
find in some cases, are not really surprising—our foams In earlier studies of topological correlations of random 2D
evolve over relatively short periods of time from specific cellular structures it has been found that varies withP(6)
initial conditions, and so might well not be expected to be inin an apparently universal manné&l,26. According to Le-
statistical equilibrium. The high values &(6) typical of  maltre et al.[26] this relation is the equivalent, for such ran-
our data indicate that the clusters are rather ordered struclom structures, of the virial equation of state in statistical
tures, even in their final stages. Indeed, from this point ofmechanics[27]. Remarkably the virial coefficients do not
view the linear Aboav-Weaire plots found for dislocationsvary from case to case: data for a very wide range of 2D
and vacancies are rather surprising. Now linear Aboavimosaics collapse onto a universal curve, implying that the
Weaire plots need not imply equilibriuf21]; unfortunately  various P(n) examined belong to a specific universality
the statistics of our clusters are not adequate to test the maxitass[26]. The universal curve can be parametrized 2§
mum entropy origin of those linear Aboav-Weaire laws that
we do find. Departures from linearity are expected for poly-

2_
disperse distributions of cell25] and the great differences #2P(6)7=0.150-0.014, @)
in size between bubbles with=3 or>6 may underlie some
of the deviations seen in Figs. (£l and 11d). the so-called Lemée law.

TABLE |. Computation of values o& from the intercept 4.) and slope 4, for the linear Aboav-
Weaire plots of Figs. 11 and 12.

Defect type slope intercept Mo (n) am a.
dislocation 7.950.39 4.69-0.08 1.16:0.41 5.86:0.26 1.16:0.11 1.1#0.28
vacancy 10.5€6:0.49 4.48-0.11 1.16:0.29 5.98:0.19 1.56:0.11 1.5G:0.22

disordered 6.620.13 5.36:0.02 2.92:0.10 5.98:0.04 0.63£0.06 0.69-0.05
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03 s e e S B rather remarkable that states of our system arising from dif-
I 1 ferent initial conditions collapse tolerably well onto a com-
mon form: the initial state has rather little impact. Indeed,
1 measurements of the areas of generalized disorder, which
- evolve in the initially ordered region of foam, yield values of
1 uo andP(6) that accord well with the trends shown in Fig.
13.
: As noted above, the large values af in the present
4 study arise from threefold-coordinated bubbles, which here
1 persist rather than disappearing throug processes ran-
domly occurring in time. Our foams are, in this sense, always
comparatively young. For the sample of 260 bubbles in the
final stages of evolution of the foam, when it appears gener-
ally very disorderedP(n) (Fig. 12 is very different from
n those found for the clusters about the defdEtlg. 2). These
data yieldP(6)=0.23+0.03 andu,=2.92+0.10, in excel-
| lent accord with Lemane’s law[21].

] As a virial equation, the Lemte law can only be valid
b) 1 for foam in equilibrium. It is thus not entirely surprising that

1 our clusters do not obey it. This further reinforces the sug-

7 L) - gestion that the linear Aboav-Weaire plots found for the
1 cases of the dislocation and vacancy may not be indicators of
. | maximum entropy states.

0.2 -

P(n)

0.0

m(n)

C. Metrical properties

3 Various measures of area are broadly in accord with ex-
i { { | pectation, and with previous results for topological defects
t Lo s e e w1 [14], and need not be reported in detail. The area of the
0.1 0.2 0.3 0.4 cluster for all types of point defects and, in the case of the
Un impurity bubbles, the area of the cluster boundary and of the
large central bubble increase linearly with the number of
FIG. 12. (a) The topological class distribution an) the  pubbles in the clustern;), as might be expected. As for
Aboav-Weaire plot for a sample of very disordered foam. topological defect§14], the average area per bubble in the
boundary of the cluster about an impurity bubble, when nor-
Figure 13 shows the relationship betweep and P(6) malized by the area in an ordered region of the foam at the
for all types of defects that we have studied: the data represame age, fluctuates about a constant vat@e9+0.1.
sent the evolution of a single cluster for each type of defect. Simple arguments suggest that the number of sixfold-
While these data appear to collapse reasonably well onto @oordinated cells in the periphery of the cluster should scale
common trend (within rather large uncertaintigs the  as/n. (to within a numerical factor of order unityTo a
vaIueA of u, for a givenP(6) is much larger than given by good approximation we can take this number to be the total
Lematre’s law. The difference is not surprising as the number of sixfold-coordinated cells in the clusteg, For all
threefold-coordinated bubbles make our valuesugfhigh,  types of defect studiedg does grow smoothly witi, (Fig.
while P(6) retains a high value. As noted above, the clusterg4). However, the variation found does not accord with the
are really rather well ordered, even in the final stages. It isxpected dependence: at low the continuum treatment in-
herent in the arguments used must break down, there being

5T T T T ] little area to accommodate internal bubbles, while large clus-
[ e Impurity ] ters tend to develop irregular qutlines, incrgasing the number
al «  Vacancy ] of bubbles in the 6-belthere will also be an increased prob-
+  Dislocation ] ability of sixfold-coordinated cells internal to the clugter
al v Pair of dislocations
o o } D. Multiple dislocations
= ) b } 1 The results presented above for isolated point defects gen-
i . erally support the conclusions of recent simulatip®g]. In
i H . ] particular u, increases systematically as the disorder grows
T ﬂ ] around the initial defect; the decreases at large times ob-
I [ ] served for certain types of defect are caused, we believe, by
ol v v R P the nongeneric behavior of threefold-coordinated bubbles
04 0.5 0.6 0.7 08 0.9 and cannot be associated with the decreasg.infrom a
P(n) transient high value observed in the evolution of initially

relatively ordered soap froti8]. To further our understand-
FIG. 13. Plot ofu, againstP(6) for the various point defects. ing of this phenomenon in froths we briefly consider the
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100

<
FIG. 14. The variation oihg, the number of six-coordinated
bubbles in the cluster with, for different point defectgéopen sym-
bols) and multiple dislocationgfull symbols; see beloy The line
representsr/n, (see text for discussion

evolution of disorder about spatially separated defects in an N

otherwise sixfold-coordinated foam.

pairs of dislocations can be adapted to produce multiple dis- 1
locations in the foam. Typically we produce two dislocations i
separated more or less widely along one of the extra half- [ onTa

2 C % N
The technique used for creating vacancies and bounc i % { i} % % % ]

lines of bubbles(Fig. 15. Bound pairs of dislocations are
formed by filling in one of the missing half-lines. However,
if the number of bubbles added s more or less than the

(a)

H
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T
—t—1
——
—e—

FiE
0 [ A T E S N R
20 40 60 80 100 120
5 T T
S ®

0....\..x.|....|....'
0 50 100 200 250

number required to complete the extra half layer, a pair of FIG. 16. The variation ofx, with n. for multiple dislocations

dislocations separated by bubbles is created. If we add

with m=4, having(a) noncompact internal half-linéopen sym-

more bubbles, the two dislocations are joined by a commomols) and external half-linegfull symbolg; (b) compact internal

extra half-line of bubbleg“internal half-line”); if m fewer,
there is a common missing half-lifBexternal half-lines”).

As a further complication, in the former case the bubbles
forming the cluster may be compactly or noncompactly . . .
packed. In all these cases the Burgers vector is always zergISIOCatIOnS separated by bubbles(noncompact internal

as the extra half-lines cancel each other. We define the clus-

ter here as the set of bubbles around the pair of dislocatio
having at least one nonhexagonal neighbor, plus the belt
sixfold-coordinated bubblegwo bubbles widg separating
the pair of dislocations.

A X
(XX XX XXX XXX XX

FIG. 15. Pictures of a 2D foam with multiple dislocatioria)
The foam as formed, and fg¢b) t=11, (c) t=23, and(d) t=35 h.

half-line form=2-4(open symbolsand for one example with four
dislocations anan=4 (full symbols.

Figure 16a) shows the variation oft, with n. for two

alf-line and external half-lings ., is relatively low com-

ared to that for the bound pair of dislocatiqi$g. 8) due to

e inclusion of the belt between the dislocations. It reaches

igher values for external half-lines compared to internal
half-lines. In the former case the regions of disorder around
the separate dislocations merge with each other quite early,
so that the cluster has time to become very disordered before
the experimental cutoff. For internal half-lines the belt of
sixfold-coordinated bubbles persists longer. However, the
data for both cases show excellent general accord. In the
figure two points fall well below the trend; we will discuss
these data, which represent the late stages of two different
experiments, below.

For compact internal half-lines the compactness of the
packing in the cluster leads to thinner liquid walls, allowing
faster diffusion of gas between the bubbles than the previous
case, so that the bubbles in the cluster evolve more rapidly.
uo reaches higher values than for the previous cases before
eventually decreasinigig. 16b)].

By perturbing a compact cluster having an internal half-
line the number of dislocations can be increased to three or
four. However, the behavior g, remains much as for the
original two dislocations. One set of data in Fig.(W6rep-
resents an experiment in which such a rearrangement of
bubbles was induced, creating four dislocatignsreaches a
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tribution, u,, increases with time; the decreases observed at

06 ' ¥ ‘ ' ‘ ’ late times in some instances are, we believe, nongeneric,
arising from the nature of the model foam used. This conclu-
05 ¢ sion lends some support to certain recent computer simula-
tions[8,9]. However, in the presence of multiple dislocations
04 ¢ in the foam the time variation of., shows a definite peak,
T oal which appears to be_ a real consequence of coarsening in the
vl foam. This observation may be relevant to understanding the
02k transient that has been observed in initially ordered 2D soap
) froths as they evolve towards a scaling sfa&tk
o1k It is appropriate to recapitulate upon differences between
| our experimental system and the computer simulatj&r
00 and 2D soap frothg3,4] with which comparisons have been
o 16 drawn.
n (i) The wetness of the foam has been noted at several

FIG. 17. Topological class distributions for an example of foampoints. The liquid component leads to specific differences
containing multiple dislocation] in Fig. 16b)]: at maximum of ~ from dry froths, particularly the presence of a significant,
mo (O) and at final state@®@). rather long-lived population of small threefold-coordinated

bubbles. While this leads to a larggs than for froths, the
rather higher value than for two dislocations but then dedincreases seen may be generic.
clines. The large values qi, are only partially due to the (i) The data extend over relatively short times, due to
presence of threefold-coordinated bubbles, but also reflegeneralized disorder arising from imperfections of the initial
significant disorder in the cluster. state. Certainly, as shown by our considerations of the topo-

In all of these cases a decline m, occurs. This takes logical correlations, our data do not extend to statistical equi-
place long after the point at which two “clusters™ around the librium, as in the long time limit explored in computer simu-
individual dislocations merge, which typically happensuas lations|[5,8].
increases te=1.2. This merging is followed by a significant (iii) Largely following from the previous point, our
growth of u, as the cluster becomes very disordered, beforesamples of bubbles within the clusters are small, leading to
this statistic eventually decreases. Unlike the case of isolatddrge uncertainties on the data.

Qefectttshthg_major reason f?;ﬁh's f(jtla(;:hneug_at Itoggbt'g]tis _.These considerations suggest that, as implied earlier, com-
IS notihe disappearance of threetold-coordinated bubbles, I, o ng with dry froths should be treated with some caution.

some experlm_ents their number. actually _INCIeases.  \ye nave further investigated topological correlations in
Threefold-coordinated bubbles do vanish, but their number I$hese systems. Topological correlations found for random 2D

replenis'hed from the pop_ulations at=4 and 5. The de- foam, such as the Aboav-Weaire 1&09,20 and the Lemal
crease inu, appears to arise from locdl, rearrangements tre law [21,26], can be derived from maximum entropy ar-

dug to coarsening of the foam. The wingsRiin) decregse, guments, indicating that they relate to systems in statistical
while the central narrow peak, forssn<8, broadengFi - L :
peax, =% g. equilibrium. Perhaps surprisingly, in some, though not all,

17): the foam is evolving towards a more generally disor-c,qeq the area of disordered foam evolving about a point

dered state. . defect yields a linear Aboav-Weaire plot. Unfortunately the
These observations appear to run counter to a recentiyasistics of our system are not adequate to check the generic

suggested explanatiqi5] of the decrease i, during the  iqin of such topological correlations. For all types of de-

initial transient in foam, which starts out relatively ordered fects the plot ofu, versusP(6), the probability of sixfold-

[3]. This involves growth of clusters about point defects ran-,,qginated bubbles, shows a reasonable collapse to a unique

domly distributed in the foam: it is suggested that as th§ riation, which is, however, very different from that ex-
clusters grow into each other they will form a random pressed via Lemte’s law. In particular, for a giveiP(6),

Voronoi network, havingu, appropriate to such a system w,q \ayes ofu, found here are significantly larger than ex-

(n2=1.82). However, Fhi,s random network W,i” comprise ected from that law. This is a further consequence of the
clusters, not cells, and it is not clear what relation this valu ature of the model foam used. However, the collapse does

of p, would bear to that for the foam. The present dataj,gjcate that the behavior observed for different defects has a
suggest that the decreasean found after the initial tran- .o t4in generality.

sient for rather ordered foam may be a natural consequence
of the evolution about spatially separated point defects. ACKNOWLEDGMENTS
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