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The nonlinear growth of the multimode Richtmyer-Meshkov instability in the limit of two fluids of similar
densities(Atwood numberA—0) is treated by the motion of point potential vortices. The dynamics of a
periodic bubble array and the competition between bubbles of different sizes is analyzed. A statistical mechan-
ics model for the multimode front mixing evolution, similar to the single-bubble growth and two-bubble
interaction based model used by Alehal.[Phys. Rev. Lett72, 2867(1994] for A=1, is presented. Using
the statistical bubble merger model, a power lavi%ffor the mixing zone growth is obtained, similar to that
of the bubble front growth for thé=1 case and in good agreement with experiments and full numerical
simulations[S1063-651X98)13312-3

PACS numbg(s): 47.20-k, 47.32.Cc, 02.60.Cb

I. INTRODUCTION model predicts that the bubble size spectrum, normalized to
the average bubble size, reaches an asymptotically fixed dis-
Hydrodynamic instabilities, such as the Rayleigh-Taylortribution. Hence, at late time, the bubble-front evolution is
(RT) instability [1] and the Richtmyer-MeshkolRM) insta-  dominated by a self-similar growth.
bility [2], are of crucial importance in fields like inertial con-  For A=1, in the case of the RT instability, the model
finement fusion (ICF) [3,4 and astrophysicg5]. The  shows that the asymptotic tip velocity of a periodic array of
Rayleigh-Taylor instability occurs when a light fluid accel- jgentical bubbles i8/= \(1/6m) g\ where\ is the bubble
erates a heavier fluid while the Richtmyer-Meshkov inStab"'waveIength andy is the driving acceleratiofil2,13. Fur-

ity occurs when a shock wave passes through an interfaGgemore the multimode bubble front was found to grow
between the fluids. Under these instabilities, small perturbaésymptotically a$= agt? with «=0.05 in accordance with

tions on the initial interface develop to an array of bubblesmany known experimental and numerical res[dié—17. In

and spikes. Recently, much progress has been made in up)- : . .. .
derstanding the mixing process of the RM and RT instabili—.{h? casle ofthe R|\t/| 'nStt?]b'“tY’ vlvh(ta)rebtbhle dr|V|ngtacticeIerIat|$n
ties in terms of basic flow structures and their interactiond> MPUISIVE I nature, the singie-bubble asymptotic velocity

[6-11]. The bubble front was found to be dominated bywas found to beV=(1/37)\/t and the bubble front was

bubbles rising and competing: large bubbles rise faster anfpund to grow according to the power lahg=aot" with
overtake their smaller neighboring bubbles. As a result thé/»=0.4, wherea, depends on the initial perturbation mean
surviving bubbles at the front continually grow. This picture Wavelength and velocit}10,11].

was pioneered for the RT instability by Sharp and Wheeler At Atwood numbers smaller than one, numerical simula-
[6]; it was later extended by Glimm and Sharpl. The tions and physical argumenf$1] have shown that, for the
model of Sharp and Glimm was solved numerically byRM instability, the single-mode bubble velocity maintains
Zhang to give the correct power law for the RT bubble frontthe formV=C\/t but with C having a weak dependence on
in [8]. Recently such a statistical mechanics model wad\, varying from about 0.11 foA=1 to about 0.16 a$\
adopted by Alon and his coauthd@—11] to study the late —0, and that the multimode bubble front still obeys the
time scaling of the RM and RT instabilities in the limit of power law oft®4for all Atwood numbers. These results were
infinite density ratio(Atwood number ofA=1). The model confirmed by full 2D numerical simulatiorj40,11. Recent

is based on modeling the front by an array of two-shock-tube experiments by Sadetal. [18], have verified
dimensional(2D) bubbles, each rising with its single-mode the single-mode bubble and spike evolution and demon-
asymptotic velocity obtained from a Layzer-type potentialstrated the bubble-competition process under shock wave ac-
flow model[12,13. Bubbles overtake smaller neighboring celeration for relatively high Atwood numberA&O0.7).
bubbles to form larger bubblg$bubble merger”) at a rate  New, yet unpublished, results by Sadi@®] confirm the ex-
which is calculated using an extension of Layzer’s potentiapected low Atwood number behavior by performing a simi-
flow model to describe two-bubble competitiptD,13. The lar shock-tube experiment &t=0.2. Impulsive acceleration
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experiments were conducted by Jacobs and Sh¢a@yfor
a single-mode initial perturbation #@t=0.14, verifying the
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densities, the mixing flow pattern is more complex than at
A=1. Stratification and breakup of fluid drops replace the

low-A single-mode nonlinear evolution that is predicted bydistinct bubbles and spikes of tile=1 case. Potential flow
the A=0 vortex model, presented in that paper. Dimonte andnodels, which were used to study tAe=1 limit [9-13], do
Schnlder[14] have performed impulsive acceleration experi-not app|y in the lowA regime and an alternative approach
ments with random initial perturbation resulting int%* should be used. In the present work we study the low At-
power law forA=0.22. wood number limit of the RM mixing zone evolution using a

At low Atwood numbers, when the fluids have similar new vortex model, rather than the potential flow model
which is used for théd=1 limit. The model is based on the
model suggested by Jacobs and Sheé¢®§} and later by
Zabusky, Ray, and Samtangl].

Studying the low Atwood number limit of the RM insta-
bility, is of significance in many applications. In astrophysi-
cal systemdg5], shocks are often progressing in a slowly
varying density profile, and the Boussinesq l&wapproxi-
mation[22] is used to describe the mixing zone evolution. In
ICF, the fuel-ablator interface is usually classically unstable
due to the density jump between the abldmastic, foam, or
berilium) and the solid deuterium-tritiuntDT) fuel layer
[3,4,23. The typical Atwood number at this interface is of
order 0.2-0.4. In addition, calibration of effective mix mod-
els, such as the two-phase flow mod#&b,16,24, needs to
have the right Atwood dependence in order to be applied for
a general acceleration history and density profile. Having
analytical limits, as well as experiments and numerical simu-
lation results, at both high and low Atwood numbers does
add to the solidity of such calibration.

Our present study is limited to the low-Mach number low-
compressibility case. In such a case, the initial velocity, im-
printed on the interface between the two fluids by the shock
wave, is much smaller than the shock velocity. Therefore the
shock wave influence on the perturbation evolution is negli-
gible at late timg11,25,26 and the effect of the shock can
be represented by an equivalent initial velocity perturbation
localized around the interface. Assuming a cosgiae ini-
tial perturbation on the interface, the amplitude of the im-
printed initial velocity perturbation is given by Richtmyer’s
linear theory:U%,,=kAaAU, wherek is the initial perturba-
tion wave numberA is the Atwood numbera is the initial
perturbation amplitude, andU is the velocity jump im-
printed on the interface by the shock wave.

According to Richtmyer’s theory, whefugoes to zero the
amplitude of the imprinted initial velocity perturbation will
also go to zero. Therefore there will be no real classical RM
instability atA=0 [27]. Yet when the interface between two
fluids of equal densitiesA=0) is subjected to a given ve-
locity perturbation, it is still an unstable state and therefore
the imposed initial perturbation will grow into a formation of
a turbulent mixing zone between the two fluids, regardless of
the source of the perturbation. In the present work we study
=0.7 sec. For alA an identical initial velocity perturbation with an gje %VOII."tIQn of an initial Veloc;ty ?irturb%tl?n I_nlvtlher:lm;: Ofk
amplitude of 1 cm/sec have been imposed on the interface. The Y aming to _repre‘cf?nt a low-Atwood low ach snoc
results of A=0,0.050.1,0.1502 are shited bydx Wave generated _mstaplllty case. In order to confirm this as-
—0MN/2)\,3M/2,2\, respectively.(b) Numerical simulations of a sumption, numencal simulations were conducted for_Atwood
multimode RM instability forA=0,0.2. Identical initial velocity ~Nnumbers ranging fronA=0 to A=0.2, both of a single-
perturbation composed of a sum of 20 modes §—25) with an  Mode initial perturbation and of a multimode random initial
average amp]itude of 0.5 cm/sec is imp|emented for both Atwoocperturbation. In the Simulations an identical |n|t|a| Velocity
numbers. The domain is a 26 o6 cm box with 200 by 200 perturbation was imposed on the two-fluid interface at all
computational cells. The results &=0,0.2 are shifted bydx  cases and the evolution in time of the interface was tested.
=0,26 cm and fot=0.1, 0.4, and 0.7 sec liy=0, 26, and 52 cm, The results from the simulations are shown in Fig. 1. From
respectively. the simulations it is evident that both for the single-mode
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FIG. 1. Numerical comparison of the RM instability for low
Atwood numbers(a) Numerical simulations of a single-mode RM
instability with A=7.7cm at A=0,0.05,0.1,0.15,0.2 and
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case and for the multimode case, the differences between thgherel is the vortex strengthz is the complex coordinate,

A=0 results and cases @& close to zero are very small. andz, is the location of the vortex in the complex field. The

These numerical results as well as the success oAth@ complex potential of a vortex line will then H&8]

vortex model in predicting the low experiments19,2Q

strengthen our assumption that tAe=0 case with an im-

posed initial velocity perturbation can serve to study the W(2)= Z

low-A low-Mach limit of the RM instability. e

cvolution and two.bubble interaction s consir e, The vorerea i the distance between neighboring vortices along

tex model is based on extending the single-mode vorte;[(h(.a line andz IS the complex location _coc_)rd|r_1ate'1=x
+iy. In a rotational flow field the velocity is given by

models of Jacobs and Sheek30] and Zabusky, Ray, and —iv=d[w(z)]/dz and therefore the velocity field induced

Samtaney{21]. The model results for the single-mode andb tex ine | y

two-bubble interaction then serve in a statistical mechanicgy & VOrtex i€ 1S

merger model to yield scaling laws for the multimode mixing iT

zone evolution. Good agreements to the above experimental u(z)= =— R cot(wz/a)],

results are achieved. 2a

©

2

T ir )
i —)In(z—na)=z In sin(wz/a), (3)

4

ir
Il. THE VORTEX MODEL u(2)=— 5 Im[cot(wz/a)].

A. Rotational flow
The RM instability is initiated by a velocity perturbation ~ The velocity field of a given set of vortex lines is the sum

on an interface between two fluids. The initial perturbationover the velocity fields induced by every line in the set.
generates an initial vorticity field. From thed®1], experi-
ments[20], and numerical simulation of the RM instability at B. Single-mode perturbation
low Atwood numbers, one can clearly see the early forma- . . _— . .
tion of vortices in the flow patterns, formed by the strong. /& chose sine and cosine-type initial perturbations, which
attractive effective potential between vorticity points in the " thé case of a single-mode initial perturbation is of the form
vorticity field. This observation implies that the flow rapidly

. _ = 1O v(X,y)=vocog kx)e IV,
becomes rotational rather than potential, which is the case (x.y)=vocoskx)

for Atwood numberA=1. — oy sinkse— ] ®)
In fields of rotational flow the vorticity is defined as u(x,y) =vesin(kxe '
=V XYV, and a vortex strength is calculated by In the case ofA=0, such an initial perturbation trans-
forms, early in time, as seen in the simulation in Fig. 3, into
v= J w-ds= fﬁ V-dl, (1) alocalized vortex array. This enables one to model the evo-
surface contour lution of the single-mode initial perturbation, as described in

) ) ~Fig. 4, as an infinite vortex line with alternating directions, as

where the surface integral is taken over the area containinggs first suggested by Jacobs and SheE2éy.
the vorticity from which the vortex is generated, and the  This line is a sum of two periodic vortex lines, described
contour integral is taken over a contour limiting this area.in the preceding section, and the complex potential of the
From Kelvin's theorem of circulation the vortex strength is jine is the sum of the complex potentials of the two periodic
constant in time(viscous loss of turbulent energy is negli- yortex lines. The strength of the vortices forming the lines is
gible under present conditiopsand therefore it can be cal- cajculated using Eq(l), I'=4[%v(0y)dy=4vy/K, where
culated from the initial velocity field. , _ vy and k are the initial perturbation amplitude and wave

As discussed below, in our problem we are dealing withy,mper. In the case of a single-bubble array there is a full
arrays of identical bubbles, each consisting of two vortices inyymmetry between the vortices and therefore the velocities
opposite directions. We model such an array of bubbles by g their centers are zero, with the result that the complex
set of infinite vortex lines, as will be shown in the next hotential in the domain is a motion constant. This allows one

section. A vortex line is described in Fig. 2. to solve the equations for the bubble tip analyticag]:
The complex potential induced by a single vorteX2s]

r h(t)=(1/k)sin h~Y(Tk?/2mt), (6)
w(z)=| —)ln(z—zo), 2 . . . .
27 whereh(t) is the height of the bubble tip above the original
interface. The asymptotic velocity of E() is
1A\
000 000 Vasyzz T; (7)

where\ =2x/k. The asymptotic velocity of Eq.7) should
FIG. 2. A schematic drawing of an infinite vortex line wherss ~ be compared to the result at=1, where V,
the distance between two neighboring vortices. =(1/3m)(N/t), which was derived from a potential flow
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FIG. 4. Schematic drawing of two vortex lines, with a distance
a between the vortices in each line and with a vortex strendth

representing a single-bubble array perturbation. The interface per-
turbation is represented by a dashed line.

oo ~— squared cells with 40 cells per half wavelength. The agree-

ment between the model and the simulation is very good. As
noted before, these results are also in good agreement with
previous numerical simulatiorjd 1] and recent experimental
results for low Atwood number20,19.

Since the complex potential describes the flow in the en-
tire domain, one can derive from E}) the velocities and
the evolution in time of any point in the flow pattern. This
enables one to numerically find the evolution of the whole

interface att=0 and after a short timéwhen the bubble’'s ampli- interface by descrlblng It as a_ finite ?E’t of pplnts which _can
tude is still on the order of 0.1 of the wavelengt®ne can see the be foI_Iowed numerically, by directly integrating the motion
fast concentration of the vorticity forming a vortex. The initial per- €duations. The agreements between the model and the full
turbation is a sine with a maximum velocity of 1 cm/sec. The simu-numerical 2D simulation are very good, as can be seen in
lation was done with theeeor-2p code, a compressiblee inter-  Fig. 6, for both the bubble height and the interface roll-ups
face tracking code. A reflecting boundary condition was applied forinside the bubbles.

the left and right sides, thus a periodic array of bubbles was simu-
lated and the incompressible lin{ligh sound velocitywas used.
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FIG. 3. Vortex formation. Vorticity contours near the bubble’s
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C. Two-bubble interaction

In order to model the random perturbation case with a
statistical mechanics bubble-merger model we constructed a
model for the interaction between two neighboring bubbles.
The initial perturbation of the two bubbles is a sum of two
cosines and sines of the form

model by Hecht, Alon, and Shvarf&3]. The difference in
the coefficient is attributed to the added mass in Ahe0
case[29].

We compared our predictions to full scale numerical
simulations, using EEOR-2D, a compressibleLE code with
interface tracking11,16,18. The fluid equation of state was u(x,y)=v cog k;x)e~ k¥l +y cog kox)e™ k¥,
such that the simulations were in the incompressible limit )
(sound velocity much greater at all times than the fluid ve- v(x,y)=u,_sin(klx)e‘|kly‘+ussir(k2x)e‘|k2y‘,
locities) and the density changes during the whole simulation
were less than 1%. wherev, andvg are the two bubbles’ initial velocities, and

The asymptotic velocity of Eq7) is compared, in Fig. 5, k; andk, are the wave numbers from which the initial per-
with a full 2D numerical simulation of a single-mode cosine turbation is formed. This initial perturbation describes a pe-
perturbation with\ =1 cm and an initial bubble tip velocity riodic array of bubbles of two sizes. In order to model the
of 1 cm/sec; the resolution used in the simulation was otwo-bubble interaction, the single-bubble model was ex-

' o.6 T
g = ~ /
o) Sim._.*" ‘
Fa ) 7 Model
Do i
< T o
(X .g.
o 0.3 7
@ Eoos 3™
Do
e 0.06 B
-]
o0 o1 b 0.04 B
0.02 —
00 1 . 2 3 OO 1 . 2
time[sec] time [sec]

FIG. 5. Single-mode bubble height and velocity. Comparison between the model and a full 2D simulation for thexcadecof and
an initial tip velocity of 1 cm/sec(a@) Bubble tip height(b) bubble tip velocity multiplied by the time. Marked in the figure are H§3and
1/(2), the asymptotic behavior fok=1 and 0, respectively(The ripple in the simulation asymptotic velocity is due to the existence of
weak sound waves that exist since the simulation fluids are not totally incompresshmesimulation data are described in Fig. 2.
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; Vortex Moc1ie| ,
T=0.6 T=15 T=2.1 T=3 _ N
O )
S L s L s
-0.5 -0.5 -0.5
§ P » P FIG. 7. Schematic drawing of four vortex lines representing a
0 05 1 0 05 1 0 05 1 0 05 1 two-bubble perturbation. The perturbation is represented by the
Full 2D Simulation dashed line which is a sum of two cosine;sstgnds for a large
1 1 1 bubble,S for a small one, and the four vortex lines are numbered
1-4. Notice that lines 1 and 3 represent vortices with a clockwise
0° 0s o8 os direction where line 1 is of small vortices of strendth and line 3
Oﬂ 0 0 0 is of large vortices with strengths;. Lines 2 and 4 are directed
counterclockwise of strengthi; andI',, respectively.
-0.5 -0.5 -0.5 -0.5
B B P B motion between the vortices of a given line, but enables rela-
0o 05 1 0 05 1 0 05 1 0 05 1

tween the model and a full 2D simulation described in Fig. 2. The
model results are of anobe23 numerical calculation of 300 points
from the interface. The domain is a 1 &ttt cm box. The time is in

tive motion between the lines themselves. Thus we followed
FIG. 6. Single-mode bubble interface evolution, comparison be-T[he line motion in time, where each line moves in the veloc-

ity field induced by the complex potential of the other three.

In this case there are two different vortex strengtbach
appearing twice;£T'; and =T',), as can be seen in Fig. 7.

seconds. Th& andY axes are the special andY coordinates and Using Eq.(1), the vortex strengths are calculated:

are given in cm. v [1+c0sHKyXm)] v 1+CogKaXey) ]
1 2

tended to the case of two bubbles by setting an array of four
periodic infinite vortex lines, creating an array of alternating
large and small bubbles, as described in Fig. 7.

In this case the symmetry of the problem prevents relative

©)

(vL[1+cos(k1xm)] vs[—1+cos(k2xm)])
2:2 + y
Ky Ko

@

T=0.3 T=0.9 T=1.5
0.5 0.5 0.5
-0.5 -0.5 -0.5
1 1 -1
o 05 1 0 05 1 o 05 1

0.5

-0.5

o
=
&

2 13
@ b

ht [om]

o
B

heig
]

sm.

Model

01 02 03 04

05 08 07 08 08 1

tl ME [sec]

Vortex Moqel

Full 2D Sim1ulation

0.5 0.5

0 [A] 02 03 04 05 06 07 08 08 1

* timetsec]

FIG. 8. Two-bubble competition. Comparison between the model and a full 2D simulation, usmg @aode with interface tracking
[11], for v =1 cm/sec an@ = 0.5 cm/seci(a) bubble interfacdreflecting boundaries were used in order to simulate an array of bubbles
The time is in seconds and th¢andY axes are the speci® and Y coordinates and are given in crtb) Bubble tip heightsdashed
line—simulation, full line—vortex mode! (c) Bubble tip velocity multiplied by timgésmooth line—vortex model, wavy line—simulation
X indicates the beginning of the merger procé3she end of the merger process, ahtis the merger time.
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From the model we can define the merger rate® be

(1)()\1,)\2) Atmerger, (10)
° Vortex model where \; and A, are the wavelengths of the interacting
(A=0) B bubbles at the beginning of the merger process &ty ger
Bosy e is the merger time. The merger time is the interval between
_— the time at which the small bubble’s velocity multiplied by
ok L i Potential model time 'starts to decreas[qnoin.t X in Fig.' 8(c), marking the
o (A=1) coexistence stageand the time at which the small bubble
P - reaches negative velocifyoint O in Fig. 8(c), marking the
oxr L i end of the merger stagelt was found that the merger rate
L depends only on the wavelength rategp=\i/N>. The
0 : s = s = A merger ratew(q) is plotted in Fig. 9 and compared to the
A merger rate obtained by Aloet al.[11] for A=1, using the
12 potential flow model. It can be seen that fof/A,<2.5 the
FIG. 9. Calculated dimensionless merger ratas a function of ~Merger ratew is similar for both high and low Atwood num-
the wavelength ratio, foA=0 (full line) compared to theA=1 bers while for a bubble wavelength ratio larger than 2.5 the
case(dashed ling[10]. The dimensionless merger rate is calculateddifference is larger.

by multiplying the merger rate by the time of the beginning of the

merger. Iil. THE MULTIMODE BUBBLE-FRONT EVOLUTION
wherex,, is a reference point between the two bubklé® As mentioned in the Introduction, the RM bubble front is
point where the initial flow velocity is zejo dominated by bubbles rising and competing. Recently, Alon

From the complex potential induced by the vortex lines,and co-worker$9,10] have developed a statistical model for
two equations, for the locatian (t),y,(t) of one of the lines the RM instability in the case oA=1, showing that an
of the large vortices and two equations for the locationasymptotic self-similar bubble spectrum is reached, after a
X,(1),y,(t) of the lines of the small vortices are obtained, few merger generations, with a power law of for the
where the locations of the other two are mirror images of thébubble front, where#=0.4, and in growth with a constant
previous ones reflected on a line perpendicular to the intervelocity for the spike front. In the model the bubbles are
face, intersecting it at the tip of one of the bubbles. Afterarranged along a line, and are characterized by their hkjght
numerically solving the equations one gets the motion of theand their wavelengtix;. Each bubble rises with its single-
vortex lines, from which the time dependent complex potenbubble velocityV(\;,t) and merges with its neighboring
tial is derived in the whole domain. Using Ed), the veloc-  bubbles at a merger rate(\;,\;,1). The single-bubble ve-
ity history of any point can be obtained, especially that of thelocity and the two-bubble merger rate were calculated using
interface. The comparison of the model to full 2D simula-a potential flow model. The scale invariant bubble spectrum
tions gives good results, as can be seen in Fig. 8kfor f(\/(\)) was introduced. The bubble front was assumed to

=2mrcml,  k,=4wcml v,=1cmisec, and vs grow with the velocity of the bubbles averaged over the scale
=0.5 cm/sec. invariant distribution:
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FIG. 10. Statistical merger model results, using merger rates and bubble velocities foand 0.(a) Turbulent mixing zongTMZ)
power-law exponené for A=0 and 1 as a function of the number of merger generati@ms he asymptotic bubble spectrum far=0 (full
line) and 1(dashed ling notice the similarity between the two.
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(a) t=0 t=0.4e-2

X [em]

FIG. 11. Comparison between the model and a full 2D simulatiorAfer0. (a) A full 2D simulation of a 0.6 cnx0.3 cm box with
200X 200 cells. Time is in seconds amdandy are in cm.(b) Simulation bubble-front top view envelope, with a time dependéakis
displacement. Thé& indicates a rising bubble. One can see the bubble competition where small bubbles begin to drop and larger ones take
over the space of the smaller ones.

d(hy¢/dt=(V1(\,1))s, (11) Meshkov instability power-law exponent &={w); where
the average is taken over the bubble spectrémé
with (h)s=h(\,t)f(N)dA and (V1(\, 1)) =[w(x,y)f(x)f(y)dxdy.
=[V(\,t)f(N)d\. In order to study the RMA—0 limit, we used the statis-
Applying the results from the vortex model for the single- tical model, based on the results of the vortex model for the
bubble velocity of Eq.(7), Eq. (11) becomesd(h)/dt single-bubble velocity and for the two-bubble merger rate.
=(\)¢/(2wt). The average wavelength increases(a$; The statistical model was applied numerically for an initial
=L/N(t), whereL is the total length of the domain amdis ~ ensemble of 100 000 bubbles distributed witf\)=const
the number of rising bubbles. From the average merger rat®r A €[0.5cm,1.5cm and zero otherwise. The bubbles
the time dependence of the number of bubbles is derived: were set along a line with each pair of neighboring bubbles
having a probability of merger proportional te(q) of Eq.
dN(t)/dt=(w)N(t). (120 (10. After three to four merger generatiofise., each sur-
viving bubble has merged three to four tinesn asymptotic
Integrating Eq(11) with Eq. (12) the bubble-front height  self-similar bubble distribution was achieved. From the
hy(t) is derived: bubble spectrum ana@(q) the average merger rate is calcu-
Y lated and the power of the bubble-front height growth rate is
hp(t)=aot", (13 derived using Eq(13). In Fig. 10 one can see the results of
. — s ] ] ) the statistical model. It is seen that asymptotically, after
with 9:<g>f andap=C\y "vg, Wherecis a dimensionless apout three to four merger generations when a self-similar
constant,\o is the mean wavelength of the initial bubble regime is reachedj approaches the valug,~0.41 for A
ensemble, and, is the mean velocity of the bubble en- =0 as compared t@,s~0.39 for A=1. The results forA
semble[11]; the form of a; can be derived from simple =1 are calculated using s~ (1/37)\/t and w(q) as was
dimensional considerations. Therefore the Richtmyerderived by Alonet al. [10] using the potential flow model.
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FIG. 12. Comparison between the model and a full 2D simulatio®\fe0. (a) TMZ volume fraction at several times, where texis
is X/t%% One can see the self-similar behavior of the TME. Bubble-front height calculated at 10% mass fraction.

It is found that the bubble-front growth rate exponent isthe 10% averaged volume fraction location in time, seen in
similar for bothA=1 and 0. The reason for this is thais  Fig. 12b), does obey th¢®* power law, in very good agree-
determined by the merger rat&(q), which, as can be seen ment with the model predictions. Recently this result was
in Fig. 9, is similar in both cases for the main region of theconfirmed experimentally for low Atwood numbers[ib4].
self-similar bubble spectrum\;/\,<2.5. In the RM case
the growth rate is similar for alA because while in the RT
case the buoyancy force term, which depends linearlyon IV. CONCLUSION
leads to a linear dependence of the bubble-front height coef-
ficient onA(apyppe= 0.054), in the RM case, where only the Using a vortex model for the Richtmyer-Meshkov insta-
weakly A dependent drag force is controlling the late timebility for Atwood numberA=0, we model the single-bubble
evolution[11], the growth rate exponent should be similar velocity to get the asymptotic value,q=1/2w\/t and the
for all A. Note that even though the bubble front does growcomplex interaction between two neighboring bubbles. Us-
similarly in theA=0 and 1 cases, there is a large differenceing a statistical model we describe the development of ran-
in the evolution of the whole mixing zone region betweengom perturbations based on the mechanism of bubble
these two cases due to the large differences in the spike frOfﬁﬁerger. This leads to the power law 3, as in the previ-
sca(lmg: atA=0, bubbles and spikes are symmetrical and gqyysly studiedd=1 casg10], supporting the conclusion that
ast™, while atA=1, spikes are growing linearly in time. In the power-law exponent for the RM instability bubble front
general at 8<A<1, Ospie™ Opunnie: FOr more detail sefll]. g jngependent of the Atwood number. Note that for the spike

The result for the evolution of a random initial perturba- front, an Atwood number dependent power law was found
tion at A=0 was compared to a fu_II 2D simulation. The [10]. At A—0 bubbles and spikes become symmetric and the
simulations have been conducted with #e codeLEEOR- entire mixing zone grows ad*

20 with & 200< 100 cell mesh covering a 0.5 cn.25 cm It is remarkable that similar.lar e-structure physics appear
domain. The initial condition was a velocity perturbation ON . determine the mixing zone evglution at botﬂ gensit ppt_
the interface which is the sum of 20 modes with random 9 e . y ratio
amplitudes: extremes. .In both extremes simplifying (;ondlt|o_|15 allowed
us to derive the large-structure behavi@otential flow
model atA=1 and vortex model aA=0). This method,
oyl describing a complex flow by quantifying its simple fluid
U(X!y):zl vncogkyx)e™ " rlu(x,y) structures and their pair interactions, might offer a powerful
tool for the study of other mixing processes.
20 The result for the power-law exponent of the evolution of
= vysin(kx)e k!, (14  the RM instability is an important result and is related to
n=1 many fields of turbulence, such as the Kelvin-Helmholtz in-
stability, turbulent decaj30], etc. The power-law exponent
wherev,, are random numbers,<0v,<1. for the RM instability, 6=0.4, was recently used, together

The occurrence of bubble competition is clearly seen inwith the RT instability constant ofr,=0.05[11], to con-
Fig. 11. Thet?* self-similarity of the horizontally averaged struct an effective mix model for predicting the growth rates
volume fraction from the simulation is seen in Fig(d2and  of hydrodynamic instabilitie§24].

20
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