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Zigzag and Eckhaus instabilities in a quintic-order nonvariational Ginzburg-Landau equation

R. B. Hoyle
Department of Applied Mathematics and Theoretical Physics, Silver Street, Cambridge CB3 9EW, United Kingdom

~Received 4 June 1998!

A nonvariational Ginzburg-Landau equation with quintic and space-dependent cubic terms is investigated. It
is found that the equation permits both sub- and supercritical zigzag and Eckhaus instabilities and further that
the zigzag instability may occur for patterns with wave number larger than critical (q.0), in contrast to the
usual case.@S1063-651X~98!02712-3#

PACS number~s!: 47.20.Ky
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I. INTRODUCTION

Striped patterns, from convection rolls to sand ripples,
abundant in nature. The basic cellular pattern sets in abo
critical value of the external stress at a favored wavelen
selected by the system. Close to onset, the pattern is m
lated on long space and time scales, as described by v
tions in its complex amplitude. In a two-dimensional isotr
pic environment, the amplitude is usually expected to evo
according to the Ginzburg-Landau equation

AT5mA2uAu2A1~]X2 1
2 i ]YY!2A, ~1!

derived by Newell and Whitehead@1# and Segel@2#. How-
ever, in some cases the coefficient of the cubic term is sm
at onset, so the expansion can no longer be truncated at c
order and must include higher-order terms, leading to
equation

AT5mA1auAu2A2uAu4A1 ibA2~]X1 1
2 i ]YY!Ā

1 iguAu2~]X2 1
2 i ]YY!A1~]X2 1

2 i ]YY!2A. ~2!

This equation is relevant to binary convection at small Lew
number@3,4#. In contrast to the usual equation~1!, the am-
plitude equation~2! is nonvariational. The stability of rol
solutions in the one-dimensional version of this equat
(]Y50) was investigated by Eckhaus and Iooss@7#.

The body of this paper investigates the stability to lon
wavelength disturbances of stationary roll solutions of
nonvariational amplitude equation~2!, determines the sub- o
supercriticality of the bifurcations, and illustrates the beh
ior with numerical simulations.

II. PHASE INSTABILITIES

The leading-order amplitude equation for rollsu(x,y,t)
5A(X,Y,T)eix1c.c. in a homogeneous, isotropic two
dimensional environment in the case where the coefficien
the cubic term is small at onset is Eq.~2! above. The param
etersm, a, b, andg are real constants. The equation is eq
variant underx reflection (X→2X,A→Ā) and y reflection
(Y→2Y). Isotropy of the environment requires that the d
rivatives occur in combinations of (]X2 1

2 i ]YY)A @5,6#. This
last point is made clear by expressing rolls at an angleu,

u5Aueix sin u1 iy cosu1c.c., ~3!
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in terms of the original roll solution giving

u5Aueix~sin u21!1 iy cosueix1c.c. ~4!

Since the environment is isotropic, neitherAu nor the ampli-
tude equation governing its evolution can depend onu, so we
must have a combination of derivatives that acts
eix(sinu21)1iy cosu to give zero. The combination]X2 1

2 i (]YY
1]XX) satisfies this requirement. However, the term2 1

2 i ]XX
is higher order than the other terms and so is omitted.

The amplitude equation was derived in the on
dimensional case by Eckhaus and Iooss@7#. It contrasts with
the more usual form of the amplitude equation@1,2#, where
the coefficient of the cubic term is of unit order at ons
There is no Lyapunov functional for the present amplitu
equation and the system is nonvariational. Atm50 the
trivial solutionA50 undergoes a pattern-forming instabilit
Close to onset, the scalings arem;O(e2), A;O(e1/2),
]/]X;O(e), ]/]Y;O(e1/2), a;O(e), b, and g;O(1),
with ueu!1.

The amplitude and wave number of stationary roll so
tionsA5R0eiqX, with R0 andq real constants, are related b

O5m2q21$a1~b2g!q%R0
22R0

4. ~5!

Making the perturbationA5R0eiqX(11a) with uau!1 gives

aT5aR0
2~a1ā!22R0

4~a1ā!12iq~]X2 1
2 i ]YY!a

1~]X2 1
2 i ]YY!2a1~b2g!qR0

2~a1ā!

1 ibR0
2~]X1 1

2 i ]YY!ā1 igR0
2~]X2 1

2 i ]YY!a. ~6!

Considering long wavelength perturbations@]X ,]Y;O(d),
udu!1], the amplitude perturbation (a1ā) evolves accord-
ing to

~a1ā!T52@$a1~b2g!q%R0
222R0

4#~a1ā!1O~d2!.
~7!

So the rolls are amplitude stable when

R0
2. 1

2 $a1~b2g!q%, ~8!

as found by Eckhaus and Iooss@7#.

A. Eckhaus instability

The phase behavior can be divided into Eckhaus and
zag parts. If the perturbationa is dependent onX andT only
7315 © 1998 The American Physical Society
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there is an Eckhaus instability with the phase perturba
(a2ā) behaving according to the equation

~a2ā!T5c1~aXX2āXX!1c2~aXXXX2āXXXX!1O~d6!,
~9!

where

c1511
@2q1~b1g!R0

2#@2q2~b2g!R0
2#

@2„a1~b2g!q…R0
224R0

4#
, ~10!

c25
~12c1!2

@2„a1~b2g!q…R0
224R0

4#
. ~11!

Settinga2ā5AesT1 ikX, whereA is a constant, shows tha
the Eckhaus instability occurs when

11
@2q1~b1g!R0

2#@2q2~b2g!R0
2#

@2$a1~b2g!q%R0
224R0

4#
,0, ~12!

as found by Eckhaus and Iooss@7#.
Close to onset, the phase equation for the Eckhaus in

bility is given by

fT5c1fXX1c2fXXXX1g~fX
2 !X , ~13!

where f5(a2ā);O(d), c1;O(d2), c2 , and g;O(1),
]X;O(d), ]T;O(d4), andudu!1. The form of the nonlin-
ear term is given by the scalings and the requirement tha
equation should be equivariant underx reflection (X→2X,
f→2f) andy reflection (Y→2Y,f→f).

The coefficientg of the nonlinear term can be found usin
Kuramoto’s method@8#. Setting f5q̃X1f̃ in the phase
equation~13! gives

f̃T5~c112gq̃!f̃XX1c2f̃XXXX1g~f̃X
2 !X . ~14!

However, this is equivalent to lettingq→q1q̃, which would
give the coefficient off̃XX a value ofc11q̃(dc1 /dq) to
leading order. It is then possible to identifyg5 1

2 (dc1 /dq).
Substituting the expressionf5â(T)eikX1b̂(T)e2ikX

1c.c. into the phase equation~13! leads to evolution equa
tions for â(T) and b̂(T). A linear analysis of theâ equation
shows that the Eckhaus instability sets in forc1,k2c2[ccr
and then solving forb̂ and substituting back into theâ equa-
tion leads to an expression

uâu25
~c12ccr!~c124ccr!

k2g2 ~15!

for the amplitude of stationary solutions. Thus, forc2.0,
uâu2 is positive for c12ccr,0, i.e., in the region of linear
instability, so the bifurcation is supercritical, whereas
c2,0, uâu2 is positive forc12ccr.0 and the instability is
subcritical.

In the amplitude stable region, the coefficientc2 is nega-
tive @Eq. ~8!#, so the instability is subcritical, whereas in th
amplitude unstable region, the coefficientc2 is positive and
the instability is supercritical. In the usual real Ginzbur
Landau equation~1!, rolls are amplitude stable whenev
they exist and the Eckhaus instability is always subcritic
adjusting the wavelength of the pattern by creating ph
n
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slips in the pattern, whereuAu50 and the phase is undefine
Here the supercritical Eckhaus instability creates no defe
as the pattern evolves towards a flat state (q50) since the
constant flat component of the solution grows faster th
defects are formed by the Eckhaus instability~Fig. 1!. The
Eckhaus instability leads to flattening of the solution by
creasing the pattern wavelength@Fig. 1~d!#. The numerical
integration of Eq.~2! shown in Fig. 1 was performed using
pseudospectral code and periodic boundary conditions.
condition ]Y50 was enforced by integrating the on
dimensional version of the equation.

B. Zigzag instability

In the zigzag instability where the perturbation varies on
in the Y direction, the phase perturbation evolves accord
to the equation

~a2ā!T5$q1 1
2 ~b1g!R0

2%~aYY2āYY!

2 1
4 ~aYYYY2āYYYY!. ~16!

Instability sets in for$q1 1
2 (b1g)R0

2%,0. In contrast to the
usual case, the zigzag instability can occur forq.0 if (b
1g),0 andq,2 1

2 (b1g)R0
2. In this case the mechanism

is expected to be different from the usual one where rolls
too long a wavelength (q,0) saturate into bends that de
crease the wavelength.

The instability boundaryq52 1
2 (b1g)R0

2 is a parabola
in (m,q) space:

m5
q

~b1g!2 $2a~b1g!1q@41~3b2g!~b1g!#%.

~17!

However, because for givenm andq there can be zero, one
or two corresponding values ofR0

2, only certain segments o
the parabola act as stability boundaries~see Fig. 2!. Depend-
ing on the parameter values, the zigzag curve can intera
many different ways with the neutral curvem5q2 and the
saddle-node curvem5q22 1

4 $a1(b2g)q%2, which marks

FIG. 1. Numerical simulation of the evolution of the supercri
cal Eckhaus instability. The initial roll state hasq51.0 andR0

50.5 and the parameter values arem50.8125 anda5b5g
51.0. The real~solid line! and imaginary~dotted line! parts of the
amplitudeA are plotted at times~a! T50.0, ~b! 2.0, ~c! 4.0, and~d!
200.0.
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the boundary between real and complex values ofR0
2. The

latter two curves are drawn for various parameter value
Fig. 3 of Eckhaus and Iooss@7#. The zigzag curve is tangen
tial to the saddle-node curve atq52a(b1g)/$41(b2

2g2)%. When@42(b2g)2#.0, a.0, andb,0, there is a
range of values ofm, 2a2/@42(b2g)2#,m,2a2/@4
1(3b2g)(b1g)#, for which roll solutions cannot be
stable to the zigzag instability. Eckhaus and Iooss@7# found
a similar phenomenon for the Eckhaus instability and term
it ‘‘strong rejection of patterns’’; here then is a ‘‘strong re
jection of patterns’’ by the zigzag instability. The stabili
diagram is given in Fig. 2 for a case where there is stro
rejection. Note also from the figure that where a roll soluti
with q.0 is unstable to the zigzag instability~in the second
lightest shaded region, for example! it is possible that there is
a stable roll solution with an even greater value ofq at the
same value of the forcingm. Thus the zigzag bending of th
rolls, which leads to a shorter wavelength, might in fact s
bilize the pattern as it does in theq,0 case where the rolls
are at a wavelength longer than critical.

The nonlinear phase equation close to onset is given

fT5c3fYY2 1
4 fYYYY1hfY

2fYY, ~18!

where c35$q1 1
2 (b1g)R0

2%. The equation is equivarian
under x reflection (X→2X,f→2f). and y reflection (Y
→2Y,f→f). The appropriate scalings are]T;O(d4),
]Y;O(d), c3;O(d2), f;O(1), andh;O(1). Settingf

5pY1f̃, substituting into the phase equation~18!, and lin-
earizing inf̃ gives

FIG. 2. Zigzag stability diagram for the case where there
strong rejection of patterns by the zigzag instability,$42(b
2g)2%.0, a.0, andb,0. The parameter values areb521.0,
g520.5, anda51.0. The solid line is the neutral curvem5q2, the
dotted line is the saddle-node curve, and the dashed line is
zigzag instability boundary. In the lightest shaded region, ther
one roll solution at each point (q,m) and it is stable to the zigzag
instability. In the second lightest region, there is one solution an
is zigzag unstable. In the second darkest region, there are two
lutions at each point and they are both unstable to the zigzag in
bility. In the darkest shaded region there are two solutions and
are both zigzag stable. In the unshaded region there are no
solutions. Note that for the range ofm between the two straigh
dotted lines,m1[2a2/@42(b2g)2#,m,2a2/@41(3b2g)(b
1g)#[m2 , all roll solutions are unstable to the zigzag instabili
This is strong rejection of patterns.
in

d

g

-

f̃T5~c31p2h!f̃YY2 1
4 f̃YYYY. ~19!

However, this is equivalent to tilting the roll solution slightl
to obtain a new roll solution with wave numberq1 1

2 p2, in
which case the coefficient off̃YY would be c3
1 1

2 p2(dc3 /dq) to leading order@9#. Hence it is possible to
identify h5 1

2 (dc3 /dq). If h.0, the nonlinear term is stabi
lizing, in that it makes a positive contribution to the effectiv
diffusion coefficient, so the instability is supercritica
whereas ifh,0 the nonlinear term is destabilizing and th
instability is subcritical. The coefficienth can be found ex-
plicitly to be

h5 1
2 1 1

4 ~b1g!
dR0

2

dq
~20!

5 1
2 1 1

4 ~b1g!R0
2

@2q2~b2g!R0
2#

@2m1q22R0
4#

. ~21!

Figure 3 shows a numerical integration of Eq.~2! using a
pseudospectral code with periodic boundary conditions
both directions. The initial state is a roll solution at negati
wave number (q,0) with random noise added and is stab
to Eckhaus and amplitude modes, but unstable to the s
critical zigzag mode. The real part of the amplitudeA is
contoured at various times during the integration show
the evolution of the subcritical zigzag instability. Disloc
tions are formed in the pattern during the evolution from t
initial unstable roll state. As can be seen from the left-ha
side of the domain in Fig. 3~d!, the pattern evolves toward
rolls at a smaller value ofuqu. Sinceq is negative, this cor-
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FIG. 3. Numerical simulation of the evolution of the zigza
instability in the subcritical case for rolls at larger than critic
wavelength. The initial roll state hasq521.0 andR0

251.0 and the
parameter values arem50.5, a521.5, b520.75, andg52.25.
The real part of the amplitudeA is given as a contour plot at time
~a! T50.0, ~b! 6.0, ~c! 12.0, and~d! 20.0.



o
nd
or

io

e

real
g
edi-
es
he

r is
n
ter

lu-

ble

rg-
bic

lity
nd
he

be-
po-
us

a

-
ase

that

cts

g
a

7318 PRE 58R. B. HOYLE
responds to a shorter wavelength overall. The formation
defects is a result of the subcriticality of the instability a
contrasts with the phase diffusion that occurs in the m
usual supercritical case.

Figure 4 shows the results of a numerical integrat
where the initial roll wave number is positive (q.0) and the
initial roll state is stable to Eckhaus and amplitude mod

FIG. 4. Numerical simulation of the evolution of the zigza
instability in the supercritical case for rolls at smaller than critic
wavelength. The initial roll state hasq50.5 andR0

251.0 and the
parameter values arem50.25,a51.0, andb5g522.0. The real
part of the amplitudeA is given as a contour plot at times~a! T
50.0, ~b! 2.0, ~c! 6.0, and~d! 60.0.
f

e

n

s

and unstable to the supercritical zigzag mode. Again the
part of the amplitudeA is contoured at various times durin
the integration. The zigzag mode appears almost imm
ately at various points in the integration domain and diffus
along the roll axes until the entire domain is covered. T
pattern finally develops patches of wiggles@Fig. 4~d!#. This
contrasts with the usual case where the wave numbe
smaller than critical (q,0) and the pattern saturates in a
oblique mode at a larger wave number. With the parame
values of the numerical integration (a51.0, b5g522.0,
andm50.25), there is one stable and one unstable roll so
tion in the range 0,q,(11A6)/5. The initial pattern is an
unstable roll solution in this range, but there do exist sta
roll patterns with higher values ofq. It is possible then that
the patches of wiggles are stabilizing.

III. CONCLUSION

The phase instabilities of the nonvariational Ginzbu
Landau equation with quintic and space-dependent cu
terms~2! show interesting features. The Eckhaus instabi
is subcritical where roll solutions are amplitude stable a
supercritical where roll solutions are amplitude unstable. T
supercritical Eckhaus instability is unusual and arises
cause the amplitude instability causes a nonzero flat com
nent of the solution to grow sufficiently fast that the Eckha
mode evolves without causing phase slips.

The zigzag instability can occur not only for rolls with
longer than critical wavelength (q,0) but also for rolls with
a wavelength shorter than critical (q.0). This seems coun
terintuitive since the zigzag bending mode acts to decre
the wavelength. However, in this system it can happen
rolls at even shorter wavelength~higher q! are stable. Fur-
ther, the zigzag instability can be subcritical, creating defe
in the pattern, in contrast to the usual supercritical case.
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