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Density fluctuations in many-body systems
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The characterization of density fluctuations in systems of interacting particles is of fundamental importance
in the physical sciences. We present a formalism for studying local density fluctuations in two special subvol-
umes(centered around either a reference particle or some arbitrary point in the systemdparticle and
void regions, respectively. We present formal expressions for the probability, as well as the moments, associ-
ated with finding exactiy particles inside of either of these subvolumes. Furthermore, we derive the relation-
ship between the probability functions and closely related quantities of interest, such a#hthearest-
neighbor distribution functions and threparticle conditional pair distribution functions associated with each
region. We solve for these quantities exactly in the one-dimensional hard-rod system. The methods developed
for studying the hard-rod fluid are applicable for studying a wide class of one-dimensional systems.
[S1063-651X98)06012-7

PACS numbgs): 61.20.Gy

[. INTRODUCTION system’savailable spacg It is closely related to the first
(n=1) nearest-neighbor distribution function\fr;1),
Spontaneous fluctuations give rise to rich and complex
behavior in many-body systems. Of particular interest are the
local fluctuations that occur within a given subset of a sys-
tem’s total volume. For instance, it is instructive to ask the
following question: What is the probability of findirexactly ~ which is the probability density associated with finding the
n particle centers within a spherical region,(r) of radiusr, nearest particle a radial distanceway from a given point
centered at an arbitrary point in the system? The answer t]. It follows that the nearest-neighbor distribution function
this question is given by the-particlevoid probability func-  is equivalent to the area of the surface bounding the available
tion Ey(r;n), a quantity that contains a wealth of thermody- space, normalized by the total volume.
namic and structural information about the sysfdm5]. A Reiss, Frisch, and Lebowif6] derived an exact analyti-
connection can be made with equilibrium thermodynamicsal series representation fag(r;0) in terms of the so-called
through the second central moment, or variance, of this-particle probability density functiongq,p5, ....,0, in
distribution, provided that the subvolume is allowed to pasgheir studies of the scaled-particle theory of liquids. Further-
to the thermodynamic limit[{n)—oo,r—o0,(n)/Qy(r) more, both formal series representatipfisand approxima-
—finite]. That is, the fluctuations in particle number are re-tions[8,7,9] for D-dimensional hard-sphere fluids have been

JEy(r;0)

Hy(r;1)=- p

1.3

lated to the isothermal compressibilikyt via obtained for the lowest-order versions of these functions,
namely,Ey(r;0) andHy(r;1). Themost recent approxima-
(n2>—<n)2 tions [9] are accurate even for thaetastableextension of
T:PkTKTa (1.1 the fluid branch, which is conjectured to end irandom

close-packedtate.
. o , In the case of the generatparticle probability function
wherep is the bulk number densit is Boltzmann's con- Ey(r;n), a formal series representation has been obtained

stalnt,tra]de IS thft:]emp(?lrgtyre. Ddi ional hard-sph [10]; however, a limited knowledge of theparticle density
n ne case of thequilibrium Imensiona’ hard-Spnere ¢, tjons precludes its systematic determination in model

fluid, the excess chem_ical poten_t?al can t_)e determined fror'gystems. Recent simulation studies of liquid wdt&f and
then=0 limit of the void probability function the three-dimensional hard-sphere fldid] suggest that
Ey(r;n) may be approximately Gaussiannna feature that
Mex=—KTIN[Ey(a;0)] (1.2 s closely related to the Gaussian field model of liquitig]
and the Pratt-Chandler theory of hydrophobidit?]. In this
where o is the hard-sphere diameter. From a geometriavork, we develop a connection between the void probability
viewpoint, the quantityg,(r;0) represents the fraction of function and the voidhth nearest-neighbor distribution func-
space available for the addition of another hard sphere aion H,(r;n). Furthermore, we derive an exact solution for
radiusr — /2 into the systemicommonly referred to as the Ey(r;n) andH,(r;n) in the hard-rod fluid.
Torquato and co-worker7,9] studied related quantities
when there is a particle center at the origin of the subvolume,
*Electronic address: torquato@matter.princeton.edu referred to as the “particle” quantities. In particular,
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Ep(r;0) is the probability that a cavity of radiussurround- Py

ing the reference patrticle is free of other particle centers. The SEP™Nn
central particle’s nearest-neighbor distribution function is re- ®
lated toEp(r;0) via Q(x)

JEp(r;0) r

Hp(r;1)=— or (1.9 ° N

] /[

Knowledge of the nearest-neighbor distribution function is of ™
importance in a variety of problems, including stellar dynam- ®
ics [13], liquids and glasse$14—19, biological systems
[20,21], processing of ceramid®2], transport in heteroge-
neous material§23—29, and surface adsorptid26]. Mac- o
Donald[27] put forth simple approximations for the particle N
nearest-neighbor distribution function in hard-sphere sys- }/
tems, and more accurate approximations have since been de- =

rived [7,9,28 for general interpenetrable-sphere models for ®
both monodisperse and polydisperse systems. Q,(x)

In this paper, we investigate generalizations of the afore- , , )
mentioned particle quantities. Specifically, we introduce theThg'Sci'b\%c')IS;Z‘zmgt)'ﬁ;i‘;ﬁzg;aggr;g;;e?é?:fé;ieanggag)\;Vh”e
particle probability function E(r;n), defined as the prob- Q ) ‘ g bit it in th : P '
ability of finding exactly nadditional particle centers within v(r) is centered on an arbitrary point in the system.

a radial distance of a given reference particle center. Simi-

Iarly, we can define a “particle’hth .nearest-neighbp.r distri- <F(RN)>:J F(RV)Py(RVARN. 2.2
bution functionHp(r;n), representing the probability den-

sity associated with finding the center of tih¢h nearest . - n
neighbor to a reference particle a distancaway from the || the system is statistically homogeneous, #gR") de-

reference particle center. In Sec. Il of this paper, we deriv@€nNd ~on the  relative  displacementsR,—R;,Rs

formal expressions for the particle probability function ~ R1: - - - Ra—Ry. Throughout this work, it should be un-

En(r:n) and its moments. Furthermore, we derive generaFierstood that the thermodynamic Iimi_t has beer_1 Faken, i.e.,
representations for theth nearest-neighbor distribution N % andV—, wherep=N/V remains some finite con-

functions Hy(r:n) and Hp(r;n) and then-particle condi- St . N
tional pair distribution functionsGy(r:n) and Gp(r:n). In order to study fluctuations on a local scale, it is neces-

Since these quantities depend, generally, on all of the sary to define the subvolume of interest. We focus on the

particle probability density functions, their explicit evalua- so_—calleq “void” and “partl_cle” r_eglons(see_Flg. ). _The
tion is restricted to the simplest of models. In Sec. Il we "0Id region Qy(r) is a D-dimensional spherical region of

evaluate, exactly, the void and particle quantities for an equi[e_‘d'usr_that_ IS center_ed at an arbltra_ry position in the_ me-
librium fluid of hard rods D=1), the most fundamental, UM Likewise, a particle regioftp(r) is a spherical region
nontrivial many-body system of radiusr that is centered on a given reference particle. As

is standard practice, we define a characteristic function for
the void region by

/
[

II. DEFINITIONS AND GENERAL RELATIONS

We consider systems of interactingp-dimensional Cv(x;r)z[l’ xe Qy(r) 2.3

spheres of diametes spatially distributed in a volum& 0, Xxe&y(r).

according to thé\-particle probability density(RN). Spe- o o ] ]

cifically, Py(RV) is the probability density associated with S|m|larly, a cha_racterlstlc function can be defined for the
finding particles 1,2. .. N in a particular configuratioRN ~ '€gion surrounding the reference particle

={R;,R,, ... Ry}. As can be seerPy(R") normalizes to 1 Q

unity. The reduceadh-particle probability density,, (n<<N) cey—d xeQp(r)

o Cp(x;r) (2.9
is given by 0, Xxe&Qp(r).

I The characteristic functions are created for mathematical
pn(RM = WJ Pn(RMARNM, (2.1)  convenience and will prove useful in deriving formal repre-
' sentations of the quantities of interest.

N!

where dRN™" representsdR,. ;- - -dRy. The reducedn-
particle probability densityp,(R")dR" characterizes the
probability of simultaneously finding the center of ampar-
ticles atR;,R,, ... ,R,. With this in mind, the ensemble In this section we will present formal expressions for two
average of any functiof (RN) that depends on the spatial special types of probability functiong,(r;n) andEp(r;n)
distribution of the particles is given by defined as follows:

A. Exact integral equations for the void
and particle probability functions
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Ey(r;n)=[probability of finding a region{Q(r),which is aD-dimensional sphere of radius
r(centered at some arbitrary pointontaining exactlyn particle centers]. (2.5

Ep(r;n)=[probability that, given aD-dimensional sphere of diameter at some position in the system,
the region Qp(r), which is a sphere of radius encompassing this central particle,
contains exactlyn additional sphere centers.] (2.6

Refer to Fig. 1 for a schematic of the regiofis(r) and Qp(r).
Vezzetti[10], within the framework of the canonical ensemble, previously derived an expression for the general void
probability functionE,(r;n) in terms of then-particle probability density functions. Specifically, he showed

1" .
Ev(r;n)= Z ((,_ )),n,f o pi(Ry---R)dR". 2.7

Following a similar development, we will derive a formal integral equation for the particle probability furigfigmn).

The probability of finding zero particles in a regiély(r) surrounding a given reference particle can be written in terms
of the characteristic function for that region,

N—-1
Ep<r;o>=< i:Hl (1—Cp(X ;r>)>, 2.9

where particleN is taken as the reference ad - ) denotes an ensemble average. If the product in(E8) is expanded, one
obtains

N—-1 N—-1 N—-1
Ep(r;0)=1- 2 (Co(xiir)+ {EJ} (Cp(X ;1) Cp(X; ;r>>—{ij2k} (Cp(X;F)Cp(X} ;M) Cp(Xi;T))+ - - - (2.9
1) (N—1)! _ _
B 2 m<cp<xl-”' - Celxin), 210
|
where{- - -} indicates a sum over all pairs, triplets, etc., and N-1 (—1)i-n
the reference particle is excluded from all sums. When the Ep(r;n) E =mmip Ry
averages in the canonical ensemble are shown explicitly, this =n (i=n)inlp(Ry)
becomes A
XJ pi+1(Ry---Ri,RydR".  (2.13
N-1 (—1) Qp(r)
Ep(r;0)=1+ 2 1 pi(Ry)i! It is worth noting that both the void and the particle prob-

ability functions depend on all of the-particle probability
i density functionpy,ps, ... ,pp-
xf pii1(Ry, ... R, RyAR (21D y P1:P20 - oPn
Qp(r)
B. Moments

which is preCISer the result derived by Torquato Lu, and Us|ng a generanng function approach Z[fﬂ was able to
Rubinstein[7]. Using this formalism, the extension to the derive an expression for theomentf the void probability

general particle probability functioBp(r;n) is straightfor-  fynction E(r;n). In particular, he was able to show that
ward. In terms of the characteristic functions, the probability

is given by n! k
T = pr(Ry- - RdRY,  (2.14
(n=K!/, Qy(n)
(N—1)! vir)
Ee(rin)= (N=1—n)!n! Where<~-~)ﬂv(r) represents an average in the subvolume
n N-1 Qy(r). This should not be confused with a similar relation-
IT coxiin) TI (@—Cp(x ;r))>. ship involving then-particle densities that appear in the
i=1 j=n+1 . grand canonical ensembje?(R;---R,), which obey the

(2.12 normalization

N!
Expanding the products, and showing the averages explicitly, <W> = J pP(Ry- -+ R,)dR¥, (2.15
yields the desired integral relation (N=K)!/ g Jver
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whereV? is the volumeN is the number of particles in the Q,/(r)—~ andV?—w,

system, and- - - )4, indicates an average in the grand canoni-  Following an approach similar to that of Zifi], we will

cal ensemble. Equation®.14) and (2.15 become asymp- proceed to derive a relationship for the moments of the par-
totically equivalent only as the thermodynamic limit is ap- ticle probability functionEp(r;n). It is convenient to recast
proached in both systems, i.e., at a fixed density botlEp(r;n), of Eq.(2.13, in the following form:

AT .
. —_ - — . e . !
EP(rvn)_ n! (ﬁt) (1+ 21 I'pl(RN) fQP(r)pl+1(Rl RI !RN)dR ) . (216)
Using Eq.(2.16 and the binomial theorem, it is simple to show that
e (6-1) i
2 E"Ep(rin)=1+ 2 . piva(Ry R RyAR'. (2.1
=1 i! Pl(RN) Qp(r)
From Eq.(2.17), it follows that
g\ _ n! 1 y
—_— n * " = = —— « o
(ag) I‘IZO g EP(r!n) 1 Z n k)' p(r,n) <(n_k)'>ﬂp(r) pl(RN)pr(r)pk+l(Rl RkaRN)dR ,
(2.18

yielding the desired moment relation f&p(r;n). Notice that while bothe,,(r;n) andEp(r;n) depend on all of the-particle
probability density functions, thkth moment of either distribution depends only pn,p,, . . . ,pk.

C. Nth nearest-neighbor distribution functions

In this section we discuss two general types of neighbor distribution functiby(s,n) andHp(r;n), defined as follows:

Hy(r;n)dr=(probability that at an arbitrary point in the system the center ofhenearest
particle lies at a distance between and r +dr), (2.19

Hp(r;n)dr=(probability that, given @& -dimensional sphere of diameter at some position in the system,

the center of thenth nearest particle lies at a distance betweemnd r +dr). (2.20
|
The functionsH(r;n) andHp(r;n) will be referred to as n-1 r
the void and particlenth nearest-neighbor distribution func- E Ep(r;i)zl—f Hp(r;n)dr. (2.22
i=0 0

tions, respectively.

The neighbor functiongdy(r;n) and Hp(r;n) are inti-
mately related to the void and particle probability functions
Ey(r;n) andEp(r;n) discussed earlier. In fact, the relation-

Differentiation with respect to gives

n—-1 .
ship can be seen from simple counting arguments. Consider Hy(r:n)=— E IEV(r3T) 2.23
a particular subvolumél,(r). The probability that the re- ' i=o or
gion contains at least particles is given byfgHy(r;n)dr.
The only other possibility is that there are less thmapar- and
ticles in the region, and thus the relationship can be ex-
ressed IER(r;i
P Hp(r;n)=— E % (2.24

n—1 i=0
r
Ey(r;i)=1— [ Hy(r;n)dr. 2.2 - L .
Zb vrib Jo virin) 2.23 For statistically homogeneous media, it is convenient to
write the neighbor functions as a product of two different
An identical argument can be invoked to arrive at the particlecorrelation functions. Specifically, fob-dimensional par-
expression ticles let
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Hy(r;n)=psp(r)Gy(r;n—1)Ey(r;n—1) (2.29 wheresp is the surface area of B-dimensional sphere of
radiusr. For examplesD=2,27rr,477r2 for D=1, 2, and 3,
and respectively. Given definitiong2.5, (2.6), (2.19, and
(2.20), the n-particle conditional pair distribution functions
Hp(r;n)=psp(r)Gp(r;n—1)Ep(r;n—1), (2.26  Gy(r;n) andGp(r;n) must have the following definitions:

pSp(r)Gy(r;n)dr=[probability that, given a regior),,(r) containingn particle centers,

particle centers are contained in the spherical shell of volsgtr encompassing the region],

(2.27
pSp(r)Gp(r;n)dr=[probability that, given a regiof2p(r) containingn particle centers
(in addition to the central particleparticle centers are contained in the
spherical shell of volumespdr surrounding the central particle]. (2.28

Note thatGy(r;0) is simply the contact value of the radial Note that there is no distinction between particle and void

distribution function for a test particle of radius-¢/2 and a  quantities in the absence of correlations. The moments of the

particle of radius ¢/2. Furthermore, whenr=¢, then distribution are given by

Gy(0;0)=Gp(0;0) is just the contact value of the radial

distribution functiong,(o) for identical spheres of diameter n! _ n! _ K

o. For an equilibrium distribution of sphereg,;(o) can be (n=k)!/, ( )_ (n=Kk!/, (r)—(va(r)) '

related to the pressure of the systE®9]. In addition, asr P (2.32

— o0, the sphere of radiusmay be regarded as a plane rigid '

wall relative to the particles, hengg(%,n)=Gp(,n). From Egs.(2.21), (2.22, (2.29, and(2.26), it is simple to

Finally, we can write down an expression for the “mean ghow that

nth nearest-neighbor distancé(n) between particles as fol-

lows: n-1 i
Hy(rim) =He(r;n)=pso(r) 2, Ev<r:i>[1— m}

|(n)=f0erp(r;n)dr. (2.29 (2.33

and

For the case of impenetrable spheres, R9 provides an n _
operational definition for the random close-packed state. In ..\ ¢ 1) =S (pvp(1)) ”![1_ '
particular, one can defin@] the random close-packed den- ~ V'’ PR “h il |
sity to be the maximum packing fraction over all ergodic, (2.39
isotropic ensembles at whidlfl)=o.

n

When discussing the ideal gas limit, it is appropriate to as-
sign a diametefr to the particles, where it is understood
that they are fully penetrable. HereEy(o/2;0)

We now consider the case of spatially uncorrelated=exp(— pvp(0/2)) is the void fraction. This stands in con-

spheres. Since this simple model represents randomly cefrast to totally impenetrabléhard spheres, where the void
tered points, the-particle probabilities become trivial, i.e., fraction is 1- pv(07/2).

pn=p". In this limit, first considered by Hert30], we find,
via Egs.(2.7) and (2.13),

D. Fully penetrable particles: ideal gas limit

E. Totally impenetrable particles: hard-sphere limit

(pvp(r)" In a system oD-dimensional, mutually impenetrable par-
== &= pvo(n), ticles of diametewr, very few exact results are known. This
(2.30 is due to the fact that it is generally impossible to formulate
expressions for the infinite set ofparticle density functions
wherevp(r) is the volume of eD-dimensional sphere, P2, - - pn(N—20). For small ranges af, some exact results
are available. For instance, it is clear from definitid@s)
and(2.20 that

Ev(r;n)=Ep(r;n)

_ Isp(r)
vp(N=—"p—- (2.3 Ep(r;0)=1 for O<r=<o, (2.3
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Hp(r;0)=0 (2.36

due to impenetrability. Further, it follows from E@2.26)
that

for 0<r<o

Gp(r;0)=0 (2.37

for O=r<o.
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for D=3, (2.49

Gy(;0)=1+47G\(0;0)
which are simply the scaled equations of state.
Exact conditions on the quantit§,(r;n), which arise
due to the packing of hard cores, can be determined. For
instance, there is ®-dimensional sphere of radius.(n)

For the void quantities, a spherical cavity can contain a{n>0) which is the largest sphere that cannot contain

most one particle center for< /2. Thus we have

rsp(r)
D

Ey(r;0)=1-p for 0O<r=<o/2,

(2.38

+1 particle centers. Clearly,

Gy(r;n>0)=0 for r<rg(n).

(2.50

and sinceQ,(r) must contain one or zero particles for this Many other exact conditions can be derived. For instance, in

range ofr, it follows that

rsp(r)

Ey(r;l)=p D for O<r=o/2. (2.39

It is also simple to show from Eq2.23 that
Hy(r;n)=psp(r) for 0sr<o/2, n=1 (2.40

=0 for Osr=<o/2, n>1.
(2.41

Forr=¢/2, then=0 void probability function

Ev(0/2;0)=1-pvp(c/2)=1—1n (2.42

is equal to 1 minus the reduced density or equivalently,
the void fraction in this system. It follows that time=0 limit

of the void conditional pair correlation function is given by

Gy(r;0)= for Osr<c/2. (2.43

1-prsp(r)/D

D=3 it can be shown that

kGV

ark

(d/2:1)=0 Vk. (2.5))

Such conditions could provide a starting point for extending
the scaled-particle theory of fluids.

For the lowest order cases£0 for Ey,, Ep, Gy, and
Gp; n=1 forH, andHp), exact results have previously
been obtained for the equilibrium hard-rod flui®€1);
see, e.g., Refd31,32,7. For D>1, accurate, approximate
expressions for the void and particle quantities have been
derived for the lowest order casgsg,9]. In Sec. Ill of this
work we solve for the general quantities, exactly, in the case
of an equilibrium hard-rod fluid.

Ill. EXACT SOLUTION FOR THE HARD-ROD FLUID

In this section, we will address the statistical geometry of
the equilibrium hard-rod fluid. For convenience, we choose
to work with the dimensionless distange-r/o and the re-

Although then=0 void and particle quantities are not the q,ced densityp=po. Recall that I- 5 is equivalent to the

same forr <o, they are related to one another for o in

void fraction in systems comprising impenetrable particles.

the case of aequilibrium ensemble of hard spheres. In par- The void and particle subvolumés,(x) andQp(x) for the

ticular, we have

Ea(r;0)= tai

Ev(0:0) for r=o0.

(2.44

This conditional probability can be understood by realizingother
that a cavity of radiusr is structurally equivalent to a hard functio
sphere in an equilibrium system. For general nonequilibrium

packings, Eq.2.44 will not be true(see, e.g., Ref26]).
Nevertheless, Eq2.44) implies

Ho(ri1)= B e o 2.4
p(r, )—m or r=o ( . 5)

and
Gp(r;0)=Gy(r;0) for r=¢ (2.46

one-dimensional system are shown in Fig. 2.

The hard-rod fluid is unique in two respects, which makes
it amenable to theoretical analysis. First, the presence of an
intervening particle, and the lack of any long-range interac-
tion, render second neighbors totally “unaware” of each
. Secondly, thehordlength or gap-size distribution
np(h) for this system is known exacth81,33:

n
—[n/(1=]h
l—ne '

p(h)= (3.0

where p(h)dh represents the probability that the distance
between two neighboring particle centers is betweerhl
and 1+h+dh. It will be shown that these two features of
the statistical geometry are sufficient to characterize the gen-
eral quantitieE€,,, Ep, Hy, Hp, Gy, andGp in the equi-

for the equilibrium hard-sphere fluid. Finally, we note that, librium hard-rod system.

for equilibrium hard-sphere systems,

Gy(*:0)=Gy(0;0) for D=1, (2.47)

Gy(*»;0)=1+27Gy(0;0) for D=2, (2.48

A. Void quantities

To study the void probability functiok,,(x;n), it is con-
venient to appeal to the following geometric interpretation:
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Ey(x;n)=(the fraction of space in the system inside of which the center of a spherical window
could be placed such that it would contain exactlyparticle centers). 3.2

This definition is compelling for the hard-rod fluid because it
suggests a simple thought experiment. Specifically, one Ev(X:0)=f
could scan the entire length of the line with a window of 2
length Z, and simply record the fraction of space inside of
which the center could be placed such that the window
would contain exactly the prescribed number of particle cen-
ters.

Moreover, this procedure can be greatly simplified be-
cause of the topology of the hard-rod system. In particularSince, at most, one particle center can fit inside of a window
the system may be considered a repeating unit ¢elt  of radiusx<j3, we have
spans from one particle center to the nextith the only
difference between neighboring unit cells being the width of
the gap separating the particles as shown in Fig. 3. Further- Ev(x;1)=27nx for x<3%. (3.5
more, the probability density associated with observing two
neighboring particles separated by a distahds given by , L 3 . , )
Eq. (3.1, quite independent of neighboring gaps. For the |r_1teryalgsx<z, the frgctlon of space in the _un|t

Consider the quantitEy(x;0), equal to the fraction of C€ll contributing to thee\(x;1) is equal to 2k, +1—Xx) if
space inside of which the center of the window can be placelz<2x—1, and is equal to 2 otherwise, leaving
such that no particle centers are inside of it. From 12,
we know that

o

_(hat1=2x) 7p(hy)dhy

X

(3.9

2x—1
Ev(1)= J 2(hy+1-x) 7p(hy)dhy
Ey(x0)=1—2px for x<1/2. 3.3 0

Forx=3, we return to the unit cell picture. For instance, one +f 2xmp(hy)dhy
could start with the leftmost edge of the window on a particle x-1
center, and then translate the window to the right until the

leftmost edge of the window is at the neighboring particle =2(1- px—(1- p)e” [27/1=mIx=12)
center. The volume of space in the unit cell that contributes

to the available space Is;+1—2x. In what follows,h; is for f<x<32. (3.6)
the length of the gap in the unit cell amg, . .. ,h, are the

lengths of the nexh—1 gaps to the right of the cell. To

calculateE,(x;0) we simply integrate over the number of I3t is easily verified that Eq(3.6) a!so holds for the regiqn
gaps per unit length that have siag>2x— 1 7=x<1. Forx=1 one must also integrate over all possible

gap sizes oh,, yielding
a)
a)

2X hl

— h2 ——

Q (X) -
2X
b) b)
hl — h2 —
2X -
- P
— I — R —
%MW—W%— B Ee——
Q, (x) FIG. 3. As the window of size 2 moves from(a) to (b) it

sweeps out one complete unit cell. The number of cells per unit
FIG. 2. Schematic representation(af ,,(x) and(b) Qp(x) in length that have a gap of sitg and gaps of sizé,, ..., h,_, to
the one-dimensional hard-rod fluid. the right is given byp,_; in Eq. (3.9).
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TABLE |. First five polynomialsf,(x; ) defined by Eq(3.8) ' '
used in determining the void probability functidh,(x;n) for hard 10 - ::‘1’ .
rods. e =2
n fa(X: ) 1
1 0 06 i
2 1— 7 E.{x;n)
3 2(1-27n+ nx)
4 (6—24n+ 2772+ 8yx— 207X+ 472x2) [ 2(1— )] o4 |
5 2(6— 367+ 7872— 647+ 9 px— 425°x+ 577X + 6 9°X?
— 18732+ 2733 /[3(1- 5)?] 02 1
00 e .  "°c.;:I*:::1I£:;:“
Ev(x;1)=2(1—27n+ px)e [27A=n](x=1) ~0.0 2.0 4.0 6.0 8.0
X
—2(1— p)e RAA=mIx=1/2 FIG. 4. Void probability functiorEy(x;n) for the hard-rod fluid
at a volume fractionp=0.5. The lines indicate the exact solution
for x=1. (3.7 obtained from Eq(3.10, and the black dots represent Monte Carlo

simulation data.

If one proceeds along these lines, the following general form

for Ey(x:n) in the region A— 1)/2<x<n/2 can be deduced: he quantityp,_y(hy, ... hy_y)dh;---dh,_, is the num-
ber of gaps of sizén, per unit length which have gaps of

n—1 p(n-1)-si~1h sizesh,, ... h,_; directly to the right:
Ey(x;n)= J’Xf T idh-[2x— n—1
V( ) ]];[1 0 ! ( ) pnfl(hla e vhnfl)
n—1 7"
- h _(hy, ... h =— e A=mlhy, o=[#/(A=n]hn_y
kgl k] Pn 1( 1 n 1) (1_7])n71
=2nx—=(n=1)+fu(x;7) (3.9
27 n—-1 f,(x; ) are polynomials irx that can be easily determined
Xexg — m - T) ) analytically from the integral in Eq.3.8). For convenience,
we have given the first several in Table I. In terms of
for (n—1)/2<x<n/2. (3.8 f,(x; n), the full expression foE,,(x;n) can be written

Ey(x;n)=0 for x<(n—1)/2

27 n—-1
=27x—(n—1)+f(x;p)ex —1_77 X———||, for (n—1)/2<x<n/2

27 n—1 27 n
=(n+1)—2xyx+f,(X;n)exg — 1y X———]|—2f,1(X; p)ex —1_7’ X=3
for n/2=x<(n+1)/2

27 n+1
2

=fnra(X; ﬂ)exl{ R

27 n—1
+f(X; n)ex;{ - E(X_ T”

for x=(n+1)/2. (3.10

27 n
—2f,1(x;m)exp — =% 2

The exact results fdg,(x;n) are shown in Fig. 4 along with  npeighbor distribution functiorH(x;n) and the n-particle
Monte Carlo simulation data at a packing fraction 9f  conditional pair correlation functiorGy(x;n), shown in
=0.. Figs. 5 and 6, can be calculated using E§s23 and(2.25),

Once an analytical expression for the void probabilityrespectively. Notice that the void quantities vary relatively
function has been obtained, all of the related void quantitiesmoothly inx, a feature that is not shared by the particle
can be determined. For example, the genetthl nearest- quantities calculated in Sec. Il B.
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FIG. 6. Void n-particle conditional pair distribution function
Gy(r;n) for the hard-rod fluid at a volume fractiop=0.5. Results

are obtained from Eq$2.25), (2.23, and(3.10.

hard-rod fluid. Specifically, symmetry suggests that the prob-

FIG. 5. Voidnth nearest-neighbor distribution functiéh,(r;n)
lem need only be solved on one side of the reference particle;

for the hard-rod fluid at a volume fraction=0.5. Results are ob-
tained from Egs(2.23 and(3.10.

B. Particle quantities
A different approach is needed for studying fluctuationshence we introduce thene-sided particle probability func-
about a reference particle in the one-dimensional equilibriumion ES(x;n) defined in the following manner:
|

E(Pl)(x; n) = (probability that exactlyn sphere centers are within a distanct the right of the reference particle cenjer.
(3.11

To be concrete, let us consider the one-sided funcEféP‘(x;O), theprobability that no particles are within a distancto the
right of the reference particle center. Given the chord-length distribution function defined §$.Bgqthis can be written
Efgl)(x; 0)= wie*[rz/(l* My-Dgy=e 7A=mMx-1  for x=1. (3.12

x 1—7
Since events to the left and right of the central particle are uncorrelated, we can form the dgga@tity) by squaring the
one-sided result
Ep(x;0)=[ES"(x;0)]?=e R7A=m=D  for x=1, (3.13
(3.19

Moving on to then=1 case, we note that
EF(x;1)=0 for x<1

due to the hard-core interaction. Only one particle center can fit in the regiot<® to the right of the reference patrticle,
(3.19

yielding
X
E(Pl)(x;l)zl_f e [WA=mMy=Ddy=1— e [7A=Ix=D  for 1<x<2.
—nJ1

When considering distances= 2, there are two contributions E)(pl)(x;l):

2 — oo
Ef;l)(x;l)=(i) fx 1J (e~ 7A=m]1y=1)y (= [7/(1=nl(z=1))q dW(L)J e [7A=nly=Dgy
1-79 1 X—y 1-7)Jx-1
(3.19

ef[ﬂl(lfﬂ)](xfz)_ef[n/(lfn)](xfl) for X=2.

U
E(X—Z)-Fl

|
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The first integral in Eq(3.16) represents the contribution from configurations when the first particle center to the right is closer
thanx—1 to the reference particle center, and the second particle center to the right is no closetottiznreference center.

The second integral accounts for configurations in which the first particle is betwegrandx to the right of the reference
center, irrespective of the second particle’s position.

We can have exactly one particle withirof the reference center by either having one on the left of the central particle and
none on the right or vice versa, leaving

Ep(x;1)=2(EY(x;1))EF(x;0))=2e [7(1=mIx=1] — g [7(A1=mIx-1]  for 1<x<2

n
1-9

:26_[71/(1_71)]()(_1)[ (X_2)+1

e [7(1=-mIx=2) _ o= [7/(1-nIx-1)|  for x=2. (3.17

Following these arguments, one can arrive at a general form for the one-sided probability fut‘r&)c(amn):

E(x;n)=0 for 0=x<n

] B n n—-1 i
_[_m \"Ix=(n+1)] e~ [=nIx=(n+11 1§ ( 7
1—7 n! =0 \1=7

n—1 i _ i
=1-> (%) (X. n e [7A=mM=N for n<x<n+1
i=0 \177

[x=(n+1)]
il

e~ [7/(1=7llx-(n+1)]

_nl
_ we—[nl(l—n)llx—n]
1!

for x=n+1. (3.18

The full particle probability functiorEp(x;n) is then deter- that develops about the reference particle in one dimension.
mined from the simple relation In other words, the coordination shell consists of a pair of
particles, one to the left and one to the right. As the packing
n fraction is increased, the peaks in the even number curves
Ep(x;n)=>, EX(x;)EP(x;n—1) (319 (n=2,4,6...)become extremely pronounced, as compared
=0 to their odd counterpartsee Fig. 3.

, , ) . o ) Recent computer simulations of liquid waf{&] and the
which counts aI_I “left-side, rlght-S|de” combinations which hrae_dimensional hard-sphere flufd] suggest that the
sum to f[he desired r_esult. _Flgure 7 shows the exact resu"@.:antityEv(x;n) in simple fluids may be accurately approxi-
along with a comparison with Monte Carlo simulation data. y,ateq by a Gaussian distributionninat least far away from

Notice that the peak in thEp(x;2) curve is higher than the ey high or very low densities. In Fig. 9 we plot the particle
peak in theEp(x;1) curve for reduced density=0.5. This  ohapility function Ep(x;n) versusn for several window

feature is a manifestation of the natural packing symmetry;,oq at a packing fraction of=0.5. The points generated

>

>

n=0
- | n=1
=== n=2
—— n=3
—-=n=4
\ n=5

OB WOWN 2O

5333

0.8

/ )
E,(xn) 06 | ! \ |
\" N \
7 0.4 f | b \ 1
l ! I‘|I'I \\ 4
"~ i / \
" il i ‘)\ \ \
. - 02 - i i \ \ .
. N . - f 1
-~ Trel % | NN \
... ..o .“ Se. 3 :’ \ >
i W S SRS T TS PSR Y 0.0 1d oS S S
: 6.0 8.0 0.0 2.0 4.0
X X
FIG. 7. Particle probability functiofEp(x;n) for the hard-rod FIG. 8. Particle probability functioEp(x;n) for the hard-rod

fluid at a volume fractionp=0.5. The lines indicate the exact so- fluid at a volume fractiony=0.8, illustrating the pronounced peak

lution obtained from Eqs(3.18 and (3.19, while the black dots heights for even values af. This feature is related to a packing
represent Monte Carlo simulation data. symmetry described in the text.
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FIG. 9. Particle probability functioep(x;n) plotted vsn for
various window sizex at volume fractiony=0.5. The points rep-
resent the exact solution obtained from E18 and(3.19. The
lines are fits to the Gaussian forfp(x;n)=exp@+Bn+Cr?),
whereA, B, andC are constants of the nonlinear regression.

FIG. 11. Particlen-particle conditional pair distribution function
Gp(r;n) for the hard-rod fluid at a volume fractiop=0.5. Results
are obtained from Eqg2.26), (2.24), (3.18), and(3.19.

It is worth noting that the starting point of our derivation

was the one-sided particle probability distribution
from Eq. (3.19 were fit to Gaussian curves to test this ap—E(Pl)(x;n). We could have just as well chosen as our starting

proximate form for the particle version of the probability point the one-sidednth nearest-neighbor distribution
function. Although the functiorEp(x;n) is nearly Gaussian H®(x;n), a quantity evaluated by Elkoshi, Reiss, and Ham-
in n near the peak, significant deviations can be seen in thgerich[32] for both constrained and unconstrained hard-rod

tails of the distribution. This should be expected, as it issystems. This quantity is related to the conventional pair cor-
known that bothE,/(x;n) andEp(x;n) depend on all of the relation via

n-particle density functions, and thus on all higher moments.
Using relations(2.24) and (2.26), one can determine the
particle nth nearest-neighbor distribution functidtp(r;n)
(Fig. 10 and then-particle conditional pair distribution func-
tion Gp(r;n) (Fig. 11), respectively. Note the appearance of
a kink in the second nearest-neighbor distribution function

Hp(r;n). This abrupt change, occurring a=2, corre- 'Although we studied the equilibrium ha}rd—rod system in
sponds to the first distance at which the second nearedfis Work, the methods developed are quite general. In fact
neighbor can occur on the same side of the reference particfeeY Will carry over toany one-dimensional system provided
as the nearest neighbor. Such anomalies in the particle quafflat there are no second neighbor interactions and that the

tities are expected because the origin is fixed in the center ghord-length distributiorp(h) can be characterized.
a reference particle, unlike the void quantities which are av-

eraged uniformly over all possible origins in the system.

pg(x>=i§1 H(x;1). (3.20

IV. CONCLUSIONS
2.0

In this paper we present analytical series representations
for the general probability functiong,(r;n) and Ep(r;n)
which describe density fluctuations in many-body systems.
Furthermore, we have developed equations for their central
moments in terms of the-particle reduced density functions
P1.P2, - - - ,Pn- The results concerning the particle quantities
are new, to our knowledge. We have derived relationships
| for the void and particlenth nearest-neighbor distribution
functionsH,,(r;n) and Hp(r;n), and then-particle condi-
tional pair distribution functionss,,(r;n) and Gp(r;n). In
the case of the equilibrium hard-rod fluid, we solve for the
generalized version of the quantitieg, Ep, Hy, Hp, Gy,
and Gp exactly. We believe the results are the first of this
type for a hard-particle system. Furthermore, the methods
used to solve the hard-rod problem are quite general, and can
" be used to address other one-dimensional systems of inter-
acting particles. We are currently developing approximation

formulas for the nearest-neighbor quantities for systems of
spheres in higher dimensions.

I'l
]
[
s5s5355

o0 A WN =

Hexn) 1.0 |-

05 -

0.0
0.0

FIG. 10. Particlenth nearest-neighbor distribution function
Hp(r;n) for the hard-rod fluid at a volume fractiop=0.5. Results
are obtained from Eqg$2.26), (2.24), (3.18), and(3.19.
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