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Renormalization group and anomalous scaling in a simple model
of passive scalar advection in compressible flow
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Field theoretical renormalization groy#G) methods are applied to a simple model of a passive scalar
quantity advected by the Gaussian nonsolenoftiedmpressible™) velocity field with the covariance: §(t
—t")|x—x'|?. Convective-range anomalous scaling for the structure functions and various pair correlators is
established, and the corresponding anomalous exponents are calculated to the’ afdére ¢ expansion.

These exponents are nonuniversal, as a result of the degeneracy of the RG fixed point. In contrast to the case
of a purely solenoidal velocity fielObukhov-Kraichnan modglthe correlation functions in the case at hand
exhibit a nontrivial dependence on both the IR and UV characteristic scales, and the anomalous scaling appears
already at the level of the pair correlator. The powers of the scalarigltbut derivativeswhose critical
dimensions determine the anomalous exponents, exhibit multifractal behavior. The exact solution for the pair
correlator is obtained; it is in agreement with the result obtained withinestlexpansion. The anomalous
exponents for passively advected magnetic fields are also presented in the first orders oéxpansion.
[S1063-651%98)06412-5

PACS numbegs): 47.10+g, 05.40+j

[. INTRODUCTION In the real problem, the fiel#(x) satisfies the Navier-
Stokes equation. In the simplified model considered in Refs.

Much attention has been paid recently to a simple modef2—8], v(x) obeys a Gaussian distribution with zero average
of the passive advection of a scalar quantity by a Gaussiaand correlator
short-correlated velocity field, introduced by Obukhid
and Kraichnar 2]; see Refs[3—24], and references therein. S(t—t")
The structure functions of the scalar field in this model ex- <Ui(X)Uj(X,)>:DO—f dk Pyj(k)(k?+m?)~42-el2
hibit anomalous scaling behavior, and the corresponding (2m)¢
anomalous exponents can be calculated explicitly using cer-
tain physically motivated “linear ansatZ3], within regular
expansions in various small parametg$s-9,11,16,2% and
using numerical simulatiorf}, 18,21,23 On the other hand, Where Pj;(k)= &;—kik;/k* is the transverse projectok
this model provides a good testing ground for various con=|k|, Do>0 is an amplitude factor, 1 is another inte-
cepts and methods of the turbulence theory: closure approx@ral scale, andi is the dimensionality of thet space; 6<e
mations [3,4,15,19, refined similarity relations[13,14, <2 is a parameter with the re&tKolmogorov” ) value &
Monte Carlo simulation§4,15,21,23, renormalization group = 3. The relations
[22], and so on.

The advection of a passive scalar fieddx)= 6(t,x) is Do/vog=go=A*® 1.9
described by the stochastic equation

xexdik-(x—x")], (1.3

define the coupling constafitcharge”) go and the charac-
0+ d;(vi0)=voAO+f, (1.1)  teristic ultraviolet(UV) momentum scalé\.
The guantities of interest are, in particular, the single-time

. e structure functions
whered,=dlot, 3,=dldx;, vq is the molecular diffusivity

coefficient,A is the Laplace operatoy(x) is the transverse

(owing to the incompressibilityvelocity field, andf=f(x) Su(n=([otx) =~ 6(tx)]"), r=[x=x'|. (1.9
is an artificial Gaussian scalar noise with zero mean and
correlator: In the models(1.1)—(1.3), the odd multipoint correlation

functions of the scalar field vanish, while the even single-
time functions satisfy linear partial differential equatid@$

also see Ref45,7,24. The solution for the pair correlator is
obtained explicitly; it shows that the structure functignis
The parametet. =M ! is an integral scale related to the finite for M=m=0 [2]. The higher-order correlators are not
scalar noise, an€C(Mr) is some function finite ag — . found explicitly, but their asymptotic behavior ft—0 can
Without loss of generality, we tak€(0)=1 [the dimen- be extracted from the analysis of the nontrivial zero modes
sional coefficient in Eq(1.2) can be absorbed by appropriate of the corresponding differential operators in the limitd 1/
rescaling of the field® and noisef]. —0[5,6], e—0 [7-9], or e—2 [10,16. It was shown that

F)f(x"))y=68(t—t")C(Mr), r=[x—x'|. (1.2
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the structure functions are finite for=0, and in the convec- the anomalous exponents in the Gaussian model can depend
tive rangeA>1/r>M they have the formup to the nota- on more details of the velocity statistics than the expogrent
tion) The exponents indeed change when the funcéigin-t’) in
correlator (1.3 is replaced by some function with finite
Son(r)=Dg "2 (Mr)4n, (1.6)  width, i.e., the velocity has short but finite correlation time
[11], and when the velocity field is taken to be time indepen-
with negative anomalous exponets, whose first terms of  dent(see Sec. V of Ref.22)).
the expansion in #/[5,6] ande [7,8] have the form In this paper, we consider the generalization of model
(1.1)—(1.3) to the case of a nonsolenoid&kcompressible”)
Ap=—2n(n—1)e/(d+2)+0(s?) velocity field. In this case, correlatet.3 is replaced by
=-2n(n—1)e/d+0O(1/d?). 1.7

L o(t=t") DoPij(k)+DQijj (k)
In Ref. [22], the field theoretical renormalization group (vix)vj(x"))= (270 Jdk (K2+ m2)di2+ 512
(RG) and operator product expansi@@PE were applied to

the model(1.1)—(1.3. In the RG approach, the anomalous Xexgik-(x—=x")]. (1.8
scaling for the structure functions and various pair correla-

tors is established as a consequence of the existence in tA&e notation is explained below E(..3); the new quantities
corresponding operator product expansions of “dangerous‘are the longitudinal projecta®;; (k) = kik; /k? and the addi-
composite operator§powers of the local dissipation rate tional amplitude factoD ;> 0.

whosenegativecritical dimensions determine the anomalous  One should not expect that a Gaussian, white-noise model
exponents\,,. The exponent plays in the RG approach the such as Eq(1.1), (1.2), or (1.8) will provide a very good
role analogous to that played by the parameterd—d in approximation for the real compressible advection; however,
the RG theory of critical phenomer&5]. The anomalous it can be used to illustrate the important distinctions which
exponents were calculated in RE22] to orders? of the e exist between the compressible and incompressible cases;
expansion for the arbitrary value df and they are in agree- see, e.g., Ref§28,29 and references therein.

ment with the first-order results obtained in the zero-mode The aim of this paper is to give a RG treatment of anoma-
approach5-8]. The RG approach to the stochastic theory oflous scaling with nonuniversal exponents, to compare the
turbulence was reviewed in R4R6]. results of thes expansion with the nontrivial exact exponent,

In Ref. [3], a closure-type approximation for the model and to present analytic results which probably will be easier
(1.1)—(1.3), the so-called linear ansatz, was used to derivédo compare with numerical simulations than the analogous
simple explicit expression for the anomalous exponents foresults for the incompressible case. We apply the RG method
any 0<e<2, d, andn. Although the predictions of the linear to the modelg1.1), (1.2), and(1.8) to establish the existence
ansatz appear consistent with some numerical simulationsf the anomalous scaling in the convective range and to cal-
[4,21,23 and exact relationgl2,19, they do not agree with culate the corresponding anomalous exponents to the second
the results obtained within the zero-mode and RG aporder of thes expansion. We show that the single-time two-
proaches in the ranges of small 2—&, or 1d. This dis-  point correlation functions of the powers of the scalar field in
agreement can be related to the fact that these limits havde convective range have the form
strongly nonlocal dynamics in the momentum space, which
suggests possible relation between deviations from the linear { 6"(t,x) 6°(t,x"))< v
ansatz and locality of the interactions; see the discussion in A . ,
Refs.[19,23. (The smalle limit can be treated perturba- X(AD) ™SS (Mr)Snee, - r=[x=x|

—(n+p)i2p —
o(n P)2p —(n+p)

tively, the effective small parameter equals to the reciprocal (1.9
of the significant range of interactions in the momentum . N
space. This range becomes infinitesagoes to Zer(ﬁZ?]_) for evenn+ p and zero otherwise. In addition tDandd, the

The results of the RG approach are completely reliabl€xponents A, depend on a free parameter: the ratio
and internally consistent for smai| but the validity of their ~@=Dg/Dg of the amplitudes in correlatdd.8). In the first
extrapolation to the finite values af is not obvious. Most  order of the expansion in, they have the form
numerical simulations have been limited to two dimensions n(n—1)d
[4,21] and have not yet been able to cover the smabr o _ aitn—1)de 2
large d ranges, in which the reliable analytical results are Ap=n(=1+e/2) 2(d=1+a) +0(e5 (110
available. Therefore, it is not yet clear whether the anoma-
lous scaling in the smak and finitee ranges has the same [the resultsA;=—1+¢/2 for any @, and A,=n(-1
origin, with the exponents depending Continuous|ywmr +8/2) for =0 are, in fact, exaﬂ:IWe have also calculated
if there is a “crossover” in the anomalous scaling behaviorthe &> term of the exponen,, for anyd anda; the result is
for some small but finite value of and these ranges should rather cumbersome, and will be given in Sec. III.
be treated separately. The leading term of the convective-range behavior of

Another important question is that of the universality of Structure functiong1.5 in model(1.8) is completely deter-
anomalous exponents. The exponehsin Eq. (1.7) do not ~ Mined by the contributio¢>"); it is obtained from Eq(1.9)
depend on the choice of correlatdr.2) and on the specific by the substitutionsi—2n andp—0, and has the form
form of the infrared(IR) regularization in correlato{l.3). It B
was argued on phenomenological grounds in [REf] that Son(r)cvg "A T2 (M/A) 20, (1.1
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It follows from Eq. (1.9 that the anomalous scaling in of the anomalous exponents in mod&l8) to the ordere? of
model (1.8) appears already at the level of the pair correla-thes expansion. The results obtained are briefly discussed in
tion function. The corresponding exponek; is found ex-  Sec. VI.
actly for all 0<e<2 from the exact solution for the single-
time pair correlator; see Sec. Il Il. EXACT SOLUTION FOR THE PAIR

CORRELATION FUNCTION
e(a—1)(d-1)
(d=1)+a(l+e)

Ap=-— (112 The single-time correlation functions of the fieddin the

models of types(1.1), (1.2), (1.3, or (1.8 satisfy closed

(anomalous scaling for the pair correlator with the exactlyIInear partial d|fferen_t|a| equat|on$2] (see. al_so Refs.
known exponent was established previously in R&€] on [5’7’2.@' Below we give an aIternat_|ve derivation of the
the example of a passively advected magnetic fidtd the equation for the pair correlation functions based on the field
language of the RG, the nonuniversality of exponéht&0 theoretical form_ulatlon of the problem. . .
and(1.12 is explained by the fact that the fixed point of the The S.tOChaSt'C pr_obler(ri.l), (1.2, and(1.8) is equwglent
RG equations is degenerate: its coordinate depends continff— the,ﬂeld t_heore_ncal model of the set of three fiells
ously on the ratiax (see Sec. I\ =16,6",v} with action functional

In contradistinction with mode({1.3), where the anoma- S(®)=0'D,0' 12+ 6'[ — 3,0— IVO)+ voA 6] — VD v/2
lous exponents are related to the critical dimensions of the o ! 0 v @ '1)
composite operatorsd(fd;6)" [22], the exponentsA, in '
Egs. (1.9 and(1.11) are determined by the critical dimen- The first four terms in Eq(2.1) represent a Martin-Siggia-
sions of the monomialg", the powers of the field itself, and Rose-type actioi31-34 for the stochastic problemd.1)
these dimensions appear to be nonlinear functions; see  and(1.2) at fixedv, and the last term represents the Gaussian
Sec. IV. This explains the difference between the convectiveaveraging over. HereD, andD,, are correlatorg1.2) and
range behavior of moddfl.3) and that of mode(1.8), and (1.8, respectively; the required integrations owves (t,x)
makes the limitD,— 0 rather subtle. and summations over the vector indices are understood.

Model (1.8 remains nontrivial in the casé=1, where Formulation(2.1) means that statistical averages of ran-
the velocity field becomes purely potential. One can hopalom quantities in stochastic probleh.1), (1.2), and (1.8
that the one-dimensional case is more accessible to numexoincide with functional averages with the weight &),
cal simulations than the lowest-dimensional case2 for  so that the generating functionals of tof&(A)] and con-
model (1.3), and it will be possible to compare the analytic nected[ W(A)] Green functions of the problem are repre-
results(1.9—(1.12 with the numerical estimatdglespite the sented by the functional integral
fact that the structure functiord¢.11) are independent df,
the values of the anomalous exponents can be extracted from _ _
their dependence oM ]. In Ref.[20], model(1.8) has been G(A)=expW(A) J D® ex () +AP], (2.9
studied directly for the one-dimensional case in terms of cer- ,
tain potential functions for the field; the analytic expres- With arbitrary sourceA=A’ A’ A" in the linear form
sions for the anomalous exponents obtained within the zero-
mode technique have been found to agree with A(I)EJ dX[A%(x) 6(x)+ A% (x) 0 () + A(X)v: (X)].
nonperturbative numerical results. The relationship between ! '

our results and the results of R¢R0] is discussed in Sec. .
vV ¢20] Model (2.1) corresponds to a standard Feynman diagram-

The paper is organized as follows. In Sec. I, we give thematic technique with the triple vertex—6'd(v0)

field theoretical formulation of modéll.1), (1.2), and (1.8 =0"Vjv; 0, W'th vertex factor(in the momentum-frequency
and derive exact equations for the response function and paﬁ?presentatloh

correlator of the scalar field. The explicit solution for the pair V. =ik
correlator is obtained and the exact expressibf?) for the ! I

corresponding RG equations with exactly known RG func-rgpresentation have the forms

tions (the B function and the anomalous dimensjofihese

2.3

equations have an IR stable fixed point, which establishes the (00")o=(0"0)§=(—iw+rek? 1, (2.49
existence of IR scaling with exactly known critical dimen-
sions of the basic fields and parameters of the model. The (060)o=C(K)(w?+ vZkH 1, (2.4b
solution of the RG equations for the correlation functions
(1.9 is given, which determines their dependence on the UV (6'60"),=0, (2.40

scale. In Sec. 1V, the dependence of the correlators on the IR

scale is studied using the OPE, and relatith8) and(1.11) whereC(k) is the Fourier transform of the functid®(Mr)

are derived. We also briefly discuss the RG approach to thfom Eq.(1.2) and the bare propagatévv), is given by Eq.
model of passively advected magnetic fields introduced ir(1.8). The parametegy,=D,/v, plays the part of the cou-
Ref. [30] and give theO(e) results for the corresponding pling constant in the perturbation theory. The pair correlation
anomalous exponents. In Sec. V, we present the calculatidiunctions{®d) of the multicomponent fieldb satisfy the



7384 LORAN TS. ADZHEMYAN AND NIKOLAJ V. ANTONOV PRE 58

standard Dyson equation, which in the component notatiomesponding 1-irreducible diagrams; the functiobg, and

reduces to the system of two equations,[86], 2. in model(2.1) vanish identically.
_ The feature characteristic of models such as @dl) is
G Yw,k)=—iw+ k=3 gy y(w,k), (2.58  that all the skeleton multiloop diagrams entering into the

self-energy operators, 4, X4, contain effectively closed
D(w,k)=|G(w,k)|][C(K)+= 4y (w,K)], (25D  circuits of retarded propagatot®¢’) and therefore vanish
[it is also crucial here that the propagatow), in Eq. (1.8
whereG(w,k)=(66") andD(w,k)=(66) are the exact re- s proportional to thes function in timd. Therefore, the self-
sponse function and pair correlator, respectively, and,  energy operators in Eq2.5 are given by the single-loop
andZ, , , are self-energy operators represented by the corapproximation exactly, and have the form

dg Dolk’—(k-@)?/q’]+Do(k-q)%q® |
2ol k)= f f (2m)d (R + m2) 92+ er2 G(q",e'), (2.6a
dg Do[k?—(k-0)%/q’]+Do(k-a)?/q®
20'0’(('0 k) f f(Zf]T)d (q2+m2)d/2+€/2 D(q y W )1 (26b)

whereq’=|k—q|. The single-loop approximation to the Dyson equations in the stirred hydrodynamics is equigaletat
the well-known direct interaction approximatidbIA) [36]. One can say that in mode(%.1), (1.2), (1.3), or (1.8), the DIA
appears to be exact. The integrations owérin the right-hand sides of Eq$2.6) give the single-time response function
G(q)=(1/27)fdw’'G(q,w’) and the single-time pair correlatbr(q) = (1/27) f[dw’'D(q,»"); note that both the self-energy
operators are in fact independent@f The only contribution td5(q) comes from the bare propagat@.4a, which in thet
representation is discontinuous at coincident times. Since corréla8y which enters into the single-loop diagram by 4,

is symmetric int andt’, the response function must be defined=at’ by half the sum of the limits. This is equivalent to the
conventionG(q) = (1/2m) fdw’ (—iw' + vok?) "1=3, and gives

2 p(w,K)=(— 1/2)f q Pelk (l((qgf::;]djzic/)z(k Q)Z/q 2.7
The integration oveq in Eq. (2.7) is performed explicitly:
Ea'a(ka):_kzw\](m)a (2.89
where we have written
J(m)zf 49 L L (2.80
2m8 (P+m2)¥2e2 " (4 B2 (df2+ £/2)

Equations(2.58 and(2.8) give an explicit exact expression for the response function in our model; it will be used in Sec.
[l for an exact calculation of the RG functions. Below, we use the intermediate expré2siiThe integration of E¢(2.5b
over the frequency gives a closed equation for the single-time correlator. Using(Eq) it can be written in the form
dg Dolk?—(k-@)?/g’]+Do(k-q)%/q?
(277)d (q2+ m2)d/2+£/2

2v0k2D(k)=C(k)+f D(lk—q|)—D(k)]. (2.9

The functionC(k) is supposed to be analytic k?, which In the coordinate representation, Eg.9) takes the form

along with the requirement tha®(k=0)=0 [so that Eq.

(1.1) has the form of a conservation law féi, gives 2voAD(r) =AW +Do(8i;A—3;d;)(A;;D(r))

+Dyd;d;(A;;D(1)), (2.11

C(K)=K2W (K), (2.10 OTTTIE

where we have written

with some function?' (k), or in the coordinate representation d . 1

C(Mr)=—AW¥(r), where ¥(r) vanishes rapidly forr Aij(r)Ef g qgjlexpiq-r) ]' 212
(277)d q2(q2+m2)d/2+s/2

—500,
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ForD(=0, Eq.(2.11) coincides(up to the notatiopwith the (d—1)(D§—Dy)
well-known equation for the single-time correlator in model {—1= d—1D 1 o
(1.3 obtained in Ref[2]. (d=1)Do+(1+¢)Dyg

Fprh0<s<2,t):5qs.(2(j._9) and (2.12)]‘ arl1lovx_/ for thle limit M Equation(2.16 is integrated explicitly; the integration con-
;gp.)rtesiggsbi/l tl'?el\?ani“s/ﬁirr?grc])ﬁh% éxgrg]stgigcl)fs?naitﬁelf;,qu aE“t{:{;\nt is found from the requirement that the solution vanish
infinity (including the special cade,=0):
brackets. In what follows we sat=0. Then Eq(2.12 gives y( g P =0

(2.18h

A (N)=—Bré(8;+err Ir?), (2.133 D(r =—Fd 1+ho(Ay)*1E 2o, W (y).
ij ij i’ (r) [1+ho(Ar)e]¢)s vl o(Ay)?] YW (y)
o ~T(-&l2) J1a (219
(419225 (d+ )T (d/2+ £/2) (2130 o D4=0 (so thata=¢=0), the expressiof2.19 reduces

(up to the notationto the well-known solution for the purely
(note thatB>0). Using Eq.(2.13 and the fact that the func- solenoidal velocity field obtained in RéR]. Dimensionality
tion D(r) depends only on=|x— x|, the differential opera- ~considerations givel (r)=M ~2y(Mr) with some dimen-
tors entering into Eq(2.11) are represented in the forms  sionless function [see Eq(2.10], so that Eq(2.19 can be
rewritten as

39 (A;;D(r))=—B(1+g)rt

-1
(d=DI(1+e) 5 (pe(dte)l(Lte) _
X arr dr(r D(r)I, D(r) 2P 1+ ho(AT) T
(2.143
(8jA—3;9,) (A;D(r)=B(d—1)r* 93, (r¥"*¢4.D(r)), s erdy[lJr No(AYIM)TE50y(y).
(2.14b

(2.20

whered, = d/dr, and for thed-dimensional Laplace operator, . . .
' P P We are interested in the asymptotic form of the correlator

one has D(r) and the structure functioB,D(0)—D(r) in the con-
AW (r)=r"9g, (r91g,W(r)). (2.149 vective rangeA>1/r>M, where A is determined by Eq.
' ' (1.4). From Eq.(2.20), it then follows that
It then follows from Eqgs(2.14) that one integration in Eq. D(r=0)=Crg M 2" <C-DAC-D (2213

(2.17) is readily performed: one can just omit the overall

I 7] 1-d d—1. H H H H
factor” r*~%,r® % the integration constant is determined \yhere we have used definitiori$.4) and (2.17, and C is

by the requirement that the solution have no singularity anmpIeter dimensionless factor independent,dfl, andA :
the origin =0):
hg™*

2009,D=3,% —B(d—1)D¢r4,D c= 2°

_B(1+8)D(l)r—s(d—1)/(l+s)

f:dyy““)ayzp(y). (2.21b

For the correlatoD(r) in the regionA>1/r>M, one ob-

X g, (reldreldrep), (2.15  tains
Equation(2.15 is rewritten in the form D(r)=hg *(Ar) " *D(r=0). (2.219
= It follows from Eqs.(2.21) thatD(r) differs from D(0) by
Y4 — e1{—1
Il (1+ho(Ar)?)*D(r)]=[1+ho(Ar)*]* "o, ¥, 01 the factorec(Ar) ~*¢<1. Therefore, the leading contribution
(2.19 to the structure functios,«D(0)—D(r) in the convective

range is given by the constant tert(0), while the r-

where we have denoted N . .
dependent contribution determines only a vanishing correc-

(d—1)+a(l+s) tion. Then the comparison of expressidnll) for n=1 with
o=B > , (2.179  the exactresul2.213 givesA,=—2+¢—¢&{, which, along
with Eq. (2.183, leads to the exact expressi@h12 for the

_ critical dimensionA,, announced in Sec. I.
V=V/2v,, (2.179 Expressions(2.21) simplify for d=1 (and for Dy=D,

and anyd) when¢=1; see Eq(2.18h:
and the exponent has the form

D(r)xvy*M~2(Ar) "2, (2.223
(d+2)Do (2.183 D(r=0)e vy 'M 2. (2.22h

 (d—1)Dg+(1+¢)D}’
Expression2.223 agrees with the result obtained in Ref.
so that [20] directly ford= 1. In the language of Reff5-9,20, the
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TABLE I. Canonical dimensions of the fields and parameters inthe formal index of the UV divergence. Superficial UV di-

model (2.1). vergences, whose removal requires counterterms, can be

, ; present only in those functions for which dr is a non-
Fo0 0 V. vy Dg,Dg MmM,u,A go 9.«  negative integer. Analysis of the divergences should be
a0 d -1 -2 —24s 1 e 0 bzazscz?5 gg 3the following auxiliary considerations; see Refs.
de -3 12 1 1 1 0 0 o0 [22,26,37,38

(i) From the explicit form of the vertex and bare propa-
gators in model2.1), it follows thatN, —N,= 2N, for any
1-irreducible Green function, wheié,=0 is the total num-

leading nonuniversal term in E@R.224 is related to a non- Per of the bare propagato(g6), entering into the function
trivial zero mode of the differential operator entering into (Obviously, no diagrams wittNo<O can be constructed
Eq. (2.11). We note that the anomalous scaling for the pair herefore, the differencél,,—N, is an even non-negative
correlator with the exactly known exponent was establishedt€ger for any nonvanishing function.

previously in Ref.[30] on the example of a passively ad- (i) If for some reason a.number of. external momenta
vected magnetic field, as a result of the existence of a norfeccurs as an overall factor in all the diagrams of a given
trivial zero mode of the corresponding differential operator.Green function, the real index of divergendg is smaller
We also note that for the purely solenoidal case, the analdhandr by the corresponding numbéthe Green function
gous zero mode is independent rofind cancels out in the requires counterterms only @ is a non-negative integer
structure function, so that the IR behavior of the latter isin model(2.1), the derivatives at the vertexy’ d(v6) can be
determined by the universal correction terd1®. In subse- moved onto the field’ using the integration by parts, which
guent sections, the asymptotic expressioB21) will be  decreases the real index of divergendg=dr—N, . The
generalized to the case of higher-order correlators and strudield #’ enters into the counterterms only in the form of the

de -1 d+1 1 0 e 1 e O

ture functions. derivatived6’.
(iii) A great deal of diagrams in modé&2.1) contain ef-
lIl. RENORMALIZATION, RG FUNCTIONS, fectively closed circuits of retarded propagat¢é®’),, and
AND RG EQUATIONS therefore vanish. For example, all the nontrivial diagrams of

_ ) _ ) __the 1-irreducible functiof 6’ v), vanish.
The analysis of the UV divergences in a field theoretical From the dimensions in Table | we fird}. =d+2— N,

model is based on the analysis of canonical dimensions. Dy;L Ny—(d+1)N, and di=(d+2)(1=Ny)—Ny+N,.
namical models of typ€2.1), in contrast to static models, are From these expressions it follows that for amysuserficial

wo SC?"G’ 1€, tp each quantify (a.f|eld ora parameter in divergences can only exist in the 1-irreducible functions with
the action functional one can assign two independent ca-\ 1 N,=N,=0 (dp=1, d-=0) N, =N.=N
6 — v N r—+ r— ’ o' — Nv— INg

ponlcal dm(;gn&oqs:mtredm;)meptu?fdlmetr;]smﬁ] r;md Ithe —1(dp=1, d.=0), andN,=N,=1, N,=0 (dp=2, d.
requency dimensiom , determined from the natural nor- =1) [we recall thatN,<N, ; see(i) abovd. However, no

malization conditionsl=—di=1, di=dy=0, di,=d{=0, diagrams can be constructed for the first of these functions,
andd;=—d=1, and from the requirement that each termyhile for the second function, all the nontrivial diagrams
of the action functional be dimensiqnle(with respect to the vanish[see(iii ) abovd. As in the case of the purely solenoi-
momentum and frequency dlmeESIOHS separgteye, €.9., dal field [22], we are left with the only superficially diver-
Refs.[26,37,38. Then, based odr anddg, one can intro-  gent function( 6’ 6),,; the corresponding counterterm nec-
duce the total canonical dimensidp=df+2dy (in the free  essarily contains the factor 6%’ and is therefore reduced to
theory, 9, A). 6’ A 6. Introduction of this counterterm is reproduced by the
The dimensions for modéR.1) are given in Table |, in-  multiplicative renormalization of the parameteys, v in the
cluding renormalized parameters, which will be consideredaction functional2.1), with the only independent renormal-
later on. From Table 1 it follows that the model is logarith- jzation constanZ,,:
mic (the coupling constard, is dimensionlegsat e =0, and

the UV divergences have the form of the polescitin the vo=vZ,, (3.29
Green functions. The total dimensiai plays in the theory

of renormalization of dynamical models the same role as Go=9gu°Zy, (3.2b
does the convention@nomentum dimension in static prob- 1

lems. The canonical dimensions of an arbitrary 1-irreducible Zg=Z,". (3.29

Green function=(® - - - ®), ;, are given by the relations . o . -
{ Y 9 y Here u is the renormalization mass in the minimal subtrac-

dk=d—Ngd5 , (3.1  tion schemgMS), w_hich we always use in what follows;
and v are renormalized analogs of the bare parameggrs
d®=1-Ngd%, (3.1b and vy; and Z=Z7(g,a,e,d) are the renormalization con-
stants. Their relation in Eq3.20 results from the absence of

dr=dF+ 2d¢=d+2—Ngdy, (3.10 renormalization of the contribution witB, in Eqg. (2.1), so

thatDy=govo=gu®v. No renormalization of the fields and
whereNg={Ny,N, ,N,} are the numbers of corresponding the parameterm, M, and« is required, i.e.Zg=1 for all ®
fields entering into the functiofi, and the summation over andmg=m, Z,=1, etc. The renormalized action functional
all types of the fields is implied. The total dimensidp is  has the form
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Sied @)= 0'D 012+ 0'[ — 3,6— (V) + vZ,A 0]

—-vD, /2, (3.3
where the contribution witld, is expressed in renormalized
parameters using Eq€3.2).

The relation S(®,ey) =S(P,e,u) (Where gy is the
complete set of bare parameters, aris the set of renormal-
ized parametejsfor the generating functional(A) in Eq.
(2.2) yields W(A,e) =W,e(A,e, ). We useD, to denote
the differential operationud, for fixed e, and operate on

both sides of this equation with it. This gives the basic RG

differential equation

DRGWren(Aie!M):O! (343
where Dy is the operationbﬂ expressed in the renormal-
ized variables

Dre=D,+B(9)dg—v,(9)D,, (3.4b
where we have writtefD,=xd, for any variablex, and the
RG functions(the 8 function and the anomalous dimension
v) are defined as

y,(9)=D,InZ,, (3.59

B(9)=D,9=9(—e+7v,). (3.5b
The relation betweep andy in Eq. (3.5b results from the
definitions and the relatio(B8.20.

The renormalization constart, is found from the re-
quirement that the 1-irreducible functid¢@’ 6, _;, expressed
in renormalized variables be UV finitg.e., be finite fore
—0). This requirement determings, up to an UV finite
contribution; the latter is fixed by the choice of a renormal-
ization scheme. In the MS scheme all renormalization con
stants have the form “% only poles ine.” The function
G '=(#'6),; in our model is known exactly; see Egs.
(2.59 and(2.9). Let us substitute Eq$3.2) into Eqgs.(2.53
and(2.8), and choos&, to cancel the pole ims in the inte-
gral J(m). This gives

7,-1-gc, ALt 3.6
v=1-9Ce— (3.9
where we have written Cy=S;/(2m)¢  and

Sq=27%YT'(d/2) is the surface area of the unit sphere in
d-dimensional space. Note that res(8t6) is exact, i.e., it
has no corrections of ordef, g%, and so on; this is a con-
sequence of the fact that the single-loop approximat®g)

for the response function is exact. Note also thatder0
Eq. (3.6) coincides with the exact expression 8y, in the
“incompressible” case obtained in RgR2].

For the anomalous dimension y,,(g)E@MIn Z,
=p(9)dyIn Z,, from relations(3.5b and(3.6), one obtains

_—&Dynz, c d—1+a
”(g)_l—pgln z, 9o
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From Eq.(3.5b it then follows that the RG equations of
the model have an IR stable fixed poiftB(g,)
=0, B'(g,)>0] with the coordinate

B 2de 3.8
a1t e (38
The fixed point is degenerate: its coordingtedepends con-
tinuously on the parameter=Dy/D,. The value ofy,(g)
at the fixed point is also found exactly:

Yy =7v.(0s)=¢. (3.9

(Formally, o can be treated as the second coupling constant.
The corresponding beta functicm,zf)#a vanishes identi-
cally owing to the fact thatv is not renormalized. Therefore,
the equationB,=0 gives no additional constraint on the
values of the parametegsa at the fixed poin). The solution

of the RG equations on the example of the stochastic hydro-
dynamics is discussed in detail in Rdf36,38| [see also Ref.
[22] for the case of mode(1.3)]; below, we confine our-
selves to only the information we need.

In general, if some quantity (a parameter, a field or
composite operatoris renormalized multiplicatively,F
=ZrF ., With a certain renormalization constart, its
critical dimension is given by the expressi@fi. [26,37,39)

A[F]=Ap=dt+A, de+ yE (3.10
where df and d2 are the corresponding canonical dimen-
sions, y¢ is the value of the anomalous dimensigp(g)
=D,In Z at the fixed point, and ,=2—y* =2—¢ is the
critical dimension of frequency. The critical dimensions of
the fields® in our model are found exactly; they are inde-
pendent of the parameter and coincide with their analogs
in model (1.3), cf. Ref.[22]:

- A=1—c¢, (3.113
Ay=—1+¢/2, (3.11b
Ay=d+1-e/2 (3.119

[we recall that the fields in mod€2.1) are not renormalized
and thereforeyq, =0 for all ®].

Let G(r)=(Fi(x)Fx(x")) be a single-time two-point
quantity; for example, the pair correlation function of the
primary fields®={#0,0’,v} or some multiplicatively renor-
malizable composite operators. The existence of the IR
stable fixed point implies that in the IR asymptotic region
Ar>1 and any fixedMr the functionG(r) is found in the
form

G(r)=vCA%(Ar)~Seg(Mr), (3.12
with a certain, as yet unknown, scaling functignof the
critically dimensionless argumentr. The canonical dimen-
sionsdg anddg and the critical dimension g of the func-
tion G(r) are equal to the sums of the corresponding dimen-
sions of the quantitiek; .
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Now let us turn to the composite operators of the formwhere we have denoted
0"(x) entering into the structure functiori%.5) and the cor-
relators(1.9). ~ k!

In general, counterterms to a given operdfoare deter- h(d)EZ kgl Hork =F(1,1,d/2+1;1/4),
mined by all possible 1-irreducible Green functions with one k=0 4%(d/2+1)-- - (d/2+k) (3.16
operator F and arbitrary number of primary fieldd’ '
=(F(X)®(xq)- - - DP(X))1.ir- The total canonical dimension
(formal index of divergendgefor such functions is given by

andF( ) is the hypergeometric series; see R&8].
In the special casa=2, one obtains from E¢3.15

dr=dr—Ngdg, (3.13 A e(d—1)(a—1) 82(d_l)a,(a,_1)+o( 3)
with the summation over all types of fields entering into the ~ > (d=1+a) (d—1+a)? o
function. For superficially divergent diagrams, the real index 3.19
dr=dr—N, is a non-negative integer. From Table | and _ o _
Eq. (3.13 for the operators”(x), we obtaindg=—n, dr Expression(3.15 is simplified for any integer value af

=—n+N,~N,—(d+1)N,, and d}.=—n+N,~N,—(d ©owing to the fact that the series in EG.16 reduces then to

+2)N, . From the analysis of the diagrams it follows that 2 finite sum; see Ref39]:
the total number of the field@ entering into the functio’ (— )2
can never exceed the number of the fiefds the operator _ ondi2—1 -
6" itself, i.e., Ny<n. Therefore, the divergence can only h(d)=2d) (=3) In(4/3)+k§=:2 d/2—k+1
exist in the functions witiN,= N, =0 and arbitrary value of (3.183
n=N,, for which dr=d;=0 and the corresponding coun-
terterm has the forng". It then follows that the operatagt”  for any even value ofl and
is renormalized multiplicativelyd"=Z.[ 8"]en-

Note an important difference between the case of a purely
transversal velocity field1.3) and the general cagé.8). In
the first case, the derivativ@ at the vertex can be moved
onto the fieldd owing to the transversality of the velocity (172 (_gyd-12-k
field, 8’ d(v6) = 6’ (vd) 6. This reduces the real inde}. by +2 kgl T ok—1
at least one unity, so thal;. becomes strictly negative; see
Ref.[22]. This means that the operaté? requires no coun- o, any odd value ofd, which givesh(d)=2/(33) for
terterms at all, i.e., itis in fact UV finiteZ,= 1. [This “non-  4_ 1, h(d)=4In(4/3) ford=2, andh(d)=12— 273 for
renormalization” result can be interpreted as the fact that they_ 5 [We note that fod=1 and 2 the sums in Eq¢3.18
scalar field remains a continuous function even in the limit. 20 no termb The case of a purely potential velocity
vo— 0 or equivalentlyA —co. The nontrivial UV renormal-

. g . field is obtained foiD,=const, Dy=0, or, equivalently«
n 0 0
ization of the monomialsd#d6)" [22] points to the fact that %, gb=goa=const. From Eq(3.8) it then follows that at

the scalar field is not differentiable, i.e., its gradients exis ' v } " :
only as distributions. One of the authdid.V.A) is thankful tthe f|>§ed pointg, _st{cd’ thg values of the critical .d".
mensions A,, are obtained simply by taking the limit

to G. L. Eyink for pointing this out to him; see also Refs. X )
[13,14.] It then follows that the critical dimension @f'(x) @ in the expression3.19 and(3.17 and have the form

in the model(1.3) is simply given by expressiof8.10 with
no correction fromyg , and is therefore reduced to the sum

d2

h(d)=2d| (— 1)@ V2% 392 2% 7

(3.18b

Ap=n(—1+¢/2)—n(n—1)de/2+n(n—1)(d—1)&?/2

of the critical dimensions of the factof&2]: +n(n—1)(n—2)h(d)de?/4+ O(&%). (3.19
A=A[6"]=nA[0]=n(—1+¢/2). (3.14  In the special casd=1, one obtains
In the general casgEq. (1.8)], the constantZ,, are non- A,=—n+ne—n2e/2+n(n—1)(n—2)e27/(6/3)
trivial, and the simple relatiof3.14) is no longer valid. The 5
two-loop calculation of the constang, is explained in de- +0(&”). (3.20
tail in Sec. V, and here we only give the two-loop result for
the critical dimensiong,, in model (2.2): For the pair correlators of the operato#8 we obtain,
from Table | and Eqs(3.12 and(3.15),
an(n—1)de Cnioln
Ay=n(—1+¢/2)— 2d-1+a) (8" (X) OP(X'))=vg "TPEA TR A L) TAnTApg (M),
(3.2))
a(a—1)n(n—1)(d—1)e? . — o .
+ > with the dimensiong\, given in Eq.(3.15 and certain scal-
2(d-1+a) ing functionsé, ,(Mr) (for odd n+p they vanish. We re-

2 _ 9 call that representatiof8.21) holds forAr>1 and any fixed
L@ n(n—1)(n—2)dh(d)e +0(e%), (315  Mr; the behavior of the functior, ,(Mr) for Mr<1 (con-
4(d—1+ a)? vective ranggis studied in Sec. IV.
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IV. OPERATOR PRODUCT EXPANSION all operators of the forrdF with external derivatives vanish
AND ANOMALOUS SCALING owing to translational invariance.
The leading contributions foMr—0 are those with the

e . g smallest dimensiom\,, and in thee expansions they are
sponds to IR scaling in the regiokr>1 and any fixedvir those with the smallest,=d[F ,] for e=0. In the standard

with definite critical dimensiond , given in Eq.(3.15. Ex- model ¢* of the theory of critical behavior one has,

pressions(1.9) should be understood as certain additional _ X -
statements about the explicit form of the asymptotic behavior Ng+O(e), wheren,=0 is the total number of fields and

of the functionsé,, ,(Mr) for Mr—0. The form of the scal- ger_lvgt';/ﬁj ;PFK/é;—gecgﬁﬁzﬁtc:;:tlogz t?,f;ewshrir::?]lliess:evaﬂ?e
ing functionsé¢,, ,(Mr) in representatiot3.21) is not deter- ar 9 : Y

mined by the RG equations themselves; these functions calti"}r 'ml (Mrz _bart1_d h"’.‘S a flnltetllr(;u:)a!:ﬂ]rao. The?flrgtthnon
be calculated in the form of series ;. However, thise nvial contribution is generated by the operatdf with n,

— 2+0(e) . _
expansion is not suitable for the analysis of their behavior for 2'_ It has thehform f\/l/lr) 0 ’ z?]ndlongl_ determines a cord
Mr—0, because the actual expansion parameter appears [gction, vanishing aMr—0, to the leading term generate

: ) by the operatoF =1.
be e In(Mr) rather thare itself; cf. Refs.[22,26,3§. In con- e -
trast to the “large UV logarithms” Indr), the summation of The distinguishing feature of the models describing turbu-

“ : o - lence is the existence of “dangerous” composite operators
th large IR logarithms” is not perform tomatically ~. ) o i ) .
ese large ©o9a S 1S NOt perio ed automatically with negativecritical dimensiong22,26,3§. The contribu-
by the solution of the RG equations. i fthe d i "o th ¢ duct
In the theory of critical phenomena, the asymptotic formelgn:m(;ions Iegggtirzuzir?pj;? %fh;]v% . o(fe I%Ze;?:;irnpr?ur?;
of scaling functions forM—0 is studied using the well- P 9 9

known Wilson OPE; see, e.g., RdR5]; the analog ofL :L?ns Othfog\,{”_HO' :jtlls(gbl\)nous f(;om Eq(3.15)ttrat ?llf
=M "1 is there the correlation length.. This technique is € operalory” In model{<.1) are dangerous at feast for

; . smalle, and the spectrum of their critical dimensions is un-
Elzlszozg%%“ed to the theory of turbulence; see, e.g., Refs‘bounded from below. If all these operators contributed to the

According to the OPE, the single-time product OPE Iike Eq.(4.1), the a.”a'yS‘S Of. the S'T‘a"/'. behavior
FL(X)F,(x') of two renormalized operators ak=(x would |mply' th_e summation of their contributions. S_uch a
+x')/2=const, and=x—x'—0 has the representation summation is indeed required for the case of the different-

time correlators in the stochastic Navier-Stokes equation,
and it establishes the substantial dependence of the correla-
FL(X)F2(X") =2, Ca(r)F(xt), (4.2  tors onM and their superexponential decay as the time dif-
@ ferences increase; see Ré#6,38. Fortunately, the problem
) ) i i o simplifies for model(2.1).
in which the function<C,, are the Wilson coefficients regular  £rom the analysis of the diagrams it follows that the num-
in M? andF, are all possible renormalized local composite ey of fieldsd in the operatoF , entering into the right-hand
o.perators allowed by symmetry, with definite critical dimen- gjges of expansion@.1) can never exceed the total number
sionsA,, . _ _ _ of fields @ in their left-hand sides. Therefore, only finite

The renormalized correlata1(x)Fo(x')) is obtained  nymper of operators™ contribute to each operator product
by averaging Eq(4.1) with the weight ex(Sen; the quanti-  expansion, and the asymptotic form of the scaling functions
ties (F,) appear on the right-hand side. Their asymptoticig simply determined by the operat@t with the lowest criti-
behavior forM—0 is found from the corresponding RG ¢4 dimension, i.e., with the largest possible number of fields
equations, and has the form 6. For the scaling functiong, ,(Mr) entering into expres-
sions(3.21), this givesgn,p(Mr)oc(Mr)Anw, which leads to
the asymptotic expressidi.9 shown in Sec. I.

It is noteworthy that the set of the operatafsis “closed
with respect to the fusion” in the sense that the leading term
in the OPE for the pair correlatgrd"6P) is given by the
operatoré"*P from the same family with the summed index
n+m. This fact, along with the inequality

Representatiori3.21) for any functionsé, ,(Mr) corre-

(FayeMAe, 4.2

From the operator product expansi@hl) we therefore find
the following expression for the scaling functi@giMr) in
representatiori3.12) for the correlatof F(x)F,(x")):

EMr) =2, AL (Mr)2s, (4.3
“ Ap+Ap>Anyp, (4.4

with coefficientsA,= A (Mr), which are regular inNir)?,
generated by the Wilson coefficiers, in Eq. (4.1). which is obvious from the explicit expressidi3.15 for

We note that for a Galilean invariant product small values ot, can be interpreted as the statement that the
F1(X)F»(x"), the right-hand side of Eq4.1) can involve correlations of the scalar field in model(2.1) exhibit mul-
any Galilean invariant operator, including tensor operatorstifractal behavior; see Refs40—42. In the case of the sole-
whose indices are contracted with the analogous indices afoidal velocity field, the dimensiod, becomes linear im
the coefficientsC,. Without loss of generality, it can be [see Eq.(3.14], and relation(1.9) reduces to the so-called
assumed that the expansion is made in irreducible tensors, $gap scaling” (see Ref.[40]). In this case, the nontrivial
that only scalars contribute to the correla{ér,F,) because multifractal behavior manifests itself in the correlations of
the averagegF,) for nonscalar irreducible tensors vanish. the dissipation rate rather than in the correlations of the field
For the same reason, the contributions to the correlator frontself; see Ref[22].
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Now let us turn to the structure function4.5) in the they can be derived directly using the RG technique. Obvi-
convective range\r>1 andMr<1. From expressiofil.9  ously, the field¢ enters into the vertex in the form of the
it follows that derivative 6’ 9,(v d,¢). Therefore, the operatois” are not

renormalized, and their critical dimensions are given by the
relations analogous to Ed3.14: A[ ¢"]=nA[¢], where

Son=vo "N (M/A) 20 1+k+2:2n Cip(AT)A2n 8k %0 | AT 41— —1+A[0]=—2+¢/2; see Eq.3.11H. The struc-
k,S;ﬁo ture functions are then given by an expression analogous to
(4.5 Eq.(1.6),
where the coefficients,, are independent of the scales Son=Dg "r"4=e)(Mr)Aan,

A, M, and the separation It is obvious from inequality .
(4.4) that all the contributions in the sum in E@.5) vanish ~ where the part of the anomalous exponents is played by
in the regionAr>1, so that the leading terms of the structurethe critical dimensionsA,, of the operators dy¢dx$)"

functions do not depend anand are given by Eql1.11). =¢*" given by Eq.(3.20. In the notation of Ref[20]
The comparison of expressiofis.9) and(1.11) fork=p we then have (;,=n(4—e)+A;=2n—ng(2n—1)
=1 with the exact result$2.219 and (2.219 gives A,= —27n(n—1)(2n—1)e%3y3, in agreement with the

—2+e—el, which along with Eq(2.183 leads to the exact O(e) result obtained in Ref[20] using the zero-mode
expression(1.12 for the critical dimensiom,, shown in  approach; the exponegs=2—¢ is exact.

Sec. I. We note that expressi@®17) for A, obtained within Let us conclude this section with a brief discussion of the
the RG approach is in agreement with the correspondingimple model of a passively advected magnetic field consid-
terms of the expansion ia of the exact exponeri..12) for ered in Ref[30]. (In more realistic models of the magneto-
all d anda. We also note that Eq2.219 is consistent with hydrodynamic turbulence the magnetic field indeed behaves
the exact RG resulh ;)= —1+¢/2; see Eq(3.11b. as a passive vector in the so-called kinetic fixed point of the

It is seen from Eq(4.5) that the IR behavior for the struc- RG equations; see Ref#3,44. Anomalous scaling of the
ture functions is determined by the contributions of the com-magnetic fields, advected by the self-similar velocity field
posite operatorg" to the corresponding OPE. The operatorsWith a short scale-dependent correlation time was also dis-
6" obviously do not appear in the naive Taylor expansions ofussed in Ref[45]) In this case, bothd=6;(x) and the
the structure functionél.5) for r—0: the Taylor expansion Velocity are solenoidal vector fields. The velocity field is
for the functionS,, starts with the monomial & 6, 6)". taken to be Gaussian with the correlat@r3), and the non-
However, the operators entering into operator product expardinearity in Eqg. (1.1) has the formv;d;6;—6;d;v;. The
sions are not only those which appear in the Taylor expananomalous scaling in this model also appears already for the
sions, but also all possible operators which admix to them ipair correlator; the corresponding exponent is found exactly
renormalization. One can easily check that all the monomial§30.

6% with p<n admix to (9,64;6)" in renormalization. As a The RG analysis given above and in Ref2] is extended
result, their contributions appear in the OPE for the structurdlirectly to this model. It turns out that the expressions for the
functions and dominate their IR asymptotic behavior. renormalization constarf,, the RG functionsg and v, ,

The situation changes if the velocity field is purely sole-and the fixed poing, coincide with the corresponding ex-
noidal, with the correlator given in E¢1.3). In this case, the pressions(3.5—(3.8) for model (2.1) with the substitution
field 6 enters into the vertex in the form of a derivative, =0, while the critical dimensiona , , 4, are exactly the
6' d(v6)=6'(vd) 6, and therefore only derivatives dfcan ~same as in model2.1); see Egs.(3.11). For the IR
appear in the counterterms to the monomialgg¢;6)".  asymptotic region, the expressions of fo®12 are ob-
Hence, the operators of the ford? cannot admix in renor- tained for the correlation functions of various composite op-
malization to the monomialsj(64;6)" and cannot appear in €rators; the corresponding critical dimensias are calcu-
the OPE for the structure functiof.5). This means that the lated in the form of thes expansions. In particular, for the
contributions of the operato# to pair correlator¢1.9) can-  critical dimensionsA,, of the scalar operatorg®"=(6;6,)"
cel out in the structure functions, and the IR behavior of theve obtain
latter is dominated by the operatoig §9;0)"; see Eq(1.6).

The cancellation becomes possible due to the fact that the Ar = —2n— 2n(n—1e
dimensionA,, for a=0 is a function linear inn [see Eq. 2n d+2
(3.14], and therefore all the terms in the square brackets in

Eq. (4.5 are independent ofr. In this case, the anomalous and for the special case=1 we have
exponents are determined by the critical dimensions of the )
powers of the operatat; #9; 6; these dimensions are known A= —2— 2(d—2)e
up to the ordek? of the ¢ expansior[22]. 2 d(d—1)

For d=1, the behavior analogous to E@..6) in model
(1.8) is demonstrated by the structure functions of the fieldFor the dimensiond ,, of the second-rank irreducible ten-
#(t,x), defined so thab(t,x)=dye(t,x). In this formula-  sors;6;6*" *— 5, 6°"/d, we have
tion, the problem was studied in R¢20] using numerical
simulations, and analytically within the zero-mode approach. ,, _ _, . gld(d+1)—2(d—1)n(n—1)] +0(s?)
The structure functions of the “potentiald are not simply 2n (d—=1)(d+2) '
related to the structure functions of the primary figldbut (4.8

+0(&?), (4.6)

+0(e3). 4.7
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The leading terms of the smdillir behavior of the scaling TABLE II. The diagrams of the 1-irreducible Green function
functions are determined by the contributions of the scalaf#"(X) 8(x1) - - - 8(X2))1.r in the two-loop approximation.
operators#?", and the part of the anomalous exponents i<

played by dimensiong4.6). For the special case of the Diagram Symmetry coefficient
pair correlator it then follows that (6(x)6(x"))
o (Ar)~226(Mr)22. In the notation of Ref[30] we havey
=A,—2A,; from Eqgs.(3.11h and(4.7) it follows that A, /\
—2A,=—&—2e3(d—2)/d(d—1)+0O(e3 for any d, in D, n(n-1)/2
agreement with the exact expression foobtained in Ref. }/\
[30]. D, - n(n-1)
V. CALCULATION OF THE ANOMALOUS EXPONENTS D ----
3 n(n-1)/2
TO THE ORDER &2 /i\
In this section we present a two-loop calculation of the D4 - n(n-1)(n-2)
critical dimensions\,, of the composite operatoé', which s .
determine the anomalous exponents in expressibi$s and D, b n(n-1)(n-2)(n-3)/8
(1.13). The operators9" are renormalized multiplicatively,
0"=Z,[ 6"];en (se€ Sec. I). The renormalization constants p AT
Z,, can be found from the requirement that the 1-irreducible__° —
correlation function
n o _ momenta and frequencies equal to zero; the IR regularization
{[0rerX) 00x0) - - 00w)) 1. is then provided by the “masst from the correlatof1.9).
=Z, 10" (X)O0(X1) - - - 0(Xn)) 1 =25 T, In what follows, we use the notations
(5.7
Rij(k)=DgPj; (k) + DQjj (k) (5.39
be UV finite, i.e., have no poles ia, when expressed in
renormalized variables using formul#3.2). This require- gpg
ment determine&,, up to an UV finite part; the choice of the
finite part depends on the subtraction scheme. Most conve- S(K) = (K24 m?2) ~di2-e12, (5.3

nient for practical calculations is the MS scheme. In the MS
scheme, only poles is are subtracted from the divergent

expressions, and the renormalization constants have the ford{e also recall the relatior®,=govo and@=Dg/Dy.
“1 + only poles ing.” In particular, The diagranD, differs fromD; only by the insertion of

the simplest self-energy diagraly,, into one of the two
. i ~ n lines (#6"). Therefore, the combinatiob,+ 2D, entering
Zp =1+ Z a(g)e =1+ Z Q"Z anke~. into I';, can be easily calculated as a whole: we calculate the
K=t =kt (5.2 single-loop diagranD, with the exact propagators(#6’)
' instead of the bare propagatdréé’), and then expand the
The coefficientsa,, in our model depend only on the space result ing, to the ordelg(z). From the exact solutiosee Sec.
dimensiond and the completely dimensionless parameter 1) it follows that the propagatof6é’) is obtained from its
their independence of is a feature specific to the MS bare counterpart simply by the replacemegt- 7o, where
scheme. One-loop diagrams generate contributions of grderthe exact “effective diffusivity” has the forntsee Ref[46]
in Eq (52)’ two_k)op ones generate contributions of order'-for the exa(.;t eXpreSSion for the effective dlfoS|V|ty in the
g2, and so on. The order of the poledrdoes not exceed the Incompressible cage
number of loops in the diagram.
The two-loop diagrams of functiof',, required for the Do(d—1)+Dj
calculation ofZ,, to the ordeg?, and the corresponding sym- o= Vot TJ(m);
metry coefficients, are given in Table Il. The solid lines in
the diagrams denote the bare propagdi®é’), from Eq.
(2.43; the end with a slash corresponds to the figld and ~ S€€ Eqs{2.53 and(2.8). Then the “exact” analog of the
the end without a slash correspondsétothe dashed lines diagrambD, is given by
denote the bare propagat(t.8). Note that the propagator
(06), does not enter into the diagrams fBy,. The black f do [ dk S(KR;(K)kk
2

circle with p=0 attached “legs” denotes the vertex factor 5= . =DoJ(m)/270, (5.4
i it St m) (279 |io+ pok?|?
F, given by the p-fold variational derivative F, 0
=66"(X)/66(xq) - - - 60(Xp).

Now let us turn to the calculation of the diagrams fromwhere we have performed the elementary integration over
Table Il. It is sufficient to calculate the functidi, in the the frequency and used the isotropy of the functi{t).

momentum-frequency representation with all the externallhe expansion of resu(6.4) in g, gives
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J(m d—1+a@)J(m £J(m 2(d—1+ £J(m
D1+2D2:agoz( ){1_90( 20|a)( )| s D1+2D2:agu2( ), @9 4da)u (m)
X[Cqyle—uI(m)]

The right-hand side of Ed5.5) is expressed in renormalized
variables by the substitutioglozg,u‘fZ;1 with the constant
Z, from Eq. (3.6), which within our accuracy gives The diagranD; is represented by the integral

=gDW+g?D@. (5.6)

do (do’ [ dk [ dg Ry(q)(k+a)i(k+a)Rps(K)kpks
D3:j§f 2 f 1 RO DEE DL e 1 51, (5.7

27 ) 2md) 2m9 |io+vek+q)?Fie’ + vek?|?

and the integrations over the frequencies give

agd [ dk dq
D —_— P
>4 f(Zw)“f(zw)d

whered is the angle between the vectdraindq, so thatk- q=kqcosd. The symmetry of the integrgb.8) in k andq allows
one to perform the substitutidk?— (k+q)%/2—k- q in the integrand, which gives

k2sintd
(k+q)?

at(l-a) S(k)S(q), (5.8

a?g? a(l—a)g?
gon(m ( )90

Ds= 2 )+ 8 [J2(m) —235(m)], (5.9
where we have written
B dk dg .
Jl(m)=f (2w)df —(ZW)dsmzz?S(k)S(q) (5.10
and
dk dg (k-qg)sirtd
= k . .
Jo(m) f (Zw)df ol (kiqE SWS@ (5.1
The integral in Eq(5.10 can be easily expressed \dém):
Jl(m)zcgfxdk W*lfmdq q‘Hf dn sinZﬁS(k)S(q)sz(m)f dn sinzzfi:cj;—lJz(m), (5.12
0 0

with the coefficientC4 from Eq. (3.6). Here and below dn denotes the integral over tliedimensional sphere, normalized
with respect to its area, so thftin 1=1 andfdn sir9=(d—1)/d. For integral(5.11), one has

5im) szxdkfwd f g k9qcosd sir* 9 SHS(@) Zszwdkfkd f ] kdqdcos® sirfd SS(a) (5.13
m) = n = n , )
2 4o o 70 k?+ g2+ 2kq cosd a 4Jo 04 k?+ 2+ 2kq cosd a

where we have used the symmetry of the integrand and irthen provided by this finite lower limit, and one can simply
tegration area ik andq. setm=0 in the functionsS(k) and S(q), which gives

In order to find the renormalization constant, we need not
the entire exact _expressi(_n(|5.13) for the integrgIJz(m); " K k~2q~*cosd Sir2d
rather we need its UV divergent part. The simple power Jz(m)zzcgf dkf dqf dn .
counting shows that the UV divergence of the integ8al3d m Jo k?+qg*+2kg cosd
is generated by the region in which both the integration mo- (5.14
mentak and q are large. Therefore, integréb.13 contains
only a first-order pole iz, and the coefficient in £/does not  Here and below= means the equality up to the terms finite
change when the integration arfgsee] for the momentunk  for e — 0. From the dimensionality considerations, it is obvi-
is restricted from below by some finite limit, for example, ous thatJ,(m)=m~2¢f(g), where f(¢) contains a first-
[m,<]. Furthermore, the IR regularization of the integral is order pole ine. It then follows that
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1 Combining expression&.9), (5.12, and(5.18), we obtain
Jo(m)=— Z_Dsz(m) (5.19
&
(we recall the notatiorD,,=md/dm). Representatios.15 D Jz(m)g “(1 @)(d—1)
allows one to get rid of the integration ovkiin Eq. (5.14): 3 0 8d
X~ ¢cosd sir o 2 2a(1—a)(d—1)m‘2
J(m=c2™ j de +95Cq (5.19
2m)=C; 1+x2+ 2x cosd 8zd

(5.19

where we have performed the substitutagpg mx. The pole  Within our accuracy, the renormalization of expression
in Eq. (5.16) is isolated explicitly, the integral is UV conver- (5.19 is reduced to the substitutiagy— gu®, which gives:
gent, and one can set=0 in the integrand:

cos?d sirty @9’ ag’(1—a)(d—1)
3m=c2” dx D3=J%(m)p? +
2Am)=Cy 1+x2+ 2x cosd ° Fla 8d
5.1
&7 sez(I= ) (d=D)(u/m)>
The integrations in Eq5.17) are performed explicitly: 9 Cd 8ed? (520
,m% . ,Mm %(1—d)
Jz(m):Cd—j dn 9 cosdsind=Cy———. i .
2¢e 2ed? Now let us turn to the diagrarD,. It is given by the
(5.18 expression
|
do (do’' [ dk  dg Rij (K)ki(k-+ 0);Rps(K)dp0sS(K) S(@) g5
4= Py 5 d d /: NN 212 . , 2 = [‘J (m)+‘]3(m)]y
2 2md) 2m)8 (io+vkd)|io' + g2 (—i(o+o')+vo(k+q)?) 8
(5.29
|
where we have performed the integrations over the frequerand use the formulas
cies and made use of the symmetrykimnd g; the integral
Ja(m) is given by Ko (2k—=1)N
f dn cos* 9= 4o dr2k—2)"
dk d k- k
| (m)zf df a_kasios@ o,
(2’77) (27T) k +q +(kQ) J dnC052k+119:O (525)

Proceeding as for the integrd(m) above, we arrive at the
expression x2k+1 (k1)2

Jd (1072 A2k D)1

,m” 1 cosd
Ja(m)=Cj f de dnz—, (5.23 o o _
0 1+x°+xcost For the series in Eq(5.29 this gives(we omit an overall
minus sign
which is analogous to expressi@B.17) for J,(m). In con-
trast to Eq.(5.17), after the integration ovex in Eq. (5.23 > (2k+ 1)1 (k1)2
we arrive at the integral over the angles which cannot be Z 2K+ DI(d+2)- - (d+2K)
calculated explicitly. We rather expand the integrand in Eq. -
(5.23 in cosd: 1.2 K
cosd 4di=0 4%(d/2+1) - - - (d/2+K) (),
j dXJ 1+x +xcosﬁ (5.26

with the functionh(d) entering into expressioné3.15—
, (3.18.
Combining expressiong5.21), (5.23, and (5.26), and
(5.249 performing the replacemeggy—gu®, we obtain

J’ f cosﬁ X cosv K
1+x2k 0 1+x2
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a?g?  a?g?h(d)Ci(u/m)?® a ang? 2
_12 2¢ _ —-1_ 119 219 a4 3
Dy=J2(m)u? — 35 . Zpt=l = % +0(g%, (5.30
(5.27)

The diagramDs is simply given by and the requirement that functidb.1) be UV finite in the

° . first order ing gives

o
Ds=D%=J4(m)u? ——, (5.28 a n(n—1
> o f;g+ ( 5 )gD(”:(UVfinite), (5.30)

and Dg contains effectively a closed circuit of retarded
propagators and vanishes identically. Therefore, the functiowith the coefficientD™) defined in Eq(5.6). The expansion
I', in the two-loop order of the renormalized perturbationin ¢ of the integraldJ(m) from Eq. (2.8b entering into the

theory has the form expressions fob; has the form
n(n—1) C 1)— y(d/2
Mp=1+ =5 —(D1+2D,+Dg) tn(n-1(n-2Ds  ped(m)= | 1+5 %Hnwm)) +0(e),
+n(n—l)(n—2)(n—3)D 5.29 (5.32
8 > (529 where ¢(z)=d InT'(2/dz From Egs.(5.6) and (5.31), and
. o _ . the first term of expansio(b.32 one obtains
with the symmetry coefficients from Table Il and the explicit
expressions foD; given in Egs.(5.6), (5.20, (5.27), and a;;= —an(n—1)C,/4. (5.33
(5.28.
Within our accuracy, the renormalization constdbi2) The UV finiteness of the functiof6.1) in the orderg? im-
has the form plies:

n(n—1)(n—2)(n—3)

a,9° axg? apgnn—-1 n(n—1
20" 2 | 2u0 Mn-1) D(1)+%(gzD(2)+D3)+n(n—1)(n—2)D4+

€ g2 g 2 Y ) 5

= (UV finite), (5.39
which, along with expression®.6), (5.20), (5.27), (5.28, and(5.33 and expansiort5.32, yields
, N(n—1a(a—1)(d=1) n(n—1)(n—2)a’h(d)
a,,/C45= Tod? + 324 , (5.359
, a@’n’(n-=1)? o’n(n—1) n(n—1a(a—1)(d-1) o’n(n-1)(n-2) o’n(n—1)(n—2)(n—3)
lCi=—qg g+ 16d - 8 - 32
an(n—1)

=T[an(n—1)—2(a+d—l)/d]. (5.35h

We note that thé(1) terms of expansiof6.32 cancel out and using the explicit expressiofs.33 and (5.35 one ob-
in Eq. (5.34), and therefore give no contribution to the coef- tains:
ficientsa;; . 2

For the corresponding anomalous dimensiop, o= —an(n—1)u +n(”_1)“(“_1)(d_1)u
=D,In Z,, we have " 4 8d?

_ _ 2 2
Ya=D,IN Zo=B(9)3gIn Zy=[— &+ 1,(9)1Dgln Z,, LRz 1)n=2)ehid)u

o T +0(g%), (5.38

_ ) where u=gC,. It follows from the explicit expressions
with the RG functionsp(g) and v,(g) from Egs.(3.5.  (3.7), (5.33, and(5.35 that the coefficient in & in expres-
Within our accuracy Eq(5.36) yields sion (5.37) for y, vanishes:—a;.gy,+ 28,02 (a1,9)>

=0. This is a manifestation of the general fact that the func-
1 tion vy, is UV finite, i.e., it has no poles ia. Substituting the
= 2 — | — 2_ 2 n ) ’
Yn=aug 282197+ T~ 8110y, 280" (2149)°], anomalous dimensiof5.39 into expressior(3.10 and per-
(5.37  forming the replacemerg—g, with g, from Eg.(3.8), we
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arrive at the desired expressi@15 for the critical dimen-  pansion is also established for a passively advected magnetic
sion of the composite operatof. field. These facts strongly support the applicability of the RG
It is worth noting that the casg=1 is exceptional in the technique and the expansion to the problem of anomalous
sense that “there are no angles in one dimension.” We havscaling for the finite values of, at least for low-order cor-
performed all the calculations directly th=1, and checked relation functions.
that the one-dimensional exponents are indeed obtained from We note that the series infor all known exact exponents
the general expressions like E®.19 by the substitutiord in the rapid-change models have finite radii of convergence,
=1. a rare thing for field theoretical models. In the language of
field theory, this is related to the fact that in the rapid-change
VI. DISCUSSION AND CONCLUSION models, there is no factorial growth of the number of dia-
) ~grams in higher orders of the perturbation the¢aygreat
We have applied the RG and OPE methods to the simplgeal of diagrams indeed vanish owing to retardation; see the
model(1.1), (1.2), and(1.8), which describes the advection giscussion in Sec. )l In its turn, this fact suggests that the
of a passive scalar by the nonsolenoidaompressible’)  series inz for the unknown exponentfor example, the
We have shown that correlation functions of the scalar fieldnoge) can also be convergent.
in the convective range exhibit anomalous scaling behavior; |t should also be noted that the asymptotic expressions
the corresponding anomalous exponents have been calcyr.g) and(1.11) result from the fact that the critical dimen-
lated to the second order of theexpansion(the two-loop  sjonsA,, are negative, and that the modulus,| increases
approximation; see Eqs(3.15—(3.20. They depend on a mgnotonically withn. This is obviously so within the ex-
free parameter, the ratie=D/D, of the amplitudes in the  pansion, in which the sign and tiedependence of the di-
transversal and longitudinal parts of the velocity correlatormensions are determined by the first-order teftnd0 and
and in this sense they are nonuniversal. In the language @#.6), while the higher-order terms are treated as small cor-
the RG, the nonuniversality of the exponents is related to thegections. However, for finite values of the higher-order
fact that the fixed point of the RG equations is degenerate: it&rms can, in princip|e, Change these features of the dimen-
coordinate depends continuously an sions. Indeed, the® contribution in the second-order ap-
In contrast to mode(1.3), where the anomalous expo- proximation forA, is positive[see, e.g., Eq3.15], so that
nents are determined by the critical dimensions of the coma . also becomes positive, providedis large enough. Of
posite operatorsé 64;6)", the exponents in modél.8) are  course, this conclusion is based on the second-order approxi-
related to the critical dimensions of the monomials the  mation of thes expansion and is therefore not definitive: the
powers of the field itself, and these dimensions appear to bgigher-order terms of the expansion contain additional
nonlinear functions oh. This eXplai_nS the important differ- powers ofn, (e} that the actual expansion parameter appears
ence between the anomalous scaling behavior of mMdd®l  to begn rather thare itself; cf. Refs[22,42. Therefore, the
and that of modedlS) in the |a'[tel‘, the correlation functions correct ana'ysis of the |arga behavior of the anomalous
in the convective range depend substantially on both the IRyponents requires resummation of thexpansions with the
and UV characteristic scales, and the structure functions argqgjtional condition thatn=1. This is clearly not a simple
independent of the separatior [x—x'|. The monomial®"  proplem and requires a considerable improvement of the ex-
in model (1.8) also provide an example of the power field isting technique.
operatorswithout derivatives whose correlation functions
exhibit multifractal behaviofanother interesting example is
the field theoretical model of a growth process considered in
Ref.[42]). Analogous behavior is demonstrated by the model
of a magnetic field, advected passively by the incompressible The authors are thankful to A. N. Vasil'ev for clarifying
Gaussian velocity; the corresponding anomalous exponentfiscussions and to A. V. Runov for manuscript preparation.
have been calculated to the order(e2 for the pair cor- We are also grateful to M. Vergassola for important com-
relatoy. ments on Ref[20]. One of the authoréN.V.A.) is thankful
The anomalous exponent for the pair correlation functiorto G. L. Eyink and R. H. Kraichnan for interesting remarks
has been found exactly for all<Os <2. Its expansion ire regarding Ref[22]. The work was supported by the Russian
coincides with the result obtained using the RG for all value~oundation for Fundamental Reseaf@rant No. 96-02-17-
of the space dimensionality and ratioa. The agreement 033, and by the Grant Center for Natural Sciences of the
between the exact exponef0] for the pair correlation Russian State Committee for Higher Educati@rant No.
function and the first two terms of the correspondingx-  97-0-14.1-30.
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