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Dynamics of chevron structure formation

A. N. Shalaginov,* L. D. Hazelwood, and T. J. Sluckin
Southampton Liquid Crystal Institute and Faculty of Mathematical Studies, University of Southampton,

Southampton SO17 1BJ, United Kingdom
~Received 23 April 1998!

The natural structure for smectic-A liquid crystals arranged in a sample with homogeneous boundary con-
ditions is the so-called bookshelf structure with uniform layers perpendicular to the sample cell plane. How-
ever, this structure often deforms into the so-called chevron structure when the sample is cooled. This defor-
mation is usually thought to result from the mismatch between bulk and surface layer thicknesses. In this paper
we study the dynamics of chevron formation. Two possible scenarios are envisaged. In one of these there is
strong coupling between layer deformation and fluid flow, and in the other the fluid essentially does not move.
In this paper we examine the first scenario, leaving the second, slower relaxation mode for another paper.
Analytic solutions are found for near-critical deformations, and numerical solutions are found beyond the
critical regime.@S1063-651X~98!06912-8#

PACS number~s!: 61.30.Cz, 42.79.Kr, 64.70.Md, 83.70.Jr
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I. INTRODUCTION

There have been a number of recent studies of sme
liquid crystals confined between parallel boundaries and s
ject to homogeneous boundary conditions. The natural
pected smectic texture in this case is the so-called books
structure, in which the smectic layers are arranged in a s
with the layer normal parallel to an easy direction in t
plane of the walls. However, this bookshelf structure occ
only rarely, and more often the bookshelf texture sponta
ously deforms into the so-called chevron structure in wh
the layer edges at the wall are not shifted, but the layers
tilted, in the same sense at each wall, and meet in the ce
of the sample at the so-called chevron tip. An understand
of the chevron structure is of considerable importance in
development of surface-stabilized ferroelectric smectic d
play devices.

The chevron structure was observed first in a ferroelec
smectic-C material by Riekeret al. @1#, and it is in this area
that the practical importance of the problem lies. This ch
ron structure has been the focus of a good deal of theore
work in order to disentangle the principles underlying opti
switching in ferroelectric smectic-C cells @2#.

However, the chevron structure has also been observe
a Sm-A material @3,4#, and this rather simpler system pro
vides a good testing ground for theories of chevron form
tion. Theories of the statics of the chevron structure in
Sm-A phase have been proposed by Limat and Prost@5# and
examined in slightly more detail by Kralj and Sluckin@6#. In
this paper we extend these studies to provide a theory of
dynamics of chevron formation.

The crucial idea behind theories of chevron structure@5–
7# is that the layer tilt is supposed to arise because of m
match between the natural—thermodynamically stabl
smectic layer thickness and that imposed by layer pinnin
the cell surface. This mismatch is a result of a competit

*Permanent address: Department of Physics, University of St.
tersburg, St. Petersburg 198904, Russia.
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between the sample history~which provides a fixed layer
surface-induced thickness! and thermodynamics, which im
poses an~albeit weak! temperature-dependent bulk lay
thickness.

The governing parameter for this mismatch is the la
strain e512qB /q, whereqB ,q are, respectively, the wav
vectors associated with the bulk and surface layer thi
nesses. This layer strain is the fractional difference betw
the intrinsic smectic layer thickness and that imposed on
system by the surface~or equivalently by the previous his
tory of the sample!. The layer distortion occurs above a crit
cal value ec54p2K/BL2, where K and B are the elastic
constants associated with layer bending and compress
andL is the cell thickness.

In this paper we shall assume, following other worke
that there are no defects in the smectic structure within
cell. We shall also suppose that the bulk smectic provides
imprint on the surface in a such a way that the surface ha
memory of the layer structure above it. However, notwi
standing the existence of experimental evidence for such
face memory@8#, the present study gives some support to
view that this assumption is stronger than necessary. Ra
we believe that the absence of defects, or, equivalently,
conservation of layers, combined with the no-slip veloc
condition and the extremely slow time scale of the noneq
librium layer drift through the smectic fluid, combine to im
pose the chevron structure.

The formation of the chevron structure for strains larg
than critical involves two sequential processes. First, ther
fluctuations provide small departures from the original boo
shelf structure. These fluctuations are then amplified until
new chevron structure emerges. We study the second
these processes, which is governed by Sm-A hydrodynamics.
We shall use the standard theory of Sm-A hydrodynamics, as
described by de Gennes and Prost@9# or Chaikin and Luben-
sky @10#. The crucial change as compared to these exp
tions will be in the form of the free energy functional.

The plan of the paper is as follows. In Sec. II we sh
recap on previous work on the statics of the chevron st
We introduce the free energy functional underlying o
e-
7455 © 1998 The American Physical Society
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7456 PRE 58A. N. SHALAGINOV, L. D. HAZELWOOD, AND T. J. SLUCKIN
study, and explain how minimizing this functional lea
naturally to chevron formation. In Sec. III we introduce t
hydrodynamic equations that govern Sm-A motion. In Sec.
IV we solve the equations in the case for which layer-flu
flow coupling is the dominant process. The alternative s
nario in which flow is suppressed will be treated in a sub
quent paper@16#. Finally in Sec. V we make some conclud
ing remarks.

II. STATICS

A. Free energy

The natural order parameter in the Sm-A phase is the
complex quantityc5hexpiW(r ,t) @6,9#. The magnitude of
this order parameterh provides a measure of the magnitu
of the smectic density wave, whereas the phaseW yields
information about the position of the layers. We here disc
a system in which the smectic order parameter has no si
larities, and we shall therefore suppose that the quantityh is
unaffected through the process of chevron formation.

In a uniform stationary system the phase can be descr
by the relationW(r )5qBz, whereez is the layer normal, and
the layer spacingdB52p/qB . In fact, the transformation
W→2W; c→c* leaves the system unchanged, and this
important in constructing the free energy. The free ene
contains compression terms that specify the favored la
thickness, and bending terms that favor a director that
mains uniform. The free energy must be invariant with
spect to translating the smectic layers by arbitrary amou
and can therefore only depend on gradients ofW, and not on
W itself, except at surfaces. Although some free energy
mulations explicitly separate the nematic directorn̂ and the
layer normalâ5¹W/u¹Wu, we shall remark that these var
ables are usually strongly coupled, with a relaxation time
order 1027 sec @11#, and we shall simply suppose thatâ
5n̂. We use the free energy functional@12#

F5E d3r f ~r !, ~1!

where the free energy density is given by

f ~r !5 1
8 B@qB

22~¹W!221#21 1
2 KqB

22~¹2W!2. ~2!

In this equationK and B have their usual significance o
Frank bend elastic constant and layer compressibility,
spectively. The formulation explicitly allows for theW→
2W symmetry, and thus yields equivalent minima ofW5
6qBz, both of which describe a stack of smectic layers p
pendicular to thez axis. The interesting inevitable cons
quence of this symmetry is the existence of the (¹W)4 term,
which has crucial significance in stabilizing the free ene
functional. This term may otherwise be thought of comi
from the term coupling the director with the smectic ord
parameter, after the explicit director dependence has b
integrated out.

We now make contact with the familiar elastic formul
tion of the Sm-A free energy. Deviations from equilibrium
can be described in terms of the layer displacementu, where

W~x,z,t !5q@z2u~x,z,t !#. ~3!
-
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If q5qB the elastic energy can then be expressed, in q
dratic order, as

f 5
1

2
BS du

dzD
2

1
1

2
K~uxx!

2, ~4!

which is the usual smectic expression for the elastic ene
In all subsequent equations we shall consideru(r ,t) as the
dynamical variable.

We show the chevron geometry in Fig. 1. In the case o
static uniform deformation there is noy dependence. The
layer is tilted with respect to its original direction by a sma
angleu'ux , andW5q„z2u(x)…. Note thatqÞqB here; we
consider displacements from a configuration with the i
posed rather than the bulk layering. Implicitly we ha
quenched from a sample in whichq wasthe bulk wave num-
ber and the cell had equilibrated.

We now substitute the ansatz~3! into Eq. ~2!. Dropping
higher-order terms ine yields the Limat-Prost formulation
@5# of the chevron problem:

F5
1

2E d3r FBS 1

2
u22e D 2

1KS ]u

]xD 2G , ~5!

where we have used the approximation 12q2/qB
2'2e.

The equations for static equilibrium are

dF

du
52

d

dx

dF

du
50. ~6!

Finally in this section, we make an observation about
procedure for finding the equilibrium layer profile, whos
relevance will become more obvious when discussing
dynamics. Varying the free energy with respect to the va
ableu gives Euler-Lagrange equations that explicitly inclu
the layer straine. By contrast, varying the free energy wit
respect to the the layer displacementu(x) gives rise to an
Euler-Lagrange equation that does not include the la
strain; the layer strain only enters the solution in the fi
integral of this equation.

B. Stability analysis

It will be useful at this stage to remind the reader of t
detailed arguments leading to the static chevron struct
The Hamiltonian, Eq.~5! above, is minimized foru56u0

FIG. 1. The chevron structure in a cell of thicknessL, showing
mismatch between surface wave vectorq52p/aB and bulk wave
vectorqB52p/a, with x axis andz axis marked.
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56A2e. These values ofu, corresponding to leftward o
rightward layer tilts with respect to the original bookshe
geometry, are the only values ofu consistent with the im-
posed periodic geometry that preserve the thermodyna
cally imposed layer spacing. The problem with either
these solutions is that they involve uniformly tilted laye
whereas the boundary conditions demand that the layer
placement at each surface of the cell be zero. The sur
Hamiltonian, in contrast to the bulk Hamiltonian,is sensitive
to the absolute value of the phaseW! Thus the uniform so-
lutions 6u0 do not preserve the surface layer structure. T
simplest structure that does preserve the surface layer s
ture is one for whichu51u0 in the top half of the cell, and
u52u0 in the bottom half of the cell~or vice versa!, while
close to the cell walls and in the middle of the cell, there i
region of intermediate behavior. The region close to the
walls depends on the detailed boundary conditions involv
The region in the center, of thickness;lch5(K/eB)1/2, is
the so-called chevron tip; in this region the tilt in the laye
more or less abruptly reverses.

Now, in order that the system may take advantage of
free energy reduction implied by the layer tiltu0 , it must
overcome the pain of bending over a length scaleL. This it
will not be able to do unless the chevron tip length scalel is
shorter than the cell sizeL. This may be seen formally b
examining the perturbation to the bookshelf free energy
duced by a small angleu(x) at quadratic order:

DF5E dydzE
L/2

L/2

dx
1

2F2eBu21KS du

dxD
2G . ~7!

For simplicity we suppose thatu50 on the boundaries
The fluctuation responsible for the initiation of the chevr
phase is

u0~x!5u0@11cos~2px/L !# ~8!

or

u5q0sin~2px/L !. ~9!

The quantityDF is positive, and thus the formation of
chevron phase is disfavored, if

2Be1
4p2

L2
K.0. ~10!

This gives a condition for the critical strainec :

e,ec5
4p2K

BL2
, ~11!

and an equivalent condition for the relationship between
cell width L and the critical length scalelch ,

lch>
L

2p
. ~12!

Normally, e andec are small values, so it is useful to intro
duce a dimensionless quantity governing chevron form
tions. This is the chevron numbers @6#,
i-
f
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e

ec
5

BL2e

4p2K
, ~13!

which allows one to measuree in terms of the critical strain.
An equivalent formulation of this stability criterion is tha

the eigenvaluesC of the equation

2Beuxx1Kuxxxx5Cu ~14!

(u50, ux50 on the boundaries! should be all negative.
It is instructive to estimate the magnitude of the fluctu

tions in the bookshelf structure due to the critical mode giv
by Eq. ~9!. The energy cost associated with a fluctuation
the Hamiltonian, Eq.~4!, is equal toVB(ec2e)q0

2/4, where
V is the cell volume. Using the equipartition theorem, t
mean-square fluctuation can be found to be

^q0
2&5

2kBT

VBec~12s!
, ~15!

where kB is the Boltzmann constant. As the system a
proaches the chevron transition, chevronlike fluctuatio
grow, and their magnitude diverges at the transition.

This eigenmode corresponding to the largest eigenva
destabilizes the uniform structure with respect to the ch
ron. The new nascent chevron structure is more sinelike
the region where the leading eigenvalue is small and p
tive. The amplitudeu0 in this region may be estimated b
adding the effect of the quartic term inu due to this mode
alone to Eq.~7!. For further discussion, the reader is referr
to the papers by Limat and Prost@5#, and by Kralj and one of
the present authors@6#.

III. HYDRODYNAMIC EQUATIONS

A. Basic equations

We use a hydrodynamic formulation in terms of the d
placementu(r ,t). The advantage of this formulation is that
includes both layer compressibility and layer bending on
equal footing. We follow the exposition of the hydrodynam
equations for Sm-A by Chaikin and Lubensky@10,12#. We
modify their formulation by including terms in the free en
ergy that allow for the chevron tip. The important point
that the layer displacementu is the only nonstandard hydro
dynamic variable, to which we must add the local fluid v
locity v. We suppose the fluid to be incompressible, and
temperature to be constant; these assumptions are not cru
but considerably simplify calculations.

The equation for the displacement is

]u

]t
2v35lp“•J, ~16!

where

Ji5
dF

d] iu
. ~17!
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The coefficientlp is the usual permeation constant of SmA
hydrodynamics@9#, which relates the layer flux through
stationary medium to the relevant thermodynamic force.
ing Eq. ~5! one obtains

Ji5d ix@B~ 1
2 ux

22e!ux2Kuxxx#. ~18!

The momentum density%v obeys the equation

]

]t
~rv i !5

]s i j

]xj
. ~19!

The stress tensors i j is given by

s i j 52pd i j 2%v iv j1d i3Jj1s i j8 , ~20!

where p is the pressure~which we shall suppose uniform!
ands i j8 is the dissipative part of the strain tensor

s i j8 5h i jkl ]kv l . ~21!

The viscosity tensor@12# takes the form

h iklm5h1aiakalam1h2~d i l
'dkm

' 1dkl
' d im

' !1~h42h2!d ik
' d lm

'

1h3~aialdkm
' 1akald im

' 1aiamdkl
' 1akamd i l

'!

1h5~aiakd lm
' 1alamd ik

' !. ~22!

In these equations, the quantitya takes its conventiona
meaning of a unit vector normal to the layers, and

d ik
' 5d ik2aiak .

Equations~16,19! can be further simplified by using th
incompressibility condition,“•v50. Firstly, if the only geo-
metrical symmetry of the system that is violated is th
which gives rise to the chevron mode, thenvy5v250. Sec-
ondly, we may observe that for a perturbation homogene
in the plane of the cell,

vz~x,z,t !5v3~x,z,t !5v3~x,t !, ~23!

and thus

]v3

]z
50. ~24!

The incompressibility condition can be expressed as

“•v5
]v1

]x
1

]v3

]z
50. ~25!

Thus

]v1

]x
50. ~26!

We now further suppose homogeneity in thez direction for
v1 , thenv1(x,z,t)5v1(x,t). This condition is equivalent to
a statement that there are no convection-induced rolls. N
the only consistent solution forv1 is v150. Thus the veloc-
ity has only one nonzero componentv3(r ,t)5v3(x,t).
-

t

us

w

As a result of these simplifications, the governing equ
tions ~16,19! now reduce to

]u

]t
2v35lph, ~27a!

%
]v3

]t
2h3]x

2v35h, ~27b!

where

h5“•J5B]x@~
1
2 ux

22e!ux#2Kuxxxx ~28!

is the variable conjugate to the smectic displacementu.
We now apply nonslip and strong~angular! anchoring

boundary conditions for the displacementu,

u~6L/2,t !50, ~29a!

ux~6L/2,t !5u~6L/2,t !50, ~29b!

and finally apply nonslip boundary conditions for the velo
ity:

v3~6L/2,t !50. ~29c!

Equations~27a,27b! together with the boundary cond
tions ~29a,29b,29c! describe the process of chevron structu
formation. However, the real process depends strongly
the boundary conditions at the edges of the cell.

One can imagine two possible scenarios. If the ends of
cell are open, then liquid moves almost freely along the s
strates. As the layers start bending they provoke mass fl
and this hydrodynamical coupling is a crucial component
the layer motion. In this case both Eqs.~27a! and ~27b! are
required for a correct description.

If, by contrast, the ends of the cell are closed and are,
example, under pressure, the situation is different. In t
circumstance, there is no room in the cell for the liquid
move. Now there is no longer any mass flow, and chev
formation is due to layer permeation through the station
liquid alone. The molecules rearrange themselves form
new layers during this process. Only Eq.~27a! is required.
The hydrodynamic velocity, and the equation governing
are suppressed.

Although these two processes are, of course, describe
the same set of hydrodynamic equations, they differ fr
each qualitatively. In this paper, we restrict ourselves only
the former scenario. We shall discuss the latter scenario e
where.

B. Nondimensionalization

1. Time scales

We first note that there are in fact no fewer thanthree
characteristic time scales for the hydrodynamics of
smectic-A liquid crystal. These are

tp5
L4

4p2Klp

, ~30!
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t i5
%L2

4p2h3

, ~31!

tv5
h3L2

4p2K
, ~32!

with

tp@tv@t i . ~33!

The permeation process by itself takes place on time sc
;tp . This would be the only relevant time scale if ma
flow were forbidden and is the longest of the three tim
scales. The time scalet i is the time scale required for vis
cous forces to respond to the inertia. This motion is som
times known in the literature as thefast mode@9#. This time
scale is the shortest of the three. Finally the time scaletv ,
which will turn out to be the relevant time scale in this stud
comes from a balance between the viscous and the el
forces. This is sometimes known in the literature as theslow
mode@9#, though we caution the reader that of the three ti
scales, it is in fact the intermediate!

The quantitytv can be also be expressed in terms of
critical strain

tv5h3 /Bec . ~34!

The three time scales can be reinterpreted in terms
fundamental time scaletv , with, in addition, two small pa-
rameters related to the ratios between them. The small
rameters are

d15
4p2t i

tv
5

4p2K%

h3
2

, ~35!

d25
tv

tp
5

h3lp

L2
. ~36!

The order of magnitude of thesed1 andd2 can be estimated
as follows. Assumingh351 poise,K51026 dyn, and%
51 gm cm23 we estimated1;1025. To estimated2 , we
take lph3510214 cm2 @9#, L51023 cm, obtaining d2
;1028. Values of K51026 dyne, L51023 cm, h351
poise, yieldtv'1022 s. In contrast,tp;106 s;12 days.

2. Scaling the equations

As indicated above, we choose to scale time with resp
to tv . We use the following dimensionless variables:

x̃5
x

L
, ~37a!

t̃ 5
t

tv
, ~37b!

U~ x̃, t̃ !5
u~x,t !

LA2ec

, ~37c!
es

-

,
tic

e

e

a

a-

ct

V~ x̃, t̃ !5
tsc

LA2ec

v~x,t !, ~37d!

q~ x̃, t̃ !5
u~x,t !

A2ec

5Ux̃~ x̃, t̃ !. ~37e!

We have added to the hydrodynamic variables a scaled
gular variableq. This refers to the layer tilt. We have seen
Eq. ~5! that the static chevron properties are most con
niently computed in terms of these angular variables. O
choice of scaling the displacement is dictated by the stab
analysis and guaranteesU to beO(1) for the chevron struc-
ture.

The nondimensionalized versions of Eqs.~27a! and~27b!
are

U t̃2V5d2H, ~38a!

d1Vt̃2Vx̃x̃5H, ~38b!

H5
]

] x̃
F ~Ux̃

2
2s!Ux̃2

1

4p2
Ux̃x̃x̃G . ~38c!

The function H is a particularly important quantity in
these equations. It is the scaled body force driving the m
tion of the system. It can be written as

H~ x̃, t̃ !5
]

] x̃

dF
dq

, ~39!

whereF is nondimensionless version of Eq.~1!, defined by

F5
1

2E21/2

1/2

dx̃F1

2
~s2q2!21

1

4p2
q x̃

2G . ~40!

The scaling of the functionsU, V, H requires that these
quantities and their derivatives areO(1). We canconclude
that the body force does affect the system on this time sc
In contrast, chevron formation on time scaletp will be con-
sidered elsewhere@16#.

3. Solving the governing equations

A full treatment involves multitime scale analysis@13#.
The solution to Eqs.~38a,38b! can formally be written as

U~ x̃, t̃ !5U ~0!~ x̃, t̃ !1o~d1 ,d2!, ~41!

V~ x̃, t̃ !5V~0!~ x̃, t̃ !1o~d1 ,d2!. ~42!

The dominant behavior is given byU (0) andV(0). The hier-
archy of time scales makes the inertia and permeation te
negligible. Because of the large viscosity and very long p
meation time, chevron formation is governed by a balan
between the body and viscosity forces. We shall take i
account only these lowest-order terms. We shall simplify n
tation by suppressing the superscripts at this stage~we shall
restore the original variables later!. Relatively simple analy-
sis of Eqs.~38a,38b! now yields

V~ x̃, t̃ !5U t̃~ x̃, t̃ !, ~43a!
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Vx̃x̃52H52
]

] x̃

dF
dq

. ~43b!

It turns out that this pair of equations is now more co
veniently reexpressed in angular variables. From Eq.~43a!,
we have

Vx̃x̃5U t̃ x̃x̃ , ~44!

which may be more conveniently reexpressed in terms oq̃
using its definition, Eq.~37e!:

Vx̃x̃5q x̃ t̃ . ~45!

Now combining Eqs.~43b! and ~45!, we obtain

]

] x̃
S q t̃1

dF
dq D50. ~46!

We can now integrate this equation overx̃. The constant of
integration is zero, from the reflection symmetry ofq. Thus
the final governing equation is simply the time depend
Landau-Ginzburg equation, but now written in terms ofq:

]q

] t̃
52

dF
dq

. ~47!

When the equation is written out in full, we obtain the we
known Fisher-Kolmogorov equation@14,15#:

q t̃5~s2q2!q1
1

4p2
q x̃x̃ . ~48!

It is useful as well to view this equation in our origin
notation:

h3

]u

]t
52

dF

du
, ~49!

whereF is just the free energy proposed by Limat and Pr
@5#.

We now make some mathematical comments about
procedure. The original differential equations were first or
in time, but fourth order in space. By redefining our var
ables, and performing one exact integration, we have b
able to reduce the order of the differential equation. T
does not, however, entirely come for free. The price we h
paid is loss of information about layer slippage at the int
faces. Equivalently, the boundary conditionu(6L/2)50
now becomes anintegral condition on the solutionq( x̃).
The integral conditionrestricts the manifold of allowable
solutionsq( x̃).

Let us examine this point in more detail. In order to gu
antee no layer slippage we require

E
21/2

1/2

dx̃q~ x̃, t̃ !5E
21/2

1/2

dx̃Ux̃5U~1/2!2U~21/2!50.

~50!
-

t

t

e
r

en
s
e
-

-

The point is that this is not a local condition. In general it
very difficult to fulfill conditions of this type. Nevertheless
fortunately we can easily identify a~nonexhaustive!! set of
solutions that does automatically satisfy the condition. T
is the set of solutions that are odd with respect tox→2x
inversion. This is in fact just the set of all chevronlike sol
tions. Other~nonodd! solutions that satisfy the integral con
dition are simply not considered.

The infinite anchoring boundary conditions are not
fected by these considerations; however,

q~61/2,t̃ !50. ~51!

IV. RESULTS

A. General considerations

We first make some general comments about the struc
of the governing equation Eq.~48!. As the chevron structure
develops in time, the energyF decays, approaching its glo
bal minimum in the final equilibrium state. In addition, th
Euler-Lagrange equation of the functionalF possesses an
exact integral,

I ~ x̃, t̃ !5
1

2
~s2q2!22

1

4p2
q x̃

2 , ~52!

which approaches a constant value over the whole cell as
system approaches its final state. We can use this quanti
monitor the approach to equilibrium.

We now turn to the solution manifold. As we have ind
cated above, we may restrict our consideration to soluti
odd in x̃. Any odd function can be expressed in terms o
Fourier series:

q~ x̃, t̃ !5 (
n51

`

qn~ t̃ !sin~2pnx̃!. ~53!

It will sometimes be useful to expressq( x̃,t) in terms of the
time-dependent harmonic coefficientsqn( t̃ ).

In particular, in the initial stage of the chevron structu
formation, when the book structure is quenched into an
stable state, one can obtain a linearized equation for$qn( t̃ )%.
In this limit, the modes are independent and their amplitu
either vanish identically or increase exponentially, each
their own characteristic time scale. However, at later tim
the presence of nonlinear terms inq3 causes interaction be
tween the modes, and the harmonic expansion is no longe
useful.

B. Near-critical strain

We first consider a regime close to the critical stra
ec (s is close to 1). In this regime theq( x̃,t) is small at all
times. We can now neglect the mode coupling and cons
only the dominant mode in the Fourier expansion~53!. This
is the leading term in the expansion, and it develops fa
than all the others. We do, however, need to include
nonlinear term in the equation, in order to avoid an u
checked expansion of the mode amplitude.

Thus in this limit we may takeq to be of the form
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q~ x̃, t̃ !5q1~ t̃ !sin~2p x̃!. ~54!

Multiplying Eq. ~48! by sin(2px̃) and integrating overx̃
we obtain a time-dependent Ginzburg-Landau equation
the amplitudeq1 :

]q1

] t̃
5~s21!q12

3

4
q1

3 . ~55!

This is the generalization to the time domain of the analy
of the analogous statics in earlier work@6#.

For strains less then the critical strain (s,1), fluctua-
tions around the bookshelf geometry decay. The charater
time scale istv /(s21). Thus, as might be expected, there
a critical slowing down in the decay rate as the critical str
is approached.

Above the critical strain, Eq.~55! has an analytical solu
tion:

q1~ t̃ !5S 4~s21!

3 D 1/2

$11exp@22~s21!~ t̃ 2 t̃ 0!#%21/2.

~56!

At early times the the solution exhibits exponential grow
with characteristic time

tc5tv /~s21!5h3 /B~e2ec!. ~57!

At late timesq1 approachesA4(s21)/3 exponentially. The
angleu and the layer displacement tend towards

u~x!52A2~e2ec!/3sin~2px/L !, ~58!

u~x!5LA2~e2ec!/3p2~11cos~2px/L !!.

The characteristic times associated with approach to equ
rium are smaller than those associated with growth by a
tor of 2. Both these times, therefore, exhibit critical slowi
down, associated with the disappearance of the equilibr
amplitude.

C. Beyond the critical régime

For us21u no longer very small, the interaction betwee
harmonics can no longer be neglected. We have been un
to find an analytic solution. However, the problem has be
solved in a straightforward way numerically using both re
space and spectral methods. We start typically with a sm
displacement corresponding to the first harmonic. Howe
the initial conditions are not important, because theq1( t̃ )
increases more rapidly than other harmonics. Low-le
white noise initial conditions gives essentially the same
sults. We are able to verify that the equilibrium solution
reached consistently in two ways. First we monitor the f
energyF, which decreases monotonically with time, as
should. Second we monitor the behavior of the integ
I ( x̃, t̃ ) defined in Eq.~52!, which tends to a constant as equ
librium is approached. This latter method also serves as
automatic check on the accuracy of the numerical schem

We can discern a number of common features in the
sults. The characteristic time seems to betv /(s21), as
might be expected by extrapolating analytically from t
r
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critical régime. In all cases the amplitude of the lowest ha
monic increases until the layer tilt at6L/4 reaches the value
of A2e. This is the value at which layer tilt just compensat
for the surface-induced layer mismatch. This tilt region th
expands until it encompasses the whole layer, apart fr
small regions of size of the healing length at the chevron
and close to the walls. This is just the length required
layer reorientation enforced by the boundary conditions
typical example of this behavior is shown in Fig. 2. We he
concentrate on angular rather than displacement variable
cause this particular physical feature is most clearly illu
trated in this way. In Fig. 3 the same information is pr
sented, now concentrating on the chevron displacem
u(x,t). The sharply peaked chevron only develops at l
times.

FIG. 2. Growth of chevron tilt angle as a function of scaled tim
over half the cell (2L/2<x<0) for s525.0. Curvea is the initial
condition, with very small fluctuation. Curvesb, c, andd are curves

at later timest̃ 51,2,3, respectively. The other half-cell exhibits th
same behavior with opposite sign. Note how the sinusoidal shap
early times is replaced by a flat-topped structure at late times.

FIG. 3. Same as previous figure, but now showing chevron
placement as a function of time, normalized so that the chevron
displacement is unity at equilibrium. In this set of curvess
525.0. Curvesa–d have the same significance as in the previo
figure. In these curves, the sinusoidal shape at early times is
placed by the sharply peaked classical chevron structure at
times.
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An equivalent way of looking at the the layer displac
ment involves the thickness of the chevron tip. The late ti
relaxation process in the highs limit sharpensthe chevron
tip. We show this phenomenon qualitatively in in Fig. 4.
this figure we see the shape of the tip sharpen up in the l
of late times. In Fig. 5 we follow quantitatively the width o
the the chevron tip as a function of time for a typical cas

We now try to draw together results for the whole ran
of s. The characteristic timetv /(s21) seems to govern th
shape of the relaxation process. In Fig. 6 we show the t
dependence of the maximum displacement, normalised t
final value, for several differents, in all cases plotted in
terms of the relevant characteristic time. It will be observ
that the curves almost collapse on to one universal cu
with the low s and highs curves differing slightly. This
latter effect is expected, as the lows case is dominated by
single harmonic, whereas the highs case is more complex

FIG. 4. Normalized displacementv at the chevron tip, at late
times for s5625. Higher curves are for later times. The chevr
structures have been displaced in such a way that the arms o
chevron lie on top of each other. There is also a secular motio
these arms resulting from tightening of the curvature of the lay
nearx56(L/2.) The superposition of the arms highlights the d
creasing chevron tip thickness overlying an otherwise tim
independent structure.

FIG. 5. Time dependence of the normalized displacem
u(x)/uE and the normalized widtĥDx& of the chevron tip, as a
function of scaled time, fors5625. The quantity (du/dx)x50

21 is
taken as a measure of the width.
e

it

e
its

d
e,

V. SUMMARY AND CONCLUSIONS

In this paper we have examined the process which occ
when a Sm-A in a bookshelf structure within a cell i
quenched into a state in which it is no longer stable and
layers buckle. What follows is the evolution of the so-call
chevron structure, and this study has been concerned
the dynamics of the chevron evolution. The motivation,
course, is not so much the Sm-A phase itself, in which the
chevron is an interesting but ultimately useless phenomen
but the possible application to the Sm-C phase. In this latter
case there is an analogous phenomenon whose propertie
of vital technological concern for ferroelectric display tec
nology. This study involves a toy model, the real worth
which will eventually be judged by whether or not it turn
out to be possible to extend this work to study switching
Sm-C cells containing chevron defects.

The driving force for this phenomenon is the mismat
between the layer spacings in the bulk and at the interfa
It is extremely sensitive to the boundary conditions on
surfaces of the cell. The natural expression for the free
ergy involves the layer displacement from the bookshelf
ometry. Interestingly, the statics is most easily solved
transforming form displacement to angular variables, wh
the local angle describes the orientation of the layer w
respect to the bookshelf geometry@5,6#. The statics is gov-
erned by a non-dimensionalised layer strain, which we h
labeled @6# as the chevron numner, which is unity at th
onset of the deformation.

Our analysis of the dynamical problem supposes that
system is quenched so that the bulk-surface mismatch
denly appears, essentially on zero time scale. We have
rived the resulting hydrodynamical equations, which stron
couple layer displacement and hydrodynamical velocity. T
layer displacement is actually a replacement of the more g
eral layer phase, which is a conserved quantity. The resu
that the governing equations appear quite complex. The la
displacement is driven not only by a free energy-related d
ing force but also by the hydrodynamical velocity. The lat
is dominant, but even the former involves a gradient of

the
of
rs
-
-

t

FIG. 6. Scaled time dependence of the maximum normali
displacementu(0)/uE , for variouss. The curves are very close
together, and reduce to one universal curve at low times. At
times, two universal limits, at low and highs, are easily discern-
ible.
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nonequilibrium current, rather than the current itself.
There are three possible relaxation times in the probl

roughly speaking on time scales of nanoseconds, millis
onds, and hours. The relaxation seems to be dominate
the intermediate of these, which we have labelled the visc
relaxation time. From a mathematical point of view, the
teresting feature is that a complex coupled problem can
transformed to a simple time dependent Ginzburg-Lan
problem by using the angular variable rather than the
placement as the principal quantity. What results is
Fisher-Kolmogorov equation, though in practice the most
teresting property of this equation—that it can sustain a tr
eling wave—does not seem to play a role.

The effect of this is that the problem can be almost but
entirely nondimensionalized, dominated by a time scale
is essentially the viscous relaxation time divided by the ch
ron number~less one close to the onset of the chevron
havior! . Quantitatively, we remark on the critical slowin
down phenomenon in the near-critical regime. Qualitative
we note slight differences between the time dependenc
the near-critical behavior, for which the deformation is sin
wave-like, and well-developed deformations, for which t
deformation is V shaped. Essentially, however, the ma
mum displacement obeys a tanh-like structure~though nota-
bly not exactly a tanh! as a function of time. The initial stag
of the process is the growth of the principal harmonic.
later stages, fors large enough, the other harmonics kick
in such a way as to transform the sine wave into a V shape.
The final stage can be thought of as the sharpening of
chevron tip between the two opposite layer orientations.

The problem in observing this phenomenon is twofo
The dominant time scale;1022 sec requires that the
quenching process be quicker than that. This seems a
order. However, if the quench is in to a region just beyo
the chevron onset the quench time scales become shorte
the relaxation times get longer, so this must be the are
which experiments are first attempted.

A second complication concerns the ability of the syst
to sustain hydrodynamics flows at all. The suspicion mus
that if the cell is closed at the ends, rather than open,
no-slip velocity boundary conditions will strongly inhibit th
hydrodynamic flows that we find to dominate the chevr
relaxation process. This will suppress entirely the hydro
B
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namic coupling, and restore the order parameter relaxa
process. This is the permeation process in which the lay
pass through the fluid. From a physical point of view, t
coupling of hydrodynamical velocity to the order parame
motion has accelerated the relaxation from a time scale
hours to a time scale of milliseconds.

We shall find that the properties of the relaxation proc
found in the present study are considerably simpler, b
from a mathematical and a physical point of view, than tho
predicted in the permeation case. We postpone, however
description of this phenomenon to the next paper in this
ries.

We can remark, however, that at the surfaces of the c
the velocity no-slip boundary condition slows down surfa
relaxation; at the surface only permeation can occur. In
study we have restrainedentirely layer slippage at the sur
face, and attributed this to a molecularDeus ex machina
which somehow obtains a memory of the surface layeri
Relaxing the layer boundary condition to allow surface p
meation, however, would not have made any difference
this conclusion, because we have taken the limitd2→0,
which is equivalent to the limittp→`.

Thus the strong implication of this study, to be confirm
in later more detailed investigations, is that the formation
chevrons does not necessarily provide evidence for sur
memory effects. Rather it arises from a competition betwe
slow permeation, which would lead to layer slippage, tilt
layers and a true energy minimum, and rapid layer buckl
leading to a metastable chevron. We use the term buck
advisedly. The thrust of our argument is that the chev
structure is but one of a large class of buckling phenome
of which the classical paradigm occurs in beams@17#. In all
such phenomena, the pain of microscopic compressio
avoided by, albeit inhomogeneous, macroscopic reorie
tion.
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