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Dynamics of chevron structure formation
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The natural structure for smectfediquid crystals arranged in a sample with homogeneous boundary con-
ditions is the so-called bookshelf structure with uniform layers perpendicular to the sample cell plane. How-
ever, this structure often deforms into the so-called chevron structure when the sample is cooled. This defor-
mation is usually thought to result from the mismatch between bulk and surface layer thicknesses. In this paper
we study the dynamics of chevron formation. Two possible scenarios are envisaged. In one of these there is
strong coupling between layer deformation and fluid flow, and in the other the fluid essentially does not move.
In this paper we examine the first scenario, leaving the second, slower relaxation mode for another paper.
Analytic solutions are found for near-critical deformations, and numerical solutions are found beyond the
critical regime.[S1063-651X98)06912-9

PACS numbg(s): 61.30.Cz, 42.79.Kr, 64.70.Md, 83.70.Jr

I. INTRODUCTION between the sample histoffyvhich provides a fixed layer
surface-induced thicknesand thermodynamics, which im-
There have been a number of recent studies of smectigoses an(albeit weal temperature-dependent bulk layer
liquid crystals confined between parallel boundaries and subthickness.
ject to homogeneous boundary conditions. The natural ex- The governing parameter for this mismatch is the layer
pected smectic texture in this case is the so-called bookshedtrain e=1—qg/q, whereqg,q are, respectively, the wave
structure, in which the smectic layers are arranged in a stackectors associated with the bulk and surface layer thick-
with the layer normal parallel to an easy direction in thenesses. This layer strain is the fractional difference between
plane of the walls. However, this bookshelf structure occurshe intrinsic smectic layer thickness and that imposed on the
only rarely, and more often the bookshelf texture spontanesystem by the surfacér equivalently by the previous his-
ously deforms into the so-called chevron structure in whichtory of the sample The layer distortion occurs above a criti-
the layer edges at the wall are not shifted, but the layers areal value e,.=47?K/BL?, whereK and B are the elastic
tilted, in the same sense at each wall, and meet in the centebnstants associated with layer bending and compression,
of the sample at the so-called chevron tip. An understandingndL is the cell thickness.
of the chevron structure is of considerable importance in the In this paper we shall assume, following other workers,
development of surface-stabilized ferroelectric smectic disthat there are no defects in the smectic structure within the
play devices. cell. We shall also suppose that the bulk smectic provides an
The chevron structure was observed first in a ferroelectriégmprint on the surface in a such a way that the surface has a
smectic€ material by Riekeet al.[1], and it is in this area memory of the layer structure above it. However, notwith-
that the practical importance of the problem lies. This chevstanding the existence of experimental evidence for such sur-
ron structure has been the focus of a good deal of theoreticéce memonyf8], the present study gives some support to the
work in order to disentangle the principles underlying opticalview that this assumption is stronger than necessary. Rather
switching in ferroelectric smecti€- cells[2]. we believe that the absence of defects, or, equivalently, the
However, the chevron structure has also been observed tonservation of layers, combined with the no-slip velocity
a SmA material[3,4], and this rather simpler system pro- condition and the extremely slow time scale of the nonequi-
vides a good testing ground for theories of chevron formadibrium layer drift through the smectic fluid, combine to im-
tion. Theories of the statics of the chevron structure in thepose the chevron structure.
Sm-A phase have been proposed by Limat and Hi®jsand The formation of the chevron structure for strains larger
examined in slightly more detail by Kralj and SlucKi®l. In  than critical involves two sequential processes. First, thermal
this paper we extend these studies to provide a theory of thiductuations provide small departures from the original book-
dynamics of chevron formation. shelf structure. These fluctuations are then amplified until the
The crucial idea behind theories of chevron strucfe  new chevron structure emerges. We study the second of
7] is that the layer tilt is supposed to arise because of misthese processes, which is governed by Simydrodynamics.
match between the natural—thermodynamically stable—We shall use the standard theory of aiydrodynamics, as
smectic layer thickness and that imposed by layer pinning adlescribed by de Gennes and P1i@tor Chaikin and Luben-
the cell surface. This mismatch is a result of a competitiorsky [10]. The crucial change as compared to these exposi-
tions will be in the form of the free energy functional.
The plan of the paper is as follows. In Sec. Il we shall
*Permanent address: Department of Physics, University of St. Peéecap on previous work on the statics of the chevron state.
tersburg, St. Petersburg 198904, Russia. We introduce the free energy functional underlying our
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study, and explain how minimizing this functional leads 2n/q
. . X
naturally to chevron formation. In Sec. Ill we introduce the
hydrodynamic equations that govern Smmotion. In Sec. x=L2
IV we solve the equations in the case for which layer-fluid
flow coupling is the dominant process. The alternative sce-
nario in which flow is suppressed will be treated in a subse- 7
guent papef16]. Finally in Sec. V we make some conclud- ‘V
ing remarks.
x=-1/2
Il. STATICS 2,

A. Free energy
FIG. 1. The chevron structure in a cell of thicknéssshowing

The natural order parameter in the $mphase is the mismatch between surface wave veater 27/ag and bulk wave
complex quantityyy= nexpW(r,t) [6,9]. The magnitude of vectorgg=2/a, with x axis andz axis marked.
this order parameten provides a measure of the magnitude
of the smectic density wave, whereas the ph@égields |f q=qg the elastic energy can then be expressed, in qua-
information about the position of the layers. We here discusgratic order, as
a system in which the smectic order parameter has no singu-
larities, and we shall therefore suppose that the quantity 1
unaffected through the process of chevron formation. f= 55(5
In a uniform stationary system the phase can be described

by the relatiorW(r) = qpz, wheree, is the layer normal, and  which is the usual smectic expression for the elastic energy.
the layer spacinglg=2m/qg. In fact, the transformation |n all subsequent equations we shall considér,t) as the
W— —W; ¢— 4> leaves the system unchanged, and this isdynamical variable.

important in constructing the free energy. The free energy We show the chevron geometry in Fig. 1. In the case of a
contains compression terms that specify the favored layestatic uniform deformation there is np dependence. The
thickness, and bending terms that favor a director that refayer is tilted with respect to its original direction by a small
mains uniform. The free energy must be invariant with re-angleg~u,, andW=q(z—u(x)). Note thatg# qg here; we
spect to translating the smectic layers by arbitrary amountsonsider displacements from a configuration with the im-
and can therefore only depend on gradient®¥pfind not on  posed rather than the bulk layering. Implicity we have
W itself, except at surfaces. Although some freAe energy forquenched from a sample in whichwasthe bulk wave num-
mulations explicitly separate the nematic direatoand the ber and the cell had equilibrated.

layer normala= VW/|VW|, we shall remark that these vari- _ We now substitute the ansat3) into Eq. (2). Dropping
ables are usually strongly coupled, with a relaxation time oftigher-order terms ire yields the Limat-Prost formulation

order 107 sec[11], and we shall simply suppose that [5] of the chevron problem:

2 1 )
+§K(uxx) ) (4)

=n. We use the free energy functiorfdl2] 10 1, 2 26\ 2
FZEJdTB(Eﬂ—é +K ﬁ_X) , (5)
F:j d3rf(r),
where we have used the approximation d,2/q§~26.
where the free energy density is given by The equations for static equi”brium are
f(1)=Blag “(VW)?~ 1]+ ;Kag (V2W)%. () F__dF ©
Su  dx 66

In this equationK and B have their usual significance of

Frank bend elastic constant and layer compressibility, re- Finally in this section, we make an observation about the
spectively. The formulation explicitly allows for th&/—  procedure for finding the equilibrium layer profile, whose
—W symmetry, and thus yields equivalent minimaW  relevance will become more obvious when discussing the
*Qgz, both of which describe a stack of smectic layers perdynamics. Varying the free energy with respect to the vari-
pendicular to thez axis. The interesting inevitable conse- able ¢ gives Euler-Lagrange equations that explicitly include
quence of this symmetry is the existence of tN&\()* term,  the layer straire. By contrast, varying the free energy with
which has crucial significance in stabilizing the free energyrespect to the the layer displacemerfk) gives rise to an
functional. This term may otherwise be thought of comingguler-Lagrange equation that does not include the layer

from the term coupling the director with the smectic orderstrain; the layer strain only enters the solution in the first
parameter, after the explicit director dependence has begftegral of this equation.

integrated out.
We now make contact with the familiar elastic formula-
tion of the SmA free energy. Deviations from equilibrium

can be described in terms of the |ayer disp|aceruemhere It will be useful at this Stage to remind the reader of the
detailed arguments leading to the static chevron structure.

W(x,z,t)=q[z—u(x,z,t)]. (3)  The Hamiltonian, Eq(5) above, is minimized foW= = 4,

B. Stability analysis
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=+\2e. These values of, corresponding to leftward or e BlL2e
rightward layer tilts with respect to the original bookshelf o= —=—, (13
geometry, are the only values @f consistent with the im- € 4mK

posed periodic geometry that preserve the thermodynami-

cally imposed layer spacing. The problem with either ofwhich allows one to measukein terms of the critical strain.
these solutions is that they involve uniformly tilted layers, An equivalent formulation of this stability criterion is that
whereas the boundary conditions demand that the layer dishe eigenvalue€ of the equation

placement at each surface of the cell be zero. The surface

Hamiltonian, in contrast to the bulk Hamiltonias,sensitive _ _

to the absolute value of the pha#é Thus the uniform so- Bt Klhoou=CU 14
lutions =+ 6, do not preserve the surface layer structure. The

simplest structure that does preserve the surface layer strulY 5 Y g ! -
ture is one for whichd= + 6, in the top half of the cell, and It is instructive to estimate the magnitude of the fluctua-
9= — 6, in the bottom half of the cellor vice versy while tions in the bookshelf structure due to the critical mode given

close to the cell walls and in the middle of the cell, there is &Y Ed- (9). The energy cost associated with a fluctuation of

. . . 2

region of intermediate behavior. The region close to the celf’® Hamiltonian, Eq(4), is equal toVB(e.— €) #/4, where
walls depends on the detailed boundary conditions involvedY iS the cell volume. Using the equipartition theorem, the
The region in the center, of thicknessh.,= (K/eB)Y2 is ~ Mean-square fluctuation can be found to be
the so-called chevron tip; in this region the tilt in the layers
more or less abruptly reverses. ) 2kgT

Now, in order that the system may take advantage of the (V) =va—1— (15

TR S VBe.(1—0)

free energy reduction implied by the layer t#,, it must
overcome the pain of bending over a length sdal@his it
will not be able to do unless the chevron tip length seals
shorter than the cell size. This may be seen formally be
examining the perturbation to the bookshelf free energy in
duced by a small anglé(x) at quadratic order:

=0, u,=0 on the boundarigshould be all negative.

where kg is the Boltzmann constant. As the system ap-
proaches the chevron transition, chevronlike fluctuations
grow, and their magnitude diverges at the transition.

This eigenmode corresponding to the largest eigenvalue
destabilizes the uniform structure with respect to the chev-

L/2 2} ron. The new nascent chevron structure is more sinelike in

de

dx

1
dx=| —eBH*+K

AF=| dydz
fy L2 2

(7)  the region where the leading eigenvalue is small and posi-
tive. The amplituded, in this region may be estimated by
adding the effect of the quartic term #hdue to this mode
alone to Eq(7). For further discussion, the reader is referred

to the papers by Limat and Prd&i, and by Kralj and one of

For simplicity we suppose that=0 on the boundaries.
The fluctuation responsible for the initiation of the chevron

h :
phase 1 the present authofs$].
Ug(X)=ug[1+cog2mx/L)] (8)
or I1l. HYDRODYNAMIC EQUATIONS
A. Basic equations
0= Vpsin(2mx/L). (9

We use a hydrodynamic formulation in terms of the dis-
The quantityAF is positive, and thus the formation of a Placementi(r,t). The advantage of this formulation is that it

chevron phase is disfavored, if includes both layer compressibility and layer bending on an
equal footing. We follow the exposition of the hydrodynamic
4772 equations for Smi by Chaikin and Lubensky10,12. We
—Be+ FK>O. (100  modify their formulation by including terms in the free en-

ergy that allow for the chevron tip. The important point is
that the layer displacementis the only nonstandard hydro-
dynamic variable, to which we must add the local fluid ve-
422K locity v. We suppose the fluid to be incompressible, and the
€<e.= m , (11) temperature to be constant; these assumptions are not crucial,
BL2 but considerably simplify calculations.
The equation for the displacement is
and an equivalent condition for the relationship between the

This gives a condition for the critical strai :

cell width L and the critical length scalegy,, (7_U_U V-] (16)
(9t 3™ p Yy
A . (12
W= .
2w where

Normally, e and e, are small values, so it is useful to intro-
duce a dimensionless quantity governing chevron forma- J= oF (17)
tions. This is the chevron number[6], "osou’
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The coefficient\, is the usual permeation constant of 3m- As a result of these simplifications, the governing equa-
hydrodynamicq9], which relates the layer flux through a tions (16,19 now reduce to
stationary medium to the relevant thermodynamic force. Us-

ing Eq. (5) one obtains Jdu
g q ( ) H_U?’:)\ph, (276)
Ji= S B(3U;— €) Uy~ KUyyyl. (18)
Jv
The momentum densitgv obeys the equation Qa—tg— n3dvz=h, (27D
J _ 99 190  Where
ﬁt(PUi)— axj . (19
h:V'J:Bax[(%ui_f)ux]_Kuxxxx (28

The stress tensar;; is given by

iy =—P&;—Quiv;+ digdj+ 0]}, (200 s the variable conjugate to the smectic displacentent
We now apply nonslip and stron@ngulay anchoring
wherep is the pressuréwhich we shall suppose unifopm boundary conditions for the displacement
and o'i'j is the dissipative part of the strain tensor
u(x=L/2t)=0, (293
T = Nija I - (21
u(=L/2t)=6(xL/2t)=0, (29b
The viscosity tensof12] takes the form
and finally apply nonslip boundary conditions for the veloc-
Tikim= M8 8m+ 72(8if St 8 Sim) + (74— 12) S S~ ity:
+ 73(8i@ St 2@ G T A8 B+ Ay@mSif) va(*L/21)=0. (290
| |
+ 75(8iak0im+ 813 i) (22) Equations(27a,27b together with the boundary condi-
tions (29a,29b,29cdescribe the process of chevron structure
formation. However, the real process depends strongly on
the boundary conditions at the edges of the cell.
One can imagine two possible scenarios. If the ends of the
cell are open, then liquid moves almost freely along the sub-

Equations(16,19 can be further simplified by using the strates_. As the Iayer; start beqding they prpvoke mass flqw,
incompressibility conditiony - v=0. Firstly, if the only geo- and this hydrodynamical coupling is a crucial component in
metrical symmetry of the system that is violated is thatthe layer motion. In this case both Eq273 and (27b) are
which gives rise to the chevron mode, they=v,=0. Sec- required for a correct description.

ondly, we may observe that for a perturbation homogeneous T, by contrast, the ends of the cell are closed and are, for
in the plane of the cell, example, under pressure, the situation is different. In this

circumstance, there is no room in the cell for the liquid to

v,(X,Z2,t)=v3(X,Z,t) =v3(X,1), (23) move. Now there is no longer any mass flow, and chevron

formation is due to layer permeation through the stationary

and thus liquid alone. The molecules rearrange themselves forming
new layers during this process. Only EQ739 is required.

In these equations, the quantity takes its conventional
meaning of a unit vector normal to the layers, and

L _
Oik= Oik— 3.

%_0 (24) The hydrodynamic velocity, and the equation governing it,
9z are suppressed.
Although these two processes are, of course, described by
The incompressibility condition can be expressed as the same set of hydrodynamic equations, they differ from
each qualitatively. In this paper, we restrict ourselves only to
dvy  dug the former scenario. We shall discuss the latter scenario else-
V.v=—+—=0. (25
ax o9z where.
Thus B. Nondimensionalization
dug 1. Time scales
—=0. (26) , ,
2 We first note that there are in fact no fewer thiunee

characteristic time scales for the hydrodynamics of a
We now further suppose homogeneity in theirection for  smecticA liquid crystal. These are
vy, thenvy(x,z,t)=v4(x,t). This condition is equivalent to
a statement that there are no convection-induced rolls. Now L4
the only consistent solution far; is v4=0. Thus the veloc-

_ = (30)
ity has only one nonzero componan(r,t) =uvs(x,t). 4K\
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o 31 VD= —S(x,1) (379

T = , X, = v X1 1

' 4wy, L2e,
naL2 ~ e~ B(X,1) ~—

T,= , 32 J(x,t)= =Uz(x,t). (379
472K 32 V2e,

with We have added to the hydrodynamic variables a scaled an-
gular variabled. This refers to the layer tilt. We have seen in
TS, (33 Eq. (5) that the static chevron properties are most conve-

niently computed in terms of these angular variables. Our
The permeation process by itself takes place on time scalashoice of scaling the displacement is dictated by the stability
~7,. This would be the only relevant time scale if massanalysis and guaranteésto be O(1) for the chevron struc-
flow were forbidden and is the longest of the three timeture.
scales. The time scale is the time scale required for vis- The nondimensionalized versions of E¢&7a and(27b)
cous forces to respond to the inertia. This motion is someare
times known in the literature as tliast modg9]. This time
scale is the shortest of the three. Finally the time segle Ui—V=3,H, (383
which will turn out to be the relevant time scale in this study,

comes from a balance between the viscous and the elastic 51Vi—Via=H, (38D
forces. This is sometimes known in the literature assiogy 5 1
mode[9], though we caution the reader that of the three time _ %102 - —
scales, it is in fact the intermediate! H IX (U= a)Us 47-,2UXXX ' (389
The quantityr, can be also be expressed in terms of the
critical strain The functionH is a particularly important quantity in
these equations. It is the scaled body force driving the mo-
7,= 13/Be.. (34)  tion of the system. It can be written as
The three time scales can be reinterpreted in terms of a ~~ d OF
fundamental time scale, , with, in addition, two small pa- H(x,t)= ix 09’ (39
rameters related to the ratios between them. The small pa-
rameters are where F is nondimensionless version of Eq), defined by
4?7 4n’Ko 1 (12 _|1 1
8= = : (39 ]-'z—f dX = (o— 922+ —— 02| 40
! Ty 77% 2) -1 2( ) 42 % 40

The scaling of the functionb), V, H requires that these
. (36)  quantities and their derivatives a@(1). We canconclude
T L2 that the body force does affect the system on this time scale.

In contrast, chevron formation on time scaiewill be con-
The order of magnitude of thesg and 6, can be estimated sjdered elsewhergl6].

as follows. Assumingnz=1 poise,K=10"° dyn, andp
=1 gmcm 2 we estimates;~10 °. To estimates,, we 3. Solving the governing equations
take \p,73=10"1* cn? [9], L=10"3 cm, obtaining &,
~1078. Values of K=10"° dyne, L=10"2 cm, 7;=1
poise, yieldr,~10 2 s. In contrastr,~10° s~12 days.

Ty _ 7]3)\[3

=

A full treatment involves multitime scale analydi$3].
The solution to Eqs(38a,38b can formally be written as

Ux,1)=UOX1)+0(8;,8,), 41
2. Scaling the equations (x.t) (*,t)+0(81.5,) 41
As indicated above, we choose to scale time with respect V(X,1)=VO(x,1)+0(5;,8,). (42)

to 7,. We use the following dimensionless variables: ) o 0 0 ]
The dominant behavior is given By(® andV(©. The hier-

X archy of time scales makes the inertia and permeation terms

X=1T (378  negligible. Because of the large viscosity and very long per-
meation time, chevron formation is governed by a balance

between the body and viscosity forces. We shall take into

T=—, (37b) account only these lowest-order terms. We shall simplify no-
Ty tation by suppressing the superscripts at this stageshall
restore the original variables lajeRelatively simple analy-
e u(xt) sis of Egs.(38a,38h now yields
(x,t)= (370

L\2e’ V(x,1)=Ui(x,1), (439
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9 oF The point is that this is not a local condition. In general it is
Vixz=—H=——=—. (43  very difficult to fulfill conditions of this type. Nevertheless,
fortunately we can easily identify @onexhaustiveg!set of
) ) ) ) solutions that does automatically satisfy the condition. This

It_ turns out that thls_palr of equatlpns is now more con-js the set of solutions that are odd with respeckto —x
veniently reexpressed in angular variables. From @83,  jnversion. This is in fact just the set of all chevronlike solu-
we have tions. Other(nonodd solutions that satisfy the integral con-
dition are simply not considered.

The infinite anchoring boundary conditions are not af-
fected by these considerations; however,

Via=Utx, (44)

which may be more conveniently reexpressed in term# of

using its definition, Eq(37e: I(+1/21)=0. (51)
V=5 49 IV. RESULTS
Now combining Eqs(43b) and(45), we obtain A. General considerations
P SF We first make some general comments about the structure
—| 5+—|=0. (46) of the governing equation E¢8). As the chevron structure
X o9 develops in time, the energ¥ decays, approaching its glo-

bal minimum in the final equilibrium state. In addition, the
We can now integrate this equation overThe constant of ~Euler-Lagrange equation of the function@l possesses an
integration is zero, from the reflection symmetryf Thus  exact integral,
the final governing equation is simply the time dependent

-Gi i i i -~ 1 1
Landau-Ginzburg equation, but now written in termsdof I(XT)= = (0— 92— —— 92, (52)
2 47? X
% OF
F TS (470 which approaches a constant value over the whole cell as the

system approaches its final state. We can use this quantity to
monitor the approach to equilibrium.

We now turn to the solution manifold. As we have indi-
cated above, we may restrict our consideration to solutions

odd inX. Any odd function can be expressed in terms of a

When the equation is written out in full, we obtain the well-
known Fisher-Kolmogorov equatidi4,15:

1
Oi=(o—9)I+— 9%. (48)  Fourier series:
472
It is useful as well to view this equation in our original F(x1)= 2 9,(t)sin2mnX). (53
notation: n=1
90 SF It will sometimes be useful to expreit{?i,t) in terms of the
M5 =" 5 (49 time-dependent harmonic coefficients(t).

In particular, in the initial stage of the chevron structure

whereF is just the free energy proposed by Limat and prosformation, when the book structure is quenched into an un-
[5]. stable state, one can obtain a linearized equatiofr¥qft)}.

We now make some mathematical comments about th# this limit, the modes are independent and their amplitudes
procedure. The original differential equations were first ordeither vanish identically or increase exponentially, each on
in time, butfourth order in space. By redefining our vari- their own characteristic time scale. However, at later times,
ables, and performing one exact integration, we have beelfie presence of nonlinear termsd causes interaction be-
able to reduce the order of the differential equation. Thigween the modes, and the harmonic expansion is no longer as
does not, however, entirely come for free. The price we havéiseful.
paid is loss of information about layer slippage at the inter-

faces. Equivalently, the boundary conditia{=L/2)=0 B. Near-critical strain
”?]W _becomles amtegral cqnditiﬁn on t::el 50'?“?'“9()() .I We first consider a regime close to the critical strain
The _mtegral conditiorrestricts the manifold of allowable €. (o isclose to 1). In this regime thé(x,t) is small at all
solutions§(x). o . times. We can now neglect the mode coupling and consider
Let us examine this point in more detail. In order to guar-gp|y the dominant mode in the Fourier expansigg). This
antee no layer slippage we require is the leading term in the expansion, and it develops faster
o U than all the others. We do, however, need to include the
f dx9(x1)= dxUz=U(1/2)— U(—1/2)=0. nonlinear term in the equation, in order to avoid an un-
—1/2 -1/2 checked expansion of the mode amplitude.

(50 Thus in this limit we may take} to be of the form
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9(x,1)=9,(t)sin(2mX). (54) 1.0 5

Multiplying Eq. (48) by sin(2mx) and integrating ovek
we obtain a time-dependent Ginzburg-Landau equation for
the amplituded :

a9 205

3 3
7=(0—1)1‘}1—21}1. (55)

This is the generalization to the time domain of the analysis
of the analogous statics in earlier wdi].

For strains less then the critical strair<<1), fluctua- (a)
tions around the bookshelf geometry decay. The charateristic 0.0 >

time scale ig, /(o0—1). Thus, as might be expected, there is X 0
a critical slowing down in the decay rate as the critical strain
is approached. FIG. 2. Growth of chevron tilt angle as a function of scaled time
Above the critical strain, Eq(55) has an analytical solu- over half the cell (L/2<x<0) for =25.0. Curvea is the initial
tion: condition, with very small fluctuation. Curvés c, andd are curves
Ho—1) 1o at IateLtirTe§= l,_tzr;3, resp_(;:cti\_/ely.';ll'hte (r)]thert:alf-_cell e?:jhilt)itﬁ the t
~ - ~ o~ same behavior with opposite sign. Note how the sinusoidal shape a
B1(1) :( 3 ) {1+exd—2(c-1)(t-tg)]} ™ early times is replacezpby a flagtg-topped structure at late times.p

(56)
critical regime. In all cases the amplitude of the lowest har-
monic increases until the layer tilt &tlL /4 reaches the value
of \2e. This is the value at which layer tilt just compensates
te=t,/(c—1)=173/B(e—¢€). (57) for the surface-induced layer mismatch. This tilt region then
expands until it encompasses the whole layer, apart from
At late timesd, approaches/4(o—1)/3 exponentially. The small regions of size of the healing length at the chevron tip

At early times the the solution exhibits exponential growth
with characteristic time

angle 6 and the layer displacement tend towards and close to the walls. This is just the length required for

. layer reorientation enforced by the boundary conditions. A

0(X)=2y2(e— €)/3sin2mx/L), (58)  typical example of this behavior is shown in Fig. 2. We here
concentrate on angular rather than displacement variable be-

U(x)=L+2(e— &) /3m*(1+cog 2mx/L)). cause this particular physical feature is most clearly illus-

The ch teristic i ated with ht i trated in this way. In Fig. 3 the same information is pre-
€ characteristic imeés associated with approach 0 equilibse yraq - now concentrating on the chevron displacement

rium are smaller than those associated with growth by a fac-

. o D . ,t). The sharply peaked chevron only develops at late
tor of 2. Both these times, therefore, exhibit critical slowmg,ﬁ(x ) Py P v y develop
down, associated with the disappearance of the equilibrium

amplitude.

1.0
C. Beyond the critical regime

For |o— 1| no longer very small, the interaction between
harmonics can no longer be neglected. We have been unable ©)
to find an analytic solution. However, the problem has been
solved in a straightforward way numerically using both real
space and spectral methods. We start typically with a small
displacement corresponding to the first harmonic. However,

the initial conditions are not important, because thgt)

increases more rapidly than other harmonics. Low-level b
white noise initial conditions gives essentially the same re- ®)
sults. We are able to verify that the equilibrium solution is 0.0 (a)
reached consistently in two ways. First we monitor the free ey L2

energy F, which decreases monotonically with time, as it X
Srlo.lfld' S.ecoer we monlt(?r the behavior of the Integral FIG. 3. Same as previous figure, but now showing chevron dis-
|(x,t) defined in Eq(52), which tends to a constant as equi- pjacement as a function of time, normalized so that the chevron tip
librium is approached. This latter method also serves as agisplacement is unity at equilibrium. In this set of curves
automatic check on the accuracy of the numerical scheme.=25.0. Curvesa—d have the same significance as in the previous
We can discern a number of common features in the refigure. In these curves, the sinusoidal shape at early times is re-
sults. The characteristic time seems to hd(o—1), as placed by the sharply peaked classical chevron structure at late
might be expected by extrapolating analytically from thetimes.

:U'J05
E .
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FIG. 4. Normalized displacement at the chevron tip, at late

times for o=625. Higher curves are for later times. The chevron FIG. 6. Scaled time dependence of the maximum normalized
structures have been displaced in such a way that the arms of tiisplacement(0)/ug, for variouso. The curves are very close
chevron lie on top of each other. There is also a secular motion dfogether, and reduce to one universal curve at low times. At late
these arms resulting from tightening of the curvature of the layerdimes, two universal limits, at low and high, are easily discern-
nearx=+(L/2.) The superposition of the arms highlights the de- ible.
creasing chevron tip thickness overlying an otherwise time-
independent structure. V. SUMMARY AND CONCLUSIONS

. . . In this paper we have examined the process which occurs
An equivalent way of looking at the the layer displace- : i .

. ; . -~ when a SmA in a bookshelf structure within a cell is
ment involves the thickness of the chevron tip. The late time

relaxation process in the high limit sharpensthe chevron quenched into a state in Whi_ch it is no Io_nger stable and the
tip. We show this phenomenon qualitatively in in Fig. 4. In layers buckle. What follows is the evolution of the so-called

this figure we see the shape of the tip sharpen up in the limi hevron structure, and this study has been concerned with

. . o : e dynamics of the chevron evolution. The motivation, of
of late times. In Fig. 5 we follow quantitatively the width of . h the Senph itself_in which th
the the chevron tip as a function of time for a typical case course, Is not so much the Siphase itsell, in which the
" chevron is an interesting but ultimately useless phenomenon,
We now try to draw together results for the whole range . o2 )
N but the possible application to the Sthphase. In this latter
of o. The characteristic time, /(o —1) seems to govern the here | I h h .
shape of the relaxation process. In Fig. 6 we show the tim&2>¢ there Is an analogous phenomenon whose properties are
i ' of vital technological concern for ferroelectric display tech-

erendence of the maximum d|splgcement, normahsed_to Itﬁology. This study involves a toy model, the real worth of
final value, for several differentr, in all cases plotted in

terms of the relevant characteristic time. It will be observedWhiCh will eventually be judged by whether or not it turns

that the curves almost collapse on to 6ne universal curv out to be possible to extend this work to study switching in
. . P e . Ve mC cells containing chevron defects.

with the low o and higho curves differing slightly. This

latter effect is expected, as the lawcase is dominated by a The driving force for this phenomenon is the mismatch
. eXp ’ . ; Y& hetween the layer spacings in the bulk and at the interfaces.
single harmonic, whereas the highcase is more complex.

It is extremely sensitive to the boundary conditions on the
surfaces of the cell. The natural expression for the free en-
ergy involves the layer displacement from the bookshelf ge-
ometry. Interestingly, the statics is most easily solved by

5 transforming form displacement to angular variables, where
the local angle describes the orientation of the layer with
respect to the bookshelf geomefy,6]. The statics is gov-

0 erned by a non-dimensionalised layer strain, which we have

labeled[6] as the chevron numner, which is unity at the
onset of the deformation.
Our analysis of the dynamical problem supposes that the
E system is quenched so that the bulk-surface mismatch sud-
0.5 - denly appears, essentially on zero time scale. We have de-
) rived the resulting hydrodynamical equations, which strongly
: : : ‘ couple layer displacement and hydrodynamical velocity. The
6 8 10 12 14 layer displacement is actually a replacement of the more gen-
eral layer phase, which is a conserved quantity. The result is
FIG. 5. Time dependence of the normalized displacementhat the governing equations appear quite complex. The layer
u(x)/ug and the normalized widtiAx) of the chevron tip, as a displacement is driven not only by a free energy-related driv-
function of scaled time, forr=625. The quantity d6/dx), %, is  ing force but also by the hydrodynamical velocity. The latter
taken as a measure of the width. is dominant, but even the former involves a gradient of the
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nonequilibrium current, rather than the current itself. namic coupling, and restore the order parameter relaxation
There are three possible relaxation times in the problemprocess. This is the permeation process in which the layers

roughly speaking on time scales of nanoseconds, milliseg@ass through the fluid. From a physical point of view, the

onds, and hours. The relaxation seems to be dominated Ipupling of hydrodynamical velocity to the order parameter

the intermediate of these, which we have labelled the viscougotion has accelerated the relaxation from a time scale of

relaxation time. From a mathematical point of view, the in-hours to a time scale of milliseconds. .

teresting feature is that a complex coupled problem can be We shall find that the properties of the relaxation process

transformed to a simple time dependent Ginzburg-LandafPund in the present study are considerably simpler, both
problem by using the angular variable rather than the dislf®m @ mathematical and a physical point of view, than those

placement as the principal quantity. What results is thepred'(?te.d in the permeation case. We postpone, hqweyer, the
Fisher-Kolmogorov equation, though in practice the most in_d_escnpﬂon of this phenomenon to the next paper in this se-

; X . X : ries.
teresting property of this equation—that it can sustain a trav-
eling wave—does not seem to play a role. We can remark, however, that at the surfaces of the cell,

The effect of this is that the problem can be almost but nofhe velocity no-slip boundary condition slows down surface

entirely nondimensionalized, dominated by a time scale tha&?lzxatlon;hat the s‘t”f‘.”m;*?tmyl plermeat||pn can o:;rt:#r. In this
is essentially the viscous relaxation time divided by the chey2tudy We have restrain Irély layer siippage at the sur-

ron number(less one close to the onset of the chevron peface, and attributed this to a moleculeus ex machina

havion . Quantitatively, we remark on the critical slowing \gh:ch.sor&eh?w obgamsda memc:jr_)t( of tthe ”surfaceflayermg.
down phenomenon in the near-critical regime. Qualitatively, elaxing the layer boundary condition to aflow surface per-

we note slight differences between the time dependence eation, h0\_/vever, would not have made any d_|ff¢rence to
the near-critical behavior, for which the deformation is sine-" "> cqncluspn, because we have taken the ligyt-0,
wave-like, and well-developed deformations, for which the"VNich is equivalent to the limitr, — . .
deformation is V shaped. Essentially, however, the maxi- Thus the strong |mpl|cat|qn of this §tudy, to be conﬂ.rmed
mum displacement obeys a tanh-like structr@ugh nota- " later more detailed investigations, is that the formation of
bly notexactly a tanhas a function of time. The initial stage chevrans does not nece_ssa_nly provide ewdeng_e for surface
of the process is the growth of the principal harmonic. Agmemory effec_ts. Rather it arises from a competition bet\_/veen
later stages, foor large enough, the other harmonics kick in slow permeation, which WO.UI.d lead to Iayer. slippage, t'lt?d
in such a way as to transform the sine waveiatV shape. layers and a true energy minimum, and rapid layer buckling

The final stage can be thought of as the sharpening of thIgading to a metastable chevron. We use the term buckling

chevron tip between the two opposite layer orientations. advisedly._ The thrust of our argument is that the chevron
The problem in observing this phenomenon is twofold structure is but one of a large class of buckling phenomena,

The dominant time scale-10 2 sec requires that the of which the classical paradigm occurs in bedid]. In all

guenching process be quicker than that. This seems a taﬁPCh phenomena, the pain of microscopic compression is

order. However, if the quench is in to a region just beyondavoided by, albeit inhomogeneous, macroscopic reorienta-

the chevron onset the quench time scales become shorter afign
the relaxation times get longer, so this must be the area in
which experiments are first attempted.

A second complication concerns the ability of the system A.N.S. is grateful to EPSRC and INTAS for financial sup-
to sustain hydrodynamics flows at all. The suspicion must bg@ort in Southampton and St. Petersburg. L.D.H. is grateful to
that if the cell is closed at the ends, rather than open, thEPSRC and DERA, Malvern for a CASE studentship. T.J.S.
no-slip velocity boundary conditions will strongly inhibit the is grateful to S. Kralj, N. VaupoticG. Durand, S. dmer,
hydrodynamic flows that we find to dominate the chevronA.A. Wheeler, as well as members of the British Smectic C
relaxation process. This will suppress entirely the hydrody-Consortium, for useful discussions.
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