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Rheological constitutive equation for a model of soft glassy materials
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We solve exactly and describe in detail a simplified scalar model for the low frequency shear rheology of
foams, emulsions, slurries, ef@. Sollich, F. Lequeux, P. Hieaud, and M. E. Cates, Phys. Rev. L&&, 2020
(1997]. The model attributes similarities in the rheology of such “soft glassy materials” to the shared features
of structural disorder and metastability. By focusing on the dynamics of mesoscopic elements, it retains a
generic character. Interactions are represented by a mean-field noise temperatitrea glass transition
occurring atx=1 (in appropriate unifs The exact solution of the model takes the form of a constitutive
equation relating stress to strain history, from which all rheological properties can be derived. For the linear
response, we find that both the storage mod@usand the loss modulu” vary with frequency as*~* for
1<x<2, becoming flat near the glass transition. In the glass phase, aging of the moduli is predicted. The
steady shear flow curves show power-law fluid behaviorxfar2, with a nonzero yield stress in the glass
phase; the Cox-Merz rule does not hold in this non-Newtonian regime. Single and double step strains further
probe the nonlinear behavior of the model, which is not well represented by the Bernstein-Kearseley-Zapas
relation. Finally, we consider measurements€dfandG” at finite strain amplitudey. Near the glass transi-
tion, G” exhibits a maximum ay is increased in a strain sweep. Its value can be strongly overestimated due
to nonlinear effects, which can be present even when the stress response is very nearly harmonic. The largest
strain y, at which measurements still probe the linear response is predicted to be roughly frequency indepen-
dent.[S1063-651X98)04407-9

PACS numbsgs): 83.20—d, 83.70.Hq, 05.46:j

[. INTRODUCTION be seen in such a wide range of soft materials suggests a
common cause. In particular, the frequency dependence in-
Many soft materials, such as foams, emulsions, pasteslicated above points strongly to the generic presence of slow
and slurries, have intriguing rheological properties. Experi-‘glassy” dynamics persisting to arbitrarily small frequen-
mentally, there is a well-developed phenomenology for suci§ies. This feature is found in several other cont¢s®-14,
systems: their nonlinear flow behavior is often fit to the formSuch as the dynamics of elastic manifolds in random media
o=A+BY" whereo is shear stress anglstrain rate. This is [15,16]. The latter is suggestive of rheology: charge density

the Herschel-Bulkeley equatiofi,2]; or (for A=0) the waves, vortices, contact lines, etc. can “flow” in response to

“power-law fluid” [1-3]. For the same materials, linear or an imposed "stress.”
powsr-aw Tl o s, 1 In a previous lettef17] it was argued that glassy dynam-

guasilinear viscqelastic measurgments often reveal st.orag]gS is a natural consequence of two properties shared by all
and loss moduliG’(w), G"(w) in nearly constant ratio e goft materials mentioned abowructural disorderand
(G"/G" is usually about OJlwith a frequency dependence metastability In such “soft glassy materials(SGMs), ther-
that is either a weak power-lagelay slurries, paints, micro-  mal motion alone is not enough to achieve complete struc-
gels or negligible (tomato paste, dense emulsions, denseural relaxation. The system has to cross energy bartiers
multilayer vesicles, colloidal glasselst—10]. This behavior
persists down to the lowest accessible frequenc¢amut
10 3—1 Hz depending on the systgnin apparent contra-
diction to linear response theory, which requires Béfw)
should be an odd function @. This behavior could in prin-
ciple be due to slow relaxation modes below the experimen-
tally accessible frequency rangsee Fig. 1 Each of those
would cause a drop i’ (w) and a bump iING"(w) as the
frequency is tracked downward. However, where the search
for system specific candidates for such slow modes has been
carried out(for the case of foams and dense emulsions, for S . .
example, se¢l11]), it has not yielded viable candidates; it ! experimental window?
therefore seems worthwhile to look for more generic expla- s s !
nations of the observed behavior.

Indeed, the fact that similar anomalous rheology should

®

FIG. 1. Sketch of frequency dependence of linear moduli, show-
ing possible slow relaxation modes at frequencies below the mea-
*Electronic address: P.Sollich@ed.ac.uk surement window.
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example, those associated with rearrangement of droplets ian alternative to such models would be, for example, mode-
an emulsionthat are very large compared to typical thermal coupling theoried31,32, which, at least in their simplest
energies. It therefore adopts a disordered, metastable coferm, neglect allithermally) activated processes. We prefer
figuration even when(as in a monodisperse emulsion or trap models for our purposes, because they are simpler and
foam) the state of least free energy would be ordere8l.  also generally more physically transpargas].

The importance of structural disorder has previously been

noted in more specific contexis,11,19—23 but its unifying A. Bouchaud’s glass model

role in rheological modeling can be more easily appreciated
by focusing on the class of SGMs as a whole.

In Ref.[17], a minimal, scalar model for the generic rhe-
ology of SGMs was introduced, which incorporates the
above ideas. We refer to this model as the “soft glassy rhe
ology” (SGR model in the following. The main contribu-
tion of the present publication is the exact solution of this
model; at the same time, we also provide more detailed an
lytical and numerical support for the results announced i
[17]. The exact solution is in the form of a constitutive equa-
tion relating the(sheay stress at a given time to the strain

Bouchaud formalized the above intuitive trap picture of a
glass into a one-element moddl2,13: an individual ele-
ment “sees” an energy landscape of traps of various depths
E; when activated, it can “hop” to another trap. Bouchaud
assumed that such hopping processes are due to thermal fluc-
tuations. In SGMs, however, this is unlikely BgT is very

small compared to typical trap deptEs(see Sec. V)l The

GR model assumes instead that the “activation” in SGMs
Is due to itinteractions a rearrangement somewhere in the
material can propagate and cause rearrangements elsewhere.

history. We use this to study a range of linear and nonlineal” 2 mean-field sp|r|.t, this coupling betwgen elements IS rep-
rheological properties of the model; qualitative comparisongeser_'teoI by affective temperatureor noise level x. This
with experimental data show that these capture many gener|f€@ iS fundamental to the SGR model. .
rheological characteristics of SGMs. We do not attempt more , | "€ €quation of motion for the probability of finding an
quantitative fits to experimental data for specific material<€/ément in a trap of depth at timet is [12,13,34

because the model in its present form is almost certainly too

oversimplified for this purpose. We do, however, hope to —P(E,t)=-Toe ¥* P(E,t) +T'(t) p(E). 1)
carry out a more quantitative study in future work, once the at
remaining ambiguities in the interpretation of the model pa-

rametersisee Sec. VIl have been clarified and some of the In the first term on the right-hand-sidehs), which describes

) . : elements hopping out of their current traps, is an attempt
improvements suggested in Sec. VII have been incorporate for h d is th di
into the model. requency for hops, and expE/x) is the corresponding ac-

. . .., tivation factor. The second term represents the state of these
We introduce the SGR model in Sec. Il, along with . ;
, AN . elements directly after a hop. Bouchaud made the simplest
Bouchaud’s glass model on which it builds. Section Ill con- . . .
; . - ; ._possible assumption that the depth of the new trap is com-
tains our main result, the constitutive equation. Its predic- : L
. . . . : . letely independent of that of the old one; it is simply ran-
tions in the linear response regime are discussed in Sec. | e
domly chosen from some “prior” distribution of trap depths

while in Sec. V we analyze several nonlinear scenarios in- L .
cluding steady shear flow, shear startup, large step strain (E). The rate of hopp_mg Into traps of deihis thenp(E)
Imes the overall hopping rate, given by

and large oscillatory strains. The physical significance an
interpretation of the various parameters of the SGR model

are not obvious; in Sec. VI we discuss in more detail the I‘(t)=Fo<e‘E’X>p=FOJ dE P(E,t)e F/x, 2
“noise temperature”x and “attempt frequency'T'; of the
model. Our results are summarized in Sec. VII. Bouchaud’s main insight was that the mo¢tgl can describe

a glass transitioif the density of deep traps has an exponen-
tial tail, p(E)~exp(—E/xy), say. Why is this? The steady
state of Eq. (1), if one exists, is given byP.{E)
The SGR model is a phenomenological model that aims<expE/X)p(E); the Boltzmann factor exf{x) (no minus
to explain the main features of SGM rheologjyoth linear here because trap depths are measured from devin-
and nonlinearas described above. To apply to a broad rangavards is proportional to the average time spent in a trap of
of materials, such a model needs to be reasonably generic.depthE. At X=X, it just cancels the exponential decay of
should therefore incorporate only a minimal number of fea-p(E), and so the supposed equilibrium distributiBg(E)
tures common to all SGMs, leaving aside as much systertends to a constant for largg; it is not normalizable. This
specific detail as possible. One important feature is theneans that, fox<xy, the system does not have a steady
“glassiness,” i.e., the effects of structural disorder and metastate; it is(“weakly” ) nonergodic and “ages” by evolving
stability. We model this using a fairly intuitive picture of a into deeper and deeper trgd,13. The model1) therefore
glass: it consists of local “elements(tve will be more spe- has aglass transitionat x=Xg .
cific later about what we mean by these in the context of With Bouchaud’'s model, we have a good candidate for
SGMy that are trapped in “cages” formed by their neigh- describing in a relatively simple way the glassy features of
bors so that they cannot move. Occasionally, however, a reSGMs. Its disadvantages for our purposes are as follGys:
arrangement of the elements may be possible, due to therm@he assumption of an exponentially decayj(d) is rather
activation, for example. Glass models of this kind are com-arbitrary in our context. It can be justified in systems with
monly referred to as “trap models” and have been studied‘quenched” (i.e., fixed disorder, such as spin glasses, using
by a large number of authofsee, e.g., Refd.13,24-30). extreme value statistiqgsee, e.g.[35]), but it is not obvious

Il. THE SGR MODEL
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how to extend this argument to SGM8. The exponential an effective temperatune. The activation barrier is nov

form of the activation factor in Eq.1) was chosen by anal- —1kl?, the difference between the typical yield energy and

ogy with thermal activation. But for ug, describes effective the elastic energy already stored in the element.

noise arising from interactions, so this analogy is by no For the behavior of elements in between rearrangements,

means automatic, and functional forms other than exponerthe simplest assumption is that their strain changes along

tial could also be plausible. In essence, we vigiwtogether  with the macroscopically imposed strajn This means that,

with (ii) as a phenomenological way of describing a systenyield events apart, thehear rateis homogeneous throughout

with a glass transition. the material; spatial fluctuations of the shear rate are ne-
glected in what can be viewed as a further mean-field ap-
proximation. The SGR model therefore applies only to ma-

B. Incorporating deformation and flow terials that can support macroscopically homogeneous flows

To describe deformation and flow, the SGR mofieT] (at least in the range of shear rates of practical interést
incorporates strain degrees of freedom into Bouchaud's glagéct, we regard this requirement as a working definition of
model. A generic SGM is conceptually subdivided into awhat is meant by a “soft” glassy material. A “hard” glassy
|arge number Ofnesoscopic regiomand these form the “el- material, on the other hand, mlght fail by fracture and Stl’ong
ements” of the model. By mesoscopic we mean that thesétrain localization rather than by homogeneous flow.
regions must b@) small enough for a macroscopic piece of Whether a link exists between this distinction and the clas-
material to contain a large number of them, allowing us tosification of structural glasses into fragile versus strf@j
describe its behavior as averageover elements; andi) IS hot clear to us at present.
large enough so that deformations on the scale of an element While the SGR model assumes a spatially homogeneous
can be described by an elastic strain variable. For a singlgtrain ratg it does admit inhomogeneities in the losatain
dr0p|et in a foam, for examp|e' this would not be possib|e| and stresso =Kkl [37] These arise because different ele-
because of its highly nonaffine deformation; in this case, thénents generally yield at different times. To describe the state
element size should therefore be at least a few droplet dianff the system at a given time, we therefore now need to
eters. The size of the elements is chosen as the unit length t&ow the joint probability of finding an element with a yield
avoid cumbersome factors of element volume in the expresenergyE anda local strainl. Within the SGR mode[17],
sions below. We emphasize that the subdivision into mesdthis probability evolves in time according to
scopic elements is merely a conceptual tool for obtaining a
suitably coarse-grained description of a SGM. The elements EP(E It)=—7v
should not be thought of as sharply defined physical entities, at n
l;ititergitrr;erl as somewhat dlffuse_ qub; of material. Their LT () p(E)8()). 3

ply represents a coarse-graining length scale whose

order of magnitude is fixed by the two requiremefiysand  The first term on the rhs describes the motion of the ele-

(ii)v?/boc;/e- oY the local sh ofan el ments between rearrangements, with a local strain rate equal
€ denote by the local shear strain of an eleméntore to the macroscopic onel=1vy. The interaction-activated

generally, the deformation would have to be described by a. . e .
tensor, but we choose a simple scalar descriptian see yielding of elementgwhich is assumed to be an instanta-

. . : neous process on the time scales of interest tasuflected
how | evolves as the system is sheared, consider first th P X

behavior of a foam or dense emulsion. The droplets in ar'?] the second term. The last term incorporates two assump-
e ; j P . tions about the properties of an element just after yielding: It
element will initially deform elastically from the local equi-

librium configuration, giving rise to a stored elastic energy's unstrained|(=0) and has a new yield energyrandomly

(due to surface tension, in this exampl®]). This continues chosen fromp(E),.i.e.., uncorrt_—alatgd with its previous one.
; X ’ ; " Finally, the total yielding rate is given by the analog of Eq.

up to a yield point, characterized by a str&jn whereupon 2)

the droplets rearrange to new positions in which they are Ies% '

deformed, thus relaxing stress. The mesoscopic stnaiea- I(t)=T <ef[E7(1/2)kI2]/x>

sured from the nearest equilibrium positi¢ire., the one the 0 P

element would relax to if there were no external stresises

then again zero. As the macroscopic strgifis increased| =F0J dE dl P(E,l,t)e [E-(@2Kkix, 4

therefore executes a “sawtooth” kind of motigB86]. Ne-

glec_ting nonlinea_rities before y?elding, the local shear St_resmi_:quation(S) tells us how the state of the system, described

is given bykl, with k an elastic constant; the yield point py p(E | 1), evolves for a given imposed macroscopic strain

. . . 1 2
defines a maximal elastic energy=zkly. The effects of . (t) What we mainly care about is of course the rheological

structural disorder are modeled by assumingisaributionof  response, i.e., the macroscopic stress. This is given by the
such yield energieg, rather than a single value common to gyerage of the local stresses:

all elements. A similar description obviously extends to
many others of the soft materials mentioned above.

To make the connection to Bouchaud'’s glass model, yield ‘T(t):k<|>PEkJ dE dI P(E,1,)l. (5)
events can be viewed as “hops” out of a trégr potential
well), and the yield energi is thereby identified with the Equations(3)—(5) define the SGR model, a minimal model
trap depth. As before, we assume that yidlispg are acti-  for the rheology of SGMs: It incorporates both the “glassy”
vated by interactions between different elements, resulting ifieatures arising from structural disordeaptured in the dis-

d

g P-T, ef[Ef(lIZ)klz]/x P
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material. For frequencies smaller than the attempt frequency
for yielding, w=<T'y, they can therefore be neglected. This
then implies that the elastic properties that we ascribe to
local elements are those that apply once all fast local stress
relaxation processes are complete. We have also neglected
viscous contributions to the local stress; in foams, for ex-
ample, these are due to the flow of water and surfactant
caused by the deformation of the elements. In the low fre-
guency regime of interest to us, such viscous effects are
again insignifican{see, e.g.[11]), whereas at high frequen-
cies the mode(3)—(5) would have to be modified appropri-
ately to yield sensible predictions.

FIG. 2. Potential well picture of the dynamics of the SGR  Another restriction of the model is the assumption that the
model. Note that the relative horizontal displacement of the quag|astic constank is the same for all elements. This may not
dratic potential wells is arbitrary; each _has its_ own indfepgndent zerpe appropriate, for example, for strongly polydisperse mate-
for the sqalg of the. local Etraln The solid vertical bars indicate the rials; we plan to investigate the effects of variaklm future
energy dissipated in the “hopsfyield eventsfrom 1to 2and 310 51k \We have also made the simplifying assumption that an
4, respectively. element is always unstrained directly after yielding. Interac-

tion between neighboring elements may, however, frustrate
tribution of yield energiesE and local straind) and the the relaxation to the new equilibrium state; we discuss briefly
“softness”: for large macroscopic strains, the material flowsin Sec. IV C how this feature can be incorporated into the
because eventually all elements yield. An intuitive picture ofmodel.
the dynamics of the SGR model can be obtained by viewing Finally, the treatment of energy dissipation during yield
each element as a “particle” moving in a one-dimensionalevents within the SGR model may also have to be refined.
piecewise quadratic potential, with noise-induced hops thathis can be seen by expressing the work done on the system
become increasingly likely near the edge of a potential welin the following way: We multiply the equation of motion
(see Fig. 2 This also shows the hysteresis effects associatetB) by the elastic energgkl? of an element and integrate
with yielding: Once a hop to a new well has taken place, aver | and E. Integration by parts of thes term then just
finite strain reversal is in general needed before a particlgives the stresés), hence
will hop back to its old well[38].

Before moving on to the exact solution of the SGR model, .od1 1, ., - (12K
we briefly mention some of its limitations. Among the most TY" 4t 2 (kI +To 2 (kl%e ) (6)
serious of these is the assumption that the noise temperature
x and the attempt frequendy, are constant parameters of where the averages are ovB(E,l,t). The left-hand side
the model. In general, they may be expected to depend on thghs) is the rate of energy input into the system. The first term
imposed shear ratg, for example, or in fact have their own on the rhs, which is a complete time differential, describes
intrinsic time evolution. In particular, it must be borne in the part of this energy that is stored as elastic energy of the
mind when interpreting our results below that the effectiveelements. The second term, which is always non-negative, is
noise temperature is not a parameter that we can easily the dissipative part. It is just the average over all elements of
tune from the outside; rather, we expect it to be determinedheir yielding rate times the energy dissipated in a rearrange-
self-consistently by the interactions in the system. We disment, which we read off akk|?. This means that within the
cuss these points in some detail in Sec. VI, where we alsmodel, every rearrangement dissipates exactly the elastic en-
speculate on the physical origin of the model parameters ergy stored within the element when it yielGsee Fig. 2
andIl'y. Within the SGR model, the “prior” density of yield In general, this is not implausible. But it implies that some
energiesp(E), is likewise taken to be a constant. This im- rearrangements—those of unstrainéd Q) elements—have
plies the assumption that the structure of the material consicho dissipation associated with théd0]. In reality, however,
ered is not drastically altered by an imposed flow, and exthe local reorganization of a material duriagy yield event
cludes effects such as shear-induced crystallization. would always be expected to dissipaemeenergy. How

The SGR model is also essentially a low-frequencymuch might depend, for example, on the height of the acti-
model. This is due to our assumption that each element beration barrier for yieldingE — 3kI2. The model in its present
haves purely elastically until it yields and a rearrangemenform does not capture such effects; in fact, the yield energies
takes place. In reality, the rheological response of an elemeii do not feature in the energy balan® except through
will be more complex. After the application of a strain, for their effect on the yielding rates. This exposes a related limi-
example, there may be a fast relaxation of the local stresttion of the model: On physical grounds, one would expect
from its instantaneous value, due to local relaxation prothat elements with a larger yield enerBymay have a more
cesses. In a foam, for example, these might correspond ttable configuration with lower total ener@fpr example, an
small shifts of the bubble positions; in the language of modearrangement of droplets in an emulsion with a lower total
coupling theory, they could be described @srelaxations surface energy The average value dE (which increases
[32,39. Such local stress relaxation processes are expectetiiring aging, for examplgl2,13)), should then also occur in
to take place much faster than actual yield events, whiclthe energy balanc€6). This is not accounted for in the
involve a more drastic reorganization of the structure of themodel in its present form.

E-172k1?
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ll. CONSTITUTIVE EQUATION between a change in macroscopic strairt’agnd a stress

To simplify the following analysis of the model, we TeaSUCem.ent a, but by an "effective time interval”z
=Z(t,t') given by

choose appropriate units for energy and time; a convenient
choice is such thakg=I'y=1. From the definition of the t
glass transition temperature, this implies that the density of Z(t,t")= f,dt”exp[[y(t”)— Yt 122x}. 12
yield energies has the form(E)=exp{—E[1+f(E)]} with !
f(E)—0 for E—c°. For our numerical investigations below Qne reads off thaZ(t,t')=t—t'; the effective time interval
we use the simplegi(E) of this form, which is purely ex- is always greater than the actual time interval, and the
ponential: more so the larger the changes in stra{t”) from its value
at the earlier timé’. This implies a faster decay of the stress,

p(E)=exp—E). (7 and saZ(t,t") can be said to describe strain-induced yielding

(in other words, shear thinningln fact, a look at Eqs(9)

Analytical resglts, on the other. hqnd, hOI(.j for genereit) and(10) confirms thatall nonlinear effects within the model
unless otherwise stated. We eliminate a final parameter from

the model by settingg=1: this can always be achieved by a arise from this dependence of the effective time interval

rescaling of the stress and the strain variabley and | Z(L,t") on the macroscopic strain histop(t").
With this choice of units, it becomes clear that the SGR The CE(9) and (10) can be most easily understood by

viewing the yielding of elements as a birth-death process:

model isin fact rather parsimonious: apart from scale factor ach time an element yields, it “dies” and is “reborn” with
its predictions are determined by a single parameter, the ef-" . o
=0. In between such events, its local strain just follows the

fective n0|se.temperatur>e[41].. . . VBETK changes in global strain(t). If an element was last reborn at
Note that in our chogen units, typical yield straiizE/k . dtime t’, its local strain at timet is therefore|= y(t)
are of order one. Experimentally, SGMs generally have yield Y(t'). Since we sek=1, this is also its contribution to the
stresses of at most a few percesee, e.g.[_10,42343), the tfress. The first term on the rhs of E¢8) and (10) is the
necessary rescaling of our results for strain variables shoul ontribution of elements that have “survived” from time 0
be borne in mind when comparing to experimental data. FO{0 t: they do so with the “survival probability'Go(Z(t,0)).

example, a strain rate/=1 in our units corresponds t0 The second term collects the contribution from all elements
y=1,I¢ in dimensional units, with,=(x4/k)*? a typical  that have yielded at least once between time 0 grand
[“a priori,” i.e., sampled fromp(E)] yield strain. For a were last reborn at’. The number of such elements is pro-
specific material, the three scale paramexgrsk, andl’g of  portional to the rate of “rebirths” at’, i.e., the yielding rate
the SGR model could be estimated from measurements of B(t’), and the corresponding survival probability
yield strain, a shear modulus, and a viscosity, for example.G (z(t,t")). Note that there are two different survival prob-
The derivation of the exact constitutive equati@E) for  abilities here, given by, andG,, respectively. The differ-
the SGR model is given in Appendix A. For simplicity, we ence arises from the fact that these probabilities are in fact
impose the mild restriction that the initial state is completelyaverages over the distribution of yield energies, as expressed
unstrained, i.e.y(t=0)=0 and by Eq.(11). For elements that have survived fram=0, this
distribution isPy(E), while for elements that have yielded at
P(E,1,t=0)=Po(E)a(l). ®  least once, it ip(E).
: . The glassy features of the SGR model as discussed in Sec.
ﬁgtroiem(r?,l)rﬁgilttsrfg rt? Ia:ﬁ: tcr:lgstress at titethe strain Il A are reflected in the CE9) and(10), in particular in the
Yy y : asymptotic behavior of5,(z). For the simple exponential
_ form (7) of p(E), one easily finds thab ,(z) =x!z * asymp-
(D)= ¥(1)Go(2(1,0)) totically. As shown in Appendix B, thg same behavior holds
t for generalp(E), in the sense that
+f dt'T(t)[y()—n(t)]G,(Z(t,t") (9
0 imG,(z) z*" <=,

Z—

with the yielding ratel’(t) determined from (13
. imG,(z) 2" =0
1=Go(2(t,0))+f dt'T'(t")G,(Z(t,t")). (10 =
° for any arbitrarily smallke>0. We shall refer to this property
Here the functions by saying thatG,(z) decays asymptotically as * up to

“sub-power-law factors.” Unless otherwise specified, all
power laws referred to in the following hold for general
p(E), up to such sub-power-law factors.
Consider now the case where strain-induced yielding can
e be neglected, such thai(t,t')=t—t’. This is always true
G,(2)= f dE p(E)exp(—ze =) for sufficiently small strain amplitudes. Below the glass tran-
sition (x<1), the time integralfxdt'G,(t—t') of the re-
describe the purely noise induced decay of the stress. Thigponse functiorG ,(Z(t,t"))=G,(t—t") in Eq. (9) then di-
decay is, however, governed not simply by the time intervalverges in the limitt—o. Compatible with the intuitive

Go(z)=J dE Py(E)exp —ze EX), a
11
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notion of a glass phase, this means that the system has a very
long memory(of the kind that has been described as “weak 4 x=25 g
long term memory”[44,45) and is (weakly [12]) noner- G 107 r 7]
godic. This can lead to rather intricate aging behavior, which 5 i

we plan to explore in future work. For the purpose of the
present paper—with the exception of a brief discussion in s ;
Sec. IV B—we focus on situations where the system is er-

godic. These include the regime above the glass transition, - 1
x>1, and the case of steady shear flow for all noise tempera-

turesx (strain-induced yielding here restores ergodicity even g e e
for x<<1). In the former case, a choice needs to be made for 10% | 11 |
the initial distribution of yield energies. We consider the x=11 x=105
simplest case where this is the equilibrium distribution at the 10° , ) , ) ) )
givenx: 10* 10° 107 10" 10 10° 10° 10"
(0] w
Po(E)=Pef E)=T ¢ Xp(E/X)p(E). (14

FIG. 3. Linear moduliG’ (solid line) and G” (dashedl vs fre-

Correspondingly, we writeGy(z)=Geqz). The function guencye at various noise temperaturgs We only show the be-
G,(2) is then related to the derivative G((2) by havior in the low frequency regime=<1, where the predictions of
P the SGR model are expected to be physically relevant. The high

G,(2)=-T 1Géd(z) (15  frequency behaviofpredicted as’~const,G"~w 1) is not real-
P a istic because the model neglects local viscous eff@song oth-
with a proportionality constant given by the equilibrium €rs that can become important in this regime.
yielding rate
xexpE/X)p(E). Because of the exponential tail p{E), it
1 I has a power-law tailP.{7)~7* (for 7>1, up to sub-
Teq _J dE p(E)exp(E/x)= JO dz G(2). (16 power-law factors As x a(ecreases towards the glass transi-
tion, this long-time part of the spectrum becomes increas-
ingly dominant and causes anomalous low frequency
IV. LINEAR RESPONSE behavior of the moduli, as shown in Fig. 3:
A. Above the glass transition

The simplest characterization of the rheological behavior
of the SGR model is through its linear rheology. This de-
scribes the stress response to small shear strain perturbations
around the equilibrium state. As such, it is well defiried., o [w for 2<x,

2 for 3<x,
G'~

0¥t forl<x<3
(19

time independeita priori only above the glass transition, o1 forl<x<2.
x>1 (see, however, Sec. IV)B

To linear order in the applied straip(t), the effective  pq. v~ 3 the system is Maxwell-like at low frequencies,

.19 e . ; ! ) _
time mtervthZ(t,tf )=t—t I In the I_mgar rgglmﬁ, allhyleld whereas for 2 x< 3 there is an anomalous power law in the
events are therefore purely noise induced rather than strafl,ctic modulus. Most interesting is the regime: <2,

induced. Correspondingly, the vyielding rate as determine hereG’ and G” have constant ratio; both vary as!.

from Eq. (10) is simply I'(t)=I'¢;, as can be confirmed pgopayior jike this is observed in a number of soft materials
from Egs.(15) and(16). The expressiof) for the stress can  4_7 10. Moreover, the frequency exponent approaches zero
then be simplified to the familiar form asx—1, resulting in essentially constant values@f and
t G’, as reported in dense emulsions, foams, and onion phases
a(t):f dt’ y(t")Geft—t'). a7 [6—8]. Note, however, that the rati@”/G’ ~x—1 becomes
0 small as the glass transition is approached. This increasing

As expected for an equilibrium situation, the response isdomlnance of the elastic resporié prefigures the onset of

: L . : . X a yield stress fox<1 (discussed below It does not mean,
time-translation |nvar|an|i46], with Ggq(t) being the Ilner_:lr however, that the loss modul@” for fixed (smal) o al-
stress response to a unit step strainta0. The dynamic

modulus is obtained by Fourier transform ways decreases witky in fact, it firstincreasesstrongly asx
y ' is lowered and only starts decreasing close to the glass tran-
" i sition (whenx— 1~ |Inw| ™). The reason for this crossover is
. wT . .
G*(w)=iwj dt e"theq(t):<, > . (18  that the relaxation time({E)eq) =exp(E)eq/X) correspond-
0 iwr+1 ; ik iy —1)-1
eq ing to the mean equilibrium energy)eq~ (x—1) * even-

tually becomes greater than *.

This an average over Maxwell modes with relaxation times
7. For an element with yield enerdy, =expE/X) is just its
average lifetime, i.e., the average time between rearrange-
ments. The relaxation time spectrum therefore follows from The above linear results only apply above the glass tran-
the equilibrium distribution of energies, P.{E) sition (x>1), where there is a well defined equilibrium state

B. Glass phase
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FIG. 4. Linear moduliG’ (solid line) and G” (dashed vs fre- FIG. 5. Age dependence of the dynamic moduli. ShownGire

quencyw at x=0.9 with energy cutofE,,,,= 10 (thick lines and (solid line and G” (dashed vs frequencyw at x=1; lines of in-
Ema= 15 (thin lines. The loss modulus increases @4~ o* ' as  creasing thickness correspond to increasing age of the system:
the frequency decreases; at very low frequencies, there is a cross-10*, 10°, 10°, 10’. Frequencies are restricted to the range
over to Maxwellian behavior. =2m7x 10, corresponding to a measurementG®f(w,t) over at
least ten oscillation periods. Note the difference in horizontal and
around which small perturbations can be made. However, ifertical scales; botis’ andG” have a very “flat”  dependence.
a cutoff E 5 On the yield energies is introducédhich is
physically reasonable because yield strains cannot be arbi=0 from x— to a finite value ok. We solve Eq(10) for
trarily large), an equilibrium state also exists f&<1, i.e., the vyielding rate I'(t) numerically and then evaluate
below the glass transitioriStrictly speaking, with the cutoff G*(w,t) using Eq.(21). Figure 5 shows the results for a
imposed there is no longer a true glass phase; but if thguench to the glass transitior= 1). Not unexpectedly, the
energy cutoff is large enough, its qualitative features are exfrequency dependence of the moduli follows the same power
pected to be still presentOne then finds for the low fre- |aws as in the “equilibrium” glass discussed above; the am-
quency behavior of the linear moduli: plitude of these, however, depends on the “agelbf the
_ system. Forx<1, one finds G*(w,t)~(wt)*"* [47];
G’'~const, G'~w"%. (20 this time dependence is the same as for the yieldingltéite
[13], and is closely related to the aging of the susceptibility
in Bouchaud’s glass mod¢ll2]. The behavior of the loss
modulus at the glass transition is particularly noteworthy:
WhereasG"(w,t) does tend to zero fot—o, it does so

This applies as long as is still large compared to the cutoff
frequency,wmin=exp(—Ena/X). In this frequency regime,
G" therefore increases as decreases, again in qualitative

agreement with some recent experimental observafidrs . : o
10]. An example is shown in Fig. 4. extremely slowly(as 1/Irt), while at the same time exhibiting

T ” n 0
The above results relate to the “equilibriumfpseudp ~ &n @lmost perfectly “flat” "~ «" for small ) frequency

glass phase. The time to reach this equilibrium state is exdépendence. Where such andependence is observed ex-
pected to be of the order of the inverse of the smallest re|axpe|r|mentally it may well, therefore, glpt)rrgsponq to a rheologi-
ation rate,o—L=ex /X). For largeE...... this may be Cal measurement in an out-of-equilibrium aging regime. In
much Iargern]tlﬂan ez(ggﬁ)r(ne)ntal time%calrgasx, and the )rlmnequ?-rder to test this scenario directly, experiments designed to
librium behavior will then become relevant instead. We givemealsdutr)e a tpossﬂlalg ?ge ?epegdeﬂce of .the Itlnear E;O%u“
only a brief discussion here and refer to a future publicatioﬁ"{Ou € extremely interesting. such experiments wouid ob-

[47] for more details. From the CE) and (10), it can be viously have to be performed on systems whe_:re other
purces of aging(such as coalescence in emulsions and

deduced quite generally that the stress response to a smé i f solvent. at b luded:
oscillatory strainy(t)=vy Re expi{wt) switched on at=0 oams, évaporation ot solvent, gtcan be exc uded, suspen-
- sions of microgel beads, hard sphere colloids, or colloid-

'S polymer mixtures might therefore be good candidates.
o()=y REG*(w,)e"']

with a time-dependent dynamic modulus C. Frustration

As pointed out in Sec. Il B, the SGR model in its basic
form (3) assumes that after yielding, each element of a SGM
relaxes to a completely unstrained state, corresponding to a
local strain ofl =0. This is almost certainly an oversimplifi-
This modulus is physically measurable only fet signifi-  cation: Frustration arising from interaction of an element
cantly greater than unity, of course, corresponding to a meawith its neighbors will in general prevent it from relaxing
surement over at least a few periods. Here we consider theompletely to its new equilibrium state. This leads to a non-
case of an initial distribution of yield energieBy(E) zero local strainl directly after yielding. This effect can be
=p(E) (henceGy=G,), corresponding to a “quench” at built into the model by replacing the facté(l) in Eq. (3) by

t H !
G*(w,t)zl—f dt’e "t (t)G,(t—t). (2D
0
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FIG. 6. Effect of frustration. Shown a@’ (solid line) andG” .
(dashedl vs frequencyw at x=1.5; results for uniform frustration i

(in bold) are compared with the unfrustrated cagen lines. FIG. 7. Shear stress vs shear raté/, forx=0.25.0.5,.... 2.5

. L ) ) (top to bottom on lef x=1 and 2 are shown in bolf71]. The
a pr(_)bablllt_y d_lstr_lbut_lonq(l_,E) of the local strainl after inset shows the behavior on a linear scale, with yield stresses for
yielding; this distribution will in general also depend on the , 1 indicated by arrows.

new yield energyE of the element. We consider here the
case of “uniform frustration,” where the strainafter yield-
ing has equal probability of taking on any value between
—ly andly, with Iy=(2E)1’2 being the typical yield strain
associated with the new yield energy. Because valuds of
outside this interval would not make much serige ele- A. Steady shear flow
ment would yield again almost immediatglythis scenario
can be regarded as maximally frustrated. )
An exact CE for such a frustrated scenario can still be Steady shear flow (= const) is one of the simplest
derived, but it is rather more cumbersome than Egsand  probes of nonlinear rheological effects. For the SGR model,
(10) due to extra integrations over the strain variabl&he  the flow curve(shear stress as a function of shear)rata be
dynamic moduli, however, can still be worked out fairly eas-calculated either from the long-time limit of the QH) and
ily by considering a small perturbation around the steady(10), or directly from the steady state solution of the equation

model is, however, that it also allows nonlinear rheological
effects to be studied in detail. It is to these that we now turn.

1. Flow curves

state of(3) [with &(1) replaced byq(l;E)]. One finds of motion (3). Either way, one obtains for the shear stress
C* ()= ot 1?2 iwr w
O s e groere] B e,
* o(y)=——— (22)
where the relaxation times=exd(E—3l%/x] are now de- fo di G,(Z(h)

pendent on bottE and |, and the equilibrium distribution
over which the average is taken iB(E,l)xexd(E
—312)/x]p(E)q(I;E). For the uniform frustration case, where
q(l;E)=0(E—%1?)/(8E)*?, the dynamic moduli are com-
pared with the unfrustrated case in Fig. 6. The main effect of 1! 2

frustration is to add a contribution to the relaxation time Z(I)=.—J0dl’e' . (23
spectrum near~1; this arises from elements that have a Y

strainl~ =1, after yielding and therefore yield again with a ) o ) )
relaxation rate of order unity. Otherwise, however, the mainEquation(22) is just the local strain averaged over its steady
qualitative features of the unfrustrated model are preservedtate distribution, which is proportional ©B,(Z(1)) (for |

in particular, it can be shown that the low frequency power->0). The resulting stress can be easily evaluated numeri-
law behavior(19) remains unchanged. We expect that thecally to give the results in Fig. 7. For large shear rajes
same will be true for other rheological properties and there=1, the shear stress increases very slowly for ak [o

where

fore neglect frustration effects in the following. ~(xIny)¥2], corresponding to strong shear thinning. More
interesting(and more physically relevaf48]) is the smally
V. NONLINEAR RHEOLOGY behavior, where we find three regimes:

Arguably, thelinear rheological behavior described in the (i) For x>2, the system is Newtonianr =17y, for y

previous section follows inevitably from the existence of a_’o.' The wsposny can be denyed by notnjg that' in .th|s
power-law distribution of relaxation times. If we were only regime, the size of the Ioca! stralh_shat contribute signifi-
interested in the linear regime, it would be simpler just tocantly too is proportional toy. For y—0, this decreases to
postulate such a power law. The main attraction of the SGRero, and we can approximaigl) =1/, giving
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JO dt tG,(t)

o
gm—=—
Y f dt G,(t)
0

= l_‘eqf dE P(E)eZE/X: <eE/X>eq:<T>eq-

The viscosity is therefore simply the average of the relax- . . .
ation time r=expE/x) over the equilibrium distribution of 0 02 04 06
energies, P.{E)=T¢expE&X)p(E). From the form -
n(exp(ZE/x)), one sees that it diverges at=2, i.e., at
twice the glass transition temperature. The existence of sev-
eral characteristic temperatures in the SGR model is not sur-
prising; in fact, Bouchaud's original glass model already has
this property[13] (which has also been discussed in more
general contexts, see e.f49]).

(ii) The divergence of the viscosity for—2 signals the
onset of a new flow regime: fordx<2 one finds power-
law fluid rather than Newtonian behavior. The power-law
exponent can be derived as follows: The steady shear stre
(22) is the ratio of the integrals

08 1

FIG. 8. Yield stressr, as a function ok.

fwou I[Z(1H]*
e

oy=— . (25)
| “azan

The factory* [from the definition(23) of Z(1)] in the nu-
merator and denominator has canceled, making the result
independent ofy as required. Figure 8 shows the resulting
yield stress as a function of, it has a linear onset near the
glass transitiong,~1—x.

To summarize, the behavior of the SGR model in regimes
for n=1 andn=0. By techniques very similar to those used (i) and(iii) matches respectively the power-law flijiti-3]
in Appendix B, one derives that in the smal limit, 1, a_md Herschel-Bulkelej1,2] scenarios as usgd to fit the non-

el ] . . linear rheology of pastes, emulsions, slurries, etc. In regime

scales asy for x>n+1,'for lower x, there is an addi- (i), the power-law exponent is simply—1, x being the
tional contribution scaling ag* up to sub-power-law factors effective (noise temperature; in regiméii) and for expo-
(see Appendix € The dominant contribution to for small  nentialp(E), it is 1—x (see Appendix C for a discussion of
v in the regime X x<2 therefore scales as~y* !, again  the general caseNumerical data for the effective exponent
up to sub-power-law factors. The power-law fluid exponentyin(s—o,)/dIny in Fig. 9 are compatible with this, although
thus decreases linearly, from a value of oneXfer2 to zero  the exponent only approaches its limiting value very slowly

at th_e glass transitior=1. . . asy—0 for x near the boundaries of the power-law regime,
(iii) For x<1, the system shows a yield stress(y x=1 and 2.

—0)=0y,>0. This can again be understood from the scaling A natural question to ask is of course how the existence of
of I, andly: the dominant smaly contributions to both scale a yield stress in the glass phase affects the linear moduli, i.e.,
as y* for x<1, giving a finite ratiooy=11/14 in the limit the response to small strains. This is a highly nontrivial issue

%—0. For generalp(E) there are subtleties due to sub- due to the nonergodicity of the glass phase and the corre-
power-law corrections here, which are discussed in Appen-

()= f:dl "G, (Z(1))

dix C. Here we focus on the simplest ca3g of exponential ' '
p(E), where such corrections are absent. Using the scaling . ¢ I ]
. - M ﬁ
of I, andly, we can then write the shear stress for snyadls ~'§ 1 \
2 06 B [ ——
O(¥)+0(¥2) . [y R | —
o=—————=0,+0(y}7%). (24) ) et I e
o(yy+o(h - e
Do —— ]
Beyond yield, the stress therefore again increases as a power 0 : : : :
yone ¥ 1ox 2 : P ¢ 10° 100 100 10° 100 10"
law of the shear rateg — oy y~~*. For exponentiap(E), y y

the yield stress itself can be calculated explicitly: In order to

haveo,>0, the values of that contribute to the shear stress FIG. 9. Effective power-law exponedln(a—ay)/dln'yvs Y in

(22) must remain finite for'y—>0. But then for any fixed, the glass phasgeft, yield stressr,>0,x=0.1,0.2, ... , 0.9 from
Z(l)—<. We can therefore use the asymptotic foBy(z) top to bottom and in the power-law fluid regiméight, o, =0, x
=x!z"%in Eq. (22), giving =1.1,1.2,..., 1.9from bottom to top.
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sponding aging behavior. In particular, the answer will de-
pend to a significant degree on the strain history of the ma- 1.0 =
terial. We therefore leave this point for future, more detailed
study[47].

e
o

*

2. Flow interrupts aging

We saw above that there is a steady state regimaurigr
value of xin the presence of steady shear flow. On the other
hand, the discussion in Secs. Ill and IV B showed that in the
absence of flow, the system has no steady state in the glass
phase ¥<1) and instead exhibits aging behavior. The dif-
ference between the two cases can be seen more clearly by 0-0104 10'-3 '
considering the distribution of yield energi¢¥,E). Without
flow, one obtains a Boltzmann distributionP(E) ®
«p(E)expE/X) up to(for x<1) a “soft” cutoff that shifts to FIG. 10. Cox-Merz ratiow 7(y=w)/|G* ()| as a function of

higher and higher energies as th_e system "{geis T_his w for noise temperatures=1, 1.2, ..., 1.8, 2(bold), 2.5, 3(bot-
cutoff, and hence the most long-lived traps visit@chich ), 1o top.

have a lifetime comparable to the age of the systatami-

nate the aging behavi¢i2)]. In the presence of flow, on the 1), it fails rather dramatically: In this imit,G* (w)|=1

other hand, there is a finite steady state value for this cutoff, | " . "~ 00 Vi e predicts a shear rate independent

on(Y=o)1G (®)|
S o
N =Y

S
o

2

10

1

10

one finds A i .
shear stressr(y)=vyn(y)=1, whereas in facio(y) de-
P(E)xp(E)e¥* for E<x|n('y*1x1’2), (26) creases to zero foy—0.
P(E)OCp(E)E“Z for E>x|n('y’ 112 4. Dissipation under steady shear

) Finally, in conclusion of this section on steady shear flow,
(only the second regime exists fge=x?). The existence of we calculate the distribution of energies dissipated in yield
these two regimes can be explained as follows: Assume thevents. This distribution may provide a useful link to com-
yielding of an element is noise-induced. Its typical lifetime is puter simulations of steady shear flow of foams, for example,
then expE/x), during which it is strained byexpE/x). The ~ where it is often easy to monitor discontinuous drops in the
assumption of noise-induced yielding is self-consistent if thigotal energy of the system and determine their distribution

amount of strain does not significantly enhance the probabili23]. The correspondence is, however, not exact. Our mean-
ity of yielding, i.e., if [ yexpE/X)Y/x<1. This is the lowE field model treats all yield events as uncorrelated with each

regime in EqQ.(26), which gives a Boltzmann form for the other, in both time and space. In reality, such correlations

yield energy distribution as expected for noise-induced yielgWill of course exist. In fact, several events may occur simul-
ing. In the opposite regime, yielding is primarily strain in- taneously, at least within the time resolution of a simulation

duced, and the time for an element to yield is of the order of’" €xPeriment. The observed drop in total energy would then

Iy/'y=(2E)1’2/'y [rather than exg/x)]. Intuitively, we see ave to be decomposed into the contributions from the indi-

. : vidual events to allow a direct comparison with our model.
that flow prevents elements from getting stuck in progres-

. . This is only possible if the events are sufficiently localized
s_lv_ely _deeper traps and so truncates the aging process aﬂer(s%atiall;b to make such a decomposition meaningful. In
finite time. We can therefore say that “flow interrupts ag-

A foams and emulsions, there is evidence that this may indeed
ing” [14]. be the casé20,23,42,51-5p

We earlier derived the energy balance equati@nand
deduced from it that, within the model, each yield event

A popular way of rationalizing flow curves is by relating dissipates the elastic enerdyE =312 stored in the element
them to the linear rheology via the heuristic Cox-Merz rulejust prior to yielding. The probability of observing a yield
[50]. This rule equates the ‘“dynamic viscosityn* (w) event with energy dissipatioAE is therefore given by
=|G*(w)|/w with the steady shear viscosityy(y)

=o(y)/y when evaluated aty=w. The ratio wn(y
=w)/|G*(w)| is therefore equal to unity if the Cox-Merz
rule is obeyed perfectly. Using our previous results, we can

easily verify whether this is the case in the SGR model L . .
From Fig. 10, we see that in the Newtonian regixne2, the The steady state distributioR(E,l) of yield energies and

Cox-Merz rule is obeyed reasonably well for frequencies local strains for a given shear rajeand noise temperatuse
<1; for w—0, it holds exactly as expecteftecall that €N easily be deduced from E@®). After some algebra, the

()= (), while from Eq.(19), G* (w—0)=iw(7)]. In the result can be put into the simple form
power-law fluid regime ¥x<2, on the other hand, the Cox-

Merz rule is seen to be less reliable and is not obeyed exactly P(AE)dA E=— iG (1))l
even in the zero frequency limit. At the glass transition ( al —* '

3. Cox-Merz rule

1
P(AE)=FJ dE dI P(E,1)e [E-21DixsAE—112).
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10" : : : : for small shear rate8elowthe glass transition, the situation
is reversedP,=0(1), while PS=O('y1*X). Putting every-
thing together, one has the following:

(i) In the Newtonian regimext>2), dissipation is domi-
nated by small, noise-induced events, and is therefore of
O(¥%).

(i) In the power-law fluid range (&x<2), a vanishingly
small number of elements has large strains, but these domi-
nate the dissipationovy=P '|/AE, = O(y* 1)O(y) =
O(¥). As the glass transition is approached, the fraction of

10° large elements and hence the dissipation increases.
(iii ) In the yield stress regime, most elements have large
strains, giving a dissipation ratey = O(vy) that simply
FIG. 11. DistributionP(AE) of energiesAE dissipated in yield scales with the shear rate.
events under steady flow, for=1.5 andy=10"%, 1073, ..., 1 With the same approach, one can also analyze the total
(bottom to top aRE=1) yielding rateI'=P.J'+ P,I",. Small events always domi-

) ] ] nate, and’ therefore scales withy in the same way aB;.
Figure 11 shows the resultirig(AE) for exponentiab(E).  Thjs is true even in the non-Newtonian flow regimes (
Larger shear rateg are seen to lead to an increasing domi-<2), where the contribution of these elements to the total
nance of “large” yield eventgwhich dissipate a lot of en- dissipation rateis negligible.
ergy). This is intuitively reasonable: the larger the larger The distribution of total energy dropsE,,; due to rear-
the typical strains of elements when they yield. The functangements has been monitored in recent simulations of
tional dependence dP(AE) on AE is surprisingly simple. steady shear flow of two-dimensional foam, based on a
An initial power-law decayP(AE)~AE ™12 crosses over “soft-sphere model”[22,23. It was found to exhibit a
for AE~2 into a second power-law regim@(AE) power IaWP(AEtOg~AEg)t” with an exponent~0.7, with
~AE~17%2 This is cut off exponentially for values afE ~ @n exponential cutoff for large energy drops. More recent
around unity[56]. The exponential tail for very large dissi- Simulations using the same model suggest that, vkieg, is
pated energies i®(AE)~exp(~AE) independently ofx. ~ hormalized by the average elastic energy per foam bubble,
This asymptotic behavior is the same as for the prior densitfn€ form of P(AE,) is largely insensitive to variations in
of yield energiesp(E) ~exp(—E); measurements d?(AE) shear ratey. Decreasing the gas volume fractighmoves
for large AE could therefore yield valuable information on the (normalized cutoff to larger energies, suggesting a pos-

10°

-2

10
AE

2

10

6

10

p(E). sible divergence near the rigidity loss transitiongat0.64
These results foP(AE) also help one to understand the [57]. Simulations using a “;/grtex model,” on the other
small y scaling of the energy dissipation ratey=T(AE).  hand, gave P(AE)~AE, ~ with no system-size—

From the results of Sec. V A, we know that thisyi& in the ~ independent cutoff for larga E,, [21]. It is unclear how
these results can be reconciled; neither, however, is fully

. . * X .
Newtonian regimex>2, " in the power-law fluid range 1 compatible with the predictions of the SGR model for

<x<2, andvy in the yield stress regimg<1. (The limit  p(AE). At this point, we do not know whether this disagree-
v—0 is always understood here and in the followjnghe  ment is due to the difference betweArt (dissipation in a
form of P(AE) suggests decomposing the dissipation into itssingle yield eventandA E,; (total dissipation in a number of
contributions from “small” [AE=0(»%)] and ‘“large”  Simultaneous yield eventsor whether it points to a more
[AE: O(l)] dissipation events. Each of these two C|asseéundamental Shortcoming of the SGR model such as neglect

makes a contribution to-y that is the fraction of elements in ©f SPatial or temporal correlations.
the class, times the average yielding rate in the class, times
the average energy dissipated. Hence, in obvious notation, B. Shear startup

oy=PJ AE+P,T|AE,. If a shear flow is started up & 0, such thaty(t) = vyt for

t=0, theno('y) as given by the flow curve is the asymptotic,
One then easily confirms the following scalings. The averagsteady state value of the stress fer. We now consider

dissipated energieare obviously given bAE,=0(»?) and _th.e. transient behavias(t) for finite t. This depgnds on the
AE,;=0(1). The averageyielding ratefor the small, noise initial state of the system at=0; here we consider only the
induced events is independent of shear rdtg:O('yO)' case where this initial state is the equilibrium st at the

hile for the | h induced i . given value ofx. This restricts our discussion to the regime
while for the large, shear induced events itlis=0(y).  apove the glass transition>1, where such an equilibrium

Finally, for the fractions of small and large elements, one state existd58]. Solving the CE(9) and (10) numerically
finds thatabovethe glass transition, almost all elements have, o .an find the stress as a function of time or, alterna’—
small straind =O(y), corresponding td\E=0(»?); hence  tively, strainy. Figure 12 shows exemplary results. The ini-
Ps=0(1). Large strains, on the other hand, occur with atjal behavior under shear startup is found to be elastic in all
probability P,=O(y*~1) which becomes vanishingly small cases,c=ry. [This can in fact be deduced directly by ex-
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FIG. 12. Stressr vs strainy for shear startup at effective tem- ~ FIG. 13. Stress response to step strains of amplitueé, 2, 3,

peraturex=1.5. The shear ratg=0.001, 0.002, 0.005, 0.01, 0.02, &t noise temperature=1.5.

0.05, 0.1 increases from bottom to top. ) ) . .
Interestingly, thénstantaneousesponse is always elastic

panding Eq. (9) to first order int and noting that and notaffected by nonlinear effects(t=0")=y for all y.

Go(Z(t,0))=1+O(t) while the contribution from the inte- It IS €asily shown from the CE9) and (10) that this is a
gral is of O(t2).] Asymptotically, on the other hand, the general feature of the SGR model; whenever the macro-

: scopic strainy(t) changes discontinuousl , the stress
stress approaches the steady-stétav curve value o(y). zr(t)p changgé( t))y the gsame amount. WZ k23(;/0 note that the

However, the model predicts that it does not necessarily dg . . ; .
. ; ¥ . stress respong@7) cannot be factorized into time and strain
S0 in a monotonic way. Instead, the stress can “overshoot

dependence. However, for the particular case of exponential

within the model, this effect is most pronounced near the . .
glass transition X~1). Such overshoot effects have beenp(E) and long times expf/2qt>1, such a factorization

observed experimentally in, for example, foam flg&y. The does exist due to the asymptotic behavior@ly, Gez)

_71-x H X
tendency towards large overshoots %er 1 agrees with our thén hégh's follows fromG,,(z)~2z"" and Eq.(19).] One
results for the linear moduli and flow curves: As the glass
transition is approached, the behavior of the system becomes )~ vh( V)G (t h(v)=exd — 2(1—x"1)v2
predominantly elastic; the stress can therefore increase to o~ 7h(1Ced V), (v)=exd —z(1=x")¥"].
larger values in shear startup before the matéasala wholg

yields and starts to flow The productyh(y) tends to zero ay increases, correspond-

ing to a pronounced shear-thinning effect.
. By applying two(large step strains in sequence, one can
C. Large step strains further probe the nonlinear response of the SGR model. Let

As a further probe of the nonlinear rheological behaviory: and y, be the amplitudes of the two strains. If the first

predicted by the SGR model, we now consider laisiagle ~ strain is applied at=0 and the second one &t At, then

and double step strains. Again, we do not discuss aging¥(t)=7v10(t)+ y,0(t—At). It is straightforward to solve

effects here and therefore limit ourselves to the regime the CE(9) and(10) numerically fort>At. Figure 14 exem-

>1 with the equilibrium initial condition(14). plifies the results for the two cases where the strains are
The case of a single step strajny(t)=y®(t), with  either equal or of equal magnitude but opposite sign. In the

O(t)=1 for t>0 and zero otherwidds particularly simple. first case, and more generally whegy,>0, the second step

The integral ovett’ in the CE(9) is then identically zero, Strain speeds up the stress relaxatiby a factor exf{(y,

giving a stress response of +y2)2—y§]/2x} for small At). Therefore, even though the
, stress is increased momentarily when the second strain is
a(t)=yGo(Z(t,0))= yGeq € 12xty 27 applied, it can actually relax back to zero more quickly than

in the absence of this strain. In the second cagey4<0),
Comparing with the respong@?) in the linear regime, the the second step strain can to some degree reverse the
effect of nonlinearity is to speed up all relaxation processespeedup from the first step strain. A particularly simple form
by a factor expf?/2x). It is easy to see why this is the case. of the resulting stress response is obtained for — vy,
Because we are starting from an unstrained equilibrium con=y and smallAt:
figuration, each element initially hds-0 and a yielding rate , ,
exp(—E/X). Directly after the strain is applied, it therefore  g(t>At)=— y[1— Gy €”>At)]G, (€7 /?(t— Atl)).
has local strainl=1y; this increases its relaxation rate to
exd —(E—39/x], i.e., by the same factor exg{(2x) for all ~ This can be understood by noting that the stress foAt is
elements. Figure 13 illustrates this effect of strain nonlineardue entirely to elements that have yielded between the appli-
ity; note that the stress for large step strains can decay toation of the first and the second strain; all other elements
small values faster than for small strains, due to the strainhave simply followed the two changes of macroscopic strain
induced speedup of all relaxation processes. and are therefore back to their unstrained stat@® after the
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4 ‘ ‘ d(0F,y2) H[ DAL, y1+ o) — d(AL, y1) — d(At,y2)]. (29
(@) exact

Becauseg(0",y)=y within the SGR model, the term in

3+ o BRZ . square brackets is the deviation from the exact resulg,of
For y,=—1v,, the BKZ prediction for the stress jump is
o 5 exact because(t,y) = — ¢(t,— y); in this casgFig. 14b)],

it also works reasonably well for the subsequent stress relax-
ation. In the general case, however, it is unreliable; Fig.
14(a) shows that it can in fact even predict the wrong sign for
the stress jump.

Finally, we note that a failure of the BKZ equation has
also been observed in double step strain experiments on

0 0 2 4 6 polymeric liquids [60]. There, however, the most pro-
t nounced deviations occur for successive step strains of op-
posite sign rather than, as in the SGR model, for strains of
2 : the same sign. This can be understood on the basis of the

different kinds of nonlinearities in the two cases. Roughly
speaking, in the polymer case the BKZ equation fails be-
cause it neglects memory of the shape of the tube in which a
given polymer molecule reptat¢60,61]. Such memory ef-
fects are strongest fastrain reversal which can bring the
tube back to a conformation close to its original shape. In the
SGR model, on the other hand, the BKZ equation fails be-
cause it does not adequately represent the effects of the strain
history on the stress relaxation rates in the material. Such
effects are strongest when an applied strain compounds an
earlier speedup of relaxation processes, i.e., for double step
strains of thesame sign

(b)

exact

2! ‘

D. Large oscillatory strains
FIG. 14. Stress response to two large step strain@oéqual
(y1=v>=2) and(b) opposite ¢/;=— vy,=2) sign, applied at times
t=0 andt=At=0.1, 0.5, 1, 2, 5, respectively. Noise temperature ~ As a final example of nonlinear rheological behavior, we
x=1.5. consider the case of large oscillatory strains. We remind the
reader at this point that we have chosen units in which typi-
second strain. The factor in squared brackets just gives theal local yield strains are of order unitgee Sec. I). To

fraction of such elements. The time dependence of the enstransform to experimentally relevant quantities, all strain val-

ing stress relaxation is determined B, rather thanGeq ues have to be multiplied by a typical yield strainof the

because elements that have yielded were “reborn” withsgm under consideration. A straip=1 in our units there-

yield energies sampled from(E). These elements—which fgre corresponds to a real strain of generally at most a few

have “forgotten” about the first step strain—also receive apercent.

Speedup of their relaxation by the Second Strain. We Consider on|y the ergodic reg“'n@l, we a.ISO |g_
The above results can be compared to the predictions G{ore transient behavior caused by startup of the oscillatory

the empirical BKZ (Bernstein, Kearseley, Zapasquation  strain. In the steady state, we can write the stress response to
[59]. This relation approximates the stress response to agp oscillatory strainy(t)=y Ree'®! as

arbitrary strain history in terms of the responst) _
= ¢(t,y) to a step strain of size at timet=0: o(t)=y R4 G*(w,y)e'“'|+Ac(t), (30

1. Dynamic moduli

t d whereA o (t) contains the contributions from all higher har-

UBKZ(t):f dt' — d(t—t", V)| y=yt)— yit) - monics. This defines an amplitude dependent dynamic
e modulusG* (w, y); the relative root-mean-square size of the

stress contributions from higher harmonics is measured by

For two step strains, this gives, for At, the residuat, defined by

opkz(t)=d(t,y1+ v2) — d(t,v2) + d(t—At,y,). (28

In our case(t,y) is given by Eq.(27), and the BKZ pre-
diction is plotted in Fig. 14 along with the exact results. One 5
finds that for the SGR model, the BKZ equation is at best f dt (1)
approximate, at worst qualitatively wrong. This is most eas-

ily seen in the size of the stress jumptatAt; the BKZ  The determination of5* andr from the CE(9) and (10)
equation predicts presents no conceptual difficulties, but is somewhat non-

f dt [Ao?(t)]?
rf=———— (31
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FIG. 16. Strain sweep: Nonlinear mod@i', G” and residuat
as a function of strain amplitudg. Noise temperature=1.1; lines
of increasing thickness correspond ¢c=0.001, 0.01, 0.1. Recall
that y is rescaled by a typical local yield strair;=1 therefore
corresponds to a real strain of at most a few percent.

the glass transitiox=1; for higher noise temperatures, it
decreases and disappears altogether aroun@. This is
compatible with the following coarse estimate of the decay
of G” beyond the maximum: For sufficiently large strain
amplitudesy, the system is expected to flow essentially all

the time. If the shear raté changes sufficiently slowlyd
<1), the stress can be approximated as following “adiabati-

() cally” the instantaneous shear rate:(t)~a(y(t)) with

a(y) the steady shear flow curve. Fok<2 and suffi-
ciently small shear rategw, we know from Sec. V A that

FIG. 15. (a) Stress response(t) for oscillatory strain-y(t)
= ycost), for frequencyw=0.01 and effective temperature . .
=1.1. Initially, the response is almost perfectly elastic; as the straithis relationship is a power lawr(y)~»*~*. Henceo(t)
amplitude increase&urves are shown foy=0.1, 0.5, 1, 2, 3, ~ (ywsinwt)"1, which leads to ay dependence ofG”
the zero crossings af(t) move to the left, corresponding to pro- ~¥*~ 2. Forx—2, G” should therefore no longer decay for
gressively liquidlike behavioi(strain lagging behind stress(b) largey (as long as the conditiopw<<1 is obeyed in agree-
Parametric plots of stress(t) vs strainy(t), for same parameter ment with our observation that its maximum with respect to
values as inf@); y=1.5 is also shown. v disappears around this value af The estimateG”
~ 2~ *is roughly compatible with our numerical data, but a
precise verification of this power law is difficultiue to se-
vere numerical problems foy=20). Note that within the

of the stress response(t). Figure 1%a) shows how the re- same ap_pro>.<imati0|G’ would belestimated to be identical_ly
sponse becomes more and more nonsinusoidal as the strgf": Which is of course unphysical. Instead, we expect it to
amplitude is increased. The stress amplitude first increasé€Cay 0 zero faster thdd” asy increases, and this is indeed

linearly with y, then drops slightly as the system crosses//Nat our numerical data show.
over from elastic to liquidlike behavior, and finally rises
again slowly as the typical shear rage@ of the (now essen-
tially liguefied material increases. Plotting(t) ando(t) in The above results allow us to determine the size of the
a parametric stress-strain pldtig. 15b)], one finds a hys- linear regime for oscillatory rheological measurements, i.e.,
teresis loop for large amplitudes, with stress overshoots nedhe largest strain amplitudg, for which the measured values
the points where the strain rate reverses its sign. of G’ andG” represent the linear response of the system. An
Consider now the resulting nonlinear modus$. Figure  important first observation that can be made on the basis of
16 shows an example of a “strain sweep”: The modali Fig. 16 is that the size of the residualis not in general
andG” and the residual are plotted as a function of strain sufficient to determine whether one is in the linear regime or
amplitude for different frequencias. The amplitude depen- not. For example, for strain amplitude=1.5 atx=1.1 and
dence ofG” is particularly noteworthy: Asy increasesG” 0=0.1,r is only around 2.5% even though the valueGsf
first increases, but then passes through a maximum and suis-already twice as large as in the linear regime. &g vs
sequently decreases again. This is in qualitative agreemenft) plot in Fig. 15b) also demonstrates this: for=1.5, the
with recent measurements of nonlinear dynamic moduli ingcurve still looks almost perfectly elliptical, suggesting linear
for example, dense emulsions and colloidal glassesesponse, while its axis ratio is actually quite different from
[7,10,62,63 The maximum inG” is most pronounced near the one in the linear regime. Closer to the glass transition,

trivial numerically(see Appendix D for detailsThe solution
yields in fact not justG* andr, but the whole “wave form”

2. Size of linear regime
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FIG. 18. Size of linear regime, vs o for x=1.001, 1.5, 2,

FIG. 17. Frequency dependence(nbnlineaj dynamic moduli
d y daep ( ydy ..., b(bottom to top on left Close to the glass transition, devia-

G'(w,y) (solid lineg andG"(w,y) (dashedil measured at constant ; i ity i h i&" which therefore d )
finite strain amplitudey. Noise temperatur@=1.001; increasing tions from linearity first show up I, which therefore determines

values of y=0, 1, 2, 3 correspond to increasing line thickness. Y¢ (dQShed ”nﬁ_ fo_r largerx, the linear r_egime is Iimited _by devi_a—
Recall thaty is rescaled by a typical local yield straip=1 there- tions inG’ (solid _Ilnes. Recz_ill thaty? ,'Ilke all strain variables, is
fore corresponds to a real strain of at most a few percent. The |0§éescaled by a typical local yield straig;=1 therefore corresponds
modulusG” increases strongly withy, whereasG’ varies much 10 a real strain of at most a few percent.

less(the curves fory=0 andy=1 cannot even be distinguished on ) . . )
the scale of the plot though its absolute value increagefor yet higher noise

temperatures, one finds a crossover toya w ! depen-
this effect becomes even more pronounced. It suggesigence. The latter corresponds to the “naive” criterion that
strongly that whenever the dynamic moduli of SGMs arethe typical shear rateew needs to be smaller than typical
measured, an explicit strain sweep is needed to determinelaxation rategof order unity away from the glass transi-
whether measurements are actually taken in the linear reion) in order for the imposed strain not to create nonlinear
gime. effects. The predicted independence of. near the glass

If concerns about nonlinear effects are disregarded, atransition should be easy to verify experimentally.

experimentally convenient procedure is to measure the dy-
namic moduli at fixed strain amplitudge (while varying the
frequency w). Some numerical results for this case are

shown in Fig. 17. Again, the most interesting behavior oc-  As has been demonstrated above, the SGR model captures
curs near the glass transition. There, we observe that onlynportant rheological features that have been observed in a
relatiVEly minor differences in the amplitude of the imposed|arge number of experimentS, at least in the region around
strain can lead to large changes in the measured valug$ of the “glass transition” of the model. Using a mean-fiétthe
(whereasG’ is affected less strongly This emphasizes element picture, it is also simple enough to be generic.
again that extreme caution needs to be taken in experimenffowever, a significant challenge that remains is the interpre-
designed to determine the dynamic moduli of soft glassyation of the model parameters, namely, the “effective noise
materials; in particular, it needs to be borne in mind that theemperature”x and the “attempt frequencyT,. To tackle
loss modulus can easily be overestimated due to undetect@ﬁese questionsi we should really start from a more compre-
nonlinear effects. hensive model for the coupled nonlinear dynamics of the
Finally, the actual size of the linear regime itself is also of“glements” of a SGM and then derive the SGR model
interest. We choose as a Working definition of the ”nearwithin some approxima’[ion scheme. At present, we do not

regime the strain amplitudg, at which eitheiG’ or G” first  know how to do this, and the following discussion will there-
deviate by 10% from their values in the I|rmt—>0 (This fore have to remain rather Specu|ative_

implies similar maximum relative deviations f¢&*| and
the loss tangent tai+ G"/G’.) Figure 18 showsy.(w) for
several noise temperatures Several general trends can
clearly be read off. First, in the low frequency regime, the We can interpret the activation factor éxgE— 3kI?)/x]

size of the linear regime decreases as the glass transition iis the equation of motiofi3) of the SGR model as the prob-
approached. This is intuitively reasonable as one expectsbility that (within a time interval of order 17;) a given
nonlinearities to become stronger near the glass transitioelement yields due to a “kick” from a rearrangemepield
[64]. Note, however, thay, does not decrease to zero at theeven) elsewhere in the material. Therefoxels the typical
glass transition; it tends to a finite value of order unity, activation energy available from such kicks. But while kicks
which by our choice of units corresponds to the typi@l can causerearrangements, they alsmise from rearrange-
priori) yield stress of local elements. The frequency depenments(whose effects, due to interactions, propagate through
dence ofy.(w) also changes as one moves away from thehe material. So there is no separate energy scale for kicks:
glass transition: Initially(for x~1), v, is essentially inde- Their energy must of the order of the energies released in
pendent ofw and does remain so until around=3 (al- rearrangements, i.e., of the order of typical yield energies

VI. INTERPRETATION OF MODEL PARAMETERS

A. Effective noise temperaturex
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In our units, this means thatshould be of order unity. Note an element accumulates kicks before attempting a rearrange-
that this is far bigger than what we would estimate ifep-  ment. The number of kicks accumulated is then proportional
resented true thermal activation. For example, the activatioto I'/I’y. If individual kicks are thought of as independent
barrier for the simplest local rearrangement in a foaifl ~ Gaussian perturbations, and we identéywith the mean-

or neighbor-switching processs of the order of the surface squared size of the “cumulative” kick, thex=AI'/I'y. The
energy of a single droplet; this sets our basic scale foproportionality constanfA would depend, for example, on
the yield energie€. Using typical values for the surface Now kicks propagate through the system. FéF=1, each
tension and a droplet radius of the order ofuth or greater, €lement yields oncéon averagewithin a time intervall’, *;

we find E=10°kgT. In our unitsE=0(1), sothermal acti- A can therefore be viewed as the average number of kicks
vation would correspond to extremely small values of¢@used by arearrangement. We leave the analysis of such an
x=kgT=10"%. approach for future work; preliminary investigations suggest

We now argue that may not only be of order one, but in the emergence of interesting features such as bistable solu-

fact close to one generically. Consider first a steady shedions for the flow curver(y).
experiment. The rheological properties of a sample freshly
loaded into a rheometer are usually not reproducible; they B. Attempt frequency I'o

become so only after a period of shearing to eliminate Consider now the attempt frequendy,. It is the only
memory of the loading procedure. In the process of loadingource of a characteristic time scale in our madebsen as
one expects a large degree of disorder to be introduced, cothe time unit above This excludes a naive proposal for the
responding to a high noise temperatuge 1. As the sample origin of I'y: The attempt frequency cannot be deriviéa
approaches the steady state, the flow Wil many cases some self-consistent wajrom the yielding ratd”, because
tend to eliminate much of this disordg85] so thatx will  the model would then no longer contain an intrinsic time
decrease. But, as this occurs, the noise-activated processsisale. This would imply that all dependencies on frequency
will slow down; asx—1, they may become negligible. As- or time are trivial, leading to unphysical resufthe flow

suming that, in their absence, the disorder cannot be reduc%rves(f('y) would simply be a constant, as would be the
further,x is then “pinned” at a steady-state value at or close|jegr moduliG’ () andG"(w)].

to the glass transition. This scenario, although extremely \ye have so far approximatell, by a constant value

speculative, is strongly reminiscent of the “marginal dynam-. : oL .
ics” seen in some mean-field spin glass models. In thel:n:uespeednger:gi %szﬁgggr rgﬁéh'igglﬁﬁs t?haeﬂ;o ils %Ott
sphericalp-spin glass, for example, one finds that after Barises in):‘act fromtrue tht}alémal Fr)ocesses?/ , i.e ’rearra% e-
quench fromT = to any temperature &T<T, below the P processes, 1.e., r 9

. o . ments of very “fragile” elements with yield energies of or-
(dynamica) glass transition temperatuik,, the system is

dynamically arrested in regions of phase space characteristgcer KgT. To a first approximation, such processes could be

of T, itself, rather than the true temperatiFe44,45. %ccounted for by extending the basic equation of mo(®)n
There remain several ambiguities within this picture, for
example, whether the steady state valu should depend 9 9 X
on ; if it does so strongly, our results for steady flow curves 5 P(E,l,)=—y - P—Ty, e (712K TkeT p
' ! at ol
will of course be changed. If a steady flow is stopped and a
linear viscoelastic measurement performed, the results -T, e~ [E—(1/2kI%)/x P+T(t)p(E)&(l).
should presumably pertain to tikecharacterizing the preced-
ing steady flom(assuming thax reflects structure onjy But (32)
unless the strain amplitude is extremely small thealue
obtained in the steady state could be affected by the oscilladerely, is an attempt rate for true thermal processes, which
tory flow itself. This might allow “flat” moduli G* (w) (X should be a local diffusion rate. In emulsions wijtim drop-
~1) to be found alongside a nonzero yield stress withlets, typical rates for such diffusive modes could be of the
power-law flow exponent around 1/2+1/2) [7,43,64. order of 1-100 HZ11]. The term on the rhs of Eq32)
Experimentally, the above ideas concerning the time evoproportional tol'y, corresponds to yield events caused di-
lution of x in steady flows could be tested in systems that camectly by thermal fluctuations. Due to the presence of inter-
be prepared in both low- and high-disorder states, such agctions between the different elements of the material, the
onion phase$67]: Strain induced ordering starting from an effects of such yield events can propagate through the system
initial x well below or abovex,=1 should drive the system and cause other rearrangements. These are described by the
towards x=0 or x~1, respectively, leading to different term proportional td’y. The “attempt frequency’T'y is now
rheological characteristics. no longer an independent parameter; instead, it is propor-
Theoretically, the minimal extension to the SGR modeltional to the average rate of thermal rearrangements,
that would be needed to substantiate the above scenario
would be to allowx to evolve in time. We do not know at
present how to deduce the correct form of this evolution in a
principled way from some underlying microscopic dynamics.
However, one possibility is to coupbe to the number of The “propagation factor”’A again represents the number of
rearrangements in the material, i.e., the yielding fatén-  kicks caused by a thermally induced yield event. It has a
deed, suppose we vielﬂla1 as a memory time during which crucial effect on the behavior of the modified mod&2), as

_IE— 2
[o=A(Ty, e [E-(W2KkeT)
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can be seen by considering the equilibrium distribution in thenaterials such as foams, emulsions, pastes, slurries, etc. The
absence of macroscopic strdig(t) =0]. One hasP.(E,l) model focuses on the shared features of such soft glassy
=P E) (1) with materials(SGM9, namely, structural disorder and metasta-
bility. These are built into a generic description of the dy-
namics of mesoscopic elements, with interactions repre-
sented by a mean-field noise temperataréll rheological
properties can be derived from an exact constitutive equa-
When Iy is of the order of I'y, or larger, P.{E) tion.

PedE)= p(E).

rthe7 E/kBT+ F097 E/x

«expE/X)p(E) as in the original versiori3) of the model. In the linear response regime, we found that both the stor-
From this, the value oF 3 can be calculated; for the assump- age modulusG’ and the loss modulu§&” vary with fre-
tion I'y=T"y, to be self-consistent, one then requires quency asw* ! for 1<x<2. Near the glass transition, they
become flat, in agreement with experimental observations on
a number of materials. In the glass phase, the moduli are
Iy de p(E)exp—E/keT) predicted toage this could prO\?ide ar? interesting experi-
r_m_A =1 (33 mental check of the model.
f dE p(E)exp(E/x) Far above the glass transition, the steady shear behavior is

Newtonian at small shear rates. Closer to the transition (1
(here we have neglected a teftx in the exponent of the <x<2), we found power-law fluid behavior; in the glass
numerator becaudesT<x). This condition can be given an phase, there is an additional nonzero yield stiet=rschel-
intuitive interpretation:A must be large enough for each Bulkley mode). The last two regimes therefore capture im-
thermal yield event to produce at least one new element thgeortant features of experimental data. Above the glass tran-
can yield thermally(i.e., whose yield energ§ is of order ~ sition, the validity of the Cox-Merz rule relating the
kgT), thus maintaining the population of such fragile ele-frequency dependence of the linear moduli to the shear vis-
ments. For smallerA, one finds instead thal /Ty,  CcOsity can be checked; it breaks down in the power-law fluid
~exp(—ElkgT), which for typical barrier energiesE ~ region and fails spectacularly at the glass transition. In this
=0(1) (in our unitg is unfeasibly slow. The above mecha- '€9iMe, stress overshoots in shear startup are strongest. We
nism can therefore give a plausible rheological time scald@ve also calculated the distribution of energies dissipated in
only if the average numbek of rearrangements triggered by ocal yield events. At variance with existing simulation data
one local, thermally induced rearrangement is large enougff" foams, this exhibits a shear-rate dependent crossover be-
to sustain the population of fragile elements, as determine%"/een two power-law regimes; this discrepancy remains to

; ; Ived
by Eg. (33). The values ofA actually required for this are € reso : . .
sensitive to the smalE behavior ofp(E). Assuming, for We further probed the nonlinear behavior of the model by

example,p(E)«EY~ exp(~E), one has the condition con&dermg large amplitude smgle and double step strains.
The nonlinear response cannot in general be factorized into

A=[kgT(1—x"1H]7V. strain and time dependent terms, and is not well represented
by the BKZ equation. Finally, we considered measurements
Fory=1, wherep(E) stays finite forE— 0, this requires at of G’ andG” in oscillatory strain of finite amplitude. Near
leastA=10". Such large values appear implausible unless dhe glass transitiorG” exhibits a maximum ag is increased
single yield event could trigger a whole “avalanche” of oth- (strain sweep reproducing qualitative features of recent
ers; in foams, it has been argued that this might be the cageeasurements on emulsions and colloidal glasses. The con-
[21]. On the other hand, significantly smaller values/of tribution of higher harmonics to the stress response is not
would be sufficient ifp(E) shows a significant bias towards always sufficient to determine whether the response is non-
small yield energieg (0~y<1). The above “thermal trig- linear, emphasizing the need for explicit strain sweeps to get
ger” scenario would then be more generically plausible. Toreliable data in the linear regime. Otherwise, measurements
draw more definite conclusions on this point, it would beat constant strain amplitude can lead to strongly enhanced
useful to measurg(E) in, for example, a computer simula- values of the loss modulu§”. Finally, we considered the
tion of a model SGM. size of the linear regime itself, i.e., the largest strain ampli-
There are a number of other possible explanations for théude y. at which the measured values & and G” still
origin of I'y. These include, for example, noise sources intepresent the linear response of the system. The SGR model
ternal to the material, such as coarsening in a foam, or unpredicts thaty. should be roughly frequency independent
controlled external noise. Finally, the rheometer itself couldnear the glass transition; this point should also be amenable
also be a potential source of noise; this would, howeverfo experimental verification.

suggest at least a weak dependencEpbn the shear rate. In the fina}l section, we speculated on the physical origin
We cannot at present say which of these possibilities is mo&f the most important parameters of the model, namely, the
likely, nor rule out other candidates. The origin B§ may  effective temperatura and the attempt frequency for rear-

not even be universal, but could be system specific. rangementd’,. We argued thak should be generically of
order unity (in our unit9. This is because it represents the

typical energy released in a rearrangement, which is of the

same order as the activation energy required to cause a rear-
We have solved exactly the SGRoft glassy rheology rangement elsewhere in the material. A speculative analogy

model of Ref.[17] for the low frequency shear rheology of to marginal dynamics in other glassy systems suggestxthat

VIl. CONCLUSION
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may in fact be close to unity in general. This is encouraging=Py(E) X1)=Py(E)Al). The stress can be calculated by
because the SGR model reproduces the qualitative featuresultiplying (A1) by Al and integrating oveE and Al:
of experimental data best for=1, i.e., near the glass tran-

sition. We mentioned several hypotheses for the origin of the a(t)=y()+(ADpw
attempt frequencyl’y, which include events triggered by X
thermal fluctuations or internal and external noise sources zy(t)_fodtfr(tf)y(tf)f dE p(E)

not explicitly contained within the model.

In future work, we plan to explore in more detail the
strongly history-dependent behavior of the model in the glass
phase. Its simplicity should allow this to be done in detail,

g;tet:]eebyqu:ﬂ;dlrré?a::;;gist Luellﬂ:liee?]r?'?ﬁl jﬁg{r:gob[;g?adebe gotten from the condition of conservation of probability:
9 : ip 29ing "_....The integral of Eq(Al) over E and Al has to be equal to

Apart from this, the main challenge is to incorporate spatial’ .
A : ; unity, hence,

structure and explicit interactions between elements into the

model. This should help us understand better the mutual dy-

namical evolution of the attempt rate, the effective noise 1=f dE Py(E)exd —e F*z(1,0;0)]

temperature and the structural disorder. In the end, one

would hope to derive a model similar to the present one from t

such a more microscopic description within some well- +J'Odt'r(t')f dE p(E)

defined approximation scheme.

xexg —e Xzt t"; — y(t'))]. (A2)

Here the yielding ratd’(t) is still undetermined, but it can

xexd —e ®z(t,t’;— y(t')]. (A3)
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edged. are used. This yields directly EGLO) for the yielding rate

I'(t), while for the stress one obtains
APPENDIX A: DERIVATION

OF CONSTITUTIVE EQUATION t
| | o=~ [ aT(E)y1)6,@t). B
The equation of motion3) of the SGR model can be 0

solved by making the time dependent change of varidble
—Al=1—y(t). This eliminates they (convectivg term,
converting the equation of motion from a PDE to an ODE.
Suppressing th& andAl dependence dP, the result reads

This can be expressed in the more suggestive f@)rby
writing the first term on the rhs ag(t) times the rhs of Eq.
(10).

d 1 1 APPENDIX B: ASYMPTOTIC BEHAVIOR OF G,(2)
—P()=—exp — —[E—3(Al+y(1)*]{ P(D)
at X In this appendix, we derive the asymptotic behavibs)

+T()p(E)S(Al + y(1)). of G,(2). As explained in Sec. lll, our choice of unitg
=1 implies p(E) =exp{—E[1+f(E)]} with f(E)—0 for E
This can be integrated to give —o. Hence for anyé>0, there existsM>0 such that
|f(E)| < 6 for Ex>M. Our strategy will be to split the defin-
P(t)=P(0)exd —e™ ¥*z(t,0;Al)] ing integral(11) for G (z) into two parts, for energies above
¢ and below the thresholt¥ and to bound these separately.
+ jodt’F(t’)p(E)é(Al + (1)) Writing
M
xexg —e *z(t,t":Al)] (A1) Gp(z)zf0 dE p(E)exp(—ze F/¥)

with the auxiliary function "
. +f dE p(E)exp —ze F¥)
z(t,t’;AI)zﬁdt”exp[[Al+y(t”)]2/2x}. M

t the first term on the rhs is trivially bounded by zero from

To simplify matters, we now assume that the inititd=Q) below and by exjp-zexp(—M/x)] from above. The second
state is completely unstrained, i.ey(0)=0 and P(0) term, on the other hand, is bracketed by
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w e o e the relevant integration range, so that the bou@® on G,
J'M dE e "~ “Fexp(—ze ™) can be used. Writing (1) out explicitly, this gives lower and
upper bounds fot, of
—M/x
=XZ_X(1i‘S)fze d (1=6)~1g-y B1 . - | —x*e
0 yy (81 VXIEJ dl I”(Jd)f eyz’zx) .
Z9Y 0

(the plus and minus sign giving the lower and upper bound, o )
respectively. Now consider the behavior @ ,(z)z**< for Forx<n+1 (ande sufficiently smal), the outer integral has

some arbitrary smale>0. Choosed= €/(2x) and a corre- ~ a finite limit for y—0, and sol ; scales asy* up to sub-

spondingM; then from Eq.(B1) power-law factors. For larger values xfon the other hand,
this integral diverges ag"*1 **¢ |~ then scales as"*?!
—M/x . .
Gp(z)zx+f>xzf’2fze dy yr 21y, (since bc<>th the lower and upper bound,dce., in the same
0 way asl,, .

As discussed in Sec. V A, the above scaling properties of
The integral has a finite limit for—< (it is just a Gamma and |, prove that the flow curve is a power law
function), and so this lower bound tends to infinity in this —3x-1 (yp to sub-power-law factorsn the regime kx
limit, proving the first part of Eq(13). The second partis <2 |n the glass phasex1), the simplest case is that of
demonstrated in a similar fashion: with the same choicé of exponential p(E) [Eq. (7)]. The asymptotic behavior of

for a givene, and again usingB1), G,(2)~z *then translates directly intig; ~ y* without sub-
power-law corrections, and this gives the Herschel-Bulkley
form (24) of the flow curve. The yield stre485) is given by

the limit of 17/1; for y—0, while the power-law onset of
the additional stress arises from the small corrections due to
5

Again, the integral has a finite limitassuminge is suffi- For generalp(E), on the other hand, the sub-power-law
ciently small, i.e.,e<2x), and both terms on the rhs there- factors inl () cause a corresponding wegkdependence

fore tend to zero foz— <o, completing the proof of Eq13).  of (), which dominates the effect of the small correction

terms | (y). The flow curve therefore no longer has the
APPENDIX C: FLOW CURVES AND YIELD STRESS simple Herschel-Bulkley form(24). However, in the ex-
V\ftmples that we tested numerically(E)~E"exp(—E) for
n=1, 2, 3|, we found that this form still provides a good fit

to o(y) over several decades of shear rateBoth the ex-
ponent and yield stress of such a fit are then only effective

w quantities and depend on the rangeyofonsidered; they are
In(y)= f dri"G,z()). (C1  therefore no longer directly related xo In the examples that
0 we studied, we always found values of the effective exponent
] significantly below unity.
The scaling of , with y can be obtained from the asymptotic  The slow sub-power-law variation af(y) for general
behavior ofG,(z). From (13), it follows that for anye>0,  ,(E) means that there is, for practical purposes, always an
we can choose 2, such that effective yield streséwhose actual value depends weakly on

the lowest accessible shear rate Nevertheless, one may

wonder what the “true” yield stress,=o(y—0) would
be. The above line of argument does not answer this ques-
tion; it does not even exclude the possibility of being
zero. We have examined this issue for several different sub-
L power-law corrections to the asymptotic behavior @f,

Ip=1"+17, |rf:f o7y I"G,(Z(1)). such asG,(z)Z*~(In2)™, or ~exd(In2)"] with [n|<1. The

0 yield stress is always nonzero, and in fact turns out to be the
) ) o ) same as for exponentiallE). We suspect that this may be

ReplacingG,(Z(1)) by its minimum and maximum over the trye in general, but have not found a proof.
integration rangel is trivially bounded by

<
I n

G,(2)2*" ¢ < 2 exp( —ze M)

26~ M/x
_’_Xzfe/ZJ’O dy )/)(76/27187)/.

Here we derive the small shear rate behavior of the flo
curves o(y). As shown in Sec. VA, the stress(y)
=1,(y)/14(7) can be expressed in terms of the functions

27X <G, (z)<z *"¢ for z>2z,. (C2

Now we usez, to decompose thkeintegral in Eq.(C1) into
the parts with s z,y:

1 APPENDIX D: NUMERICAL DETERMINATION

. n—+ *

G,(2(207)) < ———15 < AL OF G*(@,7)
(207) In this appendix, we outline the numerical scheme that we

: _ used to obtain the nonlinear dynamic modu&s(w,y) and

As y—0, the Ihs tends t&,(zp), so we have the scaling the residuat defined in Eqs(30) and(31), respectively. As

In<=O('y“+1). To boundl; , we use thaZ(l)>1/y>z, in explained in Sec. V D, we are interested in the steady state
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stress response in the ergodic regimel. We can then
safely send the initial time te- e in the CE(9) and(10). The
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However, even the solution of EGD3) is still nontrivial,
especially in the low frequency regime>1 that we are

equatlons that need to be solved can be Slmpllfled further bkhost interested in. This is becaLHe‘ inherits” from G an

using the fact that in the steady state, the yielding F4tg
must have the same periodicity as the applied stgit).
Denoting the oscillation period b= 27/ w, the task is then
to solve

t
=j dt'T(t")H(t,t") (D1)
t—-T
for I'(t) and then to evaluate the stress from
t
a(t)=y(t)—ftdet’y(t’)F(t’)H(t,t’). (D2)

Here the periodicity of the problem has been absorbed into

the definition of
H(t,t)= 2 G,(Z(tt'—nT))
n=0

= Z SZ(E)+NnZ(t +T,t)),

initial “fast” decay ast—t’ increases from zero, foIIowed
by a much slower power-law decé&yhich in turn gives way

to a rapid final decay as soon as strain-induced yielding be-
comes important This separation oO(1) andO(T) time
scales rules out traditional solution methods such as Cheby-
shev approximation. Instead, we solve EQ3) by Fourier
transform: Writing

Eq. (D3) is transformed into the matrix equation

o]

2 ﬁnmfm: 5n,0

m=—oo

(D4)

with coefficients
~ dt
Hinn= Jo T©

Once Eq.(D4) is solved and the rescaling from to T is
carried out, the stress is obtained as

—i(n— m)th dre” Im(uTH(t t—T)

where the second equality follows again from the periodicity

of the strainy(t)= ycoswt. The numerical solution of the
integral equatio(D1) is simplified by subtracting from the

kernelH(t,t") a part that depends dn only:

B e 071 07,
r= ry __ !+ !=
A =L —HE T = { ———7— K

where we have abbreviate® =exp(-E/x), Z,=2Z(t,t"),

Z,=Z(t'+T,t"). The modified kerneH(t,t’) has the con-
venient propertie§(t’',t')=1, H(t'+T,t')=0 and is also
simpler to evaluate numerically that(t,t’). The yielding
rate can easily be calculated frdthinstead ofH: Defining a
modified yielding ratel:(t) as the solution of

=ft dt'T ()ALt (D3)
=T

the actual yielding rate is recovered by dividing by the con-

stant factor

T ~
1+f dt'T(t)H(' +T,t").
0

t) — 2 O_neinwt1
n

1 1 ~ o
O'nzz (5n,71+ 5n,l)_§ % Fm(Hn,m+1+ Hn'mil)'

Its Fourier components determine the nonlinear dynamic
modulus and squared residual as

2
CHo=20y =1 T
] 1 ) .

2 |0'2k+1|2
k=0

The result forr? has been simplified using the fact that
o_,=oy [becauser(t) is real and thato,=0 for evenn
[becauses(t)— — o(t) for y— — v, which corresponds to
t—t+T/2].

To solve the main equatiofD4), we truncate the matrix
equation at successively higher orders until the calculated
values ofG'(w,y), G"(w, y), andr are stable to within 1%.
The Fourier componentsl,,, are calculated from a spline

interpolant approximation tél(t,t’) in order to save expen-
sive function evaluations.
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