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A statistical approach that applies to the high Kubo number regimes for particle diffusion in stochastic
velocity fields is presented. This two-dimensional model describes the partial trapping of the particles in the
stochastic field. The results are close to the numerical simulations and also to the estimations based on
percolation theory[S1063-651X98)05712-3

PACS numbes): 47.10+g, 05.40+j, 05.60+w, 52.35.Ra

I. INTRODUCTION There is only one qualitative theoretical estimation by

Isichenko[10,11], which_is based on an analogy with the
The motion in stochastic velocity fields describes a ratheProblem of percolation in stochastic landscapes and deter-

large class of physical processes such as particle and enerr%)nes the scaling Iawo of the diffusion coefficient at high
transport in plasmas or passive scalar advection in turbulertUP0 numbers aB,~K™'. Extended studies based on direct

: : o : numerical simulations of the trajectories have also been per-
fluids. The analysis of such turbulent diffusion in contmuousformed [12-16. They confirm the Isichenko scaling for

velocity _f|elds relies on th_e ge”efa'. problem .O.f relating thesome spectrum of the turbulen¢#2,13. Moreover, they
Lagrangian and the Eulerian statistical quantities. The lattef o iqe detailed information about statistical characteristics
are defined as statistical averages evaluated.at fixed POINtS 4} the trajectories.

the laboratory frame while the corresponding Lagrangian we present here a statistical approach to the test particle
quantities are determined at points following the motion ofdiffusion in a Gaussian stochastic velocity field that provides
fluid elements. This is, in a sense, the fundamental probleran analytical approximation for the Lagrangian correlation
of turbulence. Taylof1] has shown that the diffusion coef- which is valid over the whole range between the quasilinear
ficient is the time integral of the two-point Lagrangian cor- regime and the nonlinear one. Thus the time-dependent dif-
relation of the stochastic velocity. If this integral is finite, the fusion coefficient is obtaineghot only its scaling wittK like
mean square displacement of the particles is asymptoticallgn Ref. [10]). The main ingredient of the model is the con-
diffusive (linear in time. More complex processesubdif- ept of decorrelation trajectorywhich determines the dy-

fusive or superdiffusivecan also appear when the integral is namicsl ththe dec_or_relat_il%n process. Its validity :15 prrc:veéj_f?y

. : . everal characteristics. The most important is that the diffu-
zero or divergent. Since this early work there have beerzion coefficient has & dependence close to the “percola-
rather few analytical approaches and results to this proble

: Mon” estimate in the nonlinear regime. In the smilllimit
(Se? the reviews of L“T“'GVZ] and_ Mc.Comb[B]).. The do- the quasilinear result is recovered. Also, the Lagrangian cor-
main of validity of various theories is determined by the

. , .~ relation of the potential is correctly reproduced by the model
value of the Kubo numbeéf. The latter is defined as the ratio 55 \well as the shape of the Lagrangian correlation of the

of the average distance covered by the particles during thge|ocity components determined in a direct numerical simu-
correlation time of the stochastic velocity field to its correla-|ation. It was showrj17,1§ that the physical reason for the
tion length. From a physical point of view, the Kubo number sybunitary exponents in the Kubo number scaling of the dif-
is a measure of the particle’s capacity of exploring the spacgusion coefficients is the trapping of the particles in the struc-
structure of the velocity field before the latter changes. Inture of the random field. Our model describes this compli-
mathematical terms it is a parameter that determines the ineated trapping process.

portance of the Lagrangian nonlinearity introduced by the The paper is organized as follows. The problem is intro-
space dependence of the velocity field. In the quasilineaduced in Sec. Il. Then, in Sec. lll, we present a discussion
regimeK <1, the results are well established: The Lagrang-about the Corrsin approximation and the results obtained in
ian correlation is determined using the Corrsin approximathis framework. We show that the possibilities of improving
tion [3,4] and the resulting diffusion coefficient has the scal-this approximation in order to extend its application range to
ing Dq,~K2. In the nonlinear cas&>1, all theoretical the high Kubo numbers regime are rather closed. The decor-
models(which actually are explicitly or implicitly based on relation trajectory method is described in Sec. IV, while Sec.
the Corrsin approximatignlead to a Bohm-like diffusion V is devoted to the presentation of the results we have ob-
coefficientDg~K [5—9]. This is not a correct result since it tained and their physical interpretation. The conclusions are
does not vanish in the limit of frozen turbulence as it shouldsummarized in Sec. VI.
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Il. EULERIAN AND LAGRANGIAN CORRELATIONS ing the mean square displaceméMSD) (Xz(t)> and the
We consider a two-dimensional Langevin equation diffusion coefficient. Using the formal solution of E@),
t
dx(t ()= .
%=v(x(t),t), x(0)=0, (1) xi(1) deTUI(X(T)’T)'

where the velocity field/(x,t) is a space-¥) and time-(t) Taylor [1] has found a general expression for the MSD:

dependent continuous function in each realization. We are ¢ ¢

interested in incompressible velocity fiel&sv(x,t)=0, as <Xi2(t)>:f dTlf droLii(71,72), (5)
appearing, e.g., in an electrostatic turbulence of a magneti- 0 0

cally confined plasma, wheneis the EXB drift velocity of

the guiding centers of the charged particles. A stream funcwhere

tion (or a potentigl is introduced that determines the two

components of the velocity agx,t)=—V¢(x,t) Xe,. The Lii(71,72) =(vi(X(71), 7)vi(X(72),72)) (6)
stream functiong(x,t) is a stochastic field considered to be .
Gaussian, stationary, and homogeneous. Since the velocif
components are the derivatives of the stream function, the
are Gaussian, stationary, and homogeneous as well. The E
lerian averages of the stream function and velocity are zerd
The two-point Eulerian correlation(EC) function of the ¢
stream function is given. This is a measurable quantity de- <Xi2(t)>:2f drL;(7)(t—7). 7)
fined as the statistical average of the stream function in two 0

points. We chose the following model for the EC:

thetwo-point Lagrangian correlatiodLC) functionof the
elocity components. In the stationary and homogeneous
ase one can consider that the LC is a function of the time
nterval r=|r,— 7,| and Eq.(5) reduces to

The diffusion coefficient defined &3;(t)=3(d/dt)(x%(t))

t IS
E(x,t)=(o(xq :t1)¢(X1+X:t1+t)>:Bzg(x)eXF{ - lT_|) .
2 Di(t)=JothL”(T). 8

Due to the stationarity and homogeneity conditions, this av-
erage depends only on the distarxcketween the two points Thus the Lagrangian correlatidn; (7) determines both
and on the time intervat|. Angular brackets denote the sta- the diffusion coefficient and the MSD of the trajectories.
tistical average over the realizations of the stochastic streaBonsequently, the problem reduces to the determination of
function field, 8 is the amplitude of the stream function fluc- the Lagrangian correlation of the velocity components corre-
tuations, andr, is their correlation time&(x) is a function  sponding to the given Eulerian correlation of the stream
that decays fron€(0) =1 (where it has a maximujto zero  function. We present an analytical approximatitime decor-
when |x| —o; its form is left unspecified at this stage. We relation path methgdo solve this problem for any value of
consider an isotropic turbulence and thus the EC is a functhe Kubo numbek. In order to give a better understanding
tion of |x| only. In terms of these parameters, the Kubo num-of the physical significance of the method, we start with a
ber is short description of the Corrsin approximation and the re-
sults obtained in this frame.
K=V7. /N, V=8I, 3
. . . Ill. THE CORRSIN APPROXIMATION
whereV measures the amplitude of the fluctuating velocity
and\ is the average wavelength determined from the Fourier The Corrsin approximatiof3,4] was extensively used in
transform of E(x,t), which is the spectrum of the stream fluid and plasma physics in the past 30 years. It consists of
function fluctuations. The two-point EC of the velocity com- two hypotheses(i) The particle trajectories are statistically
ponents and of the stream function with the velocity are obindependent of the stochastic velocity field &fid the dis-

tained fromE(x,t) by appropriate derivatives: placements have a Gaussian distribution.
In this framework, the LC of the velocity components is
92 52 9? obtained as
Exx=— (9—y2E, Eyy=—22F Exy:MEa
(4) Lij(t)=f dx Ejj (x,t)P(x,1), ©)
J J
Bew="Ba=y B Bu="Ey=3F

whereP(x,t) is the probability density for the displacements
x in the time intervak, which, according to assumptidii),

where Eij (x,1)=(vi(0,0)v;(x,1)) and Esi s of Gaussian type:

=(¢(0,0)vi(x,1)).

In principle, the solution of this problem consists of find- 2
ing the probability density for the displacements at any time P(x,t) —exp( — ) ) (
t. This is a very difficult task that is usually reduced to find- 2m(x4(1)) 2(x2(t))

10)
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Since the mean square displacemed(t)) is determined by ~ fusion coefficient has, at largk, the same Bohm scaling
the Lagrangian correlatigrEq.(7)], a closed set of equations (13) as obtained from the Corrsin approximation. The con-
is obtained. The LC is thus determined as the solution otlusion is that the displacements are not Gaussian at large
Egs.(9), (10), and(7). K. This is confirmed by direct numerical simulations of
One can easily see that in the quasilinear limit when particle trajectorie§12,14,17, which show that the distribu-
<1, the MSD during the correlation time is much smaller tion of displacement®(x,t) develops a peak around=0
thanA? and the resulting narrow probability density can beand large tails. This feature &¥(x,t) results from the pro-
approximated in the integral in E€Q) by 6(x). The LC is  cess of particle trapping in the structure of the stochastic
then given by stream function: when the particles are moving near the
maxima or minima of the stream function they wind for long
Lij()=E;;(0t), K<1, (1D time on almost closed paths of small size. Large displace-
ments are performed only when they are in regions of small
absolute values of the stream function.
Dq|EV27c=(>\2/Tc)K2- (12) Thg con._clusion of this a_na}lysis is that the Gaussian as-
sumption (ii) must be eliminated. However, for non-
This is the well established quasilinear result. The CorrsifGaussian displacements it is practically impossible to deter-
approximation is very good in the randge<1 and it can mine the conditional correlatiorEiCj (apart for some
determine perturbative corrections of the diffusion coeffi-perturbative corrections that apply ie=1 [19,20). It fol-
cient (12). lows that the possibilities for advancing beyond the Corrsin
At large K, Eg. (9) determines the narrowing of the LC approximation(9) using the exact equatiofl5) are practi-
(whose width decreases from to A/V) and thus a slower cally closed and that a completely different starting point
dependence of the diffusion coefficient on the Kubo numbeshould be found to study the diffusion in the highnonlin-
is obtained. It was showf5—9] that the scaling of the diffu- ear regime. The physical process that determines the reduc-

which determines a diffusion coefficient

sion is of Bohm type: tion of the diffusion coefficient from Bohm to Isichenko
5 scaling and also the non-Gaussian character of the displace-
Dg~VA=(\T7)K. (13)  ments appears to be the trapping of the particles in the struc-

ture of the stochastic stream function. Thus the models must

A fundamental criticism of this result is that in the limit of describe this complicated process explicitly.

frozen turbulence £.—<) the diffusion coefficient(13)

does not vanish. In that case all trajectories wind around

fixed closed contour lines of the stream function and the IV. THE DECORRELATION PATH METHOD

MSD cannot grow linearly in time so that the asymptotic  Thg essential point of the present method is that it finds a

diffusion coefficient has to be zero. The numerical simula-get of deterministic trajectories that are determined by the EC

tions[12,13 confirm this idea showing that for some spec- 4t the stream function: the LC of the velocity is then ap-

trum of the turbulence the scaling of the diffusion CoefﬁCie”tproximated using the average velocity on these trajectories.

in Kis The idea is to divide the space of realizations of the stochas-
D, ~ (A2 74) KO (14) tic stream function into sut_)ensembles characterized by giyen

€ ' values of the stream function and the velocity at the starting

as predicted by IsichenkfL0]. It was shown[18] that in  Point of the trajectories:
physical terms, the Bohm diffusion coefficigit3) (and con-

_ 40 _\0
sequently the Corrsin approximatjocorresponds to neglect- $(0,0=4¢"  Vv(0,0)=V". (16)
ing the process of trajectory trapping in the structure of the i ) )

stochastic stream function. The Eulerian correlation of the velocity componeBts(x,t)

can be decomposed into a weighted sum of the Eulerian

The origin of the Corrsin approximatiof®) is the exact , oo
correlations of the velocity in each subensemble:

equation
Lij(t)=f dX ES[x.t|x(t) =x]P(x,b), (15) Eij(x.t)=”d¢°dv0P1(¢°)P1(v0)Eﬁ(x,t), (17)

where Efj[x,t[x(t) =x]=(vi(0,0)v(X,1))|x)=x is thecon-  where E} (x,t)=(v;(0,0)vj(x,t))|40.0 is the subensemble
ditional correlation corresponding to the condition that theEulerian correlation, i.e., it is an average conditioned by Eq.
trajectory is at the point at timet. This correlation has both (16). P,(¢°) andP,(v°) are the Gaussian probability densi-
Eulerian and Lagrangian properties: It is calculated at fixedies for the initial stream function and the initial velocity,
points like the EC but depends on the trajectories like thaespectively. The stream function and the velocity are statis-
LC. Using the first assumption of the Corrsin approximationtically independent at the same point: Their correlatinis

the Lagrangian character E,ﬁ is neglected; thuEiCj is re-  zero inx=0 where&(x) has a maximum. Consequently, the
placed byE;; . We note that in the special case of Gaussiarprobability density for having the condition16) is
displacements it is possible to calculate the conditional corP;(#°) P;(v°). We note that Eq(17) is an exact equation.
reIationEiCj . Consequently, the first hypothesis can be elimi-The Eulerian correlation in the subensemble can be written
nated and the LC can be determined under the restriction afs Eisj(X,t):UiO<Uj(X,t)>|¢O'VO, where (vj(x,t))] go.0 is the

the Gaussian hypothedi$) only. However, the resulting dif- Eulerian average velocity in the subensemi®. The latter
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is determined using the Gaussian conditional probabilitywith the x axis directed along® and dimensionless quanti-
density for having the velocity in the point &,t) when the  ties X=X/\, t=t/7,, u=|v9/V, and p=¢%|V°|\, Eq.

condition (16) is imposed: (19) becomes
P(v,xt|¢°v0) dX [ a _
—=——| =+p|&X.)Y),
_(8v=v(x,1))8(¢°— $(0,0) &v°—v(0,0))) ar ey Y
(8(¢°= 4(0,0)8V°-V(0,0)) v (20
Straightforward calculations lead to dr ﬁ(ﬁJr pEX.Y),
t . . T .
—f(x: d°.\° F{ _ _) 1 where a time variable=Kut is introduced. This system has
(VOO go0=T0x ¢%v7ex )’ (18 a Hamiltonian structure determined by the incompressibility

of the stochastic velocity field in Eq1). The Hamiltonian
where

&(X,Y) (22)

_—_K
2 2 H(X,Y)=| =+p
f (x: V0= _028 &(x) voﬁ EX) o dE(X) | e
ay? Y ox gy ay

is independent of the Kubo numbKrand depends only on
the parametep, which is essentially the initial stream func-
tion ¢°. Thus the solution of Eqg20) is a function of only
two variablesr=Kut andp: X(t)=X(7,p). Depending on
the EC and on the parametarsg, two types of trajectories
Equation(18) exhibits the space-time structure of the corre-can be obtaineda) trajectories on which the velocity goes
lated zone. The average velocity in the subenserfteis  to zero(decorrelates from®) and(b) closed periodic trajec-
v?in x=0andt=0 [becaus&(x) has a maximum thet@nd  tories. Type(a) trajectories escape from the correlated zone,
it decays progressively to zero as the time and/or the distanGghile type (b) trajectories are confined in it. Tyb) trajec-
grows. Both time[through the factor exp{t/)] and dis- tories describe the trapping in the structure of the velocity
tance[through the factof(x; ¢°,v°)] determine the decorre- field.
lation of the velocity. We introduce the average velocity observed along the
In the quasilinear cask <1, the decorrelation is mainly decorrelation trajectory in each subenser(til®). Since this
temporal(on the time scaler;) and the space factor in the trajectory is deterministic, the latter is obtained by replacing
Eulerian correlation reduces #f. Equation(18) becomes x by X(Kut,p) on the right-hand side of Eq18):
<v(x,t)>|,',,o,\,ozvoexp(—tlrc) and the well known quasilinear
result[Eqs(11) and(12)] is obtained. _ _ B
In the nonlinear casK>1, the space decorrelation is im- <V(X(T,P),t)>|¢0,v0:(x
portant. Our method consists in determining the dynamics of
decorrelation represented by a set of deterministic trajecto- The approximation on which our model is based consists
ries and to approximate the Lagrangian correlation by usingy considering that the Lagrangian correlation of the velocity
these trajectories. _ _ components is a weighted sum of the correlations observed
The time variation of the stochastic stream function detery|ong the decorrelation trajectorien each subensemble
mines the time decay of the Eulerian correlations. This is g16). Namely, starting from the Eulerian frame equatidi?)
linear term in the sense that in the absence of space depegng using the conditionally averaged velocities on the deco-

dence of the velocity in Eq1), the problem is linear and the rg|ation trajectories22), we approximate the Lagrangian
Lagrangian correlation is simply determined by the E& at ¢qyrelation as

=0[Eg. (11)]. The space depending factbthat appears in

the subensemble average velodit$) describes the structure _ 0, o——

of the correlated zone. We determine the dynamics induced Lij(t)gJ’deﬁOdVOPl(@ﬁo)Pl(VO)vi (vj(X(1),1))] go.v0.
by this structure by solving the equation (23

0PEX) o dPEX) 02600,

40 0y —
fy(X,¢ Vo) =0y IX dy Uy Ix2 IX

TP T, (22)

udr

dX(t) 0.0 The validity of this approximation will be proved poste-
dt =f(X(1); 4"V,  X(0)=0. (19 riori by the results obtained by our model for several quan-
tities. After straightforward calculations consisting of the in-

The solution of this equatioiX(t;#%,v%), which will be  tegration over the orientation_o{r0 and the change of
called the space decorrelation trajectgrydetermines the variable $°—p, one obtaind_,,(t)=0 and

typical evolution in the correlated zone and the way to leave

it. We note thatX(t; ¢°,v°) is not an approximation of the B

average particle trajectory in the subensemble: Rather, it is a N
deterministic trajectory that represents the dynamics of the

space decorrelation. Using for simplicity a reference framevhere

2
Lxx<t_>sLyy<t_>s( )G(Kt‘)exp(—ﬂ, (24)
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— 1 o u2(1+p2))dX(7',p)
G(Kt)—\/ﬁfj;dpdu &ex;{— 3

dr 1.5} p<0 -

(29

X(,p) is thex component of the decorrelation trajectories

determined from Eq(20) and r=Kut. We note that the

Corrsin approximation also determines this symmetry of the}
The running diffusion coefficient is o5t

_ N (T 0 Ll
D(t;K)=T—KJOdGG(0)eXF{—R) (26) !

-1.5F p>0

and the asymptotic diffusion coefficient can be written as

I . .
0 0.5 1 1.5
X

(27)

N2 [ 0
D(K):—f doF(0)exp — =/,
TcJo K FIG. 1. Decorrelation paths fqr=0,+£0.5+1, .. .. Thesize of

_ the curves decreases continuously wijth.
whereF(6)=[§G(7)dr. Equations(24) and (25), together
with the equations for the space decorrelation trajectoriegpproximation determines a much narrower LC of the stream
(20), form a closed system of equations for determining thefunction that depends ofi(x) and K (its width decreases

Lagrangian correlation of the velocity. whenK increases
In order to proceed, we have to specify the space depen-
V. TESTS AND RESULTS dence&(x) of the EC of the stream functiofor, equiva-

lently, the wave number spectrinWe model the EC of the

An important test of the methods of studying the diffusion stochastic stream function by

in incompressible velocity fields consists in applying them to

determine the LC of the stream function. As the velocity is 1
always tangential to the contour lines of the stream function EX)=—F——= (29
in the incompressible flowl), the time variation of the La- (1+r9/2n\7)

grangian stream function is determined only by the explicit 2 2. o . ) )
time  dependence d¢(x(t),t)/dt=ah(x(t),t)/at and wherer “=x“+y<. This function ensures an amplitude of the

its Lagrangian correlation isL 4(t)=((0,0)$(x(t),t)) velocity fluctuat|onV=\/Ei_i(0,0)z,Bl)\, as in Eqs.(3). We

= B2exp(—t/7), independent of the space factf(x) in the takep=0.85_ to have a taﬂ of ?he co_rrelauon similar to that
Eulerian correlations and df. It is easily shown that the considered in the numer!cal _Slmulatlo'[‘&,l?g. A study of
decorrelation path model reproduces this property. Using thE'e® dependence of the diffusion coefficientromill be pre-
conditional probability density for the stream function value S€nted later. The Hamiltonian of the decorrelation p&2is

& at the point(x,t) when the conditior(16) is imposed, the P&comes

average Eulerian stream function is determined as /

H()= p-—>
d t - 2 N 2
W_'_p)g(x)ex%_r_ ] (28) (1+r /2n)”\ 1+r4/2n
C

and using the invariance dfi(x) along the decorrelation
The average stream function on the decorrelation trajectoryrajectories, the system of equatiof®9) can be written as
is obtained by replacing by the space decorrelation trajec-
tory in this equation. Since the Hamiltonig2il) is a constant dr 1 X
of the motionH (X(t),Y(t))=H(0,0)=p and noting that, by dr  1im2omni iR
definition, Bup= ¢°, one obtains T (1+RY2n)

(30
<¢(Xat)>|¢>0,v025u

(32)
Y=—p(1+R?%2n)[(1+R?%2n)"—1],

whereR(7) = VX?(7)+ Y?(7).

The LC of the stream function is determined by using an The decorrelation pathé81) are presented in Fig. 1 for

approximation equivalent to Eq23): sevgral subensembles labeled by the values. @fll decor-
relation paths are closed curves except the pathpfe0,
which is the straight line along’. The sizeR ., of the paths

L¢(t)sJJd¢°dv°Pl(¢°)Pl(v°)¢°<¢>(x(t),t)>|4,0,\,0, grows continuously when the absolute valuepalecreases.

It can be approximated &&,,,=2/|p| when|p|>1 and as

which givesL 4(t) = B%exp(~t/7,), as it should. We note that R, (2n) (" D@ ]~ 1 when|p| < 1. The decorrela-

the Corrsin approximation reproduces this result only in thelion trajectorieqresulting from the numerical integration of

limit of small Kubo numbers. At high Kubo numbers this Eqg. (20)] are periodic functions ofr=Kut (except forp

t
waammww=ww4—2)
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0.8

06} |

0.2

FIG. 2. LC forK=0.2 (starg and 10(circleg as a function of
Kt, compared to the two factors in E€4). At smallK the LC is 0sk
close to exptt), while at largeK it has the shape dB(Kt).

=0). This shows that in the two-dimensional incompressible ~ *°[
velocity fields the space decorrelation cannot be producec
[practically all decorrelation trajectories are of tyfte] and

a subdiffusive behavior is expected in the static cage

— o0, This is a representation of the topology of the real flow
that is characterized by a vortical moti¢eddies.

The correlation of the Lagrangian velocity components is
calculated according to Eq&4) and (25) using the decor- 0 T o~ >
relation trajectories. Two time factors compete in determin- )
ing the shape of the Lagrangian correlati@4): the expo- 02 , , , , . , , , ,
nential that accounts for the explicit time decorrelation and ,, © 02 04 06 08 /o 12 1 :
the functionG(Kt), which is determined by the Lagrangian

nonlinearity. This function is calculated numerically and is  FIG. 3. LC(a) determined by the decorrelation path method and
presented in Fig. 2. The functioB(6) has a positive part (b) calculated from the numerical simulations = 160 (continu-
(with a maximum atf#=0) that decreases to zero 6§, ous lineg and 4 (dashed lines

followed by a negative minimum &, and by a very long

negative tail. Th_e positive and_ negative parts have equal agive minimum att,,= 6,,/K. A direct comparison of the LC
eas so that the integral &(0) is zero:

- 041

[Eq. (24)] with the results obtained in the numerical simula-
tion [12,17] cannot be performed because the latter are ob-
Jme(e)dazo 32) tained with a nonstationarfpscillatory) field energy. More-

0 ' over, the EC resulting from the wave number spectrum

considered there is a very complicated function: It is not
This property can be deduced analytically. The functionaxisymmetric and has a large number of maxima and

G(0) is a representation of the space structure of the stocha#ginima. However, as seen in Fig. 3, there is good qualitative
tic stream function: It is determined by the space correlatiorigreement between the two results. Figu@ resents the
&(X). Actually, for the particular case of two-dimensisonal LC calculated for two values of the Kubo numijene in the
incompressible flows, the general shapeg#) is the same  honlinear regime K=160) and the other in the transition
for all correlations(being the consequence of the incom-zone K=4)] as a function of the scaled varialet. The
pressibility)y and only the detailge.g., the values o8, and  numerical LC for the same values kfis shown in Fig. 8b).
0,,) depend ore(x). One can see that in both cases the zero and the minimum of
At small Kubo numbers the exponential factor prevailsthe LC scales as K/, suggesting that the general expression
[G(Kt)=1 in the range where the exponential is signifi- of the LC[Eq. (24)] is correct. The oscillations observed in
cantly different from zerb The decorrelation is temporal Fig. 3(b) on the tail of the LC are probably determined by the
and L, (t)=(B/\)?%exp(t/7). The nonlinear factoG(Kt) complicated shape of the corresponding EC, which has many
becomes decisive at high Kubo numbers, where it provides maxima and minima.
time variation faster than that of the exponential factor. The The largeK numerical simulations of particle trajectories
Lagrangian correlatioh,,(t) atK>1 has a shape similar to show that during their evolution the particles are temporarily
G(Kt), but with the negative tail more attenuated because ofrapped on almost closed, small size paths for durations long
the exponential factor. It has a zerotgt= 6,/K and a nega- enough for performing a large number of rotations. Such
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FIG. 4. Time-dependent running diffusion coefficient obtained
with the decorrelation path methddontinuous ling and with the
Corrsin approximatioridashed ling

FIG. 5. Asymptotic diffusion coefficient as a function of the
Kubo number compared to the quasilinear and percolation scaling.

] tant differences appear. The Corrsin diffusion coefficient
trapping events appear around the extrema of the streaglows continuously and saturates while the decorrelation
function, while long displacements are performed when theath diffusion coefficient decays after reaching a maximum
particles are moving at small absolute values of the streamand finally saturates. This clearly shows that the diffusion is
function. Our model gives an image of this rather compli-partly hindered due to trapping. The effect of trapping ap-
cated trapping process that is actually contained in the Lapears at times large enough so that the particles can explore
grangian correlatiori24). The shape of the nonlinear factor the stochastic stream function.

G(0) is determined by a selected contribution of the various The K dependence of the asymptotic diffusion coefficient
paths(i.e., subensemblgsThe small paths with a large value (27) obtained for the Eulerian correlati¢@9) is presented in
of |p| (i.e., of the stream functiofp®|) contribute only atthe Fig. 5. After the smalK quasilinear regime, a slower depen-
peak ofG(6) at 6=0. At later times, since these trajectories dence on Kubo number is observed. TKedependence of
perform a large number of rotations, their contributions canihe diffusion coefficient is weaker than in the Bohm scaling
cel by an incoherent mixing in the integral overThe nega- (confirming the presence of trajectory trapping in our
tive tail of G(6) results only from the contributions of the M0de). The diffusion coefficient can be approximatedias

— 2 0.64 H H
large paths corresponding tp|<1. When there is no time ~ 0-81877c)K™™. As seen in Fig. 5, the results of our
variation of the stochastic stream function.{«) the model are close to the percolation scaliig] for a large

e o e _ range of the Kubo number froti=1 to K=100 000. Con-
asymptotic d'foS'F’” coefﬂment s zerd f,OG(a)d_efO' sidering the values df <10 as in the numerical simulation,
and the process is subdiffusive. A slow time variation ( the maximum relative difference between our results and
>1 orK>1) produces the attenuation of the negative tail ofiheir fitting with the percolation scaling is about 10%.

G(0), thus the elimination of the large paths contributes to  As these results were obtained for a particular choice of
the Lagrangian correlation, in other words, the decorrelationhe EC of the stochastic stream function, a natural question
of those trajectories. A nonzero diffusion coefficient resultshas to be addressed: Does the diffusion coefficient and its
from this release of the large size trajectories. Actually, thescaling inK depend strongly on the shape of the EC or does
diffusion is produced only by the latter trajectories and notit possess invariant features resulting from the qualitative
by the small ones whose contribution is not affected by theanalysis based on percolatiph0]? In order to answer this
time decorrelation: Eddying regions, associated with thequestion we have studied the dependence of the diffusion
maxima of the stream function, continue to exist. When thecoefficient on the tail of the EC represented by the parameter
time variation becomes fast{<1 orK<1), all trajectories n entering Eq.(29). The diffusion coefficients obtained for
are decorrelated and the functi@ does not influence the n=0.85, 1, 1.5, and 2 are presented in Fig. 6. One can see
diffusion coefficient. Thus the two factors evidenced in thethere a decrease of the diffusion coefficient within the
Lagrangian correlatio24) have a clear physical interpreta- highK regime, but the dependence is weak. The expongnts
tion. The nonlinear tern® describes the trapping of particles of the Kubo number scalingX~K?) obtained for these val-
near the extrema of the stream function while the linear facues ofn are y=0.64, 0.62, 0.55, and 0.50. Thus the decor-
tor exp(~t/7,) accounts for the trajectory release. The La-relation trajectory method does not predict the invariance of
grangian correlation, and consequently the diffusion coeffithe diffusion coefficient on the shape of the Eulerian corre-
cient, results from the competition between trapping andation. However, we can say that the dependende (&) on
release processes. the EC of the stochastic stream function is not str@nghe

The trajectory trapping is also evident in the running dif- range ofK where the numerical calculations have been per-
fusion coefficient. Figure 4 represents the functidft) cal-  formed, namelyK <10?).
culated with the space decorrelation method, &), and It should be noted that the decorrelation path method has
with the Corrsin approximatiof). One can see that impor- several variants. This means that several sets of determinis-
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FIG. 6. Dependence @ (K) on the parametar. n=0.85(con- FIG. 7. Comparison of the variants of the decorrelation trajec-
tinuous ling, n=1 (dashed ling n=1.5 (dash-dotted ling andn tory method: space decorrelation conditioneddfyv® (continuous
=2 (dotted line. line); space-time decorrelation conditioned &{,v° (dotted ling;

space decorrelation conditioned y (dashed ling and space-
tic, fictitious trajectories that describe the dynamics of thetime decorrelation conditioned by® (dash-dotted line
decorrelation process can be defined. Although they ar . . . . .
rather different, they lead to compatible results, showing thal he space deggrrela‘uon ”alecﬂ? ries are deter.mme(.:i in suben-
the decorrelation path method is strong and robust. A possﬁembIeS C_O”d'“oned by((_),t) =V All these trajectories are
bility is to use, instead of the space decorrelation trajectoriesmc type (b): They are stralght lines along’ and the vglocny.
the space-time decorrelation trajectoriewhich are defined decays to zero as__>oo_ Using the same approximation as in
starting from the subensemble average velo¢it§), not Sec. IV, one obtains the LC
from its space-dependent factor as in Etp). Another pos-

2 o 2

sibility is to consider a different class of subensembles de- Lii(t_)gi E) exp( _t_)J' dvv3exr{ _v ;2
termined by the conditiorb(0,0)= ¢° instead of Eq(16). 2\ \ 0 2 1402
This is rather natural since the statistics of the stream func- 2 ¢
tion determines completely the statistics of the velocity field. (34

Both space and space-time decorrelation trajectories can be _
determined in these subensembles. A description of theshere&=§(Kt,v) is the dimensionless space decorrelation
variants of the decorrelation path method and a comparisotiajectory, which in this case is the solution of the algebraic
of their results are presented in the Appendix. All theseequationé+ (v2/6)¢3=Kt. The LC is positive at all times,
methods provide approximations for the LC and for the dif-showing that the trapping on closed trajectofittee eddies
fusion coefficient(see Fig. 7, but, according to the discus- does not play a role in this case. Also the exponguff the
sion presented in the Appendix, the space decorrelation tra<ubo number scaling is no longer subunitary. We have ob-
jectories in the subensembles with fixed stream function anchined herey=1.34. Changing the EC space dependence
velocity (Sec. I\) appear to give the better approximation. (33) to 1/(1+r"/\"), it can be shown that the exponent
We finally note that all the results presented here are geevolves fromyg =2 whenn—0 to yg=1 whenn—o. The

neric for the two-dimensionalincompressiblestochastic results are thus completely different from those obtained for
flows that appear to be characterized by a process of temp@ne incompressible flow.
ral trapping of the trajectories around the extrema of the

stream function. However, the decorrelation trajectory VI. CONCLUSIONS
method can also be used for other types of problems. In ,
order to illustrate this statement we consideraanpressible We have presented a method, the decorrelation path

two-dimensional flow. It is described by the same LangevinmethOd; by which to study particle diffusion in two-
equation(1), but a stream function cannot be introduced indimensional Gaussian incompressible stochastic velocity
this case. Thus the statistics of the velocity field should bdi€lds: This method is able to describe the complex process
specified: we consider a two-dimensional Gaussian velocit® diffusion and intrinsic trapping in the structure of the sto-
field that is stationary, homogeneous, and isotropic. The EEhastic velocity field. We have introduced the concept of

of the velocity components is modeled by decorrelation trajectories that are determined from the Eule-
rian correlation of the stochastic field and describe the dy-
t namics of the
E x(X,1)= Eyy(x,t):VZTex;{ - —), decorrelation process. The Lagrangian correlation of the ve-
1+re/2n Tc

locity is approximated using the correlations observed along
(33)  these fictitious, deterministic trajectories. We have obtained
Exy(X,1)=0. a general structure of the L{Egs. (24) and (25)], which
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shows that the effective diffusion results from a competitionwhereF is the same function as in E(R7). Although these
between trapping and release processes. In a frozen incoraxpressions are different from those obtained with the space
pressible velocity field, the trapping is permanent and thelecorrelation trajectorig&€qgs.(24), (25), and(27)] the quan-
particle evolution is subdiffusive. A weak time dependencetitative results are similar. The two diffusion coefficiehs’

of the stochastic velocity field>1) produces the escape from Eg.(A3) andD from Eg.(27)] are the same at sma{l

of a part of the trajectories, namely, of those correspondingnd have the same scaling khin the highK regime. One

to the small absolute values of the stream function, and thean show analytically thad’>D whenK is of order 1 and
effective process becomes asymptotically diffusive. We hav®>D' when K>1, but the differences are not largsee
obtained a scaling of the diffusion coefficient with the Kubo Fig. 7). Thus both methods provide compatible approxima-
number that is close to the numerical results and also to théons for the diffusion coefficient. However, a qualitative
percolation scaling. The decorrelation path method is a stacomparison of the LGA2) and(24) with the LC determined
tistical approximation that yields results in agreement withfrom the direct numerical simulation of particle trajectories
the percolation scaling. Our tests show that this approximafFig. 3(b)] shows that the results obtained with the space
tion is rather strong and robust and that it could be used in decorrelation trajectories are better. Equati@4) deter-

large class of problems. mines a 1K dependence of the zero and of the minimum of
the LC at intermediate and large valueskofis observed in
APPENDIX: OTHER APPROXIMATIONS the numerical simulatioifsee Fig. 3. The space-time deco-

) . . rrelation result{A2) does not have this property.
We present here other variants of the decorrelation trajec-

tory method. They lead to rather different expressions for the
diffusion coefficient, but the quantitative results are not very
different. This shows that the decorrelation trajectory method The stream function fielgh(x,t) determines the two com-

is rather powerful and robust. A comparison of the results igoonents of the velocity field and its statistics determines the

2. Stream function conditioning

presented in Fig. 7. statistics of the velocity. Consequently, the values of the
stream function could be sufficient as a condition for deter-
1. Space-time decorrelation mining the subensembles in the decorrelation path method.

) ) . Indeed, a variant of the method can be constructed by elimi-
~ We have defined in Sec. IV the space decorrelation trapating the initial velocity in the conditioi16). The condi-
jectories as deterministic trajectories that describe the dyﬂonally averaged velocity is

namics of the space decorrelation in each subensethble

They are determined by the space dependence of the EC of o de(r) t
the stream function field, i.e., by the wave number spectrum. (VXY go=0, (vs(X,0)|g0=¢ ar R~
It is also possible to determine another class of deterministic, C(A4)
fictitious trajectories, which will be callespace-time decor-
relation trajectories They are solutions of where the polar coordinates, ) for x are introduced. This
dxX' () determines particularly simple equations for the space decor-
o — (VX (1), D) go.0. (A1) relation trajectories:
dR do 0 d&(R)
The subensemble average velocity on the right-hand side of G0 Rgr=Ke g (A5)

this equation is given by Eq(18). All these trajectories

asymptotically saturate and the velocity along them goes tThey show that the decorrelation paths are concentric circles
zero. They essentially determine the distance traveled in eaciround the origin. The trajectory corresponding to the initial
subensemble before the time decorrelation takes place. In th@ndition X(0)=0 is trivial [ X(t)=0], so we need to con-
time variabler’ =Ku[1—-exp(-t/7)], Eq. (Al) is the same sider nonzero initial conditions and integrate over the space.
as Eq.(20) and the space-time decorrelation trajectoX€s A measure has to be introduced in this integral: We assumed
can be expressed in terms of the space decorrelation trajeg-to be the probability that a given point is on a contour line
tories X as X'(t) =X{Ku[1—exp(—t/7)],p}. The paths are of ¢(x,t) that has the linear sizR. This is estimated ifi10]

the same, but for the trajectoriés(t) the period of winding  asP(R)~ 1/R? for largeR. One obtains the LC

around these paths increases continuously in time; eventually

the trajectories stop. Approximating the LC of the velocity (B 2 t
components by means of the subensemble average velocity Lyx(t)= N Gy(Kt)exg — 7o) (A6)
alongX’(t) as in Eq.(23), one obtains after straightforward
calculationsLi’j ()=a;L (1), where where
,8)2 [ F{ t ] 4 t ) 1 (= 5/2 5/2 5/2
L'(t)=|+—| G{K|1—exp ——||{exp ——| (A2 =_ —|1- —¢? - —¢?
(t) ()\ = ™ (A2) G4(0) 2foolRR 1 Rza ex 2R20 :
and the asymptotic diffusion coefficient (A7)
9 Gy(0), like G(0) [see Eq25)], has a negative tail and a
D'(K)= )\—F(K)K, (A3)  Vanishing integral oves. Also it shows that for largeKt
Tc only the large paths contribute in the LC.
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Alternatively, we can determine the space-time decorrelaAlthough this method has the advantage of very simple cal-

tion trajectories in the subensemblé€ (as in Sec. 1 of the
Appendix and the LC results as
fosl -2
exp ——|.
Tc

|

l-—expg — —

Tc
(A8)

Figure 7 shows that both EqéA7) and (A8) determine

2
c;xmz(@ G¢{K

culations, it needs external informatidthe measure for the
space integration The conditioning by both stream function
and velocity eliminates this problem.

The conclusion of this discussion is that the idea of using
a set of deterministic, fictitious trajectories determined from
the EC of the fluctuating field provides a rather strong
method for determining the LC and the diffusion coefficient.
Several sets of such decorrelation trajectories determine
compatible results. The space decorrelation trajectories in the

diffusion coefficients that are not very different from those subensembles with fixed stream function and velot&gc.
obtained from the stream-function—velocity conditioning.|V) appear to give the better approximation.
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