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Zigzag and Eckhaus instabilities in a quintic-order nonvariational Ginzburg-Landau equation

R. B. Hoyle
Department of Applied Mathematics and Theoretical Physics, Silver Street, Cambridge CB3 9EW, United Kingdom
(Received 4 June 1998

A nonvariational Ginzburg-Landau equation with quintic and space-dependent cubic terms is investigated. It
is found that the equation permits both sub- and supercritical zigzag and Eckhaus instabilities and further that
the zigzag instability may occur for patterns with wave number larger than criticaD], in contrast to the
usual case.S1063-651X98)02712-3

PACS numbegp): 47.20.Ky

I. INTRODUCTION in terms of the original roll solution giving
. . . _ ix(sin 6—1)+iy cos f,ix
Striped patterns, from convection rolls to sand ripples, are u=A~Aqe e’+c.c. (4)
alqt_mdant in nature. The basic cellular pattern sets in abovese‘nCe the environment is isotropic, neithey nor the ampli-
critical value of the external stress at a favored Wavelengtl?

: ude equation governing its evolution can dependoso we
selected by the system. Close io onset, the pattern is mOd.Hiust have a combination of derivatives that acts on

lated on long space and time scales, as described by varigr sin 9-1)+iy cos 1 give zero. The combination,— Li(dyy

tions in its complex amplitude. In a two-dimensional isotro- 1 9y satisfies this requirement. However, the teri dxy

gfcgglilr:gntrgfaé’ g]ii;‘bTJEg“-ttgﬁ(;:ufse%ﬂ:iisﬁpecwd © eVOIVPTs higher order than the other terms and so is omitted.

The amplitude equation was derived in the one-
A= pA—|AI2A+ (dx— Lidyy)?A, (1) dimensional case by Eckhaus an_d lop&ks It contrasts with
the more usual form of the amplitude equat{dn2], where
derived by Newell and Whitehedd] and Sege[2]. How-  the coefficient of the cubic term is of unit order at onset.
ever, in some cases the coefficient of the cubic term is smallhere is no Lyapunov functional for the present amplitude
at onset, so the expansion can no longer be truncated at cutguation and the system is nonvariational. At=0 the
order and must include higher-order terms, leading to thdrivial solutionA=0 undergoes a pattern-forming instability.

equation Close to onset, the scalings ape~0O(€?), A~O(e*?),
dlaX~0(€), alaY~0(e¥?), a~0O(e), B, and y~0O(1),
A= uA+ | AIPA—|Al*A+i BAZ(dy+ Lidyy) A with |e|<1.
. ) . The amplitude and wave number of stationary roll solu-
+iy|AP(ax—zidyy) A+ (dx—3idyv)?A. (D tionsA=R,e%%, with R, andq real constants, are related by
This equation is relevant to binary convection at small Lewis O=pu-— q2+{a+ (B— y)q}R%— Rg‘. (5)

number(3,4]. In contrast to the usual equatidh), the am- . _ _ . .
plitude equation(2) is nonvariational. The stability of roll Making the perturbatio=R,e'%*(1+a) with |a|<1 gives

solutions in the one-dimensional version of this equation . 2 . 1
(6y=0) was investigated by Eckhaus and lopgk ar=aRg(a+a)—~2Ry(a+a)+2iq(dx—zidvv)a

The body qf this paper |nvest[gates the stabll!ty to long- +(dx— Lidyy)2a+(B— y)ng(aJra)
wavelength disturbances of stationary roll solutions of the
nonvariational amplitude equati¢®), determines the sub- or +iBR3(dx+ 3idyy)a+iyR(dx—3idyy)a.  (6)
supercriticality of the bifurcations, and illustrates the behav- o )
ior with numerical simulations. Considering long wavelength perturbatiojns, ,dy~0(9),

|6]<1], the amplitude perturbatioraa) evolves accord-
IIl. PHASE INSTABILITIES ing to

The leading-order amplitude equation for roligx,y,t) (at+a)r=2[{a+ (B~ y)q}R5—2Rs](a+a)+O(&?).

=A(X,Y,T)e*+c.c. in a homogeneous, isotropic two- @)

dimensional environment in the case where the coefficient 0§, the rolls are amplitude stable when

the cubic term is small at onset is H&) above. The param-

etersu, a, B, andy are real constants. The equation is equi- R3> 1 a+(B—y)q}, 8
variant underx reflection X— —X,A—A) andy reflection
(Y——Y). Isotropy of the environment requires that the de-
rivatives occur in combinations oB¢— 3idyy)A [5,6]. This
last point is made clear by expressing rolls at an amgle

as found by Eckhaus and loog3.

A. Eckhaus instability

o The phase behavior can be divided into Eckhaus and zig-
u=A exsinbriyeostycc (3)  zag parts. If the perturbaticais dependent oX and T only
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there is an Eckhaus instability with the phase perturbation

0.6

(a—4a) behaving according to the equation CaflEREERERRERRERREREE
. . L 02 -
(a—a)1=Cy(axx—axx) + C2(Axxxx— axxxx) +O(8°), ook
(9) —0:4,:;_-.‘;_r..;:.v;:,
-0.6
Where 0 20 40 80 80 100 120 0 20 40 80 80 100 120
X X
[29+(B+¥)Rsl[29— (B— V)R] (©) (d)
c=1+ 0 , —> (10 D W CYn. S0 (W o Vo
[2(a+ (B~ v)DR;—4Ry] 0.8F
< 0.6 ] < 06F
(1_01)2 0.4} ] 0.4F
Co= ) (11) 0.2f ] 0.2}
® [2(a+(B—7)DRG—4Rg]
0 20 40 B0 80 100 120 0 20 40 680 80 100 120
J— : . X
Settinga—a=.4e’" "X where A is a constant, shows that X
the Eckhaus instability occurs when FIG. 1. Numerical simulation of the evolution of the supercriti-
) ) cal Eckhaus instability. The initial roll state has=1.0 andR,
[29+(B+v)R3I[29— (B~ v)RG] =0.5 and the parameter values ate=0.8125 anda=pB=y
[2{a+(B— y)q}R2—4R4] 0, (12) =1.0. The realsolid line) and imaginary(dotted ling parts of the
0 0 amplitudeA are plotted at time&a) T=0.0, (b) 2.0, (c) 4.0, and(d)
as found by Eckhaus and 10058 200.0.
Close to onset, the phase equation for the Eckhaus insta- ) )
bility is given by slips in the pattern, whell| =0 and the phase is undefined.
Here the supercritical Eckhaus instability creates no defects
1= C1Dxx+ CoDxxxxt g(¢§<)x, (13 as the pattern evolves towards a flat staje=Q) since the

constant flat component of the solution grows faster than

where ¢=(a—a)~0(5), ¢;~0(5%), cp, andg~O(1),  defects are formed by the Eckhaus instabili§jg. 1). The
dx~0(9), ar~0(8%), and|5]<1. The form of the nonlin-  Eckhaus instability leads to flattening of the solution by in-
ear term is given by the scalings and the requirement that thgreasing the pattern wavelendthig. 1(d)]. The numerical
equation should be equivariant undereflection X— —X, integration of Eq(2) shown in Fig. 1 was performed using a
¢— —¢) andy reflection (Y ——Y,p— ¢). pseudospectral code and periodic boundary conditions. The

The coefficieng of the nonlinear term can be found using condition 9,=0 was enforced by integrating the one-
Kuramoto’s method[8]. Setting =X+ ¢ in the phase dimensional version of the equation.
equation(13) gives

Br=(C1+20T) Pyx+ Codbyxxxt 9( B2y .

$1=(C 290 byt Codroooct 9(dx)x (149 In the zigzag instability where the perturbation varies only
However, this is equivalent to lettirgy— q+7t, which would  in the Y direction, the phase perturbation evolves according
give the coefficient ofyy a value ofc,+q(dc,/dq) to  t© the equation

B. Zigzag instability

leading order. It is then possible to ident'rj]yz%(gclldq). (a—ajr={q+i(B+ )R2 (Ayy—ayy)
Substituting the expressionp=a(T)e'*X+b(T)e?kX At (s 7_0} vy
+c.c. into the phase equatidh3) leads to evolution equa- —z(ayyyy= ayyyy. (16)

tions fora(T) andb(T). A linear analysis of th@ equation
shows that the Eckhaus instability sets in fgrck?c,=c,,
and then solving fob and substituting back into theeequa-

Instability sets in fof{q+3(8+ ¥) R§}<0. In contrast to the
usual case, the zigzag instability can occur §o#0 if (8

tion leads to an expression +7)<0 andg<-— %_(B+ ¥)R3. In this case the mechanism
is expected to be different from the usual one where rolls at
A1 (€17 Ce)(Cr—4Cy) too long a wavelengthq<0) saturate into bends that de-
|a]*= k2g? 19 crease the wavelength.

The instability boundarng=—3(8+ ) Rﬁ is a parabola
for the amplitude of stationary solutions. Thus, >0,  in (u«,q) space:
|a|? is positive forc,—c,<0, i.e., in the region of linear

instability, so the bifurcation is supercritical, whereas for . q
c,<0, |a|? is positive forc;—c,>0 and the instability is K= (B+7)? {2a(B+y)+al4+ (3= 1(B+ ]}
subcritical. (17)

In the amplitude stable region, the coefficientis nega-
tive [Eq. (8)], so the instability is subcritical, whereas in the However, because for givem andq there can be zero, one,
amplitude unstable region, the coefficiantis positive and O two corresponding values &, only certain segments of
the instability is supercritical. In the usual real Ginzburg-the parabola act as stability boundariese Fig. 2 Depend-
Landau equatior(1), rolls are amplitude stable whenever ing on the parameter values, the zigzag curve can interact in
they exist and the Eckhaus instability is always subcriticalmany different ways with the neutral curye=g® and the
adjusting the wavelength of the pattern by creating phaseaddle-node curvg.=q?— 3{a+ (8- y)q}? which marks
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FIG. 2. Zigzag stability diagram for the case where there is
strong rejection of patterns by the zigzag instabilify— (8
—79)2>0, >0, and 8<0. The parameter values af=—1.0, : .
y=—0.5, ande=1.0. The solid line is the neutral curye= g2, the 20 N
dotted line is the saddle-node curve, and the dashed line is the 5| : U con
zigzag instability boundary. In the lightest shaded region, there is ) ?ﬂﬂ DO L o Aty vﬂﬂﬂ ( ‘
one roll solution at each poing(u) and it is stable to the zigzag 0 10 20 30 40 50 60 0 10 20 30 40 50 60
instability. In the second lightest region, there is one solution and it X X
is zigzag unstable. In the second darkest region, there are two SO- g1, 3. Numerical simulation of the evolution of the zigzag
lutions at each point and they are both unstable to the zigzag instgagiapility in the subcritical case for rolls at larger than critical
bility. In the darkest shaded region there are two solutions and the%avelength. The initial roll state hag= —1.0 andRé=1.0 and the
are both zigzag stable. In the unshaded region there are no roﬂarameter values arg=0.5, @=—1.5, B=—0.75, andy=2.25.
solutions. Note that for the range of between the two straight  Thg reql part of the amplitudé is given as a contour plot at times
dotted lines,u,=—a®/[4—(B=)°]<u<—a’l[4+(3B-N(B (3 T=0.0,(b) 6.0,(c) 12.0, and(d) 20.0,
+7v)]=w-, all roll solutions are unstable to the zigzag instability.
This is strong rejection of patterns.

> 30

.
3,
Y
&

(@}

$r=(Ca+p?h) byy— 3 byyyy. (19
the boundary between real and complex valueﬁg)f The o ) . ) )
latter two curves are drawn for various parameter values ifioWeVer, this is equivalent to tilting the roll SOIU“?” ;"th'y
Fig. 3 of Eckhaus and 100¢3]. The zigzag curve is tangen- (© obtain a new roll solution with wave numbgrt zp<, in
tial to the saddle-node curve af=—a(B+ y)/{4+(,32 which case the coefficient oféyy would be c4

— 72)}, When[4—(B—7)?]>0, >0, andB<0, thereisa + %pz(dc3/dq) to leading ordef9]. Hence it is possible to
range of values ofu, — a2/[4—(ﬂ— 7)2]<,u< —a2/[4 identify h= %(ng/dq). If h>0, the nonlinear term is stabi-
+(3B—7y)(B+7)], for which roll solutions cannot be lizing, in that it makes a positive contribution to the effective
stable to the zigzag instability. Eckhaus and lop&sfound  diffusion coefficient, so the instability is supercritical,
a similar phenomenon for the Eckhaus instability and termedvhereas ifh<0 the nonlinear term is destabilizing and the
it “strong rejection of patterns”; here then is a “strong re- instability is subcritical. The coefficierit can be found ex-
jection of patterns” by the zigzag instability. The stability plicitly to be

diagram is given in Fig. 2 for a case where there is strong

rejection. Note also from the figure that where a roll solution dF\%

with g>0 is unstable to the zigzag instabilitin the second h=3+z(B+7) dq (20
lightest shaded region, for exampleis possible that there is

a stable roll solution with an even greater valuegadt the
same value of the forcing. Thus the zigzag bending of the
rolls, which leads to a shorter wavelength, might in fact sta-
bilize the pattern as it does in tlge<0 case where the rolls

are at a wavelength longer than critical. o Figure 3 shows a numerical integration of EB) using a
The nonlinear phase equation close to onset is given bypseudospectral code with periodic boundary conditions in
both directions. The initial state is a roll solution at negative
H1=C3dyy— L byyyyt hdZdyy, (18  wave number <0) with random noise added and is stable
to Eckhaus and amplitude modes, but unstable to the sub-
critical zigzag mode. The real part of the amplitudeis
contoured at various times during the integration showing
. . the evolution of the subcritical zigzag instability. Disloca-
=Y. 9). Thez appropriate scalings an@r~o_(54), tions are formed in the pattern during the evolution from the
dy~0(9), €3~ 0(57), ¢~0(1), andh~O(1). Setting¢  jyitia| ynstable roll state. As can be seen from the left-hand
=pY+ ¢, substituting into the phase equati¥8), and lin-  sjde of the domain in Fig. (@), the pattern evolves towards
earizing in¢g gives rolls at a smaller value dfg|. Sinceq is negative, this cor-

[29—(8—y)R3]

Turary

=3+3(B+ 7R}

where c;={q+ 3(8+ y)R3}. The equation is equivariant
underx reflection X— —X,¢p— — ¢). andy reflection (Y
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and unstable to the supercritical zigzag mode. Again the real
part of the amplitudé is contoured at various times during
the integration. The zigzag mode appears almost immedi-
ately at various points in the integration domain and diffuses
along the roll axes until the entire domain is covered. The
pattern finally develops patches of wiggldsg. 4(d)]. This
contrasts with the usual case where the wave number is
smaller than critical §<0) and the pattern saturates in an
obliqgue mode at a larger wave number. With the parameter
values of the numerical integrationv& 1.0, 8= y=—2.0,

and u=0.25), there is one stable and one unstable roll solu-
tion in the range & q<(1+ +/6)/5. The initial pattern is an
unstable roll solution in this range, but there do exist stable
roll patterns with higher values af. It is possible then that
the patches of wiggles are stabilizing.

[ll. CONCLUSION

The phase instabilities of the nonvariational Ginzburg-
Landau equation with quintic and space-dependent cubic
terms(2) show interesting features. The Eckhaus instability

FIG. 4. Numerical simulation of the evolution of the zigzag IS subcritical where roll solutions are amplitude stable and
instability in the supercritical case for rolls at smaller than critical SUpercritical where roll solutions are amplitude unstable. The

wavelength. The initial roll state has=0.5 andR§=1.0 and the
parameter values age=0.25,a=1.0, andB=y=—2.0. The real
part of the amplitudéA is given as a contour plot at timdéa) T
=0.0, (b) 2.0, (c) 6.0, and(d) 60.0.

supercritical Eckhaus instability is unusual and arises be-
cause the amplitude instability causes a nonzero flat compo-
nent of the solution to grow sufficiently fast that the Eckhaus
mode evolves without causing phase slips.

The zigzag instability can occur not only for rolls with a

responds to a shorter wavelength overall. The formation ofonger than critical wavelengtlg&0) but also for rolls with
defects is a result of the subcriticality of the instability anda wavelength shorter than criticaj¥0). This seems coun-
contrasts with the phase diffusion that occurs in the moreerintuitive since the zigzag bending mode acts to decrease

usual supercritical case.

the wavelength. However, in this system it can happen that

Figure 4 shows the results of a numerical integrationrolls at even shorter wavelengthigher q) are stable. Fur-

where the initial roll wave number is positivg$ 0) and the

ther, the zigzag instability can be subcritical, creating defects

initial roll state is stable to Eckhaus and amplitude modesn the pattern, in contrast to the usual supercritical case.
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