
PHYSICAL REVIEW E DECEMBER 1998VOLUME 58, NUMBER 6
Vortex model for the nonlinear evolution of the multimode Richtmyer-Meshkov instability at low
Atwood numbers
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The nonlinear growth of the multimode Richtmyer-Meshkov instability in the limit of two fluids of similar
densities~Atwood numberA→0) is treated by the motion of point potential vortices. The dynamics of a
periodic bubble array and the competition between bubbles of different sizes is analyzed. A statistical mechan-
ics model for the multimode front mixing evolution, similar to the single-bubble growth and two-bubble
interaction based model used by Alonet al. @Phys. Rev. Lett.72, 2867~1994!# for A51, is presented. Using
the statistical bubble merger model, a power law oft0.4 for the mixing zone growth is obtained, similar to that
of the bubble front growth for theA51 case and in good agreement with experiments and full numerical
simulations.@S1063-651X~98!13312-3#

PACS number~s!: 47.20.2k, 47.32.Cc, 02.60.Cb
lo

-

l-
bil
fa
b
le

u
ili
n

by
an
th
re
le

by
n
a

f

o-
e
ia
g

tia

d to
dis-
is

el
of

w

ion
ity

n

la-

s
n

he
re

on-
ac-

i-
I. INTRODUCTION

Hydrodynamic instabilities, such as the Rayleigh-Tay
~RT! instability @1# and the Richtmyer-Meshkov~RM! insta-
bility @2#, are of crucial importance in fields like inertial con
finement fusion ~ICF! @3,4# and astrophysics@5#. The
Rayleigh-Taylor instability occurs when a light fluid acce
erates a heavier fluid while the Richtmyer-Meshkov insta
ity occurs when a shock wave passes through an inter
between the fluids. Under these instabilities, small pertur
tions on the initial interface develop to an array of bubb
and spikes. Recently, much progress has been made in
derstanding the mixing process of the RM and RT instab
ties in terms of basic flow structures and their interactio
@6–11#. The bubble front was found to be dominated
bubbles rising and competing; large bubbles rise faster
overtake their smaller neighboring bubbles. As a result
surviving bubbles at the front continually grow. This pictu
was pioneered for the RT instability by Sharp and Whee
@6#; it was later extended by Glimm and Sharp@7#. The
model of Sharp and Glimm was solved numerically
Zhang to give the correct power law for the RT bubble fro
in @8#. Recently such a statistical mechanics model w
adopted by Alon and his coauthors@9–11# to study the late
time scaling of the RM and RT instabilities in the limit o
infinite density ratio~Atwood number ofA51). The model
is based on modeling the front by an array of tw
dimensional~2D! bubbles, each rising with its single-mod
asymptotic velocity obtained from a Layzer-type potent
flow model @12,13#. Bubbles overtake smaller neighborin
bubbles to form larger bubbles~‘‘bubble merger’’! at a rate
which is calculated using an extension of Layzer’s poten
flow model to describe two-bubble competition@10,13#. The
PRE 581063-651X/98/58~6!/7410~9!/$15.00
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model predicts that the bubble size spectrum, normalize
the average bubble size, reaches an asymptotically fixed
tribution. Hence, at late time, the bubble-front evolution
dominated by a self-similar growth.

For A51, in the case of the RT instability, the mod
shows that the asymptotic tip velocity of a periodic array
identical bubbles isV5A(1/6p)gl where l is the bubble
wavelength andg is the driving acceleration@12,13#. Fur-
thermore, the multimode bubble front was found to gro
asymptotically ash5agt2 with a>0.05 in accordance with
many known experimental and numerical results@14–17#. In
the case of the RM instability, where the driving accelerat
is impulsive in nature, the single-bubble asymptotic veloc
was found to beV5(1/3p)l/t and the bubble front was
found to grow according to the power lawhb5a0tub with
ub>0.4, wherea0 depends on the initial perturbation mea
wavelength and velocity@10,11#.

At Atwood numbers smaller than one, numerical simu
tions and physical arguments@11# have shown that, for the
RM instability, the single-mode bubble velocity maintain
the formV5Cl/t but with C having a weak dependence o
A, varying from about 0.11 forA51 to about 0.16 asA
→0, and that the multimode bubble front still obeys t
power law oft0.4 for all Atwood numbers. These results we
confirmed by full 2D numerical simulations@10,11#. Recent
shock-tube experiments by Sadotet al. @18#, have verified
the single-mode bubble and spike evolution and dem
strated the bubble-competition process under shock wave
celeration for relatively high Atwood number (A50.7).
New, yet unpublished, results by Sadot@19# confirm the ex-
pected low Atwood number behavior by performing a sim
lar shock-tube experiment atA50.2. Impulsive acceleration
7410 © 1998 The American Physical Society
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PRE 58 7411VORTEX MODEL FOR THE NONLINEAR EVOLUTION OF . . .
experiments were conducted by Jacobs and Sheeley@20# for
a single-mode initial perturbation atA50.14, verifying the
low-A single-mode nonlinear evolution that is predicted
theA50 vortex model, presented in that paper. Dimonte a
Schnider@14# have performed impulsive acceleration expe
ments with random initial perturbation resulting in at0.4

power law forA50.22.
At low Atwood numbers, when the fluids have simil

FIG. 1. Numerical comparison of the RM instability for low
Atwood numbers.~a! Numerical simulations of a single-mode RM
instability with l57.7 cm at A50,0.05,0.1,0.15,0.2 andt
50.7 sec. For allA an identical initial velocity perturbation with an
amplitude of 1 cm/sec have been imposed on the interface.
results of A50,0.05,0.1,0.15,0.2 are shifted bydx
50,l/2,l,3l/2,2l, respectively.~b! Numerical simulations of a
multimode RM instability forA50,0.2. Identical initial velocity
perturbation composed of a sum of 20 modes (l 55 – 25) with an
average amplitude of 0.5 cm/sec is implemented for both Atwo
numbers. The domain is a 26 cm326 cm box with 200 by 200
computational cells. The results ofA50,0.2 are shifted bydx
50,26 cm and fort50.1, 0.4, and 0.7 sec bydy50, 26, and 52 cm,
respectively.
d
-

densities, the mixing flow pattern is more complex than
A51. Stratification and breakup of fluid drops replace t
distinct bubbles and spikes of theA51 case. Potential flow
models, which were used to study theA51 limit @9–13#, do
not apply in the low-A regime and an alternative approac
should be used. In the present work we study the low
wood number limit of the RM mixing zone evolution using
new vortex model, rather than the potential flow mod
which is used for theA51 limit. The model is based on th
model suggested by Jacobs and Sheeley@20# and later by
Zabusky, Ray, and Samtaney@21#.

Studying the low Atwood number limit of the RM insta
bility, is of significance in many applications. In astrophys
cal systems@5#, shocks are often progressing in a slow
varying density profile, and the Boussinesq low-A approxi-
mation@22# is used to describe the mixing zone evolution.
ICF, the fuel-ablator interface is usually classically unsta
due to the density jump between the ablator~plastic, foam, or
berilium! and the solid deuterium-tritium~DT! fuel layer
@3,4,23#. The typical Atwood number at this interface is o
order 0.2–0.4. In addition, calibration of effective mix mo
els, such as the two-phase flow model@15,16,24#, needs to
have the right Atwood dependence in order to be applied
a general acceleration history and density profile. Hav
analytical limits, as well as experiments and numerical sim
lation results, at both high and low Atwood numbers do
add to the solidity of such calibration.

Our present study is limited to the low-Mach number lo
compressibility case. In such a case, the initial velocity, i
printed on the interface between the two fluids by the sh
wave, is much smaller than the shock velocity. Therefore
shock wave influence on the perturbation evolution is ne
gible at late time@11,25,26# and the effect of the shock ca
be represented by an equivalent initial velocity perturbat
localized around the interface. Assuming a cosine~sine! ini-
tial perturbation on the interface, the amplitude of the i
printed initial velocity perturbation is given by Richtmyer
linear theory:URM

0 5kAaDU, wherek is the initial perturba-
tion wave number,A is the Atwood number,a is the initial
perturbation amplitude, andDU is the velocity jump im-
printed on the interface by the shock wave.

According to Richtmyer’s theory, whenA goes to zero the
amplitude of the imprinted initial velocity perturbation wi
also go to zero. Therefore there will be no real classical R
instability atA50 @27#. Yet when the interface between tw
fluids of equal densities (A50) is subjected to a given ve
locity perturbation, it is still an unstable state and therefo
the imposed initial perturbation will grow into a formation o
a turbulent mixing zone between the two fluids, regardles
the source of the perturbation. In the present work we st
the evolution of an initial velocity perturbation in the limit o
A→0, aiming to represent a low-Atwood low-Mach shoc
wave generated instability case. In order to confirm this
sumption, numerical simulations were conducted for Atwo
numbers ranging fromA50 to A50.2, both of a single-
mode initial perturbation and of a multimode random init
perturbation. In the simulations an identical initial veloci
perturbation was imposed on the two-fluid interface at
cases and the evolution in time of the interface was tes
The results from the simulations are shown in Fig. 1. Fr
the simulations it is evident that both for the single-mo
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case and for the multimode case, the differences between
A50 results and cases ofA close to zero are very smal
These numerical results as well as the success of theA50
vortex model in predicting the low-A experiments@19,20#
strengthen our assumption that theA50 case with an im-
posed initial velocity perturbation can serve to study
low-A low-Mach limit of the RM instability.

In the present study a vortex model for the single-bub
evolution and two-bubble interaction is constructed. The v
tex model is based on extending the single-mode vo
models of Jacobs and Sheeley@20# and Zabusky, Ray, and
Samtaney@21#. The model results for the single-mode a
two-bubble interaction then serve in a statistical mechan
merger model to yield scaling laws for the multimode mixi
zone evolution. Good agreements to the above experime
results are achieved.

II. THE VORTEX MODEL

A. Rotational flow

The RM instability is initiated by a velocity perturbatio
on an interface between two fluids. The initial perturbati
generates an initial vorticity field. From theory@21#, experi-
ments@20#, and numerical simulation of the RM instability a
low Atwood numbers, one can clearly see the early form
tion of vortices in the flow patterns, formed by the stro
attractive effective potential between vorticity points in t
vorticity field. This observation implies that the flow rapid
becomes rotational rather than potential, which is the c
for Atwood numberA51.

In fields of rotational flow the vorticity is defined asvW

5¹W 3VW , and a vortex strength is calculated by

g5E
surface

vW •ds5 R
contour

VW •dl, ~1!

where the surface integral is taken over the area contai
the vorticity from which the vortex is generated, and t
contour integral is taken over a contour limiting this are
From Kelvin’s theorem of circulation the vortex strength
constant in time~viscous loss of turbulent energy is neg
gible under present conditions!, and therefore it can be ca
culated from the initial velocity field.

As discussed below, in our problem we are dealing w
arrays of identical bubbles, each consisting of two vortice
opposite directions. We model such an array of bubbles b
set of infinite vortex lines, as will be shown in the ne
section. A vortex line is described in Fig. 2.

The complex potential induced by a single vortex is@28#

w~z!5S i
G

2p D ln~z2z0!, ~2!

FIG. 2. A schematic drawing of an infinite vortex line wherea is
the distance between two neighboring vortices.
the
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whereG is the vortex strength,z is the complex coordinate
andz0 is the location of the vortex in the complex field. Th
complex potential of a vortex line will then be@28#

w~z!5 (
n52`

` S i
G

2p D ln~z2na!5
iG

2p
ln sin~pz/a!, ~3!

wherea is the distance between neighboring vortices alo
the line andz is the complex location coordinate,z5x
1 iy . In a rotational flow field the velocity is given byu
2 iv5d@w(z)#/dz and therefore the velocity field induce
by a vortex line is

u~z!5
iG

2a
Re@cot~pz/a!#,

~4!

u~z!52
iG

2a
Im@cot~pz/a!#.

The velocity field of a given set of vortex lines is the su
over the velocity fields induced by every line in the set.

B. Single-mode perturbation

We chose sine and cosine-type initial perturbations, wh
in the case of a single-mode initial perturbation is of the fo

v~x,y!5v0cos~kx!e2ukyu,
~5!

u~x,y!5v0sin~kx!e2ukyu.

In the case ofA50, such an initial perturbation trans
forms, early in time, as seen in the simulation in Fig. 3, in
a localized vortex array. This enables one to model the e
lution of the single-mode initial perturbation, as described
Fig. 4, as an infinite vortex line with alternating directions,
was first suggested by Jacobs and Sheeley@20#.

This line is a sum of two periodic vortex lines, describ
in the preceding section, and the complex potential of
line is the sum of the complex potentials of the two period
vortex lines. The strength of the vortices forming the lines
calculated using Eq.~1!, G54*0

`v(0,y)dy54v0 /k, where
v0 and k are the initial perturbation amplitude and wav
number. In the case of a single-bubble array there is a
symmetry between the vortices and therefore the veloci
of their centers are zero, with the result that the comp
potential in the domain is a motion constant. This allows o
to solve the equations for the bubble tip analytically@20#:

h~ t !5~1/k!sin h21~Gk2/2pt !, ~6!

whereh(t) is the height of the bubble tip above the origin
interface. The asymptotic velocity of Eq.~6! is

Vasy5
1

2p

l

t
, ~7!

wherel52p/k. The asymptotic velocity of Eq.~7! should
be compared to the result atA51, where Vasy
5(1/3p)(l/t), which was derived from a potential flow
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model by Hecht, Alon, and Shvarts@13#. The difference in
the coefficient is attributed to the added mass in theA50
case@29#.

We compared our predictions to full scale numeric
simulations, usingLEEOR-2D, a compressibleALE code with
interface tracking@11,16,18#. The fluid equation of state wa
such that the simulations were in the incompressible li
~sound velocity much greater at all times than the fluid
locities! and the density changes during the whole simulat
were less than 1%.

The asymptotic velocity of Eq.~7! is compared, in Fig. 5,
with a full 2D numerical simulation of a single-mode cosi
perturbation withl51 cm and an initial bubble tip velocity
of 1 cm/sec; the resolution used in the simulation was

FIG. 3. Vortex formation. Vorticity contours near the bubble
interface att50 and after a short time~when the bubble’s ampli-
tude is still on the order of 0.1 of the wavelength!. One can see the
fast concentration of the vorticity forming a vortex. The initial pe
turbation is a sine with a maximum velocity of 1 cm/sec. The sim
lation was done with theLEEOR-2D code, a compressibleALE inter-
face tracking code. A reflecting boundary condition was applied
the left and right sides, thus a periodic array of bubbles was si
lated and the incompressible limit~high sound velocity! was used.
l

it
-
n

f

squared cells with 40 cells per half wavelength. The agr
ment between the model and the simulation is very good.
noted before, these results are also in good agreement
previous numerical simulations@11# and recent experimenta
results for low Atwood numbers@20,19#.

Since the complex potential describes the flow in the
tire domain, one can derive from Eq.~4! the velocities and
the evolution in time of any point in the flow pattern. Th
enables one to numerically find the evolution of the who
interface by describing it as a finite set of points which c
be followed numerically, by directly integrating the motio
equations. The agreements between the model and the
numerical 2D simulation are very good, as can be seen
Fig. 6, for both the bubble height and the interface roll-u
inside the bubbles.

C. Two-bubble interaction

In order to model the random perturbation case with
statistical mechanics bubble-merger model we constructe
model for the interaction between two neighboring bubbl
The initial perturbation of the two bubbles is a sum of tw
cosines and sines of the form

u~x,y!5vLcos~k1x!e2uk1yu1vscos~k2x!e2uk2yu,
~8!

v~x,y!5vLsin~k1x!e2uk1yu1vssin~k2x!e2uk2yu,

wherevL andvS are the two bubbles’ initial velocities, an
k1 andk2 are the wave numbers from which the initial pe
turbation is formed. This initial perturbation describes a p
riodic array of bubbles of two sizes. In order to model t
two-bubble interaction, the single-bubble model was e

-

r
u-

FIG. 4. Schematic drawing of two vortex lines, with a distan
a between the vortices in each line and with a vortex strength6G,
representing a single-bubble array perturbation. The interface
turbation is represented by a dashed line.
of
FIG. 5. Single-mode bubble height and velocity. Comparison between the model and a full 2D simulation for the case ofl51 cm and
an initial tip velocity of 1 cm/sec.~a! Bubble tip height,~b! bubble tip velocity multiplied by the time. Marked in the figure are 1/(3p) and
1/(2p), the asymptotic behavior forA51 and 0, respectively.~The ripple in the simulation asymptotic velocity is due to the existence
weak sound waves that exist since the simulation fluids are not totally incompressible.! The simulation data are described in Fig. 2.
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7414 PRE 58A. RIKANATI, U. ALON, AND D. SHVARTS
tended to the case of two bubbles by setting an array of
periodic infinite vortex lines, creating an array of alternati
large and small bubbles, as described in Fig. 7.

In this case the symmetry of the problem prevents rela

FIG. 6. Single-mode bubble interface evolution, comparison
tween the model and a full 2D simulation described in Fig. 2. T
model results are of anODE23 numerical calculation of 300 point
from the interface. The domain is a 1 cm31 cm box. The time is in
seconds. TheX andY axes are the specialX andY coordinates and
are given in cm.
ur

e

motion between the vortices of a given line, but enables re
tive motion between the lines themselves. Thus we follow
the line motion in time, where each line moves in the velo
ity field induced by the complex potential of the other thre
In this case there are two different vortex strengths~each
appearing twice,6G1 and 6G2), as can be seen in Fig. 7
Using Eq.~1!, the vortex strengths are calculated:

G152S vL@11cosh~k1xm!#

k1
1

vs@11cos~k2xm!#

k2
D ,

~9!

G252S vL@11cos~k1xm!#

k1
1

vs@211cos~k2xm!#

k2
D ,

-
e

FIG. 7. Schematic drawing of four vortex lines representing
two-bubble perturbation. The perturbation is represented by
dashed line which is a sum of two cosines,L stands for a large
bubble,S for a small one, and the four vortex lines are number
1–4. Notice that lines 1 and 3 represent vortices with a clockw
direction where line 1 is of small vortices of strengthG2 and line 3
is of large vortices with strengthsG1 . Lines 2 and 4 are directed
counterclockwise of strengthG1 andG2 , respectively.
les

FIG. 8. Two-bubble competition. Comparison between the model and a full 2D simulation, using anALE code with interface tracking

@11#, for vL51 cm/sec andvS50.5 cm/sec:~a! bubble interface~reflecting boundaries were used in order to simulate an array of bubb!.
The time is in seconds and theX and Y axes are the specialX and Y coordinates and are given in cm.~b! Bubble tip heights~dashed
line—simulation, full line—vortex model!. ~c! Bubble tip velocity multiplied by time~smooth line—vortex model, wavy line—simulation!.
3 indicates the beginning of the merger process,s the end of the merger process, andDt is the merger time.
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PRE 58 7415VORTEX MODEL FOR THE NONLINEAR EVOLUTION OF . . .
wherexm is a reference point between the two bubbles~the
point where the initial flow velocity is zero!.

From the complex potential induced by the vortex line
two equations, for the locationx1(t),y1(t) of one of the lines
of the large vortices and two equations for the locat
x2(t),y2(t) of the lines of the small vortices are obtaine
where the locations of the other two are mirror images of
previous ones reflected on a line perpendicular to the in
face, intersecting it at the tip of one of the bubbles. Af
numerically solving the equations one gets the motion of
vortex lines, from which the time dependent complex pot
tial is derived in the whole domain. Using Eq.~4!, the veloc-
ity history of any point can be obtained, especially that of
interface. The comparison of the model to full 2D simu
tions gives good results, as can be seen in Fig. 8 fork1
52p cm21, k254p cm21, v l51 cm/sec, and vs
50.5 cm/sec.

FIG. 9. Calculated dimensionless merger ratev as a function of
the wavelength ratio, forA50 ~full line! compared to theA51
case~dashed line! @10#. The dimensionless merger rate is calculat
by multiplying the merger rate by the time of the beginning of t
merger.
,

,
e
r-
r
e
-

e
-

From the model we can define the merger ratev to be

v~l1 ,l2!5
1

Dtmerger
, ~10!

where l1 and l2 are the wavelengths of the interactin
bubbles at the beginning of the merger process andDtmerger
is the merger time. The merger time is the interval betwe
the time at which the small bubble’s velocity multiplied b
time starts to decrease@point X in Fig. 8~c!, marking the
coexistence stage# and the time at which the small bubb
reaches negative velocity@point O in Fig. 8~c!, marking the
end of the merger stage#. It was found that the merger rat
depends only on the wavelength ratioq5l1 /l2 . The
merger ratev(q) is plotted in Fig. 9 and compared to th
merger rate obtained by Alonet al. @11# for A51, using the
potential flow model. It can be seen that forl1 /l2,2.5 the
merger ratev is similar for both high and low Atwood num
bers while for a bubble wavelength ratio larger than 2.5
difference is larger.

III. THE MULTIMODE BUBBLE-FRONT EVOLUTION

As mentioned in the Introduction, the RM bubble front
dominated by bubbles rising and competing. Recently, A
and co-workers@9,10# have developed a statistical model f
the RM instability in the case ofA51, showing that an
asymptotic self-similar bubble spectrum is reached, afte
few merger generations, with a power law oftu for the
bubble front, whereu50.4, and in growth with a constan
velocity for the spike front. In the model the bubbles a
arranged along a line, and are characterized by their heighhi
and their wavelengthl i . Each bubble rises with its single
bubble velocityV(l i ,t) and merges with its neighborin
bubbles at a merger ratev(l i ,l i 11). The single-bubble ve-
locity and the two-bubble merger rate were calculated us
a potential flow model. The scale invariant bubble spectr
f (l/^l&) was introduced. The bubble front was assumed
grow with the velocity of the bubbles averaged over the sc
invariant distribution:
FIG. 10. Statistical merger model results, using merger rates and bubble velocities forA51 and 0.~a! Turbulent mixing zone~TMZ!
power-law exponentu for A50 and 1 as a function of the number of merger generations.~b! The asymptotic bubble spectrum forA50 ~full
line! and 1~dashed line!; notice the similarity between the two.
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FIG. 11. Comparison between the model and a full 2D simulation forA50. ~a! A full 2D simulation of a 0.6 cm30.3 cm box with
2003200 cells. Time is in seconds andx and y are in cm.~b! Simulation bubble-front top view envelope, with a time dependentY axis
displacement. The* indicates a rising bubble. One can see the bubble competition where small bubbles begin to drop and larger o
over the space of the smaller ones.
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d^h& f /dt5^V1~l,t !& f , ~11!

with ^h& f5*h(l,t) f (l)dl and ^V1(l,t)& f
5*V(l,t) f (l)dl.

Applying the results from the vortex model for the singl
bubble velocity of Eq. ~7!, Eq. ~11! becomesd^h&/dt
5^l& f /(2pt). The average wavelength increases as^l& f
5L/N(t), whereL is the total length of the domain andN is
the number of rising bubbles. From the average merger
the time dependence of the number of bubbles is derive

dN~ t !/dt5^v&N~ t !. ~12!

Integrating Eq.~11! with Eq. ~12! the bubble-front height
hb(t) is derived:

hb~ t !5a0tu, ~13!

with u5^v& f anda05cl̄0
12uv̄0

u , wherec is a dimensionless

constant,l̄0 is the mean wavelength of the initial bubb
ensemble, andv̄0 is the mean velocity of the bubble en
semble@11#; the form of a0 can be derived from simple
dimensional considerations. Therefore the Richtmy
te

r-

Meshkov instability power-law exponent isu5^v& f where
the average is taken over the bubble spectrumf, u
5*v(x,y) f (x) f (y)dxdy.

In order to study the RMA→0 limit, we used the statis-
tical model, based on the results of the vortex model for
single-bubble velocity and for the two-bubble merger ra
The statistical model was applied numerically for an init
ensemble of 100 000 bubbles distributed withf (l)5const
for lP@0.5 cm,1.5 cm# and zero otherwise. The bubble
were set along a line with each pair of neighboring bubb
having a probability of merger proportional tov(q) of Eq.
~10!. After three to four merger generations~i.e., each sur-
viving bubble has merged three to four times!, an asymptotic
self-similar bubble distribution was achieved. From t
bubble spectrum andv(q) the average merger rate is calc
lated and the power of the bubble-front height growth rate
derived using Eq.~13!. In Fig. 10 one can see the results
the statistical model. It is seen that asymptotically, af
about three to four merger generations when a self-sim
regime is reached,u approaches the valueuasy50.41 for A
50 as compared touasy50.39 for A51. The results forA
51 are calculated usingVasy5(1/3p)l/t and v(q) as was
derived by Alonet al. @10# using the potential flow model.
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FIG. 12. Comparison between the model and a full 2D simulation forA50. ~a! TMZ volume fraction at several times, where theX axis
is X/t0.4. One can see the self-similar behavior of the TMZ.~b! Bubble-front height calculated at 10% mass fraction.
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It is found that the bubble-front growth rate exponent
similar for bothA51 and 0. The reason for this is thatu is
determined by the merger ratev(q), which, as can be see
in Fig. 9, is similar in both cases for the main region of t
self-similar bubble spectrum,l1 /l2,2.5. In the RM case
the growth rate is similar for allA because while in the RT
case the buoyancy force term, which depends linearly onA,
leads to a linear dependence of the bubble-front height c
ficient onA(abubble50.05A), in the RM case, where only th
weakly A dependent drag force is controlling the late tim
evolution @11#, the growth rate exponent should be simil
for all A. Note that even though the bubble front does gr
similarly in theA50 and 1 cases, there is a large differen
in the evolution of the whole mixing zone region betwe
these two cases due to the large differences in the spike
scaling: atA50, bubbles and spikes are symmetrical and
ast0.4, while atA51, spikes are growing linearly in time. I
general at 0,A,1, uspike.ububble. For more detail see@11#.

The result for the evolution of a random initial perturb
tion at A50 was compared to a full 2D simulation. Th
simulations have been conducted with theALE codeLEEOR-

2D with a 2003100 cell mesh covering a 0.5 cm30.25 cm
domain. The initial condition was a velocity perturbation
the interface which is the sum of 20 modes with rand
amplitudes:

v~x,y!5 (
n51

20

vncos~knx!e2uknyuu~x,y!

5 (
n51

20

vnsin~knx!e2uknyu, ~14!

wherevn are random numbers, 0,vn,1.
The occurrence of bubble competition is clearly seen

Fig. 11. Thet0.4 self-similarity of the horizontally average
volume fraction from the simulation is seen in Fig. 12~a! and
f-

e

nt
o

n

the 10% averaged volume fraction location in time, seen
Fig. 12~b!, does obey thet0.4 power law, in very good agree
ment with the model predictions. Recently this result w
confirmed experimentally for low Atwood numbers in@14#.

IV. CONCLUSION

Using a vortex model for the Richtmyer-Meshkov inst
bility for Atwood numberA50, we model the single-bubble
velocity to get the asymptotic valuevasy51/2pl/t and the
complex interaction between two neighboring bubbles. U
ing a statistical model we describe the development of r
dom perturbations based on the mechanism of bub
merger. This leads to the power law oft0.4, as in the previ-
ously studiedA51 case@10#, supporting the conclusion tha
the power-law exponent for the RM instability bubble fro
is independent of the Atwood number. Note that for the sp
front, an Atwood number dependent power law was fou
@10#. At A→0 bubbles and spikes become symmetric and
entire mixing zone grows ast0.4.

It is remarkable that similar large-structure physics app
to determine the mixing zone evolution at both density ra
extremes. In both extremes simplifying conditions allow
us to derive the large-structure behavior~potential flow
model atA51 and vortex model atA50). This method,
describing a complex flow by quantifying its simple flu
structures and their pair interactions, might offer a power
tool for the study of other mixing processes.

The result for the power-law exponent of the evolution
the RM instability is an important result and is related
many fields of turbulence, such as the Kelvin-Helmholtz
stability, turbulent decay@30#, etc. The power-law exponen
for the RM instability,u>0.4, was recently used, togethe
with the RT instability constant ofab>0.05 @11#, to con-
struct an effective mix model for predicting the growth rat
of hydrodynamic instabilities@24#.
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