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We discuss the role of the quadrupolar interaction in nematic liquid crystal samples in the shape of a slab,
limiting the study to planar deformations. Our analysis shows that this interaction gives rise to a bulk energy
density that, in the elastic approximation, depends linearly on the second spatial derivative and quadratically on
the first spatial derivative of the nematic orientation. We show that this bulk energy density can be separated
in a surfacelike term, which gives rise just to a surface contribution, plus a term having the usual form. Both
terms depend on the first derivative of the tilt angle and are proportional to the square of the electrical
guadrupolar density. The bulk term, quadratic in the first derivative of the tilt angle, renormalizes the usual
elastic energy density connected to the short-range forces. The bulk elastic constant of quadrupolar origin can
be negative and one order of magnitude smaller than the effective elastic constants for typical hematic liquid
crystals. According to our analysis this interaction is responsible for an elastic anisotropy proportional to the
square of the electrical quadrupolar density, which depends on the nematic orientation. The surfacelike term is
proportional to the first derivative of the tilt angle. It calls mind to the splay-bend elastic term, although the tilt
angle dependence is more complicated. The relevant elastic constant is of the same order of magnitude as the
bulk one, due to the same interaction. We evaluate also the energy density in the surface layers, where the
qguadrupolar interaction is restricted by the surface. In this case we show that the free energy contribution due
to the surface layers is reduced to a classical anchoring energy. The solution of the variational problem by
means of a simple version of the density functional theory is presef8¢063-651X98)11612-4

PACS numbdps): 61.30.Gd, 61.30.Cz

I. INTRODUCTION analysis to a nematic sample of slab shape, with perfect nem-
atic order. The nematic deformation is assumed to be planar
The elastic behavior of nematic liquid crystals is de-and one dimensional and the director is fully described by
scribed by the Frank elastic constafts They are phenom- the tilt angle formed by it with the geometrical normal to the
enological parameters introduced by means of symmetryalls of the sample. In this framework we show that the
consideration$2]. From a molecular point of view it is pos- quadrupolar interaction gives rise, in the elastic approxima-
sible to connect the elastic constants with the interparticletion, to an energy density that can be separated in a bulk and
interaction, responsible for the nematic ph@3e5]. How- in a surface contribution. The bulk contribution is propor-
ever, as has been emphasized by Evans and Sliékjn tional to the square of the first spatial derivative of the tilt
Sluckin [7], Osipov and Sluckirf8], and Osipov, Sluckin, angle. It is characterized by an elastic constant that depends
and Cox[9] that special attention has to be devoted to theon the nematic orientation, proportional to the square of the
long-range interactions, and, in particular, to the quadrupolenematic quadrupolar density. The surface contribution con-
guadrupole interaction. Since nematic liquid crystals are quatains two terms. One is connected to a surfacelike term linear
drupolar media, it seems important to us to analyze the chain the first spatial derivative of the tilt angle. Due to this
acteristics of this type of interaction. The electrostaticdependence, it reminds the splay-bend elastic term intro-
quadrupole-quadrupole interaction energy decaysRas, duced long ago by Nehring and Sauf® and discussed
whereR is the intermolecular distance. This slow decay ofrecently by several authofd1-16. The other term comes
the quadrupolar interaction makes the quadrupolar free erfrom the quadrupolar interaction restricted by the surface,
ergy density intrinsically nonlocal. In particular, it has beenlocalized in a surface layer the thickness of which is of the
shown[10] that this free energy density cannot be reduced twrder of the molecular dimension. It depends only on the
the Frank elastic form in the general three-dimensional caseurface nematic orientation, and it can be considered as an
In this case, a more complex nonlocal approach should bmtrinsic anchoring energy.
used to take into account the quadrupolar interaction. The Our paper is organized as follows. In Sec. Il the energy
literature on the macroscopic behavior of nematic liquiddensity due to the quadrupolar interaction is deduced. In that
crystals is usually devoted to the study of planar directorsection it is shown that it is a nonlocal quantity. This means
distortions in a nematic slab. In such a case, the director fielthat its value does not depend only on the state of the system
lies everywhere in a plane orthogonal to the slab plane anth a point, but on the state of the system in an appropriate
depends only on the distance from the surfaces of the slab. Ilange. The reduction of the nonlocal problem to a local one
this paper, we will show that, in the special case of planais discussed in Sec. Ill. There the bulk elastic constant, the
director distortions, the quadrupolar free energy density camaximum elastic anisotropy and the value of the surfacelike
be reduced to an elastic form. For this reason we limit ourelastic constant connected to the quadrupolar interaction are
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calculated. The evaluation of the energy density due to the kg2

quadrupolar interaction in the framework of the electrostatics g(n,n’,R)= 5{1+2(n- n’)2—20(n-u)(n’-u)(n-n’)
theory is reported in Sec. IV. In Sec. V the problem is ap- 12R

proached by means of a simple version of the density func- _ N2 (2 N2 2
tional theory[17,18. The integral equation governing the SL(n- W (n"- W +35n-wi(n"- u).
distorted nematic profile in the bulk is obtained, and the limit 3

of dimensionless molecules is discussed. In this way we are ) .

able to partially recover the main results deduced in Sec. 11, [N our analysis the centers c,>f the spherical molecules of
The energy density of quadrupolar origin in the surface layf@diusro/2, indicated byr andr’, are assumed to lie in a
ers is considered in Sec. VI. In this section it is shown that jrslab limited by two plane surfaces zt +d/2 of a Cartesian
the surface layers the energy contribution connected with theference frame. Then, the actual thickness of the nematic

homogeneous part of the energy density balances exactly thayer isD=d+ro. However, from now on, we will refer to
elastic energy term linear in the spatial derivative of the tiltd @S the thickness of the nematic layer. This parameter cor-
angle. This result is in agreement with the prediction of af€Sponds to the thickness of the distribution of quadrupoles.
recently proposed general thedg]. The problem is assumed to be planar and one dimensional.
This means than is everywhere parallel to a plane that we
assume to be thex(z) plane, and depends only on tkze
Il. QUADRUPOLAR INTERACTION coordiqate. Hencen=n(z) =[sind(2),0,co9(2)], where 6
The nematic Ii_quid crystal is assumed 1o be perfectly ori- Clzsth(ir; ?alr?wg\]/\?otrllit ?P?eg IEizr.wteraction energy between the
ented(the nematic order paramet8e=1 [1]). Its molecules (ﬂuadrupole i =(0,02) and the one i’ =(x",y',z'), for

are assumed to be, in a first approximation, of sphericaWhich R=(x',y’,z'—2) can be easily evaluated by E@)

shape_and the nematic prder IS assumed to be only due to trI}edepends on the tilt angles of the interacting quadrupoles
attractive long-range dispersion forces. The radius of theaz 6(2) and 6' = 6(z') and on their relative positioR: g

sphere is /2. =g(0,6";x",y',z2’—2z). In the mean field approximation the

In the following we shall evaluate the interaction energy " X . .
due to the quadrupole-quadrupole interaction. To do this we eray density due to the quadrupolar interaction engrigy

assume thatl) the nematic molecules are hard spheres o ven by
radiusr /2 and the single particle density is everywhere uni- 1
form[p(r4) =N=consf]; (2) the quadrupole is in the center fq(r)zszNzg(n,n,,R)dT,, @

of the sphere|3) the two-particle density(r,,r,) is as-
sumed to be given by(rq,r,)=p(r{)h(|ry—r,|/rg), where
h(X)=0 for X<1 andh(X)=1 for X>1; (4) the impen-
etrability of the molecules is taken into account by means o
another interactionof contacj responsible for the Frank
elastic constants of the nematic liquid crystal.

Since we assume perfect nematic order, the molecul
major axisa coincides with the nematic director. Hence, 1
the molecular quadrupolar tensordg=q[n;n;—(1/3)5;;], fq(2)= EJ N2g(6,6";x",y",z’ —z)dx'dy’dz’.  (5)
where g is the molecular quadrupole. The bulk density of 4
guadrupolar tensor is

whereN is the molecular density, which in our analysis we
ssume to be position independ¢®8]. Due to assumption
3), the integration volume in Eq. (4) is the whole sample
volume except for a sphere of rading aroundr. In our
atglanar and one-dimensional problem E4). reads

It is useful for further considerations to define the quantity

— — 1
Qj=Nay =e(nin; =5 5). @ G(0,0’;z’—z)=%LNzg(ﬁ,a’;x’,y’,z’—z)dx’dy’.
The quantitye=Nq is the quadrupolar density. Its value, for (6)
typical nematic liquid crystals, is of the order of the flexo-
electric coefficienf20].

The electrical interaction between the quadrupadgs
=qj(r) andqi’quij(r’) located inr and inr’, the relative
position of which isR=r’"—r, is given by[21]

It represents the contribution to the energy densitydue to
a layer of thicknesglz' at a distancez’ —z. To evaluate
G(#0,6';z' —z) we use a polar reference frame in thé,§')
plane. Letp and ¢ be the polar coordinates of a point in the
(x',y") plane. A simple analysis shows that ftz'—z|
>ry, 0<p<w, and for |z —z|<rqy, rg—(z'—2)°<p
2 | (Xmn= X)) Ay Xn— X1) <. In the first case, is the whole &’,y’) plane, whereas
s , (2)  inthe second cas® is the part of theX’,y’) plane outside
R the circle of radius pm=r2—(z'—2)% In terms of
G(6,0';z' —2z) the energy density given by E¢p) reads
wherek depends on the system of units used. By substituting "
the molecular quadrupolar tensgyt into Eq.(2) the quadru- _ et ,
polar interaction between two nefmatic molecules and in fo(2)= ﬁdlze(e'e 2’ ~7dz. ™
r’, the directors of which are=n(r) andn’=n(r’) respec-
tively, is given by[22] A simple calculation shows that

=1kag:
9= zakaj 5 %,
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G(60,0";2’ —2)=0, for |z/—2Z|=r,, 8 dr2
’ Fouk= f a2z, (15

and

L , . , Eq. (14) can be rewritten as
G(0,0";2’ —2)=H(z' —2)T(0,0") for |z —z|<rq,
9

Fq=FS+FoutFS. (16)
where the kernelH(z'—2z)="H(z—-2') and the function e shall consider in the following the energy of the bulk and

T(6,0')=T(0',0) are defined by of the surface layers separately.
In the bulk the energy density is given by H@) that, by

mke? 7' -z\? z'—z\* taking into account Eqg8),(9), can be rewritten as
96r0[ lo lo 241,
fqb(z)=J' H(z'—2)T(0,0")dZ . (17
and z—1g
T(6,6')=3+19co26 coL6’ — 7(coL+coL0’) Equation(17) gives the energy density due to the quadru-
’ polar interaction. If there are other interactions, the total en-
—4sin26)sin(26"). (11 ergy density in the bulk is obtained, in a first approximation,

by adding all the contributions. It is important to note that
Equation(8) means that a compact layer of quadrupolesthe energy density given by E(L7) is nonlocal because it
of thicknessdz' does not produce any electrical effect out- depends on all the values #fin the range £—rg,z+ry).

side of the layer itself. To go further we have two possibilities. The first is to reduce
~ The total energy, per unit surface, of quadrupolar origin isf,;, to a local form by means of some limit operation. The
given by second is to face the problem taking into account the nonlo-

cality underlined above. In Sec. Ill we will redudg, to a
local form, in the elastic approximation, whereas in Sec. V
the nonlocal analysis is presented.

In our analysis we assume that, beside the quadrupolar
We separate the nematic liquid crystal sample of slab shap@teraction, there is also a short-range interaction giving rise
in three regions: the bulk, defined byd/2+r,<z=<d/2 to an elastic energy density that for our planar and one-
—r,, and two surface layers, whedd2—r,<|z|<d/2, and  dimensional problem reads
we decomposé as follows:

dr2
Fq= f fq(2)dz (12
—dr2

de\?
1 i -
Cairg - fe—z(Kllsur?a+K33cosza)(dz)
Fq=f fqi(z)dz+J fqn(2)dz
—dr2 di2+rg

— L ] de 2
i =1Kgy(1— Asir?e) el (18)
+f fqi(2)dz. (13
dfz=ro where A = (K33—K;1)/Kzz is the elastic anisotropy. In the

one constant approximatidf;;=Kgzz=K andA=0. In this

fqi(2) and fqy(z) are the bulk energy densities due 10 the, e ork the Frank elastic energy density is given by
guadrupolar interaction in the surface layers and in the bulk,

respectively. Following a standard procedure, it is conve- . (de 2
nient to rewrite Eq(13) as fe= §K<E) : (19
—di2+1g dr2 . . . .
Fq= f_d/z [fqi(2)— fop(2)1dz+ f_d/zfqb(z)dz which will be used in the following.
a2 Ill. ENERGY DENSITY OF QUADRUPOLAR ORIGIN
+f [fqi(2)— fqp(2)1dZ, (14) IN THE BULK: DIRECT CALCULATION
d/2—r0

In this section we are interested in the calculation of the

i.e., as the sum of a bulk contribution plus two surface conbulk free energyFy, defined in Eq.(15). In the bulk, the
tributions, which are connected with the presence of the surehergy densityfq,(z) given by Eq.(17) depends only on the
face layers where the energy density is different from thedirector angles in a very thin layer of molecular thickness

bulk one. SettingA f,(z) = f4i(2) — f45(2) and 2rg. Then, if the director angl® changes over a macro-
q qi qb .
scopic length, the nonlocal energy dendity(z) can be re-
() —di2+rg placed by a local elastic expansion in the derivative$ at
F :f—d/z Afq(2)dz, z It is important to emphasize here that this elastic local

description is only possible due to the planar character of the
a2 director distortion. Indeed, E17) is the direct consequence
|:(+>:f Af,(z)dz of the fact that two nematic layers of thicknets anddz’
s q ' ) . . . . X ;
di2—rg having a uniform director orientation do not interact|af
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—Z7>r, [see Eq.(8)]. To reducef, to a local quantity we
putd’ =6+ 66(z,z'). Since|z’ —z|<r, which is a molecu-
lar dimension|§6(z,z')|<1. Consequentl{f(#,0’) can be
expanded in power series 69(z,z’). We obtain

T(60,0)=To(0)+T1(0)80+3To(6)(560)%, (20
where, as it follows from Eq(ll),
To(0)=T(6,0)=(3—30cogh+35c086), (21

T1(0)=

JT .
_) =5sin(26)(3—7 cogd), (22
a6')
6'=6
and

PT
To(0)= =—2(7—65c0€6+ 70c0$6).
962 oo

(23)

In the elastic approximatio#6(z,z') can be written as
20

860(z,2')= dZ(z -2)+ 22(z -2)2. (24)

By means of Eqs(20),(24) we obtain forT(#,0'), whenz
—rosz'<z+rq, the approximate expression

dé
T(6,6")=To(0)+(z'=2)Ta(0)
. d?0 T (dﬁ)z
+3(2' -2) 1(0)E+ 20 545) |

(29

The bulk energy density of quadrupolar origin, in the elas-

tic approximation, is obtained by substituting Eg5) into
Eq. (17). Simple calculations givef q,=fo+f;+ 15+ 15,
where

z+rg
fo=To( H)J H(z' —2)dZ (26)
zZ—Trg
is the homogeneous part of the energy density,
dé (z+rg
f1=Ta( e)d_f (z' =2)H(z' = 2)dZ (27)
ZJ)z-rq

is the bulk term linear in the first spatial derivative of the tilt
angle,
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which calls to mind the usual Frank elastic term, since it is
quadratic ind6/dz.

As follows from Eq.(10) which defines the kernéf((z’
—2), in the bulk, we have

z+rg z+rg
H(z’—z)dz’:f (2’ —2)H(z' —2)dZ' =0,
z—rg z—rg
(30
and
z+rg )
L_ro(z —-2)°H(z' —2z)dz =~ 315" (31

Hence, in the bulkf,=f,=0, whereas, by taking into ac-
count Egs(21)—(23), f,3 andf, read

1 mke? d?e
f13=§( )53”(20)(3 7cog0)— (32

315 42

and

1

e de\?
fo= 2(— 315)2(7 65co§9+70co§9)( ) .
(33

The total bulk energy density if;,=f,3+f,, that can be
written in the formf,,=fs+f,, wherefs and f,, are the
surfacelike and bulk contributions given by

1wk )d _ 29 30
=5 ~ 315 | g5 O SM2O(3—7cose) |, (34
and
1/ wke? . do\?
fb:i(_ 315)[16—355|r?(20)]<5) . (39

respectively.

Hence, the quadrupolar interaction gives rise to a bulk
energy density that can be separated into surfacelike and
bulk contributions. In the S.I. system of units, wheke
=1/(4mep) Egs.(34),(35 become

2

B d 2 de
fo=— S0l dZS|n(20)(3 7 co a)— (36)
2e? 35 de)\?
sz - 31560(1_ 1—63|I’12(29) d_ (37)

According to Eq.(16), the bulk contribution to the total en-
ergy F is obtained by integrating the bulk free energy den-

d2e sity fqp,="fs+f, over the whole interval —d/2,d/2]. The
f13=3T1(0)— (z’—z)zH(z’—z)dz’ (28) first contribution, after integration, reduces to a surface en-
dz*Jz-ro ergy density, which depends ai¥/dz, of the kind
is the bulk term linear in the second-order spatial derivative e?

of the tilt angle, which reminds the splay-bend tdi3f and
finally

. de\? z+rg

fa=3T2(0)| 43 L_ro

(2 —2)?H(z' —2)dZ’, (29

FG)= sin(260)(3—7 co§a)% (38)
sb dz’

504e,

for z=—d/2, and to a similar contribution with opposite sign
for z=d/2. The subscripsb means that this surface contri-
bution to the surface energy density is, actually, a bulk term.
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By comparing expressio(88) with the K,s-elastic term 3], lar interaction by means of considerations based on the elec-
it is possible to define an “effectiveKIs-elastic constant as trostatics theory. In this section we use always the S.I. sys-
follows: tem of units wherk=1/(4me).

As is well known from elementary electrostatics, the elec-
trostatic energy density in the bulk connected with a continu-
ous distribution of quadrupoles is given [@31]

e2

e —_ - —
0= 555 (377 cog4). (39)
This splay-bend elastic constantdsdependent. Its value is foo=—129i&j » (43

in the range . S
where &;=JE;/dx; are the spatial derivatives of the total

—€%163e,<K () <e?/84¢,. (40) field acting on the quadrupole. In our planar and one dimen-
sional problem the elements of the quadrupolar teigsaire
The bulk contribution, proportional tad@/dz)?, is given by given by Eq. (1) where n=[sin#(z),0,cosf(z)]. Conse-
Eqg. (37). From this expression we deduce that the relevanguently,
elastic constant i® dependent and given by

1
sifg—= 0  sindcosé

Kp( )= P 26 41 3
(0=~ 315 17 3T 20)]. @D 1
Its value is in the range Q=e 0 3 0 : (44)
— 4€%/315¢p<K () <19%%/315¢,. (42) sinfcosd 0  coh— 1

3

Note that in Eq(41) the quadrupolar elastic constant de-
pends on the tilt angle via i{26). This angular dependence This implies thatQ,, is position independent. Furthermore,
is similar to the one already discussed for the influence of theince E is an electrostatic fieldV XE=0, and henceg;;
flexoelectric polarization on the elastic properties of nematic= &j; -
liguid crystals[24]. On the other hand, the usual elastic con- According to the model used in Sec. lll, the electric quad-
stant in the Frank expression, given by Etg), depends on rupole is at the center of a sphere and, thus, the other qua-
sirf6. This is a peculiarity of the quadrupolar interaction be-drupoles are uniformly distributed out of a sphere of radius
cause the bulk energy density,=f+f, does not follow ro. Consequently, the electric field acting on the quadrupole
from an expansion of the quadrupolar interaction energy ofit the center of the sphere is only due to the uniform distri-
Eq. (3) in terms ofdn; /9x; and of 9?n; 19x;9%, as usually bution outside the sphere. To evaluafg we use the
done in the elastic theory. In fact this expansion does no€lausius-Mossotti metho[®5]. According to this technique
converge, due to thR > of the quadrupolar interaction. A &; is given by
local expansion of the quadrupolar interaction is possible
only for samples of slab shape. =P -, (45)

For nematic orientations near to the homeotrogie-Q)
or planar @~ 7/2) ones,K(0)=K(7/2)=Ky(u) is nega- Whereé’i(f) is due to the continuum distribution of quadru-
tive and given byK,(u)=—4e?/315¢,. In the cgs-Gauss poles (average fiely] andé‘i(js) is due to the spherical quad-
system of unitse,=1/47, and henceK,(u) = (16w/315)e? rupole under consideratidispherical cavity field To evalu-
~0.162%. Since for typical nematic liquid crystals®~K, ate Si(j“) we have just to take into account that for a
whereK is the average Frank elastic constant, we can deducgontinuous quadrupolar material the electric displacement
that the quadrupolar contribution to the Frank elastic conp(© jg
stant is rather smallnearly one order of magnitude smaller

than the contribution due to the interactions of sterical ori- D(© 1 E(©) 199

gin). _ . . Y4k 6 ox; ]
We note thatk,(6) is negative near to the homeotropic

and planar orientation, and positive for a homogeneous orif the medium is not polarizable and nonferroelectric. By

entation close t@= /4, as follows from Eq(37). In fact, as  assuming the nematic liquid crystal as a perfect insulator we

follows from Eq.(37), the quadrupolar interaction introduces haye v.D(®=0, that in our slab geometry reduces to

a large elastic anisotropy given bg*(36e)sir?(26). It is dD{?/dz=0. Since in the problem under consideratigy)
similar to the one already discussed for the flexoelectric po— 0.:(2) from Egs.(46) we obtain
i .

larization [24]. From Egs.(40) one has—1<K{4/Kp(u)
=<1. It follows thatK 14 is of the same order of magnitude of 27k d20
zz

(c)
Kb(u). 822_ 3 dZZ

(46)

. (47)

IV. ENERGY DENSITY OF QUADRUPOLAR ORIGIN

IN THE BULK: ELECTROSTATICS APPROACH Let us consider now the spatial gradients of the electric field

E®), evaluated in the center of the sphere, created by the
The aim of this section is to reobtain Eq36),(37) giving  quadrupolar sphere. The electrical potential created in a point
the surfacelike and bulk energy density due to the quadrupa- by the sphere is
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#? (1 1
(s) 1 1A T ' — _ ' - ’

V() 6kaOQ.,<r )axi’axj’(R)dT . @ Es(r) kfmmr >V(R)dr . (56)
where 7 is the volume of the sphere; a generic point of R2P(r')—3[R-P(r')]R
the sphere where the quadrupolar tensor densit;jér’), Eyx(r)= —kf : 3, (57
d7’ is a volume element around andR=r—r’. By means R
of simple calculations Eq48) can be rewritten a¥(®)(r) and
=V, (r)+Vy(r)+V5(r), where

FQ(r') 1 E (r)=—kf (r' )V( )dE’ (58)
_1 1) - ’ 3 g
Vl(r) ﬁkao &Xi’ (9)(], RdT ’ (49) 20

31 wherep(r"), P(r"), ando(r') are given by Eqs(52)—(54).
Vz(r)=%kJ NiQij(r')—,(—) ds’, (50) To e}/;lluatefqb given by Eq.(43), we have now to cal-
culate€y” in the center of the sphere. After that, by means of
Eq. (45) it is possible to calculatg; acting on the sphere of

and quadrupolar material, in the limit af,— 0. With this aim in
aQ (r 1 mind, with the same approximation used abdeee Eq.
V3(r):%kf - J dE’ (51)  (24)], we expandQ;;(z') in power series oz’ up to the
3o 2 second order. Hence
In Egs. (50),(51) 3, is the surface of the sphere ahtdthe Qii(Z) = Aj; +Bijz'+%c”z'2, (59

geometrical normal to the surface of the sphere, outward
directed. As it is evident from Ed49), V4(r) is the electri- where
cal potential created in by a bulk charge density given by

dQ;(z")
1 &ZQij(r,) -A” Q”(O) BU ‘ ! ] )
p(r')=o——"F—— (52) dz |,
6 dx; dX;
On the other hand, from E¢50) we deduce tha¥,(r) is the and C. = dZQu(Z ) (60
electrical potential created in by a surface distribution of ! dz'? o

dipoles, whose surface density is
The matrices4, B, andC of elementsA4;;, B;;, and(;; are,

Pi(r’)= éNiQii(r/)' (53 as follows from Eq.44): S
Finally, Eq.(51) shows that/5(r) is the electrical potential 1
created inr by a surface charge density given by Sinfo— 3 0 sinfcoséH

aQ;(r'") 1
—IN— =

In Egs.(53),(54), r' is a point of%, where the geometrical sinfcosd O  coh— 1
normal isN. Using a polar reference frame, with thexis as 3
polar axis, we have that for a point o, r’ _
=roN, where N=(sin®cosb,sin@sind,cod), ® and sin(26) 0 cog26)
® being the angularchordinates of a point on the sphegre B=e 0 0 _9 (61)
Furthermored3,’ =r3sin@d@dd = —rid(cosd)dd. dz

The analysis presented above shows that a body of vol- cog26) 0 —sin(26)

ume 7, limited by a surface, whose density of quadru- and
polar tensor isQ;;(r'), is equivalent to a bulk density of
charges and to a surface distribution of dipoles and of cog26) 0 —sin(26)

chargeg26]. Becaused;; = Qj;(z) the general equations giv- o=2 0 0 0 0\2
ing p(r') anda(r') become —<€ dz
—sin(26) 0 —coq26)
d?Q, 7’ z .
p(rl):i) and O-(r’):— QIZ( ) S||'(20) 0 COS{ZG) 2
dz'2 dz 0 0 0 a0 62
(55) te a2 (62)

cog26) 0 —sin(26)
It follows that the electric field due to a sphere of quadru-
polar material at an inner point=(x,y,z) is given by where all the quantities are evaluated in the center of the
E®(r)=E;(r)+E,(r)+E5(r), where, as follows from the sphere.
discussion reported above, Consequenthyp(r') anda(r’), given by Eqs(55) are
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p(r’)=§Cgz=const, Py (r')=2[ Qux(z')SiN® cosd + Q,,(z')cosO ],

) (63
(1) == ENy(Bay+ CorZ'). L
Py(r')=39Qy,sin® sin®,
Let us consider noviE,(r) given by Eq.(56). Sincep(z’) in
the elastic approximation is position independent, as follows

from Eq. (63), we haveE,(r) = (27k/9)Cssr. Hence, P,(r')=§[Qx(2')siN® cos® + Q,(2')cosO], (65)
2k 100 where, on the surface of the spher=r,co®. Further-

51(0)2T033 0 1 0]. (64 more in Eq. (57) the vector R is given by R=(x

0 0 1 —roSin@cosb,y—rgsin@sind,z—r,cod), as follows from

the discussion reported above. By substituting E6S). with
To evaluate,(0) we have only to take into account that, Q;;(z') given by Eq.(59) into Eq. (57) after simple, but

by Egs.(44),(53), it follows that tedious calculations we obtain
|
—3(C11+C3) 0 Ci3
8wk
£(0)= 25 0 —(C11+3C33) 0 : (66)
Ci3 0 2(2C11+3C33)
|
From Eq.(66) it follows thatV-E,=0, as expected. V. NONLOCAL ANALYSIS

Let us consider, finally, the spatial derivatives of the field
E; given by Eq.(58), in the center of the sphere, whefr’)
is defined by Eq(63). We have,

In the previous sections we have reduced the nonlocal
quantityf ,, given by Eq.(17) to a bulk local quantityf,, plus
a surfacelike contributiorig, by means of a limit operation
ro—0. Now we want to analyze the problem taking into

Ak 203 0 —3Cs3 account explicitly the nonlocality of,,. As above we limit
£5(0)= ame 0 2C33 0 ) (67) our analysis to the bulk, i.e.,' for d/2+ro<z=<d/2+Tr,.
15 _3c 0 _ac The total energy, per unit surface area, of quadrupolar
13 33 origin is given by
From Eq.(67) it follows again thatV - E;=0. [ (92 [dr L, ,
To obtain the tenso€ entering into Eq.(43), we have Fq= 7d/2fqdz_ 4 7d/2G(9’9 2/ —2)dz'dz,
only to remember that in the elastic approximation, &q) (69)

reads

as follows from Eq.(7). In our planar and one-dimensional
problem the Frank elastic energy density, in the one constant
approximation, is given by Eq19). Hence, the total energy

© 27k
£190)=—75"Cas (68 per unit surface area is

o O O
o O O
= O O

dr2
F= f [fetfqldz
By means of Eqs(64),(66),(67) we evaluate the spatial de- —dr2

rivatives of the electric field due to the sphere of quadrupolar a2 (1 [do
material in its center. After that, using E468) and(45) we :f [—K(—
obtain the tensof of elementsiE; /dx; . By substituting this ~de[2 1 dz
result into Eq.(43) rewritten asfq,=—(1/12)4;;&;, and ) ) )
taking into account Eqs(61),(62), we reobtainfy,=f, Functional(70)is of the kind
+f,, wheref, andf, are still given by Eqs(36),(37). an

We note that in this calculation the field created by the F:f {M(da/dz)
sphere of quadrupolar material plays a fundamental role. If —di2
one identifies the field acting on the quadrupole with the field o
due to the continuum _dlstrlbutlon of quadrupoles, given by +J Ma(z),a(zr);|zl_z|]dzl]dz’ 71)
Eq. (47), one obtains different results. In particular, one ob- —di2
tains that the quadrupolar interaction is responsible for an
elastic anisotropy, which is orientation dependent, but one isvhere M 6(2),6(z');|2' —z|1=M 6(2'),0(2);|z' —2|]. The
unable to show that its contribution to the Frank elastic confunction minimizingF given by Eq.(71) is solution of the
stant can be negative. integral-differential equatiofi27]

2 di2
+j G(0,0',2’ —z)dZ'|. (70
dr2
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a2 aN

2ﬁd/20¢9(2)

In our case, by taking into account Ed49),(8),(9), in the
bulk Eq.(72) reads

z+rg
f H(z'—2)
z—rg

which is the equilibrium equation for the nonlocal problem

d dm

T dzddeidz) dz’=0.

(72

Kd20+2
dz?

dT(6,0’

a0 0.

(73
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This bulk equilibrium equation shows again that the quadru-
polar interaction reduces the Frank elastic constant con-
nected to short range interactions of (16/3&kp?
=4e%/315¢,. It gives rise, furthermore, to an elastic anisot-
ropy that depends on the nematic orientation, the maximum
value of which iske?/9=e?/36¢,. These results agree with
those obtained in Sec. lll. However, this bulk nonlocal
analysis does not give any information about the surfacelike
contribution, because it is based on the bulk integral-
differential equilibrium equatiodEq. (73)], where surface
contributions are absent.

under consideration. It is an integral-differential equation,
the integral part of which is due to the nonlocal quadrupolar
interaction. On the other hand, the differential part is due to
the short-range interaction, responsible for the usual elastic

energy density, which admits a local description. Let us as- |, gec. IIl, we have shown that the bulk free energy den-
sume now.thato is a very small quantity. This implies that sity in Eq. (17) can be separated into a bulk elastic tefm
the nematic molecules may be assumed practically dimeny,q 5 syrfacelike term, which is equivalent to a surface
sionless. Physically this means that we are interested in SP@nhergy density linear id¢/dz [Eq. (38)]. Close to the inter-
tial variations of the observables entering into the problem,..<"in two thin interfacial layers of thickness, the local

VI. INTERFACIAL CONTRIBUTIONS
TO THE SURFACE FREE ENERGY

occurring over lengths very large with respect go We call

JT(6,0")

R(6,0")= 70

(74

free energy density is no longer given hy,(z) of Eq. (17),
as already underlined. Then, there is an excess of interfacial
free energy that gives a further contribution to the surface
free energy, which we have indicated above By’ and

and, as we have already done in Sec. Ill, we assume thEt(sH- Here we are interested in calculating these specific

|66(z,2")|=|6"— 6|<1, and furthermore tha#6(z,z') can
be expanded in power seriesaf-z, as shown in Eq(24).
In this frameworkR(6,6") can be written as

de
R(6,0")=Ro(0)+ (2 =2)Ry(6) 5

2

/51 2 d 0
+3(2'-2) Rl(g)E‘FRz(e)

e

(79
where, as follows from Eqg11),(74),
Ro(#)=R(6,0)=5sin(26)(3—7 cog6), (76)
and
IR _
R, ( 9)=(—) =35sirf(26) — 16,
30"
0'=46
PR _
R,(6)= — =35sin46). (77)
a0'%) ,,_,

By substituting Eq(75) into Eq.(73) and taking into account
Egs.(30),(31) we obtain

2

d<e
if(26) —
s|(¢9)d22

d?6
(K= ;—fg,wkez)—

+77ke2 +sin(46 do)®
2’9 SIn46)| 4z

0, (78

which is equivalent to

d 2
1 (K—;—fswkéwgkezsinz(ze)}(d—g = const. (79)

interfacial contributions to the surface free energy. Let us
consider, for instance, the upper interfacial layer of the nem-
atic slab @/2—ry<z<d/2) and indicate simply by the
quantityF{") . Using Eqs(7)—(9), we find that the local free
energy density in the interfacial layer is

d/2
fqi(z)=

z—r

H(z'—2)T(6,0")dZ'. (80)

The excess of interfacial free energy density,, as dis-
cussed in Sec. Il, is obtained by subtracting frég(z) the
bulk free energy density,,(z). We get from Eq(17) and
Eq. (80

qu(z):—fd:rOH(z'—z)T(a,a’)dz'. (81)

By operating as in Sec. llIAf, can be written ag\f,(2)
:Afo+Afl+Afl3+Af2, Where

z+r0
Afoz—To(ﬁ)f H(z'—z)dZ, (82
dr2

dé (z+ro
Afl:_Tl(e)EL,g (z'—2)H(Zz' —2z)dZ', (83

M= 30 2 [ - 22z - 210
=—3 — z'-z z'—z)dz,
13 21()d22d/2( )"H(Z' = 2)
(84)
and
de\2 [z+ro
Afzz—%Tz(e)(—)f (' —2)*H(z' —2)dZ'.
dz/ Jae
(85
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These are the direct equivalent of the bulk elastic terms irand
Egs. (26)—(29). Note that, in contrast to the bulk caskf,

andAf, are now different from zero. According to the Gibbs FO— —T,(p )(%) fd/Z dZJ‘ZJrrO(Z, _2)
theory of the interfacial phenomena, the surface free energy L 17\ dz s_apd a2ty Jar

densityF is obtained integrating f, over the thin interfa-

cial layer of thickness, (d/2—r,<z<d/2). Af;;andAf, X H(z'—2)dZ'. (93

are of the same order of magnitude as the bulk tefrpand FO in Eq. (91 h hori f .
f,. Then, the integral over the thin interfacial layer of thick- o In Eq. (91) represents the anchoring energy function

. l .
nessr, vanishes in the limir,— 0. Therefore, the surface thatdepends only on the surface director arigleF in Eg.
free energy density due to the interfacial contributions is re{92) is a linear elastic contribution coming from the homo-

duced to geneous term in Eq87), whereasF§ in Eq. (93) is another
linear elastic term coming frorfr; in Eq. (88). Using the
Fs=Fo+Fq, (86) definition of To(6) andT4(6) given in Egs.(21),(22) we get
T.(0)=(1/2)dT,/d6. Then, it is easy to show thadES=
where —F}, as recently predicted by means of general consider-

a2 a2 it ations based on the symmetry of the nematic pHa$s
Fo:f Afodzz—f Tol g)dzf OH(Z’—z)dz’ Hence the only surviving contribution is the anchoring en-
diz=rg di2—rg di2 ergy Fg. By taking into account for the definitions of func-
(87 tions To(6) [Eq. (2D)] andH(z' —2) [Eqg. (10)], the integral

and in Eq. (91) leads to

8277

k
di2 di2 de o
= -_ i Fs=Fp= (3—30c0g6s+35c086,). (94
F1 jdlerAfldz J'dlerTl(G)dZdz ) (24)%rg ) °

z+rg This expression shows that the intrinsic anchoring energy of
X L/z (z' =2)H(Z' —2)dZ, (88)  quadrupolar origin is characterized by an easy axis forming
with the z axis the angled,=cos *\/3/7. The extrapolation
where @ is a function ofz In the thin interfacial layer, we |€ngth connected with this anchoring energy is of the order
can approximate thé(z) function with the truncated expan- E’IO%OZXW- These results agree with those reported in Ref.
sion In conclusion, the total surface energy due to the quadru-
de polar interaction is the sum of two contributions, which we
E) [z—(d/2)], (89 have indicated by andF,. The first one is a real inter-
z=df2 facial term, having the form of a classical anchoring energy.
It is given by Eq.(94). The second contribution is a surface-
like elastic term, which comes from the bulk energy density.
It is given by Eq.(38).

0(z)= 64+

where 6, is the value of functiond(z) at z=d/2. Corre-
spondingly, functiong ¢(#) andT,(6#) can be approximated

by
dT, d VIl. CONCLUSION
To(0)=To(bs)+ —) (—) z—(d/2)], . _ .
of 0t 7s de o=0, dz z:d/Z[ | We have considered the influence of the quadrupolar in-
teraction on the elastic properties of nematic liquid crystals.
and T(6)=T(6,). (90) Due to theR™° dependence of the quadrupolar interaction

with respect to the distance of the interacting particles, a true
It can be easily verified that higher expansion terms can belastic description is not possible. This means that in general
disregarded in Eqs89),(90) because they lead to surface the elastic constants depend on the size of the sample. An
energy contributions that vanish in the limg— 0. By sub-  elastic description of this interaction is possible only for one-
stituting Egs(90) into Eq.(87), we finally obtain the expres- dimensional and planar deformations. In our paper we have
sion of the surface free energy in terms of the surface direcsonsidered nematic deformations of this kind in a sample of
tor angle and its first derivative. We firfl,=F3+F+F?,  slab shape. Our analysis shows that the quadrupolar energy
where density is a nonlocal quantity, in the sense that it depends on

the nematic deformation in a layer, not only at a point. The

0 a2 z+rg , , reduction of this nonlocal energy density to a local one has
Fo=~Tol0s) di2—r dz di2 H(Z'=2)dZ',  (9)  peen performed by means of a power expansion in terms of
0 the spatial derivatives of the tilt angle.
dT do a2 Our results show that in the bulk the quadrupolar energy
Fi= —(—0) (—) f [z—(d/2)]dz density can be separated in a bulk and in a surfacelike con-
d6 /. A 42/ ,_ gt di2-r tribution. The bulk contribution is characterized by an elastic
constantK,(#) that depends on the nematic orientation. It is
« ZHOH(Z, —2)dz, (92) negative for nematic orientations close to the homeotropic or

di2 planar orientations, and positive f&~ 7/4. Its maximum
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value is of the order oK/10, whereK is the detectable Frank facelike term, coming from the bulk energy density. This
elastic constant. The angular dependence of the bulk quadrGontribution depends on the surface nematic tilt angle and on
polar elastic constant is different from the usual elastic conits gradient. The other term is due to the bulk interaction
stant. This difference is connected with the circumstance thd€stricted by the surface, localized in a surface layer of mo-
the elastic expression of the quadrupolar interaction obtaine§cular dimensions. It depends only on the surface nematic
in our paper is not simply a reduction of a three-dimensionaPriéntation and is characterized by a tilted easy axis and by
expression. In fact such a general expression does not ev@j extrapolation length of the order of?0r,, wherery is
exist. This different angular dependence takes into account @ the order of the molecular dimension.

kind of compensation of the deformation “in plane.” It is

simila_r to the one discus_sed for the im‘luence_of_thga flexo- ACKNOWLEDGMENTS
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