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Elastic effects of long-range quadrupolar interactions in nematic liquid crystals
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We discuss the role of the quadrupolar interaction in nematic liquid crystal samples in the shape of a slab,
limiting the study to planar deformations. Our analysis shows that this interaction gives rise to a bulk energy
density that, in the elastic approximation, depends linearly on the second spatial derivative and quadratically on
the first spatial derivative of the nematic orientation. We show that this bulk energy density can be separated
in a surfacelike term, which gives rise just to a surface contribution, plus a term having the usual form. Both
terms depend on the first derivative of the tilt angle and are proportional to the square of the electrical
quadrupolar density. The bulk term, quadratic in the first derivative of the tilt angle, renormalizes the usual
elastic energy density connected to the short-range forces. The bulk elastic constant of quadrupolar origin can
be negative and one order of magnitude smaller than the effective elastic constants for typical nematic liquid
crystals. According to our analysis this interaction is responsible for an elastic anisotropy proportional to the
square of the electrical quadrupolar density, which depends on the nematic orientation. The surfacelike term is
proportional to the first derivative of the tilt angle. It calls mind to the splay-bend elastic term, although the tilt
angle dependence is more complicated. The relevant elastic constant is of the same order of magnitude as the
bulk one, due to the same interaction. We evaluate also the energy density in the surface layers, where the
quadrupolar interaction is restricted by the surface. In this case we show that the free energy contribution due
to the surface layers is reduced to a classical anchoring energy. The solution of the variational problem by
means of a simple version of the density functional theory is presented.@S1063-651X~98!11612-4#

PACS number~s!: 61.30.Gd, 61.30.Cz
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I. INTRODUCTION

The elastic behavior of nematic liquid crystals is d
scribed by the Frank elastic constants@1#. They are phenom-
enological parameters introduced by means of symm
considerations@2#. From a molecular point of view it is pos
sible to connect the elastic constants with the interpartic
interaction, responsible for the nematic phase@3–5#. How-
ever, as has been emphasized by Evans and Sluckin@6#,
Sluckin @7#, Osipov and Sluckin@8#, and Osipov, Sluckin,
and Cox@9# that special attention has to be devoted to
long-range interactions, and, in particular, to the quadrup
quadrupole interaction. Since nematic liquid crystals are q
drupolar media, it seems important to us to analyze the c
acteristics of this type of interaction. The electrosta
quadrupole-quadrupole interaction energy decays asR25,
whereR is the intermolecular distance. This slow decay
the quadrupolar interaction makes the quadrupolar free
ergy density intrinsically nonlocal. In particular, it has be
shown@10# that this free energy density cannot be reduced
the Frank elastic form in the general three-dimensional c
In this case, a more complex nonlocal approach should
used to take into account the quadrupolar interaction.
literature on the macroscopic behavior of nematic liqu
crystals is usually devoted to the study of planar direc
distortions in a nematic slab. In such a case, the director fi
lies everywhere in a plane orthogonal to the slab plane
depends only on the distance from the surfaces of the sla
this paper, we will show that, in the special case of pla
director distortions, the quadrupolar free energy density
be reduced to an elastic form. For this reason we limit
PRE 581063-651X/98/58~6!/7465~10!/$15.00
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analysis to a nematic sample of slab shape, with perfect n
atic order. The nematic deformation is assumed to be pla
and one dimensional and the director is fully described
the tilt angle formed by it with the geometrical normal to th
walls of the sample. In this framework we show that t
quadrupolar interaction gives rise, in the elastic approxim
tion, to an energy density that can be separated in a bulk
in a surface contribution. The bulk contribution is propo
tional to the square of the first spatial derivative of the
angle. It is characterized by an elastic constant that depe
on the nematic orientation, proportional to the square of
nematic quadrupolar density. The surface contribution c
tains two terms. One is connected to a surfacelike term lin
in the first spatial derivative of the tilt angle. Due to th
dependence, it reminds the splay-bend elastic term in
duced long ago by Nehring and Saupe@3# and discussed
recently by several authors@11–16#. The other term comes
from the quadrupolar interaction restricted by the surfa
localized in a surface layer the thickness of which is of t
order of the molecular dimension. It depends only on
surface nematic orientation, and it can be considered a
intrinsic anchoring energy.

Our paper is organized as follows. In Sec. II the ene
density due to the quadrupolar interaction is deduced. In
section it is shown that it is a nonlocal quantity. This mea
that its value does not depend only on the state of the sys
in a point, but on the state of the system in an appropr
range. The reduction of the nonlocal problem to a local o
is discussed in Sec. III. There the bulk elastic constant,
maximum elastic anisotropy and the value of the surface
elastic constant connected to the quadrupolar interaction
7465 © 1998 The American Physical Society
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calculated. The evaluation of the energy density due to
quadrupolar interaction in the framework of the electrosta
theory is reported in Sec. IV. In Sec. V the problem is a
proached by means of a simple version of the density fu
tional theory @17,18#. The integral equation governing th
distorted nematic profile in the bulk is obtained, and the lim
of dimensionless molecules is discussed. In this way we
able to partially recover the main results deduced in Sec.
The energy density of quadrupolar origin in the surface l
ers is considered in Sec. VI. In this section it is shown tha
the surface layers the energy contribution connected with
homogeneous part of the energy density balances exactl
elastic energy term linear in the spatial derivative of the
angle. This result is in agreement with the prediction o
recently proposed general theory@19#.

II. QUADRUPOLAR INTERACTION

The nematic liquid crystal is assumed to be perfectly o
ented~the nematic order parameterS51 @1#!. Its molecules
are assumed to be, in a first approximation, of spher
shape and the nematic order is assumed to be only due t
attractive long-range dispersion forces. The radius of
sphere isr 0/2.

In the following we shall evaluate the interaction ener
due to the quadrupole-quadrupole interaction. To do this
assume that~1! the nematic molecules are hard spheres
radiusr 0/2 and the single particle density is everywhere u
form @r(r 1)5N5const#; ~2! the quadrupole is in the cente
of the sphere;~3! the two-particle densityr(r 1 ,r 2) is as-
sumed to be given byr(r 1 ,r 2)5r(r 1)h(ur12r2u/r 0), where
h(X)50 for X,1 andh(X)51 for X.1; ~4! the impen-
etrability of the molecules is taken into account by means
another interaction~of contact! responsible for the Frank
elastic constants of the nematic liquid crystal.

Since we assume perfect nematic order, the molec
major axisa coincides with the nematic directorn. Hence,
the molecular quadrupolar tensor isqi j 5q@ninj2(1/3)d i j #,
where q is the molecular quadrupole. The bulk density
quadrupolar tensor is

Qi j 5Nqi j 5e~ninj2
1
3 d i j !. ~1!

The quantitye5Nq is the quadrupolar density. Its value, fo
typical nematic liquid crystals, is of the order of the flex
electric coefficient@20#.

The electrical interaction between the quadrupolesqi j

5qi j (r ) andqi j8 5qi j (r 8) located inr and in r 8, the relative
position of which isR5r 82r , is given by@21#

g5 1
12 kqi j

]2

]xi]xj
H ~xm2xm8 !qmn8 ~xn2xn8!

R5 J , ~2!

wherek depends on the system of units used. By substitu
the molecular quadrupolar tensorqi j into Eq.~2! the quadru-
polar interaction between two nematic molecules inr and in
r 8, the directors of which aren5n(r ) andn85n(r 8) respec-
tively, is given by@22#
e
s
-
c-

t
re
I.
-
n
e
he
t
a

-

al
the
e

e
f
-

f

ar

f

g

g~n,n8,R!5
kq2

12R5
$112~n•n8!2220~n•u!~n8•u!~n•n8!

25@~n•u!21~n8•u!2#135~n•u!2~n8•u!2%.

~3!

In our analysis the centers of the spherical molecules
radius r 0/2, indicated byr and r 8, are assumed to lie in a
slab limited by two plane surfaces atz56d/2 of a Cartesian
reference frame. Then, the actual thickness of the nem
layer isD5d1r 0 . However, from now on, we will refer to
d as the thickness of the nematic layer. This parameter
responds to the thickness of the distribution of quadrupo
The problem is assumed to be planar and one dimensio
This means thatn is everywhere parallel to a plane that w
assume to be the (x,z) plane, and depends only on thez
coordinate. Hencen5n(z)5@sinu(z),0,cosu(z)#, where u
5cos21(n•z) is the tilt angle.

In this framework the interaction energy between t
quadrupole inr5(0,0,z) and the one inr 85(x8,y8,z8), for
which R5(x8,y8,z82z) can be easily evaluated by Eq.~3!.
It depends on the tilt angles of the interacting quadrupo
u5u(z) and u85u(z8) and on their relative positionR: g
5g(u,u8;x8,y8,z82z). In the mean field approximation th
energy density due to the quadrupolar interaction energyg is
given by

f q~r !5
1

2Et
N2g~n,n8,R!dt8, ~4!

whereN is the molecular density, which in our analysis w
assume to be position independent@23#. Due to assumption
~3!, the integration volumet in Eq. ~4! is the whole sample
volume except for a sphere of radiusr 0 around r . In our
planar and one-dimensional problem Eq.~4! reads

f q~z!5
1

2Et
N2g~u,u8;x8,y8,z82z!dx8dy8dz8. ~5!

It is useful for further considerations to define the quantit

G~u,u8;z82z!5
1

2ES
N2g~u,u8;x8,y8,z82z!dx8dy8.

~6!

It represents the contribution to the energy density inz due to
a layer of thicknessdz8 at a distancez82z. To evaluate
G(u,u8;z82z) we use a polar reference frame in the (x8,y8)
plane. Letr andf be the polar coordinates of a point in th
(x8,y8) plane. A simple analysis shows that foruz82zu
.r 0 , 0<r,`, and for uz82zu<r 0 , Ar 0

22(z82z)2<r
,`. In the first caseS is the whole (x8,y8) plane, whereas
in the second caseS is the part of the (x8,y8) plane outside
the circle of radius rm5Ar 0

22(z82z)2. In terms of
G(u,u8;z82z) the energy density given by Eq.~5! reads

f q~z!5E
2d/2

d/2

G~u,u8;z82z!dz8. ~7!

A simple calculation shows that
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G~u,u8;z82z!50, for uz82zu>r 0 , ~8!

and

G~u,u8;z82z!5H~z82z!T~u,u8! for uz82zu<r 0 ,
~9!

where the kernelH(z82z)5H(z2z8) and the function
T(u,u8)5T(u8,u) are defined by

H~z82z!5
pke2

96r 0
3 F126S z82z

r 0
D 2

15S z82z

r 0
D 4G , ~10!

and

T~u,u8!53119 cos2u cos2u827~cos2u1cos2u8!

24 sin~2u!sin~2u8!. ~11!

Equation~8! means that a compact layer of quadrupo
of thicknessdz8 does not produce any electrical effect ou
side of the layer itself.

The total energy, per unit surface, of quadrupolar origin
given by

Fq5E
2d/2

d/2

f q~z!dz. ~12!

We separate the nematic liquid crystal sample of slab sh
in three regions: the bulk, defined by2d/21r 0<z<d/2
2r 0 , and two surface layers, whered/22r 0<uzu<d/2, and
we decomposeFq as follows:

Fq5E
2d/2

2d/21r 0
f qi~z!dz1E

2d/21r 0

d/22r 0
f qb~z!dz

1E
d/22r 0

d/2

f qi~z!dz. ~13!

f qi(z) and f qb(z) are the bulk energy densities due to t
quadrupolar interaction in the surface layers and in the b
respectively. Following a standard procedure, it is con
nient to rewrite Eq.~13! as

Fq5E
2d/2

2d/21r 0
@ f qi~z!2 f qb~z!#dz1E

2d/2

d/2

f qb~z!dz

1E
d/22r 0

d/2

@ f qi~z!2 f qb~z!#dz, ~14!

i.e., as the sum of a bulk contribution plus two surface c
tributions, which are connected with the presence of the
face layers where the energy density is different from
bulk one. SettingD f q(z)5 f qi(z)2 f qb(z) and

Fs
~2 !5E

2d/2

2d/21r 0
D f q~z!dz,

Fs
~1 !5E

d/22r 0

d/2

D f q~z!dz,
s

s

pe

k,
-

-
r-
e

Fbulk5E
2d/2

d/2

f qb~z!dz, ~15!

Eq. ~14! can be rewritten as

Fq5Fs
~2 !1Fbulk1Fs

~1 ! . ~16!

We shall consider in the following the energy of the bulk a
of the surface layers separately.

In the bulk the energy density is given by Eq.~7! that, by
taking into account Eqs.~8!,~9!, can be rewritten as

f qb~z!5E
z2r 0

z1r 0
H~z82z!T~u,u8!dz8. ~17!

Equation~17! gives the energy density due to the quad
polar interaction. If there are other interactions, the total
ergy density in the bulk is obtained, in a first approximatio
by adding all the contributions. It is important to note th
the energy density given by Eq.~17! is nonlocal, because it
depends on all the values ofu in the range (z2r 0 ,z1r 0).
To go further we have two possibilities. The first is to redu
f qb to a local form by means of some limit operation. Th
second is to face the problem taking into account the non
cality underlined above. In Sec. III we will reducef qb to a
local form, in the elastic approximation, whereas in Sec
the nonlocal analysis is presented.

In our analysis we assume that, beside the quadrup
interaction, there is also a short-range interaction giving r
to an elastic energy density that for our planar and o
dimensional problem reads

f e5 1
2 ~K11sin2u1K33cos2u!S du

dzD
2

5 1
2 K33~12Dsin2u!S du

dzD
2

, ~18!

where D5(K332K11)/K33 is the elastic anisotropy. In the
one constant approximationK115K335K andD50. In this
framework the Frank elastic energy density is given by

f e5 1
2 KS du

dzD
2

, ~19!

which will be used in the following.

III. ENERGY DENSITY OF QUADRUPOLAR ORIGIN
IN THE BULK: DIRECT CALCULATION

In this section we are interested in the calculation of
bulk free energyFbulk defined in Eq.~15!. In the bulk, the
energy densityf qb(z) given by Eq.~17! depends only on the
director angles in a very thin layer of molecular thickne
2r 0 . Then, if the director angleu changes over a macro
scopic length, the nonlocal energy densityf qb(z) can be re-
placed by a local elastic expansion in the derivatives ofu at
z. It is important to emphasize here that this elastic lo
description is only possible due to the planar character of
director distortion. Indeed, Eq.~17! is the direct consequenc
of the fact that two nematic layers of thicknessdz anddz8
having a uniform director orientation do not interact ifuz8
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2zu.r0 @see Eq.~8!#. To reducef qb to a local quantity we
put u85u1du(z,z8). Sinceuz82zu<r 0 , which is a molecu-
lar dimension,udu(z,z8)u!1. ConsequentlyT(u,u8) can be
expanded in power series ofdu(z,z8). We obtain

T~u,u8!5T0~u!1T1~u!du1 1
2 T2~u!~du!2, ~20!

where, as it follows from Eq.~11!,

T0~u!5T~u,u!5~3230 cos2u135 cos4u!, ~21!

T1~u!5S ]T

]u8
D

u85u

55 sin~2u!~327 cos2u!, ~22!

and

T2~u!5S ]2T

]u82D
u85u

522~7265cos2u170cos4u!.

~23!

In the elastic approximationdu(z,z8) can be written as

du~z,z8!5
du

dz
~z82z!1

1

2

d2u

dz2
~z82z!2. ~24!

By means of Eqs.~20!,~24! we obtain forT(u,u8), whenz
2r 0<z8<z1r 0 , the approximate expression

T~u,u8!5T0~u!1~z82z!T1~u!
du

dz

1 1
2 ~z82z!2FT1~u!

d2u

dz2
1T2~u!S du

dzD
2G .

~25!

The bulk energy density of quadrupolar origin, in the ela
tic approximation, is obtained by substituting Eq.~25! into
Eq. ~17!. Simple calculations givef qb5 f 01 f 11 f 131 f 2 ,
where

f 05T0~u!E
z2r 0

z1r 0
H~z82z!dz8 ~26!

is the homogeneous part of the energy density,

f 15T1~u!
du

dzEz2r 0

z1r 0
~z82z!H~z82z!dz8 ~27!

is the bulk term linear in the first spatial derivative of the t
angle,

f 135
1
2 T1~u!

d2u

dz2Ez2r 0

z1r 0
~z82z!2H~z82z!dz8 ~28!

is the bulk term linear in the second-order spatial derivat
of the tilt angle, which reminds the splay-bend term@3#, and
finally

f 25 1
2 T2~u!S du

dzD
2E

z2r 0

z1r 0
~z82z!2H~z82z!dz8, ~29!
-

e

which calls to mind the usual Frank elastic term, since it
quadratic indu/dz.

As follows from Eq.~10! which defines the kernelH(z8
2z), in the bulk, we have

E
z2r 0

z1r 0
H~z82z!dz85E

z2r 0

z1r 0
~z82z!H~z82z!dz850,

~30!

and

E
z2r 0

z1r 0
~z82z!2H~z82z!dz852

pke2

315
. ~31!

Hence, in the bulk,f 05 f 150, whereas, by taking into ac
count Eqs.~21!–~23!, f 13 and f 2 read

f 135
1

2S 2
pke2

315 D5 sin~2u!~327 cos2u!
d2u

dz2
~32!

and

f 252
1

2S 2
pke2

315 D2~7265 cos2u170 cos4u!S du

dzD
2

.

~33!

The total bulk energy density isf qb5 f 131 f 2 , that can be
written in the form f qb5 f s1 f b , where f s and f b are the
surfacelike and bulk contributions given by

f s5
1

2S 2
pke2

315 D d

dzF5 sin~2u!~327 cos2u!
du

dzG , ~34!

and

f b5
1

2S 2
pke2

315 D @16235 sin2~2u!#S du

dzD
2

, ~35!

respectively.
Hence, the quadrupolar interaction gives rise to a b

energy density that can be separated into surfacelike
bulk contributions. In the S.I. system of units, wherek
51/(4pe0) Eqs.~34!,~35! become

f s52
e2

504e0

d

dzFsin~2u!~327 cos2u!
du

dzG , ~36!

f b52
2e2

315e0
S 12

35

16
sin2~2u! D S du

dzD
2

. ~37!

According to Eq.~16!, the bulk contribution to the total en
ergy Fq is obtained by integrating the bulk free energy de
sity f qb5 f s1 f b over the whole interval@2d/2,d/2#. The
first contribution, after integration, reduces to a surface
ergy density, which depends ondu/dz, of the kind

Fsb
~2 !5

e2

504e0
sin~2u!~327 cos2u!

du

dz
, ~38!

for z52d/2, and to a similar contribution with opposite sig
for z5d/2. The subscriptsb means that this surface contr
bution to the surface energy density is, actually, a bulk te
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By comparing expression~38! with the K13-elastic term@3#,
it is possible to define an ‘‘effective’’K13

e -elastic constant as
follows:

K13
e ~u!5

e2

252e0
~327 cos2u!. ~39!

This splay-bend elastic constant isu dependent. Its value is
in the range

2e2/63e0<K13
e ~u!<e2/84e0 . ~40!

The bulk contribution, proportional to (du/dz)2, is given by
Eq. ~37!. From this expression we deduce that the relev
elastic constant isu dependent and given by

Kb~u!52
4e2

315e0
S 12

35

16
sin2~2u! D . ~41!

Its value is in the range

24e2/315e0<Kb~u!<19e2/315e0 . ~42!

Note that in Eq.~41! the quadrupolar elastic constant d
pends on the tilt angle via sin2(2u). This angular dependenc
is similar to the one already discussed for the influence of
flexoelectric polarization on the elastic properties of nema
liquid crystals@24#. On the other hand, the usual elastic co
stant in the Frank expression, given by Eq.~18!, depends on
sin2u. This is a peculiarity of the quadrupolar interaction b
cause the bulk energy densityf qb5 f s1 f b does not follow
from an expansion of the quadrupolar interaction energy
Eq. ~3! in terms of]ni /]xj and of]2ni /]xj]xk , as usually
done in the elastic theory. In fact this expansion does
converge, due to theR25 of the quadrupolar interaction. A
local expansion of the quadrupolar interaction is poss
only for samples of slab shape.

For nematic orientations near to the homeotropic (u;0)
or planar (u;p/2) ones,Kb(0)5Kb(p/2)5Kb(u) is nega-
tive and given byKb(u)524e2/315e0 . In the cgs-Gauss
system of unitse051/4p, and henceKb(u)5(16p/315)e2

;0.16e2. Since for typical nematic liquid crystalse2;K,
whereK is the average Frank elastic constant, we can ded
that the quadrupolar contribution to the Frank elastic c
stant is rather small~nearly one order of magnitude small
than the contribution due to the interactions of sterical o
gin!.

We note thatKb(u) is negative near to the homeotrop
and planar orientation, and positive for a homogeneous
entation close tou5p/4, as follows from Eq.~37!. In fact, as
follows from Eq.~37!, the quadrupolar interaction introduce
a large elastic anisotropy given by (e2/36e0)sin2(2u). It is
similar to the one already discussed for the flexoelectric
larization @24#. From Eqs.~40! one has21&K13

e /Kb(u)
&1. It follows thatK13j is of the same order of magnitude o
Kb(u).

IV. ENERGY DENSITY OF QUADRUPOLAR ORIGIN
IN THE BULK: ELECTROSTATICS APPROACH

The aim of this section is to reobtain Eqs.~36!,~37! giving
the surfacelike and bulk energy density due to the quadru
t

e
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f

ot

e

ce
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lar interaction by means of considerations based on the e
trostatics theory. In this section we use always the S.I. s
tem of units wherek51/(4pe0).

As is well known from elementary electrostatics, the ele
trostatic energy density in the bulk connected with a conti
ous distribution of quadrupoles is given by@21#

f qb52 1
12Qi jEi j , ~43!

where Ei j 5]Ei /]xj are the spatial derivatives of the tot
field acting on the quadrupole. In our planar and one dim
sional problem the elements of the quadrupolar tensorQ are
given by Eq. ~1! where n5@sinu(z),0,cosu(z)#. Conse-
quently,

Q5eS sin2u2
1

3
0 sinu cosu

0 2
1

3
0

sinu cosu 0 cos2u2
1

3

D . ~44!

This implies thatQyy is position independent. Furthermor
since E is an electrostatic field,¹3E50, and henceEi j
5Ej i .

According to the model used in Sec. III, the electric qua
rupole is at the center of a sphere and, thus, the other
drupoles are uniformly distributed out of a sphere of rad
r 0 . Consequently, the electric field acting on the quadrup
at the center of the sphere is only due to the uniform dis
bution outside the sphere. To evaluateEi j we use the
Clausius-Mossotti method@25#. According to this technique
Ei j is given by

Ei j 5E i j
~c!2E i j

~s! , ~45!

whereE i j
(c) is due to the continuum distribution of quadru

poles~average field!, andE i j
(s) is due to the spherical quad

rupole under consideration~spherical cavity field!. To evalu-
ate E i j

(c) we have just to take into account that for
continuous quadrupolar material the electric displacem
D(c) is

Di
~c!5

1

4pk
Ei

~c!2
1

6

]Qi j

]xj
, ~46!

if the medium is not polarizable and nonferroelectric. B
assuming the nematic liquid crystal as a perfect insulator
have ¹•D(c)50, that in our slab geometry reduces
dDz

(c)/dz50. Since in the problem under considerationQi j

5Qi j (z) from Eqs.~46! we obtain

E zz
~c!5

2pk

3

d2Q zz

dz2
. ~47!

Let us consider now the spatial gradients of the electric fi
E(s), evaluated in the center of the sphere, created by
quadrupolar sphere. The electrical potential created in a p
r by the sphere is
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V~s!~r !5 1
6 kE

t0

Qi j ~r 8!
]2

]xi8]xj8
S 1

RDdt8, ~48!

wheret0 is the volume of the sphere,r 8 a generic point of
the sphere where the quadrupolar tensor density isQi j (r 8),
dt8 is a volume element aroundr 8 andR5r2r 8. By means
of simple calculations Eq.~48! can be rewritten asV(s)(r )
5V1(r )1V2(r )1V3(r ), where

V1~r !5 1
6 kE

t0

]2Qi j ~r 8!

]xi8]xj8

1

R
dt8, ~49!

V2~r !5 1
6 kE

S0

NiQi j ~r 8!
]

]xj8
S 1

RDdS8, ~50!

and

V3~r !5 1
6 kE

S0

2Ni

]Qi j ~r 8!

]xj8

1

R
dS8. ~51!

In Eqs. ~50!,~51! S0 is the surface of the sphere andN the
geometrical normal to the surface of the sphere, outw
directed. As it is evident from Eq.~49!, V1(r ) is the electri-
cal potential created inr by a bulk charge density given by

r~r 8!5
1

6

]2Qi j ~r 8!

]xi8]xj8
. ~52!

On the other hand, from Eq.~50! we deduce thatV2(r ) is the
electrical potential created inr by a surface distribution o
dipoles, whose surface density is

Pj~r 8!5 1
6 NiQi j ~r 8!. ~53!

Finally, Eq. ~51! shows thatV3(r ) is the electrical potentia
created inr by a surface charge density given by

s~r 8!52 1
6 Ni

]Qi j ~r 8!

]xj8
. ~54!

In Eqs.~53!,~54!, r 8 is a point ofS0 where the geometrica
normal isN. Using a polar reference frame, with thez axis as
polar axis, we have that for a point onS0 , r 8
5r 0N, where N5(sinQcosF,sinQsinF,cosQ), Q and
F being the angular coordinates of a point on the sphereS0 .
Furthermore,dS85r 0

2sinQdQdF52r0
2d(cosQ)dF.

The analysis presented above shows that a body of
ume t0 limited by a surfaceS0 , whose density of quadru
polar tensor isQi j (r 8), is equivalent to a bulk density o
charges and to a surface distribution of dipoles and
charges@26#. BecauseQi j 5Qi j (z) the general equations giv
ing r(r 8) ands(r 8) become

r~r 8!5
d2Qzz~z8!

dz82
and s~r 8!52Ni

dQiz~z8!

dz8
.

~55!

It follows that the electric field due to a sphere of quad
polar material at an inner pointr5(x,y,z) is given by
E(s)(r )5E1(r )1E2(r )1E3(r ), where, as follows from the
discussion reported above,
rd

l-

f

-

E1~r !52kE
t0

r~r 8!¹S 1

RDdt8, ~56!

E2~r !52kE
S0

R2P~r 8!23@R•P~r 8!#R

R5
dS8, ~57!

and

E3~r !52kE
S0

s~r 8!¹S 1

RDdS8, ~58!

wherer(r 8), P(r 8), ands(r 8) are given by Eqs.~52!–~54!.
To evaluatef qb given by Eq.~43!, we have now to cal-

culateE i j
(s) in the center of the sphere. After that, by means

Eq. ~45!, it is possible to calculateEi j acting on the sphere o
quadrupolar material, in the limit ofr 0→0. With this aim in
mind, with the same approximation used above@see Eq.
~24!#, we expandQi j (z8) in power series ofz8 up to the
second order. Hence

Qi j ~z8!5Ai j 1Bi j z81 1
2Ci j z82, ~59!

where

Ai j 5Qi j ~0!, Bi j 5H dQi j ~z8!

dz8
J

0

,

and Ci j 5H d2Qi j ~z8!

dz82 J
0

. ~60!

The matricesA, B, andC of elementsAi j , Bi j , andCi j are,
as follows from Eq.~44!:

A5eS sin2u2
1

3
0 sinu cosu

0 2
1

3
0

sinu cosu 0 cos2u2
1

3

D ,

B5eS sin~2u! 0 cos~2u!

0 0 0

cos~2u! 0 2sin~2u!
D du

dz
, ~61!

and

C52eS cos~2u! 0 2sin~2u!

0 0 0

2sin~2u! 0 2cos~2u!
D S du

dzD
2

1eS sin~2u! 0 cos~2u!

0 0 0

cos~2u! 0 2sin~2u!
D d2u

dz2
, ~62!

where all the quantities are evaluated in the center of
sphere.

Consequentlyr(r 8) ands(r 8), given by Eqs.~55! are
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r~r 8!5 1
6C335const,

~63!
s~r 8!52 1

6 Na~Baz1Cazz8!.

Let us consider nowE1(r ) given by Eq.~56!. Sincer(z8) in
the elastic approximation is position independent, as follo
from Eq. ~63!, we haveE1(r )5(2pk/9)C33r . Hence,

E1~0!5
2pk

9
C33S 1 0 0

0 1 0

0 0 1
D . ~64!

To evaluateE2(0) we have only to take into account tha
by Eqs.~44!,~53!, it follows that
ld

-
la

he
.
el
b
b
a

e
on
s

Px~r 8!5 1
6 @Qxx~z8!sinQ cosF1Qxz~z8!cosQ#,

Py~r 8!5 1
6QyysinQ sinF,

Pz~r 8!5 1
6 @Qxz~z8!sinQ cosF1Qzz~z8!cosQ#, ~65!

where, on the surface of the sphere,z85r 0cosQ. Further-
more in Eq. ~57! the vector R is given by R5(x
2r 0sinQcosF,y2r0sinQsinF,z2r0cosQ), as follows from
the discussion reported above. By substituting Eqs.~65! with
Qi j (z8) given by Eq. ~59! into Eq. ~57! after simple, but
tedious calculations we obtain
E2~0!5
8pk

35 S 23~C111C33! 0 C13

0 2~C1113C33! 0

C13 0 2~2C1113C33!
D . ~66!
cal

to

lar

l
tant
From Eq.~66! it follows that ¹•E250, as expected.
Let us consider, finally, the spatial derivatives of the fie

E3 given by Eq.~58!, in the center of the sphere, whens(r 8)
is defined by Eq.~63!. We have,

E3~0!5
4pk

15 S 2C33 0 23C13

0 2C33 0

23C13 0 24C33

D . ~67!

From Eq.~67! it follows again that¹•E350.
To obtain the tensorE entering into Eq.~43!, we have

only to remember that in the elastic approximation, Eq.~47!
reads

E ~c!~0!5
2pk

3
C33S 0 0 0

0 0 0

0 0 1
D . ~68!

By means of Eqs.~64!,~66!,~67! we evaluate the spatial de
rivatives of the electric field due to the sphere of quadrupo
material in its center. After that, using Eqs.~68! and~45! we
obtain the tensorE of elements]Ei /]xj . By substituting this
result into Eq.~43! rewritten asf qb52(1/12)Ai jEi j , and
taking into account Eqs.~61!,~62!, we reobtain f qb5 f s
1 f b , where f s and f b are still given by Eqs.~36!,~37!.

We note that in this calculation the field created by t
sphere of quadrupolar material plays a fundamental role
one identifies the field acting on the quadrupole with the fi
due to the continuum distribution of quadrupoles, given
Eq. ~47!, one obtains different results. In particular, one o
tains that the quadrupolar interaction is responsible for
elastic anisotropy, which is orientation dependent, but on
unable to show that its contribution to the Frank elastic c
stant can be negative.
r

If
d
y
-
n
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V. NONLOCAL ANALYSIS

In the previous sections we have reduced the nonlo
quantity f qb given by Eq.~17! to a bulk local quantityf b plus
a surfacelike contributionf s , by means of a limit operation
r 0→0. Now we want to analyze the problem taking in
account explicitly the nonlocality off qb . As above we limit
our analysis to the bulk, i.e., for2d/21r 0<z<d/21r 0 .

The total energy, per unit surface area, of quadrupo
origin is given by

Fq5E
2d/2

d/2

f qdz5E
2d/2

d/2 E
2d/2

d/2

G~u,u8,z82z!dz8dz,

~69!

as follows from Eq.~7!. In our planar and one-dimensiona
problem the Frank elastic energy density, in the one cons
approximation, is given by Eq.~19!. Hence, the total energy
per unit surface area is

F5E
2d/2

d/2

@ f e1 f q#dz

5E
2d/2

d/2 F1

2
KS du

dzD
2

1E
2d/2

d/2

G~u,u8,z82z!dz8G . ~70!

Functional~70! is of the kind

F5E
2d/2

d/2 HM~du/dz!

1E
2d/2

d/2

N@u~z!,u~z8!;uz82zu#dz8J dz, ~71!

whereN@u(z),u(z8);uz82zu#5N@u(z8),u(z);uz82zu#. The
function minimizingF given by Eq.~71! is solution of the
integral-differential equation@27#
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2
d

dz

dM
d~du/dz!

12E
2d/2

d/2 ]N
]u~z!

dz850. ~72!

In our case, by taking into account Eqs.~19!,~8!,~9!, in the
bulk Eq. ~72! reads

2K
d2u

dz2
12E

z2r 0

z1r 0
H~z82z!

]T~u,u8!

]u
dz850, ~73!

which is the equilibrium equation for the nonlocal proble
under consideration. It is an integral-differential equatio
the integral part of which is due to the nonlocal quadrupo
interaction. On the other hand, the differential part is due
the short-range interaction, responsible for the usual ela
energy density, which admits a local description. Let us
sume now thatr 0 is a very small quantity. This implies tha
the nematic molecules may be assumed practically dim
sionless. Physically this means that we are interested in
tial variations of the observables entering into the probl
occurring over lengths very large with respect tor 0 . We call

R~u,u8!5
]T~u,u8!

]u
, ~74!

and, as we have already done in Sec. III, we assume
udu(z,z8)u5uu82uu!1, and furthermore thatdu(z,z8) can
be expanded in power series ofz82z, as shown in Eq.~24!.
In this frameworkR(u,u8) can be written as

R~u,u8!5R0~u!1~z82z!R1~u!
du

dz

1 1
2 ~z82z!2FR1~u!

d2u

dz2
1R2~u!S du

dzD
2G ,

~75!

where, as follows from Eqs.~11!,~74!,

R0~u!5R~u,u!55 sin~2u!~327 cos2u!, ~76!

and

R1~u!5S ]R

]u8
D

u85u

535 sin2~2u!216,

R2~u!5S ]2R

]u82D
u85u

535 sin~4u!. ~77!

By substituting Eq.~75! into Eq.~73! and taking into accoun
Eqs.~30!,~31! we obtain

~K2 16
315pke2!

d2u

dz2
1

p

9
ke2Fsin2~2u!

d2u

dz2
1sin~4u!S du

dzD
2G

50, ~78!

which is equivalent to

1
2 F ~K2 16

315pke2!1
p

9
ke2sin2~2u!G S du

dzD
2

5const. ~79!
,
r
o
tic
-

n-
a-

at

This bulk equilibrium equation shows again that the quad
polar interaction reduces the Frank elastic constant c
nected to short range interactions of (16/315)pke2

54e2/315e0 . It gives rise, furthermore, to an elastic aniso
ropy that depends on the nematic orientation, the maxim
value of which ispke2/95e2/36e0 . These results agree wit
those obtained in Sec. III. However, this bulk nonloc
analysis does not give any information about the surface
contribution, because it is based on the bulk integr
differential equilibrium equation@Eq. ~73!#, where surface
contributions are absent.

VI. INTERFACIAL CONTRIBUTIONS
TO THE SURFACE FREE ENERGY

In Sec. III, we have shown that the bulk free energy de
sity in Eq. ~17! can be separated into a bulk elastic termf b
and a surfacelike termf s , which is equivalent to a surfac
energy density linear indu/dz @Eq. ~38!#. Close to the inter-
faces in two thin interfacial layers of thicknessr 0 , the local
free energy density is no longer given byf qb(z) of Eq. ~17!,
as already underlined. Then, there is an excess of interfa
free energy that gives a further contribution to the surfa
free energy, which we have indicated above byFs

(2) and
Fs

(1) . Here we are interested in calculating these spec
interfacial contributions to the surface free energy. Let
consider, for instance, the upper interfacial layer of the ne
atic slab (d/22r 0,z,d/2) and indicate simply byFs the
quantityFs

(1) . Using Eqs.~7!–~9!, we find that the local free
energy density in the interfacial layer is

f qi~z!5E
z2r 0

d/2

H~z82z!T~u,u8!dz8. ~80!

The excess of interfacial free energy densityD f q , as dis-
cussed in Sec. II, is obtained by subtracting fromf qi(z) the
bulk free energy densityf qb(z). We get from Eq.~17! and
Eq. ~80!

D f q~z!52E
d/2

z1r 0
H~z82z!T~u,u8!dz8. ~81!

By operating as in Sec. III,D f q can be written asD f q(z)
5D f 01D f 11D f 131D f 2 , where

D f 052T0~u!E
d/2

z1r 0
H~z82z!dz8, ~82!

D f 152T1~u!
du

dzEd/2

z1r 0
~z82z!H~z82z!dz8, ~83!

D f 1352 1
2 T1~u!

d2u

dz2Ed/2

z1r 0
~z82z!2H~z82z!dz8,

~84!

and

D f 252 1
2 T2~u!S du

dzD
2E

d/2

z1r 0
~z82z!2H~z82z!dz8.

~85!
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These are the direct equivalent of the bulk elastic terms
Eqs. ~26!–~29!. Note that, in contrast to the bulk case,D f 0
andD f 1 are now different from zero. According to the Gibb
theory of the interfacial phenomena, the surface free ene
densityFs is obtained integratingD f q over the thin interfa-
cial layer of thicknessr 0 (d/22r 0,z,d/2). D f 13 andD f 2
are of the same order of magnitude as the bulk termsf 13 and
f 2 . Then, the integral over the thin interfacial layer of thic
nessr 0 vanishes in the limitr 0→0. Therefore, the surfac
free energy density due to the interfacial contributions is
duced to

Fs5F01F1 , ~86!

where

F05E
d/22r 0

d/2

D f 0dz52E
d/22r 0

d/2

T0~u!dzE
d/2

z1r 0
H~z82z!dz8

~87!

and

F15E
d/22r 0

d/2

D f 1dz52E
d/22r 0

d/2

T1~u!
du

dz
dz

3E
d/2

z1r 0
~z82z!H~z82z!dz8, ~88!

whereu is a function ofz. In the thin interfacial layer, we
can approximate theu(z) function with the truncated expan
sion

u~z!5us1S du

dzD
z5d/2

@z2~d/2!#, ~89!

where us is the value of functionu(z) at z5d/2. Corre-
spondingly, functionsT0(u) andT1(u) can be approximated
by

T0~u!5T0~us!1S dT0

du D
u5us

S du

dzD
z5d/2

@z2~d/2!#,

and T1~u!5T1~us!. ~90!

It can be easily verified that higher expansion terms can
disregarded in Eqs.~89!,~90! because they lead to surfac
energy contributions that vanish in the limitr 0→0. By sub-
stituting Eqs.~90! into Eq.~87!, we finally obtain the expres
sion of the surface free energy in terms of the surface di
tor angle and its first derivative. We findFs5F0

01F0
11F1

0 ,
where

F0
052T0~us!E

d/22r 0

d/2

dzE
d/2

z1r 0
H~z82z!dz8, ~91!

F0
152S dT0

du D
u5us

S du

dzD
z5d/2

E
d/22r 0

d/2

@z2~d/2!#dz

3E
d/2

z1r 0
H~z82z!dz8, ~92!
in

gy

-

e

c-

and

F1
052T1~us!S du

dzD
z5d/2

E
d/22r 0

d/2

dzE
d/2

z1r 0
~z82z!

3H~z82z!dz8. ~93!

F0
0 in Eq. ~91! represents the anchoring energy functi

that depends only on the surface director angleus . F0
1 in Eq.

~92! is a linear elastic contribution coming from the hom
geneous term in Eq.~87!, whereasF1

0 in Eq. ~93! is another
linear elastic term coming fromF1 in Eq. ~88!. Using the
definition ofT0(u) andT1(u) given in Eqs.~21!,~22! we get
T1(u)5(1/2)dT0 /du. Then, it is easy to show thatF1

05

2F0
1 , as recently predicted by means of general consid

ations based on the symmetry of the nematic phase@19#.
Hence the only surviving contribution is the anchoring e
ergy F0

0 . By taking into account for the definitions of func
tions T0(u) @Eq. ~21!# andH(z82z) @Eq. ~10!#, the integral
in Eq. ~91! leads to

Fs5F0
05

ke2p

~24!2r 0

~3230 cos2us135 cos4us!. ~94!

This expression shows that the intrinsic anchoring energy
quadrupolar origin is characterized by an easy axis form
with the z axis the angleus5cos21A3/7. The extrapolation
length connected with this anchoring energy is of the or
of 1023r 0 . These results agree with those reported in R
@10#.

In conclusion, the total surface energy due to the quad
polar interaction is the sum of two contributions, which w
have indicated byFs andFsb . The first one is a real inter
facial term, having the form of a classical anchoring ener
It is given by Eq.~94!. The second contribution is a surfac
like elastic term, which comes from the bulk energy dens
It is given by Eq.~38!.

VII. CONCLUSION

We have considered the influence of the quadrupolar
teraction on the elastic properties of nematic liquid crysta
Due to theR25 dependence of the quadrupolar interacti
with respect to the distance of the interacting particles, a t
elastic description is not possible. This means that in gen
the elastic constants depend on the size of the sample
elastic description of this interaction is possible only for on
dimensional and planar deformations. In our paper we h
considered nematic deformations of this kind in a sample
slab shape. Our analysis shows that the quadrupolar en
density is a nonlocal quantity, in the sense that it depends
the nematic deformation in a layer, not only at a point. T
reduction of this nonlocal energy density to a local one h
been performed by means of a power expansion in term
the spatial derivatives of the tilt angle.

Our results show that in the bulk the quadrupolar ene
density can be separated in a bulk and in a surfacelike c
tribution. The bulk contribution is characterized by an elas
constantKb(u) that depends on the nematic orientation. It
negative for nematic orientations close to the homeotropic
planar orientations, and positive foru;p/4. Its maximum
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value is of the order ofK/10, whereK is the detectable Fran
elastic constant. The angular dependence of the bulk qua
polar elastic constant is different from the usual elastic c
stant. This difference is connected with the circumstance
the elastic expression of the quadrupolar interaction obta
in our paper is not simply a reduction of a three-dimensio
expression. In fact such a general expression does not
exist. This different angular dependence takes into accou
kind of compensation of the deformation ‘‘in plane.’’ It i
similar to the one discussed for the influence of the fle
electric effect on the elastic properties of nematic liquid cr
tals. The elastic constant of the surfacelike elastic term i
the same order of magnitude of the quadrupolar bulk ela
constant. We have also shown that the total surface en
due to the quadrupolar interaction contains two terms. T
first term, having an elastic origin, is connected with a s
in
ru-
-
at
d
l
en

t a

-
-
of
ic
gy
e
-

facelike term, coming from the bulk energy density. Th
contribution depends on the surface nematic tilt angle and
its gradient. The other term is due to the bulk interacti
restricted by the surface, localized in a surface layer of m
lecular dimensions. It depends only on the surface nem
orientation and is characterized by a tilted easy axis and
an extrapolation length of the order of 1023r 0 , wherer 0 is
of the order of the molecular dimension.
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