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Rheological constitutive equation for a model of soft glassy materials

Peter Sollich*
Department of Physics, University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom

~Received 1 December 1997!

We solve exactly and describe in detail a simplified scalar model for the low frequency shear rheology of
foams, emulsions, slurries, etc.@P. Sollich, F. Lequeux, P. He´braud, and M. E. Cates, Phys. Rev. Lett.78, 2020
~1997!#. The model attributes similarities in the rheology of such ‘‘soft glassy materials’’ to the shared features
of structural disorder and metastability. By focusing on the dynamics of mesoscopic elements, it retains a
generic character. Interactions are represented by a mean-field noise temperaturex, with a glass transition
occurring atx51 ~in appropriate units!. The exact solution of the model takes the form of a constitutive
equation relating stress to strain history, from which all rheological properties can be derived. For the linear
response, we find that both the storage modulusG8 and the loss modulusG9 vary with frequency asvx21 for
1,x,2, becoming flat near the glass transition. In the glass phase, aging of the moduli is predicted. The
steady shear flow curves show power-law fluid behavior forx,2, with a nonzero yield stress in the glass
phase; the Cox-Merz rule does not hold in this non-Newtonian regime. Single and double step strains further
probe the nonlinear behavior of the model, which is not well represented by the Bernstein-Kearseley-Zapas
relation. Finally, we consider measurements ofG8 andG9 at finite strain amplitudeg. Near the glass transi-
tion, G9 exhibits a maximum asg is increased in a strain sweep. Its value can be strongly overestimated due
to nonlinear effects, which can be present even when the stress response is very nearly harmonic. The largest
straingc at which measurements still probe the linear response is predicted to be roughly frequency indepen-
dent.@S1063-651X~98!04407-9#

PACS number~s!: 83.20.2d, 83.70.Hq, 05.40.1j
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I. INTRODUCTION

Many soft materials, such as foams, emulsions, pas
and slurries, have intriguing rheological properties. Expe
mentally, there is a well-developed phenomenology for s
systems: their nonlinear flow behavior is often fit to the fo

s5A1Bġn wheres is shear stress andġ strain rate. This is
the Herschel-Bulkeley equation@1,2#; or ~for A50) the
‘‘power-law fluid’’ @1–3#. For the same materials, linear o
quasilinear viscoelastic measurements often reveal sto
and loss moduliG8(v), G9(v) in nearly constant ratio
(G9/G8 is usually about 0.1! with a frequency dependenc
that is either a weak power-law~clay slurries, paints, micro
gels! or negligible ~tomato paste, dense emulsions, den
multilayer vesicles, colloidal glasses! @4–10#. This behavior
persists down to the lowest accessible frequencies~about
102321 Hz depending on the system!, in apparent contra-
diction to linear response theory, which requires thatG9(v)
should be an odd function ofv. This behavior could in prin-
ciple be due to slow relaxation modes below the experim
tally accessible frequency range~see Fig. 1!. Each of those
would cause a drop inG8(v) and a bump inG9(v) as the
frequency is tracked downward. However, where the sea
for system specific candidates for such slow modes has b
carried out~for the case of foams and dense emulsions,
example, see@11#!, it has not yielded viable candidates;
therefore seems worthwhile to look for more generic exp
nations of the observed behavior.

Indeed, the fact that similar anomalous rheology sho
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be seen in such a wide range of soft materials sugges
common cause. In particular, the frequency dependence
dicated above points strongly to the generic presence of s
‘‘glassy’’ dynamics persisting to arbitrarily small frequen
cies. This feature is found in several other contexts@12–14#,
such as the dynamics of elastic manifolds in random me
@15,16#. The latter is suggestive of rheology: charge dens
waves, vortices, contact lines, etc. can ‘‘flow’’ in response
an imposed ‘‘stress.’’

In a previous letter@17# it was argued that glassy dynam
ics is a natural consequence of two properties shared by
the soft materials mentioned above:structural disorderand
metastability. In such ‘‘soft glassy materials’’~SGMs!, ther-
mal motion alone is not enough to achieve complete str
tural relaxation. The system has to cross energy barriers~for

FIG. 1. Sketch of frequency dependence of linear moduli, sho
ing possible slow relaxation modes at frequencies below the m
surement window.
738 © 1998 The American Physical Society
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example, those associated with rearrangement of drople
an emulsion! that are very large compared to typical therm
energies. It therefore adopts a disordered, metastable
figuration even when~as in a monodisperse emulsion
foam! the state of least free energy would be ordered@18#.
The importance of structural disorder has previously b
noted in more specific contexts@7,11,19–23#, but its unifying
role in rheological modeling can be more easily apprecia
by focusing on the class of SGMs as a whole.

In Ref. @17#, a minimal, scalar model for the generic rh
ology of SGMs was introduced, which incorporates t
above ideas. We refer to this model as the ‘‘soft glassy r
ology’’ ~SGR! model in the following. The main contribu
tion of the present publication is the exact solution of t
model; at the same time, we also provide more detailed a
lytical and numerical support for the results announced
@17#. The exact solution is in the form of a constitutive equ
tion relating the~shear! stress at a given time to the stra
history. We use this to study a range of linear and nonlin
rheological properties of the model; qualitative compariso
with experimental data show that these capture many gen
rheological characteristics of SGMs. We do not attempt m
quantitative fits to experimental data for specific materi
because the model in its present form is almost certainly
oversimplified for this purpose. We do, however, hope
carry out a more quantitative study in future work, once
remaining ambiguities in the interpretation of the model p
rameters~see Sec. VI! have been clarified and some of th
improvements suggested in Sec. VII have been incorpor
into the model.

We introduce the SGR model in Sec. II, along wi
Bouchaud’s glass model on which it builds. Section III co
tains our main result, the constitutive equation. Its pred
tions in the linear response regime are discussed in Sec
while in Sec. V we analyze several nonlinear scenarios
cluding steady shear flow, shear startup, large step stra
and large oscillatory strains. The physical significance a
interpretation of the various parameters of the SGR mo
are not obvious; in Sec. VI we discuss in more detail
‘‘noise temperature’’x and ‘‘attempt frequency’’G0 of the
model. Our results are summarized in Sec. VII.

II. THE SGR MODEL

The SGR model is a phenomenological model that a
to explain the main features of SGM rheology~both linear
and nonlinear! as described above. To apply to a broad ran
of materials, such a model needs to be reasonably gener
should therefore incorporate only a minimal number of fe
tures common to all SGMs, leaving aside as much sys
specific detail as possible. One important feature is
‘‘glassiness,’’ i.e., the effects of structural disorder and me
stability. We model this using a fairly intuitive picture of
glass: it consists of local ‘‘elements’’~we will be more spe-
cific later about what we mean by these in the context
SGMs! that are trapped in ‘‘cages’’ formed by their neig
bors so that they cannot move. Occasionally, however, a
arrangement of the elements may be possible, due to the
activation, for example. Glass models of this kind are co
monly referred to as ‘‘trap models’’ and have been stud
by a large number of authors~see, e.g., Refs.@13,24–30#!.
in
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An alternative to such models would be, for example, mo
coupling theories@31,32#, which, at least in their simples
form, neglect all~thermally! activated processes. We pref
trap models for our purposes, because they are simpler
also generally more physically transparent@33#.

A. Bouchaud’s glass model

Bouchaud formalized the above intuitive trap picture o
glass into a one-element model@12,13#: an individual ele-
ment ‘‘sees’’ an energy landscape of traps of various dep
E; when activated, it can ‘‘hop’’ to another trap. Bouchau
assumed that such hopping processes are due to thermal
tuations. In SGMs, however, this is unlikely askBT is very
small compared to typical trap depthsE ~see Sec. VI!. The
SGR model assumes instead that the ‘‘activation’’ in SG
is due to it interactions: a rearrangement somewhere in t
material can propagate and cause rearrangements elsew
In a mean-field spirit, this coupling between elements is r
resented by aneffective temperature~or noise level! x. This
idea is fundamental to the SGR model.

The equation of motion for the probability of finding a
element in a trap of depthE at time t is @12,13,34#

]

]t
P~E,t !52G0e2E/x P~E,t !1G~ t ! r~E!. ~1!

In the first term on the right-hand-side~rhs!, which describes
elements hopping out of their current traps,G0 is an attempt
frequency for hops, and exp(2E/x) is the corresponding ac
tivation factor. The second term represents the state of th
elements directly after a hop. Bouchaud made the simp
possible assumption that the depth of the new trap is c
pletely independent of that of the old one; it is simply ra
domly chosen from some ‘‘prior’’ distribution of trap depth
r(E). The rate of hopping into traps of depthE is thenr(E)
times the overall hopping rate, given by

G~ t !5G0^e
2E/x&P5G0E dE P~E,t !e2E/x. ~2!

Bouchaud’s main insight was that the model~1! can describe
a glass transitionif the density of deep traps has an expone
tial tail , r(E);exp(2E/xg), say. Why is this? The stead
state of Eq. ~1!, if one exists, is given byPeq(E)
}exp(E/x)r(E); the Boltzmann factor exp(E/x) ~no minus
here because trap depths are measured from zerodown-
wards! is proportional to the average time spent in a trap
depthE. At x5xg , it just cancels the exponential decay
r(E), and so the supposed equilibrium distributionPeq(E)
tends to a constant for largeE; it is not normalizable. This
means that, forx<xg , the system does not have a stea
state; it is~‘‘weakly’’ ! nonergodic and ‘‘ages’’ by evolving
into deeper and deeper traps@12,13#. The model~1! therefore
has aglass transitionat x5xg .

With Bouchaud’s model, we have a good candidate
describing in a relatively simple way the glassy features
SGMs. Its disadvantages for our purposes are as follows~i!
The assumption of an exponentially decayingr(E) is rather
arbitrary in our context. It can be justified in systems w
‘‘quenched’’ ~i.e., fixed! disorder, such as spin glasses, usi
extreme value statistics~see, e.g.,@35#!, but it is not obvious
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740 PRE 58PETER SOLLICH
how to extend this argument to SGMs.~ii ! The exponential
form of the activation factor in Eq.~1! was chosen by anal
ogy with thermal activation. But for us,x describes effective
noise arising from interactions, so this analogy is by
means automatic, and functional forms other than expon
tial could also be plausible. In essence, we view~i! together
with ~ii ! as a phenomenological way of describing a syst
with a glass transition.

B. Incorporating deformation and flow

To describe deformation and flow, the SGR model@17#
incorporates strain degrees of freedom into Bouchaud’s g
model. A generic SGM is conceptually subdivided into
large number ofmesoscopic regions, and these form the ‘‘el-
ements’’ of the model. By mesoscopic we mean that th
regions must be~i! small enough for a macroscopic piece
material to contain a large number of them, allowing us
describe its behavior as anaverageover elements; and~ii !
large enough so that deformations on the scale of an elem
can be described by an elastic strain variable. For a sin
droplet in a foam, for example, this would not be possi
because of its highly nonaffine deformation; in this case,
element size should therefore be at least a few droplet di
eters. The size of the elements is chosen as the unit leng
avoid cumbersome factors of element volume in the exp
sions below. We emphasize that the subdivision into me
scopic elements is merely a conceptual tool for obtainin
suitably coarse-grained description of a SGM. The eleme
should not be thought of as sharply defined physical entit
but rather as somewhat diffuse ‘‘blobs’’ of material. The
size simply represents a coarse-graining length scale w
order of magnitude is fixed by the two requirements~i! and
~ii ! above.

We denote byl the local shear strain of an element~more
generally, the deformation would have to be described b
tensor, but we choose a simple scalar description!. To see
how l evolves as the system is sheared, consider first
behavior of a foam or dense emulsion. The droplets in
element will initially deform elastically from the local equ
librium configuration, giving rise to a stored elastic ener
~due to surface tension, in this example@19#!. This continues
up to a yield point, characterized by a strainl y , whereupon
the droplets rearrange to new positions in which they are
deformed, thus relaxing stress. The mesoscopic strainl mea-
sured from the nearest equilibrium position~i.e., the one the
element would relax to if there were no external stresses! is
then again zero. As the macroscopic straing is increased,l
therefore executes a ‘‘sawtooth’’ kind of motion@36#. Ne-
glecting nonlinearities before yielding, the local shear str
is given by kl, with k an elastic constant; the yield poin
defines a maximal elastic energyE5 1

2 kl y
2. The effects of

structural disorder are modeled by assuming adistributionof
such yield energiesE, rather than a single value common
all elements. A similar description obviously extends
many others of the soft materials mentioned above.

To make the connection to Bouchaud’s glass model, y
events can be viewed as ‘‘hops’’ out of a trap~or potential
well!, and the yield energyE is thereby identified with the
trap depth. As before, we assume that yields~hops! are acti-
vated by interactions between different elements, resultin
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an effective temperaturex. The activation barrier is nowE
2 1

2 kl2, the difference between the typical yield energy a
the elastic energy already stored in the element.

For the behavior of elements in between rearrangeme
the simplest assumption is that their strain changes al
with the macroscopically imposed straing. This means that,
yield events apart, theshear rateis homogeneous throughou
the material; spatial fluctuations of the shear rate are
glected in what can be viewed as a further mean-field
proximation. The SGR model therefore applies only to m
terials that can support macroscopically homogeneous fl
~at least in the range of shear rates of practical interest!. In
fact, we regard this requirement as a working definition
what is meant by a ‘‘soft’’ glassy material. A ‘‘hard’’ glass
material, on the other hand, might fail by fracture and stro
strain localization rather than by homogeneous flo
Whether a link exists between this distinction and the cl
sification of structural glasses into fragile versus strong@33#
is not clear to us at present.

While the SGR model assumes a spatially homogene
strain rate, it does admit inhomogeneities in the localstrain
l and stresss5kl @37#. These arise because different el
ments generally yield at different times. To describe the s
of the system at a given time, we therefore now need
know the joint probability of finding an element with a yiel
energyE and a local strainl . Within the SGR model@17#,
this probability evolves in time according to

]

]t
P~E,l ,t !52ġ

]

] l
P2G0 e2[E2~1/2!kl2]/x P

1G~ t ! r~E!d~ l !. ~3!

The first term on the rhs describes the motion of the e
ments between rearrangements, with a local strain rate e
to the macroscopic one,l̇ 5ġ. The interaction-activated
yielding of elements~which is assumed to be an instant
neous process on the time scales of interest to us! is reflected
in the second term. The last term incorporates two assu
tions about the properties of an element just after yielding
is unstrained (l 50) and has a new yield energyE randomly
chosen fromr(E), i.e., uncorrelated with its previous one
Finally, the total yielding rate is given by the analog of E
~2!,

G~ t !5G0^e
2[E2~1/2!kl2]/x&P

5G0E dE dl P~E,l ,t !e2[E2~1/2!kl2]/x. ~4!

Equation~3! tells us how the state of the system, describ
by P(E,l ,t), evolves for a given imposed macroscopic stra
g(t). What we mainly care about is of course the rheologi
response, i.e., the macroscopic stress. This is given by
average of the local stresses:

s~ t !5k^ l &P[kE dE dl P~E,l ,t !l . ~5!

Equations~3!–~5! define the SGR model, a minimal mod
for the rheology of SGMs: It incorporates both the ‘‘glassy
features arising from structural disorder~captured in the dis-
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PRE 58 741RHEOLOGICAL CONSTITUTIVE EQUATION FOR A . . .
tribution of yield energiesE and local strainsl ) and the
‘‘softness’’: for large macroscopic strains, the material flo
because eventually all elements yield. An intuitive picture
the dynamics of the SGR model can be obtained by view
each element as a ‘‘particle’’ moving in a one-dimension
piecewise quadratic potential, with noise-induced hops
become increasingly likely near the edge of a potential w
~see Fig. 2!. This also shows the hysteresis effects associa
with yielding: Once a hop to a new well has taken place
finite strain reversal is in general needed before a part
will hop back to its old well@38#.

Before moving on to the exact solution of the SGR mod
we briefly mention some of its limitations. Among the mo
serious of these is the assumption that the noise temper
x and the attempt frequencyG0 are constant parameters
the model. In general, they may be expected to depend on
imposed shear rateġ, for example, or in fact have their ow
intrinsic time evolution. In particular, it must be borne
mind when interpreting our results below that the effect
noise temperaturex is not a parameter that we can eas
tune from the outside; rather, we expect it to be determi
self-consistently by the interactions in the system. We d
cuss these points in some detail in Sec. VI, where we a
speculate on the physical origin of the model parametex
andG0. Within the SGR model, the ‘‘prior’’ density of yield
energies,r(E), is likewise taken to be a constant. This im
plies the assumption that the structure of the material con
ered is not drastically altered by an imposed flow, and
cludes effects such as shear-induced crystallization.

The SGR model is also essentially a low-frequen
model. This is due to our assumption that each element
haves purely elastically until it yields and a rearrangem
takes place. In reality, the rheological response of an elem
will be more complex. After the application of a strain, f
example, there may be a fast relaxation of the local str
from its instantaneous value, due to local relaxation p
cesses. In a foam, for example, these might correspon
small shifts of the bubble positions; in the language of mo
coupling theory, they could be described asb relaxations
@32,39#. Such local stress relaxation processes are expe
to take place much faster than actual yield events, wh
involve a more drastic reorganization of the structure of

FIG. 2. Potential well picture of the dynamics of the SG
model. Note that the relative horizontal displacement of the q
dratic potential wells is arbitrary; each has its own independent z
for the scale of the local strainl . The solid vertical bars indicate th
energy dissipated in the ‘‘hops’’~yield events! from 1 to 2 and 3 to
4, respectively.
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material. For frequencies smaller than the attempt freque
for yielding, v&G0, they can therefore be neglected. Th
then implies that the elastic properties that we ascribe
local elements are those that apply once all fast local st
relaxation processes are complete. We have also negle
viscous contributions to the local stress; in foams, for e
ample, these are due to the flow of water and surfac
caused by the deformation of the elements. In the low f
quency regime of interest to us, such viscous effects
again insignificant~see, e.g.,@11#!, whereas at high frequen
cies the model~3!–~5! would have to be modified appropr
ately to yield sensible predictions.

Another restriction of the model is the assumption that
elastic constantk is the same for all elements. This may n
be appropriate, for example, for strongly polydisperse ma
rials; we plan to investigate the effects of variablek in future
work. We have also made the simplifying assumption that
element is always unstrained directly after yielding. Intera
tion between neighboring elements may, however, frust
the relaxation to the new equilibrium state; we discuss brie
in Sec. IV C how this feature can be incorporated into t
model.

Finally, the treatment of energy dissipation during yie
events within the SGR model may also have to be refin
This can be seen by expressing the work done on the sys
in the following way: We multiply the equation of motio
~3! by the elastic energy12 kl2 of an element and integrat
over l and E. Integration by parts of theġ term then just
gives the stress~5!, hence

sġ5
d

dt

1

2
^kl2&1G0

1

2
^kl2e2[E2~1/2!kl2]/x&, ~6!

where the averages are overP(E,l ,t). The left-hand side
~lhs! is the rate of energy input into the system. The first te
on the rhs, which is a complete time differential, describ
the part of this energy that is stored as elastic energy of
elements. The second term, which is always non-negativ
the dissipative part. It is just the average over all element
their yielding rate times the energy dissipated in a rearran
ment, which we read off as12 kl2. This means that within the
model, every rearrangement dissipates exactly the elastic
ergy stored within the element when it yields~see Fig. 2!.

In general, this is not implausible. But it implies that som
rearrangements—those of unstrained (l 50) elements—have
no dissipation associated with them@40#. In reality, however,
the local reorganization of a material duringany yield event
would always be expected to dissipatesomeenergy. How
much might depend, for example, on the height of the a
vation barrier for yielding,E2 1

2 kl2. The model in its presen
form does not capture such effects; in fact, the yield energ
E do not feature in the energy balance~6! except through
their effect on the yielding rates. This exposes a related li
tation of the model: On physical grounds, one would exp
that elements with a larger yield energyE may have a more
stable configuration with lower total energy~for example, an
arrangement of droplets in an emulsion with a lower to
surface energy!. The average value ofE ~which increases
during aging, for example@12,13#!, should then also occur in
the energy balance~6!. This is not accounted for in the
model in its present form.
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III. CONSTITUTIVE EQUATION

To simplify the following analysis of the model, w
choose appropriate units for energy and time; a conven
choice is such thatxg5G051. From the definition of the
glass transition temperature, this implies that the density
yield energies has the formr(E)5exp$2E@11f(E)#% with
f (E)→0 for E→`. For our numerical investigations belo
we use the simplestr(E) of this form, which is purely ex-
ponential:

r~E!5exp~2E!. ~7!

Analytical results, on the other hand, hold for generalr(E)
unless otherwise stated. We eliminate a final parameter f
the model by settingk51; this can always be achieved by
rescaling of the stresss and the strain variablesg and l .
With this choice of units, it becomes clear that the SG
model is in fact rather parsimonious: apart from scale fact
its predictions are determined by a single parameter, the
fective noise temperaturex @41#.

Note that in our chosen units, typical yield strainsA2E/k
are of order one. Experimentally, SGMs generally have yi
stresses of at most a few percent~see, e.g.,@10,42,43#!; the
necessary rescaling of our results for strain variables sh
be borne in mind when comparing to experimental data.
example, a strain rateġ51 in our units corresponds t
ġ5 l ȳG0 in dimensional units, withl ȳ5(xg /k)1/2 a typical
@‘‘ a priori,’’ i.e., sampled fromr(E)# yield strain. For a
specific material, the three scale parametersxg , k, andG0 of
the SGR model could be estimated from measurements
yield strain, a shear modulus, and a viscosity, for examp

The derivation of the exact constitutive equation~CE! for
the SGR model is given in Appendix A. For simplicity, w
impose the mild restriction that the initial state is complet
unstrained, i.e.,g(t50)50 and

P~E,l ,t50!5P0~E!d~ l !. ~8!

Our central result then relates the stress at timet to the strain
history g(t8) (0,t8,t) by the CE:

s~ t !5g~ t !G0„Z~ t,0!…

1E
0

t

dt8G~ t8!@g~ t !2g~ t8!#Gr„Z~ t,t8!… ~9!

with the yielding rateG(t) determined from

15G0„Z~ t,0!…1E
0

t

dt8G~ t8!Gr„Z~ t,t8!…. ~10!

Here the functions

G0~z!5E dE P0~E!exp~2ze2E/x!,
~11!

Gr~z!5E dE r~E!exp~2ze2E/x!

describe the purely noise induced decay of the stress.
decay is, however, governed not simply by the time inter
nt

of

m

s,
f-

d

ld
r

f a
.

is
l

between a change in macroscopic strain att8 and a stress
measurement att, but by an ‘‘effective time interval’’z
5Z(t,t8) given by

Z~ t,t8!5E
t8

t

dt9exp$@g~ t9!2g~ t8!#2/2x%. ~12!

One reads off thatZ(t,t8)>t2t8; the effective time interval
is always greater than the actual time interval, and th
more so the larger the changes in straing(t9) from its value
at the earlier timet8. This implies a faster decay of the stres
and soZ(t,t8) can be said to describe strain-induced yieldi
~in other words, shear thinning!. In fact, a look at Eqs.~9!
and~10! confirms thatall nonlinear effects within the mode
arise from this dependence of the effective time inter
Z(t,t8) on the macroscopic strain historyg(t9).

The CE ~9! and ~10! can be most easily understood b
viewing the yielding of elements as a birth-death proce
Each time an element yields, it ‘‘dies’’ and is ‘‘reborn’’ with
l 50. In between such events, its local strain just follows
changes in global straing(t). If an element was last reborn a
time t8, its local strain at timet is therefore l 5g(t)
2g(t8). Since we setk51, this is also its contribution to the
stress. The first term on the rhs of Eqs.~9! and ~10! is the
contribution of elements that have ‘‘survived’’ from time
to t; they do so with the ‘‘survival probability’’G0„Z(t,0)….
The second term collects the contribution from all eleme
that have yielded at least once between time 0 andt, and
were last reborn att8. The number of such elements is pr
portional to the rate of ‘‘rebirths’’ att8, i.e., the yielding rate
G(t8), and the corresponding survival probabili
Gr„Z(t,t8)…. Note that there are two different survival prob
abilities here, given byG0 andGr , respectively. The differ-
ence arises from the fact that these probabilities are in
averages over the distribution of yield energies, as expres
by Eq.~11!. For elements that have survived fromt850, this
distribution isP0(E), while for elements that have yielded a
least once, it isr(E).

The glassy features of the SGR model as discussed in
II A are reflected in the CE~9! and~10!, in particular in the
asymptotic behavior ofGr(z). For the simple exponentia
form ~7! of r(E), one easily finds thatGr(z)5x!z2x asymp-
totically. As shown in Appendix B, the same behavior hol
for generalr(E), in the sense that

lim
z→`

Gr~z! zx1e5`,

~13!

lim
z→`

Gr~z! zx2e50

for any arbitrarily smalle.0. We shall refer to this property
by saying thatGr(z) decays asymptotically asz2x up to
‘‘sub-power-law factors.’’ Unless otherwise specified, a
power laws referred to in the following hold for gener
r(E), up to such sub-power-law factors.

Consider now the case where strain-induced yielding
be neglected, such thatZ(t,t8)5t2t8. This is always true
for sufficiently small strain amplitudes. Below the glass tra
sition (x,1), the time integral*0

t dt8Gr(t2t8) of the re-
sponse functionGr„Z(t,t8)…5Gr(t2t8) in Eq. ~9! then di-
verges in the limit t→`. Compatible with the intuitive
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notion of a glass phase, this means that the system has a
long memory~of the kind that has been described as ‘‘we
long term memory’’ @44,45#! and is ~weakly @12#! noner-
godic. This can lead to rather intricate aging behavior, wh
we plan to explore in future work. For the purpose of t
present paper—with the exception of a brief discussion
Sec. IV B—we focus on situations where the system is
godic. These include the regime above the glass transi
x.1, and the case of steady shear flow for all noise temp
turesx ~strain-induced yielding here restores ergodicity ev
for x,1). In the former case, a choice needs to be made
the initial distribution of yield energies. We consider th
simplest case where this is the equilibrium distribution at
given x:

P0~E!5Peq~E!5Geqexp~E/x!r~E!. ~14!

Correspondingly, we writeG0(z)5Geq(z). The function
Gr(z) is then related to the derivative ofGeq(z) by

Gr~z!52Geq
21Geq8 ~z! ~15!

with a proportionality constant given by the equilibriu
yielding rate

Geq
215E dE r~E!exp~E/x!5E

0

`

dz Gr~z!. ~16!

IV. LINEAR RESPONSE

A. Above the glass transition

The simplest characterization of the rheological behav
of the SGR model is through its linear rheology. This d
scribes the stress response to small shear strain perturba
around the equilibrium state. As such, it is well defined~i.e.,
time independent! a priori only above the glass transition
x.1 ~see, however, Sec. IV B!.

To linear order in the applied straing(t), the effective
time intervalZ(t,t8)5t2t8. In the linear regime, all yield
events are therefore purely noise induced rather than s
induced. Correspondingly, the yielding rate as determi
from Eq. ~10! is simply G(t)5Geq, as can be confirmed
from Eqs.~15! and~16!. The expression~9! for the stress can
then be simplified to the familiar form

s~ t !5E
0

t

dt8ġ~ t8!Geq~ t2t8!. ~17!

As expected for an equilibrium situation, the response
time-translation invariant@46#, with Geq(t) being the linear
stress response to a unit step strain att50. The dynamic
modulus is obtained by Fourier transform,

G* ~v!5 ivE
0

`

dt e2 ivtGeq~ t !5 K ivt

ivt11L
eq

. ~18!

This an average over Maxwell modes with relaxation tim
t. For an element with yield energyE, t5exp(E/x) is just its
average lifetime, i.e., the average time between rearra
ments. The relaxation time spectrum therefore follows fr
the equilibrium distribution of energies, Peq(E)
ery
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}exp(E/x)r(E). Because of the exponential tail ofr(E), it
has a power-law tailPeq(t);t2x ~for t@1, up to sub-
power-law factors!. As x decreases towards the glass tran
tion, this long-time part of the spectrum becomes incre
ingly dominant and causes anomalous low frequen
behavior of the moduli, as shown in Fig. 3:

G8;H v2 for 3,x,

vx21 for 1,x,3
~19!

G9;H v for 2,x,

vx21 for 1,x,2 .

For x.3 the system is Maxwell-like at low frequencie
whereas for 2,x,3 there is an anomalous power law in th
elastic modulus. Most interesting is the regime 1,x,2,
whereG8 and G9 have constant ratio; both vary asvx21.
Behavior like this is observed in a number of soft materi
@4–7,10#. Moreover, the frequency exponent approaches z
as x→1, resulting in essentially constant values ofG9 and
G8, as reported in dense emulsions, foams, and onion ph
@6–8#. Note, however, that the ratioG9/G8;x21 becomes
small as the glass transition is approached. This increa
dominance of the elastic responseG8 prefigures the onset o
a yield stress forx,1 ~discussed below!. It does not mean,
however, that the loss modulusG9 for fixed ~small! v al-
ways decreases withx; in fact, it first increasesstrongly asx
is lowered and only starts decreasing close to the glass t
sition ~whenx21;u lnvu21). The reason for this crossover
that the relaxation timet(^E&eq)5exp(̂ E&eq/x) correspond-
ing to the mean equilibrium energŷE&eq;(x21)21 even-
tually becomes greater thanv21.

B. Glass phase

The above linear results only apply above the glass tr
sition (x.1), where there is a well defined equilibrium sta

FIG. 3. Linear moduliG8 ~solid line! and G9 ~dashed! vs fre-
quencyv at various noise temperaturesx. We only show the be-
havior in the low frequency regimev&1, where the predictions o
the SGR model are expected to be physically relevant. The h
frequency behavior~predicted asG8'const,G9;v21) is not real-
istic because the model neglects local viscous effects~among oth-
ers! that can become important in this regime.
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around which small perturbations can be made. Howeve
a cutoff Emax on the yield energies is introduced~which is
physically reasonable because yield strains cannot be
trarily large!, an equilibrium state also exists forx,1, i.e.,
below the glass transition.~Strictly speaking, with the cutoff
imposed there is no longer a true glass phase; but if
energy cutoff is large enough, its qualitative features are
pected to be still present.! One then finds for the low fre
quency behavior of the linear moduli:

G8'const, G9;vx21. ~20!

This applies as long asv is still large compared to the cutof
frequency,vmin5exp(2Emax/x). In this frequency regime
G9 therefore increases asv decreases, again in qualitativ
agreement with some recent experimental observations@7–
10#. An example is shown in Fig. 4.

The above results relate to the ‘‘equilibrium’’~pseudo!
glass phase. The time to reach this equilibrium state is
pected to be of the order of the inverse of the smallest re
ation rate,vmin

215exp(Emax/x). For largeEmax, this may be
much larger than experimental time scales, and the none
librium behavior will then become relevant instead. We g
only a brief discussion here and refer to a future publicat
@47# for more details. From the CE~9! and ~10!, it can be
deduced quite generally that the stress response to a s
oscillatory straing(t)5g Re exp(ivt) switched on att50
is

s~ t !5g Re@G* ~v,t !eivt#

with a time-dependent dynamic modulus

G* ~v,t !512E
0

t

dt8e2 iv~ t2t8!G~ t8!Gr~ t2t8!. ~21!

This modulus is physically measurable only forvt signifi-
cantly greater than unity, of course, corresponding to a m
surement over at least a few periods. Here we consider
case of an initial distribution of yield energiesP0(E)
5r(E) ~henceG0[Gr), corresponding to a ‘‘quench’’ a

FIG. 4. Linear moduliG8 ~solid line! and G9 ~dashed! vs fre-
quencyv at x50.9 with energy cutoffEmax510 ~thick lines! and
Emax515 ~thin lines!. The loss modulus increases asG9;vx21 as
the frequency decreases; at very low frequencies, there is a c
over to Maxwellian behavior.
if
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t50 from x→` to a finite value ofx. We solve Eq.~10! for
the yielding rate G(t) numerically and then evaluat
G* (v,t) using Eq.~21!. Figure 5 shows the results for
quench to the glass transition (x51). Not unexpectedly, the
frequency dependence of the moduli follows the same po
laws as in the ‘‘equilibrium’’ glass discussed above; the a
plitude of these, however, depends on the ‘‘age’’t of the
system. Forx,1, one finds 12G* (v,t);(vt)x21 @47#;
this time dependence is the same as for the yielding rateG(t)
@13#, and is closely related to the aging of the susceptibi
in Bouchaud’s glass model@12#. The behavior of the loss
modulus at the glass transition is particularly noteworth
WhereasG9(v,t) does tend to zero fort→`, it does so
extremely slowly~as 1/lnt), while at the same time exhibiting
an almost perfectly ‘‘flat’’ (G9;v0 for small v) frequency
dependence. Where such anv dependence is observed e
perimentally it may well, therefore, correspond to a rheolo
cal measurement in an out-of-equilibrium aging regime.
order to test this scenario directly, experiments designed
measure a possible age dependence of the linear mo
would be extremely interesting. Such experiments would
viously have to be performed on systems where ot
sources of aging~such as coalescence in emulsions a
foams, evaporation of solvent, etc.! can be excluded; suspen
sions of microgel beads, hard sphere colloids, or collo
polymer mixtures might therefore be good candidates.

C. Frustration

As pointed out in Sec. II B, the SGR model in its bas
form ~3! assumes that after yielding, each element of a SG
relaxes to a completely unstrained state, corresponding
local strain ofl 50. This is almost certainly an oversimplifi
cation: Frustration arising from interaction of an eleme
with its neighbors will in general prevent it from relaxin
completely to its new equilibrium state. This leads to a no
zero local strainl directly after yielding. This effect can be
built into the model by replacing the factord( l ) in Eq. ~3! by

ss-

FIG. 5. Age dependence of the dynamic moduli. Shown areG8
~solid line! and G9 ~dashed! vs frequencyv at x51; lines of in-
creasing thickness correspond to increasing age of the systet
5104, 105, 106, 107. Frequencies are restricted to the rangevt
>2p310, corresponding to a measurement ofG* (v,t) over at
least ten oscillation periods. Note the difference in horizontal a
vertical scales; bothG8 andG9 have a very ‘‘flat’’ v dependence.
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a probability distributionq( l ;E) of the local strainl after
yielding; this distribution will in general also depend on t
new yield energyE of the element. We consider here th
case of ‘‘uniform frustration,’’ where the strainl after yield-
ing has equal probability of taking on any value betwee
2 l y and l y , with l y5(2E)1/2 being the typical yield strain
associated with the new yield energy. Because valuesl
outside this interval would not make much sense~the ele-
ment would yield again almost immediately!, this scenario
can be regarded as maximally frustrated.

An exact CE for such a frustrated scenario can still
derived, but it is rather more cumbersome than Eqs.~9! and
~10! due to extra integrations over the strain variablel . The
dynamic moduli, however, can still be worked out fairly ea
ily by considering a small perturbation around the stea
state of~3! @with d( l ) replaced byq( l ;E)#. One finds

G* ~v!5K ivt

ivt11
1

l 2

x

ivt

~ ivt11!2L
eq

,

where the relaxation timest5exp@(E21
2l

2)/x# are now de-
pendent on bothE and l , and the equilibrium distribution
over which the average is taken isPeq(E,l )}exp@(E
21

2l
2)/x#r(E)q(l;E). For the uniform frustration case, whe

q( l ;E)5Q(E2 1
2 l 2)/(8E)1/2, the dynamic moduli are com

pared with the unfrustrated case in Fig. 6. The main effec
frustration is to add a contribution to the relaxation tim
spectrum neart'1; this arises from elements that have
strain l'6 l y after yielding and therefore yield again with
relaxation rate of order unity. Otherwise, however, the m
qualitative features of the unfrustrated model are preser
in particular, it can be shown that the low frequency pow
law behavior~19! remains unchanged. We expect that t
same will be true for other rheological properties and the
fore neglect frustration effects in the following.

V. NONLINEAR RHEOLOGY

Arguably, thelinear rheological behavior described in th
previous section follows inevitably from the existence o
power-law distribution of relaxation times. If we were on
interested in the linear regime, it would be simpler just
postulate such a power law. The main attraction of the S

FIG. 6. Effect of frustration. Shown areG8 ~solid line! andG9
~dashed! vs frequencyv at x51.5; results for uniform frustration
~in bold! are compared with the unfrustrated case~thin lines!.
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model is, however, that it also allows nonlinear rheologi
effects to be studied in detail. It is to these that we now tu

A. Steady shear flow

1. Flow curves

Steady shear flow (ġ5 const) is one of the simples
probes of nonlinear rheological effects. For the SGR mod
the flow curve~shear stress as a function of shear rate! can be
calculated either from the long-time limit of the CE~9! and
~10!, or directly from the steady state solution of the equat
of motion ~3!. Either way, one obtains for the shear stres

s~ġ!5

E
0

`

dl lGr„Z~ l !…

E
0

`

dl Gr„Z~ l !…

~22!

where

Z~ l !5
1

ġ
E

0

l

dl8el 82/2x. ~23!

Equation~22! is just the local strain averaged over its stea
state distribution, which is proportional toGr„Z( l )… ~for l
.0). The resulting stress can be easily evaluated num
cally to give the results in Fig. 7. For large shear ratesġ
*1, the shear stresss increases very slowly for allx @s

;(xlnġ)1/2#, corresponding to strong shear thinning. Mo
interesting~and more physically relevant@48#! is the smallġ
behavior, where we find three regimes:

~i! For x.2, the system is Newtonian,s5hġ, for ġ
→0. The viscosity can be derived by noting that in th
regime, the size of the local strainsl that contribute signifi-
cantly tos is proportional toġ. For ġ→0, this decreases to
zero, and we can approximateZ( l )5 l /ġ, giving

FIG. 7. Shear stresss vs shear rateġ, for x50.25, 0.5, . . . , 2.5
~top to bottom on left!; x51 and 2 are shown in bold@71#. The
inset shows the behavior on a linear scale, with yield stresses
x,1 indicated by arrows.
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h5
s

ġ
5

E
0

`

dt tGr~ t !

E
0

`

dt Gr~ t !

5GeqE dE r~E!e2E/x5^eE/x&eq5^t&eq.

The viscosity is therefore simply the average of the rel
ation timet5exp(E/x) over the equilibrium distribution of
energies, Peq(E)5Geqexp(E/x)r(E). From the form
h}^exp(2E/x)&r one sees that it diverges atx52, i.e., at
twice the glass transition temperature. The existence of s
eral characteristic temperatures in the SGR model is not
prising; in fact, Bouchaud’s original glass model already h
this property@13# ~which has also been discussed in mo
general contexts, see e.g.,@49#!.

~ii ! The divergence of the viscosity forx→2 signals the
onset of a new flow regime: for 1,x,2 one finds power-
law fluid rather than Newtonian behavior. The power-la
exponent can be derived as follows: The steady shear s
~22! is the ratio of the integrals

I n~ ġ !5E
0

`

dl l nGr„Z~ l !…

for n51 andn50. By techniques very similar to those use
in Appendix B, one derives that in the smallġ limit, I n

scales asġn11 for x.n11; for lower x, there is an addi-
tional contribution scaling asġx up to sub-power-law factors
~see Appendix C!. The dominant contribution tos for small
ġ in the regime 1,x,2 therefore scales ass;ġx21, again
up to sub-power-law factors. The power-law fluid expone
thus decreases linearly, from a value of one forx52 to zero
at the glass transitionx51.

~iii ! For x,1, the system shows a yield stress:s(ġ
→0)5sy.0. This can again be understood from the scal
of I 1 andI 0: the dominant smallġ contributions to both scale
as ġx for x,1, giving a finite ratiosy5I 1 /I 0 in the limit
ġ→0. For generalr(E) there are subtleties due to su
power-law corrections here, which are discussed in App
dix C. Here we focus on the simplest case~7! of exponential
r(E), where such corrections are absent. Using the sca
of I 1 andI 0, we can then write the shear stress for smallġ as

s5
O~ ġx!1O~ ġ2!

O~ ġx!1O~ ġ1!
5sy1O~ ġ12x!. ~24!

Beyond yield, the stress therefore again increases as a p
law of the shear rate,s2sy}ġ12x. For exponentialr(E),
the yield stress itself can be calculated explicitly: In order
havesy.0, the values ofl that contribute to the shear stre
~22! must remain finite forġ→0. But then for any fixedl ,
Z( l )→`. We can therefore use the asymptotic formGr(z)
5x!z2x in Eq. ~22!, giving
-

v-
r-
s

ss

t

g

n-

g

er

sy5

E
0

`

dl l @Z~ l !#2x

E
0

`

dl@Z~ l !#2x

. ~25!

The factorġx @from the definition~23! of Z( l )# in the nu-
merator and denominator has canceled, making the re
independent ofġ as required. Figure 8 shows the resultin
yield stress as a function ofx; it has a linear onset near th
glass transition,sy;12x.

To summarize, the behavior of the SGR model in regim
~ii ! and ~iii ! matches respectively the power-law fluid@1–3#
and Herschel-Bulkeley@1,2# scenarios as used to fit the no
linear rheology of pastes, emulsions, slurries, etc. In reg
~ii !, the power-law exponent is simplyx21, x being the
effective ~noise! temperature; in regime~iii ! and for expo-
nentialr(E), it is 12x ~see Appendix C for a discussion o
the general case!. Numerical data for the effective expone
dln(s2sy)/dlnġ in Fig. 9 are compatible with this, althoug
the exponent only approaches its limiting value very slow
as ġ→0 for x near the boundaries of the power-law regim
x51 and 2.

A natural question to ask is of course how the existence
a yield stress in the glass phase affects the linear moduli,
the response to small strains. This is a highly nontrivial iss
due to the nonergodicity of the glass phase and the co

FIG. 8. Yield stresssy as a function ofx.

FIG. 9. Effective power-law exponentdln(s2sy)/dlnġ vs ġ in
the glass phase~left, yield stresssy.0, x50.1, 0.2, . . . , 0.9 from
top to bottom! and in the power-law fluid regime~right, sy50, x
51.1, 1.2, . . . , 1.9from bottom to top!.
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sponding aging behavior. In particular, the answer will d
pend to a significant degree on the strain history of the m
terial. We therefore leave this point for future, more detai
study @47#.

2. Flow interrupts aging

We saw above that there is a steady state regime forany
value of xin the presence of steady shear flow. On the ot
hand, the discussion in Secs. III and IV B showed that in
absence of flow, the system has no steady state in the g
phase (x,1) and instead exhibits aging behavior. The d
ference between the two cases can be seen more clear
considering the distribution of yield energies,P(E). Without
flow, one obtains a Boltzmann distributionP(E)
}r(E)exp(E/x) up to~for x,1) a ‘‘soft’’ cutoff that shifts to
higher and higher energies as the system ages@13#. This
cutoff, and hence the most long-lived traps visited~which
have a lifetime comparable to the age of the system!, domi-
nate the aging behavior@12#. In the presence of flow, on th
other hand, there is a finite steady state value for this cut
one finds

P~E!}r~E!eE/x for E!xln~ ġ21x1/2!, ~26!

P~E!}r~E!E1/2 for E@xln~ ġ21x1/2!

~only the second regime exists forġ*x1/2). The existence of
these two regimes can be explained as follows: Assume
yielding of an element is noise-induced. Its typical lifetime
then exp(E/x), during which it is strained byġexp(E/x). The
assumption of noise-induced yielding is self-consistent if t
amount of strain does not significantly enhance the proba
ity of yielding, i.e., if @ ġexp(E/x)#2/x!1. This is the lowE
regime in Eq.~26!, which gives a Boltzmann form for the
yield energy distribution as expected for noise-induced yie
ing. In the opposite regime, yielding is primarily strain i
duced, and the time for an element to yield is of the orde
l y /ġ5(2E)1/2/ġ @rather than exp(E/x)#. Intuitively, we see
that flow prevents elements from getting stuck in progr
sively deeper traps and so truncates the aging process a
finite time. We can therefore say that ‘‘flow interrupts a
ing’’ @14#.

3. Cox-Merz rule

A popular way of rationalizing flow curves is by relatin
them to the linear rheology via the heuristic Cox-Merz ru
@50#. This rule equates the ‘‘dynamic viscosity’’h* (v)
5uG* (v)u/v with the steady shear viscosityh(ġ)
5s(ġ)/ġ when evaluated atġ5v. The ratio vh(ġ
5v)/uG* (v)u is therefore equal to unity if the Cox-Mer
rule is obeyed perfectly. Using our previous results, we
easily verify whether this is the case in the SGR mod
From Fig. 10, we see that in the Newtonian regimex.2, the
Cox-Merz rule is obeyed reasonably well for frequenciesv
&1; for v→0, it holds exactly as expected@recall that
h(ġ)5^t&, while from Eq.~19!, G* (v→0)5 iv^t&#. In the
power-law fluid regime 1,x,2, on the other hand, the Cox
Merz rule is seen to be less reliable and is not obeyed exa
even in the zero frequency limit. At the glass transitionx
-
-

d

r
e
ss

by

ff;

he

s
il-

-

f

-
r a

n
l.

tly

→1), it fails rather dramatically: In this limit,uG* (v)u51
and so the Cox-Merz rule predicts a shear rate indepen
shear stresss(ġ)5ġh(ġ)51, whereas in facts(ġ) de-
creases to zero forġ→0.

4. Dissipation under steady shear

Finally, in conclusion of this section on steady shear flo
we calculate the distribution of energies dissipated in yi
events. This distribution may provide a useful link to com
puter simulations of steady shear flow of foams, for examp
where it is often easy to monitor discontinuous drops in
total energy of the system and determine their distribut
@23#. The correspondence is, however, not exact. Our me
field model treats all yield events as uncorrelated with e
other, in both time and space. In reality, such correlatio
will of course exist. In fact, several events may occur sim
taneously, at least within the time resolution of a simulati
or experiment. The observed drop in total energy would th
have to be decomposed into the contributions from the in
vidual events to allow a direct comparison with our mod
This is only possible if the events are sufficiently localiz
~spatially! to make such a decomposition meaningful.
foams and emulsions, there is evidence that this may ind
be the case@20,23,42,51–55#.

We earlier derived the energy balance equation~6! and
deduced from it that, within the model, each yield eve
dissipates the elastic energyDE5 1

2 l 2 stored in the elemen
just prior to yielding. The probability of observing a yiel
event with energy dissipationDE is therefore given by

P~DE!5
1

GE dE dl P~E,l !e2[ ~E2
1
2 l 2] !/xd~DE2 1

2 l 2!.

The steady state distributionP(E,l ) of yield energies and
local strains for a given shear rateġ and noise temperaturex
can easily be deduced from Eq.~3!. After some algebra, the
result can be put into the simple form

P~DE!dD E52
]

] l
Gr„Z~ l !…dl.

FIG. 10. Cox-Merz ratiovh(ġ5v)/uG* (v)u as a function of
v for noise temperaturesx51, 1.2, . . . , 1.8, 2~bold!, 2.5, 3~bot-
tom to top!.
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Figure 11 shows the resultingP(DE) for exponentialr(E).
Larger shear ratesġ are seen to lead to an increasing dom
nance of ‘‘large’’ yield events~which dissipate a lot of en
ergy!. This is intuitively reasonable: the largerġ, the larger
the typical strains of elements when they yield. The fun
tional dependence ofP(DE) on DE is surprisingly simple.
An initial power-law decayP(DE);DE21/2 crosses over
for DE'ġ2 into a second power-law regimeP(DE)
;DE212x/2. This is cut off exponentially for values ofDE
around unity@56#. The exponential tail for very large diss
pated energies isP(DE);exp(2DE) independently ofx.
This asymptotic behavior is the same as for the prior den
of yield energies,r(E);exp(2E); measurements ofP(DE)
for large DE could therefore yield valuable information o
r(E).

These results forP(DE) also help one to understand th
small ġ scaling of the energy dissipation ratesġ5G^DE&.
From the results of Sec. V A, we know that this isġ2 in the
Newtonian regimex.2, ġx in the power-law fluid range 1
,x,2, and ġ in the yield stress regimex,1. ~The limit
ġ→0 is always understood here and in the following.! The
form of P(DE) suggests decomposing the dissipation into
contributions from ‘‘small’’ @DE5O(ġ2)# and ‘‘large’’
@DE5O(1)# dissipation events. Each of these two clas
makes a contribution tosġ that is the fraction of elements i
the class, times the average yielding rate in the class, ti
the average energy dissipated. Hence, in obvious notatio

sġ5PsGsDEs1PlG lDEl .

One then easily confirms the following scalings. The aver
dissipated energiesare obviously given byDEs5O(ġ2) and
DEl5O(1). Theaverageyielding rate for the small, noise
induced events is independent of shear rate,Gs5O(ġ0);
while for the large, shear induced events it isG l5O(ġ).
Finally, for the fractions of small and large elements, on
finds thatabovethe glass transition, almost all elements ha
small strainsl 5O(ġ), corresponding toDE5O(ġ2); hence
Ps5O(1). Large strains, on the other hand, occur with
probability Pl5O(ġx21) which becomes vanishingly sma

FIG. 11. DistributionP(DE) of energiesDE dissipated in yield

events under steady flow, forx51.5 andġ51024, 1023, . . . , 1
~bottom to top atDE51)
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for small shear rates.Belowthe glass transition, the situatio
is reversed:Pl5O(1), while Ps5O(ġ12x). Putting every-
thing together, one has the following:

~i! In the Newtonian regime (x.2), dissipation is domi-
nated by small, noise-induced events, and is therefore
O(ġ2).

~ii ! In the power-law fluid range (1,x,2), a vanishingly
small number of elements has large strains, but these do
nate the dissipationsġ5PlG lDEl 5 O(ġx21)O(ġ) 5

O(ġx). As the glass transition is approached, the fraction
large elements and hence the dissipation increases.

~iii ! In the yield stress regime, most elements have la
strains, giving a dissipation ratesġ 5 O(ġ) that simply
scales with the shear rate.

With the same approach, one can also analyze the t
yielding rate G5PsGs1PlG l . Small events always domi
nate, andG therefore scales withġ in the same way asPs .
This is true even in the non-Newtonian flow regimesx
,2), where the contribution of these elements to the to
dissipation rateis negligible.

The distribution of total energy dropsDEtot due to rear-
rangements has been monitored in recent simulations
steady shear flow of two-dimensional foam, based on
‘‘soft-sphere model’’ @22,23#. It was found to exhibit a
power lawP(DEtot);DEtot

2n with an exponentn'0.7, with
an exponential cutoff for large energy drops. More rec
simulations using the same model suggest that, whenDEtot is
normalized by the average elastic energy per foam bub
the form of P(DEtot) is largely insensitive to variations in
shear rateġ. Decreasing the gas volume fractionf moves
the ~normalized! cutoff to larger energies, suggesting a po
sible divergence near the rigidity loss transition atf'0.64
@57#. Simulations using a ‘‘vertex model,’’ on the othe
hand, gave P(DEtot);DEtot

23/2 with no system-size–
independent cutoff for largeDEtot @21#. It is unclear how
these results can be reconciled; neither, however, is f
compatible with the predictions of the SGR model f
P(DE). At this point, we do not know whether this disagre
ment is due to the difference betweenDE ~dissipation in a
single yield event! andDEtot ~total dissipation in a number o
simultaneous yield events!, or whether it points to a more
fundamental shortcoming of the SGR model such as neg
of spatial or temporal correlations.

B. Shear startup

If a shear flow is started up att50, such thatg(t)5ġt for
t>0, thens(ġ) as given by the flow curve is the asymptoti
steady state value of the stress fort→`. We now consider
the transient behaviors(t) for finite t. This depends on the
initial state of the system att50; here we consider only the
case where this initial state is the equilibrium state~14! at the
given value ofx. This restricts our discussion to the regim
above the glass transition,x.1, where such an equilibrium
state exists@58#. Solving the CE~9! and ~10! numerically,
we can find the stresss as a function of timet or, alterna-
tively, straing. Figure 12 shows exemplary results. The in
tial behavior under shear startup is found to be elastic in
cases,s5g. @This can in fact be deduced directly by e
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panding Eq. ~9! to first order in t and noting that
G0„Z(t,0)…511O(t) while the contribution from the inte
gral is of O(t2).# Asymptotically, on the other hand, th
stress approaches the steady-state~flow curve! value s(ġ).
However, the model predicts that it does not necessarily
so in a monotonic way. Instead, the stress can ‘‘overshoo
within the model, this effect is most pronounced near
glass transition (x'1). Such overshoot effects have be
observed experimentally in, for example, foam flow@6#. The
tendency towards large overshoots forx→1 agrees with our
results for the linear moduli and flow curves: As the gla
transition is approached, the behavior of the system beco
predominantly elastic; the stress can therefore increas
larger values in shear startup before the material~as a whole!
yields and starts to flow.

C. Large step strains

As a further probe of the nonlinear rheological behav
predicted by the SGR model, we now consider large~single
and double! step strains. Again, we do not discuss agi
effects here and therefore limit ourselves to the regimx
.1 with the equilibrium initial condition~14!.

The case of a single step strain@g(t)5gQ(t), with
Q(t)51 for t.0 and zero otherwise# is particularly simple.
The integral overt8 in the CE ~9! is then identically zero,
giving a stress response of

s~ t !5gG0„Z~ t,0!…5gGeq~eg2/2xt !. ~27!

Comparing with the response~17! in the linear regime, the
effect of nonlinearity is to speed up all relaxation proces
by a factor exp(g2/2x). It is easy to see why this is the cas
Because we are starting from an unstrained equilibrium c
figuration, each element initially hasl 50 and a yielding rate
exp(2E/x). Directly after the strain is applied, it therefor
has local strainl 5g; this increases its relaxation rate
exp@2(E21

2g
2)/x#, i.e., by the same factor exp(g2/2x) for all

elements. Figure 13 illustrates this effect of strain nonline
ity; note that the stress for large step strains can deca
small values faster than for small strains, due to the str
induced speedup of all relaxation processes.

FIG. 12. Stresss vs straing for shear startup at effective tem

peraturex51.5. The shear rateġ50.001, 0.002, 0.005, 0.01, 0.02
0.05, 0.1 increases from bottom to top.
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Interestingly, theinstantaneousresponse is always elasti
and not affected by nonlinear effects:s(t501)5g for all g.
It is easily shown from the CE~9! and ~10! that this is a
general feature of the SGR model; whenever the mac
scopic straing(t) changes discontinuously byDg, the stress
s(t) changes by the same amount. We also note that
stress response~27! cannot be factorized into time and stra
dependence. However, for the particular case of expone
r(E) and long times exp(g2/2x)t@1, such a factorization
does exist due to the asymptotic behavior ofGeq, Geq(z)
;z12x. @This follows fromGr(z);z2x and Eq.~15!.# One
then has

s~ t !;gh~g!Geq~ t !, h~g!5exp@2 1
2 ~12x21!g2#.

The productgh(g) tends to zero asg increases, correspond
ing to a pronounced shear-thinning effect.

By applying two~large! step strains in sequence, one c
further probe the nonlinear response of the SGR model.
g1 and g2 be the amplitudes of the two strains. If the fir
strain is applied att50 and the second one att5Dt, then
g(t)5g1Q(t)1g2Q(t2Dt). It is straightforward to solve
the CE~9! and~10! numerically fort.Dt. Figure 14 exem-
plifies the results for the two cases where the strains
either equal or of equal magnitude but opposite sign. In
first case, and more generally wheng1g2.0, the second step
strain speeds up the stress relaxation„by a factor exp$@(g1

1g2)
22g1

2#/2x% for small Dt…. Therefore, even though th
stress is increased momentarily when the second strai
applied, it can actually relax back to zero more quickly th
in the absence of this strain. In the second case (g1g2,0),
the second step strain can to some degree reverse
speedup from the first step strain. A particularly simple fo
of the resulting stress response is obtained forg152g2
5g and smallDt:

s~ t.Dt !52g@12Geq~eg2/2xDt !#Gr„e
g2/2x~ t2Dt !….

This can be understood by noting that the stress fort.Dt is
due entirely to elements that have yielded between the ap
cation of the first and the second strain; all other eleme
have simply followed the two changes of macroscopic str
and are therefore back to their unstrained statel 50 after the

FIG. 13. Stress response to step strains of amplitudeg51, 2, 3,
at noise temperaturex51.5.
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750 PRE 58PETER SOLLICH
second strain. The factor in squared brackets just gives
fraction of such elements. The time dependence of the e
ing stress relaxation is determined byGr rather thanGeq
because elements that have yielded were ‘‘reborn’’ w
yield energies sampled fromr(E). These elements—which
have ‘‘forgotten’’ about the first step strain—also receive
speedup of their relaxation by the second strain.

The above results can be compared to the prediction
the empirical BKZ ~Bernstein, Kearseley, Zapas! equation
@59#. This relation approximates the stress response to
arbitrary strain history in terms of the responses(t)
5f(t,g) to a step strain of sizeg at time t50:

sBKZ~ t !5E
2`

t

dt8
]

]t8
f~ t2t8,g!ug5g~ t !2g~ t8! .

For two step strains, this gives, fort.Dt,

sBKZ~ t !5f~ t,g11g2!2f~ t,g2!1f~ t2Dt,g2!. ~28!

In our case,f(t,g) is given by Eq.~27!, and the BKZ pre-
diction is plotted in Fig. 14 along with the exact results. O
finds that for the SGR model, the BKZ equation is at b
approximate, at worst qualitatively wrong. This is most e
ily seen in the size of the stress jump att5Dt; the BKZ
equation predicts

FIG. 14. Stress response to two large step strains of~a! equal
(g15g252) and~b! opposite (g152g252) sign, applied at times
t50 and t5Dt50.1, 0.5, 1, 2, 5, respectively. Noise temperatu
x51.5.
he
u-

of

an

t
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f~01,g2!1@f~Dt,g11g2!2f~Dt,g1!2f~Dt,g2!#. ~29!

Becausef(01,g)5g within the SGR model, the term in
square brackets is the deviation from the exact result ofg2.
For g152g2, the BKZ prediction for the stress jump i
exact becausef(t,g)52f(t,2g); in this case@Fig. 14~b!#,
it also works reasonably well for the subsequent stress re
ation. In the general case, however, it is unreliable; F
14~a! shows that it can in fact even predict the wrong sign
the stress jump.

Finally, we note that a failure of the BKZ equation ha
also been observed in double step strain experiments
polymeric liquids @60#. There, however, the most pro
nounced deviations occur for successive step strains of
posite sign rather than, as in the SGR model, for strains
the same sign. This can be understood on the basis of
different kinds of nonlinearities in the two cases. Rough
speaking, in the polymer case the BKZ equation fails b
cause it neglects memory of the shape of the tube in whic
given polymer molecule reptates@60,61#. Such memory ef-
fects are strongest forstrain reversal, which can bring the
tube back to a conformation close to its original shape. In
SGR model, on the other hand, the BKZ equation fails
cause it does not adequately represent the effects of the s
history on the stress relaxation rates in the material. S
effects are strongest when an applied strain compound
earlier speedup of relaxation processes, i.e., for double
strains of thesame sign.

D. Large oscillatory strains

1. Dynamic moduli

As a final example of nonlinear rheological behavior, w
consider the case of large oscillatory strains. We remind
reader at this point that we have chosen units in which ty
cal local yield strains are of order unity~see Sec. III!. To
transform to experimentally relevant quantities, all strain v
ues have to be multiplied by a typical yield strainl ȳ of the
SGM under consideration. A straing51 in our units there-
fore corresponds to a real strain of generally at most a
percent.

We consider only the ergodic regimex.1; we also ig-
nore transient behavior caused by startup of the oscilla
strain. In the steady state, we can write the stress respon
an oscillatory straing(t)5g Reeivt as

s~ t !5g Re@G* ~v,g!eivt#1Ds~ t !, ~30!

whereDs(t) contains the contributions from all higher ha
monics. This defines an amplitude dependent dyna
modulusG* (v,g); the relative root-mean-square size of t
stress contributions from higher harmonics is measured
the residualr , defined by

r 25

E dt @Ds2~ t !#2

E dt s2~ t !

. ~31!

The determination ofG* and r from the CE~9! and ~10!
presents no conceptual difficulties, but is somewhat n
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trivial numerically~see Appendix D for details!. The solution
yields in fact not justG* andr , but the whole ‘‘wave form’’
of the stress responses(t). Figure 15~a! shows how the re-
sponse becomes more and more nonsinusoidal as the s
amplitude is increased. The stress amplitude first increa
linearly with g, then drops slightly as the system cross
over from elastic to liquidlike behavior, and finally rise
again slowly as the typical shear rategv of the ~now essen-
tially liquefied! material increases. Plottingg(t) ands(t) in
a parametric stress-strain plot@Fig. 15~b!#, one finds a hys-
teresis loop for large amplitudes, with stress overshoots n
the points where the strain rate reverses its sign.

Consider now the resulting nonlinear modulusG* . Figure
16 shows an example of a ‘‘strain sweep’’: The moduliG8
andG9 and the residualr are plotted as a function of strai
amplitude for different frequenciesv. The amplitude depen
dence ofG9 is particularly noteworthy: Asg increases,G9
first increases, but then passes through a maximum and
sequently decreases again. This is in qualitative agreem
with recent measurements of nonlinear dynamic moduli
for example, dense emulsions and colloidal glas
@7,10,62,63#. The maximum inG9 is most pronounced nea

FIG. 15. ~a! Stress responses(t) for oscillatory straing(t)
5gcos(vt), for frequencyv50.01 and effective temperaturex
51.1. Initially, the response is almost perfectly elastic; as the st
amplitude increases~curves are shown forg50.1, 0.5, 1, 2, 3, 5!,
the zero crossings ofs(t) move to the left, corresponding to pro
gressively liquidlike behavior~strain lagging behind stress!. ~b!
Parametric plots of stresss(t) vs straing(t), for same paramete
values as in~a!; g51.5 is also shown.
ain
es
s

ar

ub-
nt
,
s

the glass transitionx51; for higher noise temperatures,
decreases and disappears altogether aroundx52. This is
compatible with the following coarse estimate of the dec
of G9 beyond the maximum: For sufficiently large stra
amplitudesg, the system is expected to flow essentially
the time. If the shear rateġ changes sufficiently slowly (v
!1), the stress can be approximated as following ‘‘adiab
cally’’ the instantaneous shear rate:s(t)'s„ġ(t)… with
s(ġ) the steady shear flow curve. For 1,x,2 and suffi-
ciently small shear ratesgv, we know from Sec. V A that
this relationship is a power law,s(ġ);ġx21. Hences(t)
;(gvsinvt)x21, which leads to ag dependence ofG9
;gx22. For x→2, G9 should therefore no longer decay fo
largeg ~as long as the conditiongv!1 is obeyed!, in agree-
ment with our observation that its maximum with respect
g disappears around this value ofx. The estimateG9
;g22x is roughly compatible with our numerical data, but
precise verification of this power law is difficult~due to se-
vere numerical problems forg>20). Note that within the
same approximation,G8 would be estimated to be identicall
zero, which is of course unphysical. Instead, we expect i
decay to zero faster thanG9 asg increases, and this is indee
what our numerical data show.

2. Size of linear regime

The above results allow us to determine the size of
linear regime for oscillatory rheological measurements, i
the largest strain amplitudegc for which the measured value
of G8 andG9 represent the linear response of the system.
important first observation that can be made on the basi
Fig. 16 is that the size of the residualr is not in general
sufficient to determine whether one is in the linear regime
not. For example, for strain amplitudeg51.5 atx51.1 and
v50.1, r is only around 2.5% even though the value ofG9
is already twice as large as in the linear regime. Thes(t) vs
g(t) plot in Fig. 15~b! also demonstrates this: forg51.5, the
curve still looks almost perfectly elliptical, suggesting line
response, while its axis ratio is actually quite different fro
the one in the linear regime. Closer to the glass transit

in

FIG. 16. Strain sweep: Nonlinear moduliG8, G9 and residualr
as a function of strain amplitudeg. Noise temperaturex51.1; lines
of increasing thickness correspond tov50.001, 0.01, 0.1. Recal
that g is rescaled by a typical local yield strain;g51 therefore
corresponds to a real strain of at most a few percent.
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this effect becomes even more pronounced. It sugg
strongly that whenever the dynamic moduli of SGMs a
measured, an explicit strain sweep is needed to determ
whether measurements are actually taken in the linear
gime.

If concerns about nonlinear effects are disregarded,
experimentally convenient procedure is to measure the
namic moduli at fixed strain amplitudeg ~while varying the
frequency v). Some numerical results for this case a
shown in Fig. 17. Again, the most interesting behavior o
curs near the glass transition. There, we observe that
relatively minor differences in the amplitude of the impos
strain can lead to large changes in the measured values oG9
~whereasG8 is affected less strongly!. This emphasizes
again that extreme caution needs to be taken in experim
designed to determine the dynamic moduli of soft gla
materials; in particular, it needs to be borne in mind that
loss modulus can easily be overestimated due to undete
nonlinear effects.

Finally, the actual size of the linear regime itself is also
interest. We choose as a working definition of the line
regime the strain amplitudegc at which eitherG8 or G9 first
deviate by 10% from their values in the limitg→0. ~This
implies similar maximum relative deviations foruG* u and
the loss tangent tand5G9/G8.! Figure 18 showsgc(v) for
several noise temperaturesx. Several general trends ca
clearly be read off. First, in the low frequency regime, t
size of the linear regime decreases as the glass transitio
approached. This is intuitively reasonable as one exp
nonlinearities to become stronger near the glass trans
@64#. Note, however, thatgc does not decrease to zero at t
glass transition; it tends to a finite value of order uni
which by our choice of units corresponds to the typical~a
priori ! yield stress of local elements. The frequency dep
dence ofgc(v) also changes as one moves away from
glass transition: Initially~for x'1), gc is essentially inde-
pendent ofv and does remain so until aroundx53 ~al-

FIG. 17. Frequency dependence of~nonlinear! dynamic moduli
G8(v,g) ~solid lines! andG9(v,g) ~dashed! measured at constan
finite strain amplitudeg. Noise temperaturex51.001; increasing
values of g50, 1, 2, 3 correspond to increasing line thickne
Recall thatg is rescaled by a typical local yield strain;g51 there-
fore corresponds to a real strain of at most a few percent. The
modulusG9 increases strongly withg, whereasG8 varies much
less~the curves forg50 andg51 cannot even be distinguished o
the scale of the plot!.
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though its absolute value increases!; for yet higher noise
temperatures, one finds a crossover to agc;v21 depen-
dence. The latter corresponds to the ‘‘naive’’ criterion th
the typical shear rategv needs to be smaller than typica
relaxation rates~of order unity away from the glass trans
tion! in order for the imposed strain not to create nonline
effects. The predictedv independence ofgc near the glass
transition should be easy to verify experimentally.

VI. INTERPRETATION OF MODEL PARAMETERS

As has been demonstrated above, the SGR model cap
important rheological features that have been observed
large number of experiments, at least in the region aro
the ‘‘glass transition’’ of the model. Using a mean-field~one
element! picture, it is also simple enough to be gener
However, a significant challenge that remains is the interp
tation of the model parameters, namely, the ‘‘effective no
temperature’’x and the ‘‘attempt frequency’’G0. To tackle
these questions, we should really start from a more com
hensive model for the coupled nonlinear dynamics of
‘‘elements’’ of a SGM and then derive the SGR mod
within some approximation scheme. At present, we do
know how to do this, and the following discussion will ther
fore have to remain rather speculative.

A. Effective noise temperaturex

We can interpret the activation factor exp@2(E21
2kl2)/x#

in the equation of motion~3! of the SGR model as the prob
ability that ~within a time interval of order 1/G0) a given
element yields due to a ‘‘kick’’ from a rearrangement~yield
event! elsewhere in the material. Thereforex is the typical
activation energy available from such kicks. But while kic
can causerearrangements, they alsoarise from rearrange-
ments~whose effects, due to interactions, propagate thro
the material!. So there is no separate energy scale for kic
Their energy must of the order of the energies released
rearrangements, i.e., of the order of typical yield energiesE.

.

ss

FIG. 18. Size of linear regimegc vs v for x51.001, 1.5, 2,
. . . , 5 ~bottom to top on left!. Close to the glass transition, devia
tions from linearity first show up inG9, which therefore determines
gc ~dashed line!; for largerx, the linear regime is limited by devia
tions in G8 ~solid lines!. Recall thatgc , like all strain variables, is
rescaled by a typical local yield strain;gc51 therefore correspond
to a real strain of at most a few percent.
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In our units, this means thatx should be of order unity. Note
that this is far bigger than what we would estimate ifx rep-
resented true thermal activation. For example, the activa
barrier for the simplest local rearrangement in a foam~a T1
or neighbor-switching process! is of the order of the surface
energy of a single droplet; this sets our basic scale
the yield energiesE. Using typical values for the surfac
tension and a droplet radius of the order of 1mm or greater,
we find E*104kBT. In our unitsE5O(1), sothermal acti-
vation would correspond to extremely small values
x5kBT&1024.

We now argue thatx may not only be of order one, but i
fact close to one generically. Consider first a steady sh
experiment. The rheological properties of a sample fres
loaded into a rheometer are usually not reproducible; t
become so only after a period of shearing to elimin
memory of the loading procedure. In the process of load
one expects a large degree of disorder to be introduced,
responding to a high noise temperaturex@1. As the sample
approaches the steady state, the flow will~in many cases!
tend to eliminate much of this disorder@65# so thatx will
decrease. But, as this occurs, the noise-activated proce
will slow down; asx→1, they may become negligible. As
suming that, in their absence, the disorder cannot be red
further,x is then ‘‘pinned’’ at a steady-state value at or clo
to the glass transition. This scenario, although extrem
speculative, is strongly reminiscent of the ‘‘marginal dyna
ics’’ seen in some mean-field spin glass models. In
sphericalp-spin glass, for example, one finds that after
quench fromT5` to any temperature 0,T,Tg below the
~dynamical! glass transition temperatureTg , the system is
dynamically arrested in regions of phase space characte
of Tg itself, rather than the true temperatureT @44,45#.

There remain several ambiguities within this picture,
example, whether the steady state value ofx should depend
on ġ; if it does so strongly, our results for steady flow curv
will of course be changed. If a steady flow is stopped an
linear viscoelastic measurement performed, the res
should presumably pertain to thex characterizing the preced
ing steady flow~assuming thatx reflects structure only!. But
unless the strain amplitude is extremely small thex value
obtained in the steady state could be affected by the osc
tory flow itself. This might allow ‘‘flat’’ moduli G* (v) (x
'1) to be found alongside a nonzero yield stress w
power-law flow exponent around 1/2 (x'1/2) @7,43,66#.

Experimentally, the above ideas concerning the time e
lution of x in steady flows could be tested in systems that
be prepared in both low- and high-disorder states, such
onion phases@67#: Strain induced ordering starting from a
initial x well below or abovexg51 should drive the system
towards x50 or x'1, respectively, leading to differen
rheological characteristics.

Theoretically, the minimal extension to the SGR mod
that would be needed to substantiate the above scen
would be to allowx to evolve in time. We do not know a
present how to deduce the correct form of this evolution i
principled way from some underlying microscopic dynami
However, one possibility is to couplex to the number of
rearrangements in the material, i.e., the yielding rateG. In-
deed, suppose we viewG0

21 as a memory time during which
n
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an element accumulates kicks before attempting a rearra
ment. The number of kicks accumulated is then proportio
to G/G0. If individual kicks are thought of as independe
Gaussian perturbations, and we identifyx with the mean-
squared size of the ‘‘cumulative’’ kick, thenx5AG/G0. The
proportionality constantA would depend, for example, o
how kicks propagate through the system. ForG/G051, each
element yields once~on average! within a time intervalG0

21;
A can therefore be viewed as the average number of k
caused by a rearrangement. We leave the analysis of suc
approach for future work; preliminary investigations sugg
the emergence of interesting features such as bistable s
tions for the flow curves(ġ).

B. Attempt frequency G0

Consider now the attempt frequencyG0. It is the only
source of a characteristic time scale in our model~chosen as
the time unit above!. This excludes a naive proposal for th
origin of G0: The attempt frequency cannot be derived~in
some self-consistent way! from the yielding rateG, because
the model would then no longer contain an intrinsic tim
scale. This would imply that all dependencies on frequen
or time are trivial, leading to unphysical results@the flow
curvess(ġ) would simply be a constant, as would be th
linear moduliG8(v) andG9(v)#.

We have so far approximatedG0 by a constant value
independently of the shear rateġ; this implies thatG0 is not
caused by the flow directly. One possibility, then, is thatG0
arises in fact fromtrue thermal processes, i.e., rearrang
ments of very ‘‘fragile’’ elements with yield energies of o
der kBT. To a first approximation, such processes could
accounted for by extending the basic equation of motion~3!
to

]

]t
P~E,l ,t !52ġ

]

] l
P2G th e2[E2~1/2!kl2]/kBT P

2G0 e2[E2~1/2!kl2]/x P1G~ t !r~E!d~ l !.

~32!

HereG th is an attempt rate for true thermal processes, wh
should be a local diffusion rate. In emulsions withmm drop-
lets, typical rates for such diffusive modes could be of t
order of 1–100 Hz@11#. The term on the rhs of Eq.~32!
proportional toG th corresponds to yield events caused
rectly by thermal fluctuations. Due to the presence of int
actions between the different elements of the material,
effects of such yield events can propagate through the sys
and cause other rearrangements. These are described b
term proportional toG0. The ‘‘attempt frequency’’G0 is now
no longer an independent parameter; instead, it is prop
tional to the average rate of thermal rearrangements,

G05A^G th e2[E2~1/2!kl2]/kBT&P .

The ‘‘propagation factor’’A again represents the number
kicks caused by a thermally induced yield event. It has
crucial effect on the behavior of the modified model~32!, as
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can be seen by considering the equilibrium distribution in
absence of macroscopic strain@g(t)50#. One hasPeq(E,l )
5Peq(E)d( l ) with

Peq~E!5
G

G the
2E/kBT1G0e2E/x

r~E!.

When G0 is of the order of G th or larger, Peq(E)
}exp(E/x)r(E) as in the original version~3! of the model.
From this, the value ofG0 can be calculated; for the assum
tion G0*G th to be self-consistent, one then requires

G0

G th
5A

E dE r~E!exp~2E/kBT!

E dE r~E!exp~E/x!

*1 ~33!

~here we have neglected a termE/x in the exponent of the
numerator becausekBT!x). This condition can be given a
intuitive interpretation:A must be large enough for eac
thermal yield event to produce at least one new element
can yield thermally~i.e., whose yield energyE is of order
kBT), thus maintaining the population of such fragile e
ments. For smallerA, one finds instead thatG0 /G th

;exp(2Ē/kBT), which for typical barrier energiesĒ
5O(1) ~in our units! is unfeasibly slow. The above mech
nism can therefore give a plausible rheological time sc
only if the average numberA of rearrangements triggered b
one local, thermally induced rearrangement is large eno
to sustain the population of fragile elements, as determi
by Eq. ~33!. The values ofA actually required for this are
sensitive to the smallE behavior ofr(E). Assuming, for
example,r(E)}Ey21exp(2E), one has the condition

A*@kBT~12x21!#2y .

For y51, wherer(E) stays finite forE→0, this requires at
leastA*104. Such large values appear implausible unles
single yield event could trigger a whole ‘‘avalanche’’ of ot
ers; in foams, it has been argued that this might be the c
@21#. On the other hand, significantly smaller values ofA
would be sufficient ifr(E) shows a significant bias toward
small yield energiesE (0'y,1). The above ‘‘thermal trig-
ger’’ scenario would then be more generically plausible.
draw more definite conclusions on this point, it would
useful to measurer(E) in, for example, a computer simula
tion of a model SGM.

There are a number of other possible explanations for
origin of G0. These include, for example, noise sources
ternal to the material, such as coarsening in a foam, or
controlled external noise. Finally, the rheometer itself co
also be a potential source of noise; this would, howev
suggest at least a weak dependence ofG0 on the shear rateġ.
We cannot at present say which of these possibilities is m
likely, nor rule out other candidates. The origin ofG0 may
not even be universal, but could be system specific.

VII. CONCLUSION

We have solved exactly the SGR~soft glassy rheology!
model of Ref.@17# for the low frequency shear rheology o
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materials such as foams, emulsions, pastes, slurries, etc
model focuses on the shared features of such soft gla
materials~SGMs!, namely, structural disorder and metas
bility. These are built into a generic description of the d
namics of mesoscopic elements, with interactions rep
sented by a mean-field noise temperaturex. All rheological
properties can be derived from an exact constitutive eq
tion.

In the linear response regime, we found that both the s
age modulusG8 and the loss modulusG9 vary with fre-
quency asvx21 for 1,x,2. Near the glass transition, the
become flat, in agreement with experimental observations
a number of materials. In the glass phase, the moduli
predicted toage; this could provide an interesting exper
mental check of the model.

Far above the glass transition, the steady shear behav
Newtonian at small shear rates. Closer to the transition
,x,2), we found power-law fluid behavior; in the glas
phase, there is an additional nonzero yield stress~Herschel-
Bulkley model!. The last two regimes therefore capture im
portant features of experimental data. Above the glass t
sition, the validity of the Cox-Merz rule relating th
frequency dependence of the linear moduli to the shear
cosity can be checked; it breaks down in the power-law fl
region and fails spectacularly at the glass transition. In t
regime, stress overshoots in shear startup are strongest
have also calculated the distribution of energies dissipate
local yield events. At variance with existing simulation da
for foams, this exhibits a shear-rate dependent crossove
tween two power-law regimes; this discrepancy remains
be resolved.

We further probed the nonlinear behavior of the model
considering large amplitude single and double step stra
The nonlinear response cannot in general be factorized
strain and time dependent terms, and is not well represe
by the BKZ equation. Finally, we considered measureme
of G8 andG9 in oscillatory strain of finite amplitudeg. Near
the glass transition,G9 exhibits a maximum asg is increased
~strain sweep!, reproducing qualitative features of rece
measurements on emulsions and colloidal glasses. The
tribution of higher harmonics to the stress response is
always sufficient to determine whether the response is n
linear, emphasizing the need for explicit strain sweeps to
reliable data in the linear regime. Otherwise, measurem
at constant strain amplitude can lead to strongly enhan
values of the loss modulusG9. Finally, we considered the
size of the linear regime itself, i.e., the largest strain am
tude gc at which the measured values ofG8 and G9 still
represent the linear response of the system. The SGR m
predicts thatgc should be roughly frequency independe
near the glass transition; this point should also be amen
to experimental verification.

In the final section, we speculated on the physical ori
of the most important parameters of the model, namely,
effective temperaturex and the attempt frequency for rea
rangementsG0. We argued thatx should be generically of
order unity ~in our units!. This is because it represents th
typical energy released in a rearrangement, which is of
same order as the activation energy required to cause a
rangement elsewhere in the material. A speculative anal
to marginal dynamics in other glassy systems suggests thx
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may in fact be close to unity in general. This is encouragi
because the SGR model reproduces the qualitative fea
of experimental data best forx'1, i.e., near the glass tran
sition. We mentioned several hypotheses for the origin of
attempt frequencyG0, which include events triggered b
thermal fluctuations or internal and external noise sour
not explicitly contained within the model.

In future work, we plan to explore in more detail th
strongly history-dependent behavior of the model in the gl
phase. Its simplicity should allow this to be done in deta
thereby providing the first full theoretical study to be ma
of the generic relationship between aging and rheology@47#.
Apart from this, the main challenge is to incorporate spa
structure and explicit interactions between elements into
model. This should help us understand better the mutual
namical evolution of the attempt rate, the effective no
temperature and the structural disorder. In the end,
would hope to derive a model similar to the present one fr
such a more microscopic description within some we
defined approximation scheme.

ACKNOWLEDGMENTS

The author is indebted to F. Lequeux, P. He´braud, and M.
E. Cates for their significant contributions to the develo
ment and initial investigation of the SGR model, as pu
lished in Ref.@17#, and for helpful comments on the prese
manuscript. Thanks are due also to J.-P. Bouchaud for
eral seminal suggestions. Financial support from the Ro
Society of London, and from the National Science Foun
tion under Grant No. PHY94-07194, is gratefully acknow
edged.

APPENDIX A: DERIVATION
OF CONSTITUTIVE EQUATION

The equation of motion~3! of the SGR model can be
solved by making the time dependent change of variabl

→D l 5 l 2g(t). This eliminates theġ ~convective! term,
converting the equation of motion from a PDE to an OD
Suppressing theE andD l dependence ofP, the result reads

]

]t
P~ t !52expH 2

1

x
@E2 1

2 „D l 1g~ t !…2#J P~ t !

1G~ t !r~E!d„D l 1g~ t !….

This can be integrated to give

P~ t !5P~0!exp@2e2E/xz~ t,0;D l !#

1E
0

t

dt8G~ t8!r~E!d„D l 1g~ t8!…

3exp@2e2E/xz~ t,t8;D l !# ~A1!

with the auxiliary function

z~ t,t8;D l !5E
t8

t

dt9exp$@D l 1g~ t9!#2/2x%.

To simplify matters, we now assume that the initial (t50)
state is completely unstrained, i.e.,g(0)50 and P(0)
,
res

e

s

s
,

l
e
y-
e
e

-

-
-
t
v-
al
-

.

5P0(E)d(l)5P0(E)d(Dl). The stress can be calculated b
multiplying ~A1! by D l and integrating overE andD l :

s~ t !5g~ t !1^D l &P~ t !

5g~ t !2E
0

t

dt8G~ t8!g~ t8!E dE r~E!

3exp@2e2E/xz„t,t8;2g~ t8!…#. ~A2!

Here the yielding rateG(t) is still undetermined, but it can
be gotten from the condition of conservation of probabili
The integral of Eq.~A1! over E and D l has to be equal to
unity, hence,

15E dE P0~E!exp@2e2E/xz~ t,0;0!#

1E
0

t

dt8G~ t8!E dE r~E!

3exp@2e2E/xz„t,t8;2g~ t8!…#. ~A3!

To write the results~A2! and~A3! in a more compact form,
the auxiliary functions defined in Eq.~11! and the abbrevia-
tion ~12!

Z~ t,t8!5z„t,t8;2g~ t8!…

5E
t8

t

dt9exp$@g~ t9!2g~ t8!#2/2x%

are used. This yields directly Eq.~10! for the yielding rate
G(t), while for the stress one obtains

s~ t !5g~ t !2E
0

t

dt8G~ t8!g~ t8!Gr„Z~ t,t8!…. ~A4!

This can be expressed in the more suggestive form~9! by
writing the first term on the rhs asg(t) times the rhs of Eq.
~10!.

APPENDIX B: ASYMPTOTIC BEHAVIOR OF Gr„z…

In this appendix, we derive the asymptotic behavior~13!
of Gr(z). As explained in Sec. III, our choice of unitsxg
51 implies r(E)5exp$2E@11f(E)#% with f (E)→0 for E
→`. Hence for anyd.0, there existsM.0 such that
u f (E)u,d for E.M . Our strategy will be to split the defin
ing integral~11! for Gr(z) into two parts, for energies abov
and below the thresholdM and to bound these separatel
Writing

Gr~z!5E
0

M

dE r~E!exp~2ze2E/x!

1E
M

`

dE r~E!exp~2ze2E/x!

the first term on the rhs is trivially bounded by zero fro
below and by exp@2zexp(2M/x)# from above. The second
term, on the other hand, is bracketed by
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E
M

`

dE e2~16d!Eexp~2ze2E/x!

5xz2x~16d!E
0

ze2M /x

dy yx~16d!21e2y ~B1!

~the plus and minus sign giving the lower and upper bou
respectively!. Now consider the behavior ofGr(z)zx1e for
some arbitrary smalle.0. Choosed5e/(2x) and a corre-
spondingM ; then from Eq.~B1!

Gr~z!zx1e.xze/2E
0

ze2M /x

dy yx1e/221e2y.

The integral has a finite limit forz→` ~it is just a Gamma
function!, and so this lower bound tends to infinity in th
limit, proving the first part of Eq.~13!. The second part is
demonstrated in a similar fashion: with the same choice od
for a givene, and again using~B1!,

Gr~z!zx2e , zx2eexp~2ze2M /x!

1xz2e/2E
0

ze2M /x

dy yx2e/221e2y.

Again, the integral has a finite limit~assuminge is suffi-
ciently small, i.e.,e,2x), and both terms on the rhs ther
fore tend to zero forz→`, completing the proof of Eq.~13!.

APPENDIX C: FLOW CURVES AND YIELD STRESS

Here we derive the small shear rate behavior of the fl
curves s(ġ). As shown in Sec. V A, the stresss(ġ)
5I 1(ġ)/I 0(ġ) can be expressed in terms of the functions

I n~ ġ !5E
0

`

dl l nGr„Z~ l !… . ~C1!

The scaling ofI n with ġ can be obtained from the asymptot
behavior ofGr(z). From ~13!, it follows that for anye.0,
we can choose az0 such that

z2x2e,Gr~z!,z2x1e for z.z0 . ~C2!

Now we usez0 to decompose thel integral in Eq.~C1! into
the parts withl"z0ġ:

I n5I n
,1I n

. , I n
,5E

0

z0ġ
dl l nGr„Z~ l !….

ReplacingGr„Z( l )… by its minimum and maximum over th
integration range,I n

, is trivially bounded by

Gr„Z~z0ġ !… ,
n11

~z0ġ !n11
I n

, , A1.

As ġ→0, the lhs tends toGr(z0), so we have the scaling
I n

,5O(ġn11). To boundI n
. , we use thatZ( l ). l /ġ.z0 in
,

the relevant integration range, so that the bounds~C2! on Gr

can be used. WritingZ( l ) out explicitly, this gives lower and
upper bounds forI n

. of

ġx7eE
z0ġ

`

dl l nS E
0

l

dg eg2/2xD 2x6e

.

For x,n11 ~ande sufficiently small!, the outer integral has
a finite limit for ġ→0, and soI n

. scales asġx up to sub-
power-law factors. For larger values ofx, on the other hand
this integral diverges asġn112x6e. I n

. then scales asġn11

~since both the lower and upper bound do!, i.e., in the same
way asI n

, .
As discussed in Sec. V A, the above scaling properties

I n
, and I n

. prove that the flow curve is a power laws

;ġx21 ~up to sub-power-law factors! in the regime 1,x
,2. In the glass phase (x,1), the simplest case is that o
exponentialr(E) @Eq. ~7!#. The asymptotic behavior o
Gr(z);z2x then translates directly intoI n

.;ġx without sub-
power-law corrections, and this gives the Herschel-Bulk
form ~24! of the flow curve. The yield stress~25! is given by
the limit of I 1

./I 0
. for ġ→0, while the power-law onset o

the additional stress arises from the small corrections du
I 0

, .
For generalr(E), on the other hand, the sub-power-la

factors inI n
.(ġ) cause a corresponding weakġ dependence

of s(ġ), which dominates the effect of the small correctio
terms I n

,(ġ). The flow curve therefore no longer has th
simple Herschel-Bulkley form~24!. However, in the ex-
amples that we tested numerically@r(E);Enexp(2E) for
n51, 2, 3#, we found that this form still provides a good fi
to s(ġ) over several decades of shear rateġ. Both the ex-
ponent and yield stress of such a fit are then only effec
quantities and depend on the range ofġ considered; they are
therefore no longer directly related tox. In the examples tha
we studied, we always found values of the effective expon
significantly below unity.

The slow sub-power-law variation ofs(ġ) for general
r(E) means that there is, for practical purposes, always
effective yield stress~whose actual value depends weakly
the lowest accessible shear rateġ). Nevertheless, one ma
wonder what the ‘‘true’’ yield stresssy5s(ġ→0) would
be. The above line of argument does not answer this qu
tion; it does not even exclude the possibility ofsy being
zero. We have examined this issue for several different s
power-law corrections to the asymptotic behavior ofGr ,
such asGr(z)zx;(lnz)m, or ;exp@(lnz)n# with unu,1. The
yield stress is always nonzero, and in fact turns out to be
same as for exponentialr(E). We suspect that this may b
true in general, but have not found a proof.

APPENDIX D: NUMERICAL DETERMINATION
OF G* „v,g…

In this appendix, we outline the numerical scheme that
used to obtain the nonlinear dynamic modulusG* (v,g) and
the residualr defined in Eqs.~30! and~31!, respectively. As
explained in Sec. V D, we are interested in the steady s
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stress response in the ergodic regimex.1. We can then
safely send the initial time to2` in the CE~9! and~10!. The
equations that need to be solved can be simplified furthe
using the fact that in the steady state, the yielding rateG(t)
must have the same periodicity as the applied straing(t).
Denoting the oscillation period byT52p/v, the task is then
to solve

15E
t2T

t

dt8G~ t8!H~ t,t8! ~D1!

for G(t) and then to evaluate the stress from

s~ t !5g~ t !2E
t2T

t

dt8g~ t8!G~ t8!H~ t,t8!. ~D2!

Here the periodicity of the problem has been absorbed
the definition of

H~ t,t8!5 (
n50

`

Gr„Z~ t,t82nT!…

5 (
n50

`

Gr„Z~ t,t8!1nZ~ t81T,t8!…,

where the second equality follows again from the periodic
of the straing(t)5gcosvt. The numerical solution of the
integral equation~D1! is simplified by subtracting from the
kernelH(t,t8) a part that depends ont8 only:

H̃~ t,t8!5H~ t,t8!2H~ t81T,t8!5K e2VZ12e2VZ2

12e2VZ2
L

r

,

where we have abbreviatedV5exp(2E/x), Z15Z(t,t8),
Z25Z(t81T,t8). The modified kernelH̃(t,t8) has the con-
venient propertiesH̃(t8,t8)51, H̃(t81T,t8)50 and is also
simpler to evaluate numerically thanH(t,t8). The yielding
rate can easily be calculated fromH̃ instead ofH: Defining a

modified yielding rateG̃(t) as the solution of

15E
t2T

t

dt8G̃~ t8!H̃~ t,t8! ~D3!

the actual yielding rate is recovered by dividing by the co
stant factor

11E
0

T

dt8G̃~ t8!H~ t81T,t8!.
y

to

y

-

However, even the solution of Eq.~D3! is still nontrivial,
especially in the low frequency regimeT@1 that we are
most interested in. This is becauseH̃ ‘‘inherits’’ from Gr an
initial ‘‘fast’’ decay as t2t8 increases from zero, followed
by a much slower power-law decay~which in turn gives way
to a rapid final decay as soon as strain-induced yielding
comes important!. This separation ofO(1) andO(T) time
scales rules out traditional solution methods such as Che
shev approximation. Instead, we solve Eq.~D3! by Fourier
transform: Writing

G̃~ t !5 (
n52`

`

G̃neinvt

Eq. ~D3! is transformed into the matrix equation

(
m52`

`

H̃nmG̃m5dn,0 ~D4!

with coefficients

H̃mn5E
0

Tdt

T
e2 i ~n2m!vtE

0

T

dt e2 imvtH̃~ t,t2t!.

Once Eq.~D4! is solved and the rescaling fromG̃ to G is
carried out, the stress is obtained as

s~ t !

g
5(

n
sneinvt,

sn5
1

2
~dn,211dn,1!2

1

2 (
m

Gm~H̃n,m111H̃n,m21!.

Its Fourier components determine the nonlinear dyna
modulus and squared residual as

G* ~v,g!52s1 r 2512
us1u2

(
k50

(`)

us2k11u2

.

The result for r 2 has been simplified using the fact th
s2n5sn* @becauses(t) is real# and thatsn50 for evenn
@becauses(t)→2s(t) for g→2g, which corresponds to
t→t1T/2#.

To solve the main equation~D4!, we truncate the matrix
equation at successively higher orders until the calcula
values ofG8(v,g), G9(v,g), andr are stable to within 1%.
The Fourier componentsH̃mn are calculated from a spline
interpolant approximation toH̃(t,t8) in order to save expen
sive function evaluations.
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