
PHYSICAL REVIEW E DECEMBER 1998VOLUME 58, NUMBER 6
Nonfeedback control of chaos in a microchip solid-state laser by internal frequency resonance

A. Uchida, T. Sato, T. Ogawa, and F. Kannari*
Department of Electrical Engineering, Keio University, 3–14–1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan

~Received 4 May 1998; revised manuscript received 24 July 1998!

Stabilization of a chaotic laser mode to high-period orbits is experimentally and numerically accomplished
in a Nd:YVO4 microchip solid-state laser subject to frequency-shifted optical feedback by applying a pump
modulation at well defined conditions. Various periodic orbits, which do not exist in the original chaotic
attractor, can be extracted from one chaotic oscillation by varying the pump modulation parameters. Charac-
teristics of the periodic temporal wave form generation can be interpreted by internal frequency resonance
among the relaxation oscillation frequencies, the Doppler-shifted frequency of optical feedback, and the pump
modulation frequency.@S1063-651X~98!08912-0#

PACS number~s!: 05.45.1b, 42.65.Sf
o
o

de
-
i

e
in
ec
th

bl
th
pa
ee

G
ct
d

nt

h
od

ha
a

sy
u
ig

f
ee

pe
d-
,
tr

ndi-
on
and
is
en-
ws
re,
rbi-

odic

uce
/
en

re-

as
cha-
ver
d in
ires

trol
h-
ed
os-
e

in a

ither

s
en

hip
m-
the
ed
ion

ed
1

I. INTRODUCTION

Chaos-control techniques have been successfully dem
strated to convert a chaotic motion to a periodic regular m
tion for emerging attractive applications such as enco
communications@1#. In particular, generation of various pe
riodic orbits from one laser device using chaos control
applicable for pattern-based communications@2#, because
chaotic attractors contain an infinite number of different p
riodic orbits. Chaos-control techniques can be classified
two groups: feedback techniques and nonfeedback t
niques. Feedback techniques are based on the control me
developed by Ott, Grebogi, and Yorke@3# ~OGY method!, in
which chaotic oscillation is stabilized to one of the unsta
periodic orbits embedded in a chaotic attractor through
application of a small perturbation to one of the system
rameters. In actual systems, an occasional proportional f
back technique@4# and a method using delay coordinates@5#
have been demonstrated as improved versions of the O
methods. Since these feedback techniques require dete
of the degree of deviation of the reference unstable perio
state from the chaotic state in real time, the experime
setup for the control must be a closed-loop system@4#, and
thus tends to be relatively complicated. Moreover, hig
speed chaotic oscillations generated in such as laser di
cannot be stabilized under these feedback techniques.

On the other hand, nonfeedback control techniques@6#, in
which only a small periodic perturbation is added to the c
otic system and the system converts to a periodic state, h
more frequently been used, especially in chaotic laser
tems@7–10#. Since this technique requires only small mod
lation on one of system parameters, a more simple h
speed, open-loop, setup is attainable in experiments. So
different mechanisms for the nonfeedback control have b
proposed: entrainment to goal dynamics@11#, parametric ex-
citation of an experimentally adjustable parameter@12#, and
taming the chaotic system by means of external periodic
turbation@6,13#. However, the basic principle in the nonfee
back technique still remains an open question. Therefore
spite of the successful application of nonfeedback con
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schemes, one cannot predict the stabilized state. The co
tions for control and the period of the stabilized oscillati
strongly depend on the structure of the chaotic attractors
the bifurcation prior to the transition to chaos. In fact, it
not easy to create high-period orbits using the aforem
tioned nonfeedback techniques, since high-period windo
do not exist over a wide range of the bifurcation. Therefo
chaotic oscillations cannot be necessarily stabilized to a
trarily periodic orbits.

To overcome these issues and predict a regular peri
orbit after control, a goal-oriented scheme@14# has been pro-
posed for a diode resonator. In this scheme one can prod
n-periodic orbits by setting the perturbation frequency to 1n
times the fundamental oscillation frequency. However, wh
selecting too largen, the system completely changes. The
fore, there is a limitation onn. Another technique@15# to
produce arbitrarily periodic orbits from chaotic attractors h
been proposed using the prerecorded time sequence of a
otic pulsation in chaos-synchronization schemes. Howe
this technique requires the time sequence to be recorde
advance, and the system is very complicated since it requ
two synchronized chaotic systems.

In this paper, we propose a nonfeedback chaos-con
method that can stabilizes chaotic oscillations into hig
period orbits with a certain prediction. Our method is bas
on an internal frequency resonance among the relaxation
cillation frequencies and the modulation frequencies. W
demonstrate our method experimentally and numerically
laser diode-pumped Nd:YVO4 microchip solid-state laser. In
microchip lasers, chaos in the laser output is generated e
by modulation of the intracavity laser power~called loss
modulation! or by modulation of the pumping power~pump
modulation!. A bifurcation in which several periodic orbit
exist prior to the transition to chaos is also observed wh
each of these two modulations is applied to the microc
laser@8,16#. The two different modulation schemes are co
bined in the same laser oscillator, and a periodic orbit in
bifurcation region in the pump-modulation scheme is mix
with a chaotic attractor produced by the loss-modulat
scheme for control of chaos.

II. EXPERIMENTS

Our experimental setup of a laser diode-pump
Nd:YVO4 microchip solid-state laser is shown in Fig.
7249 © 1998 The American Physical Society
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@9,10,17#. The microchip laser was an end-pumped 1-m
long Nd:YVO4 laser with a Fabry-Perot cavity. An
Nd:YVO4 ~NEC! crystal with a Nd concentration of 1.1 a
% was cut along thea axis of a crystal. Dielectric cavity
mirrors were deposited directly onto the crystal. The out
mirror had a reflectivity of 99.0% at 1.064mm. The oppo-
site mirror had a reflectivity of 99.9% at 1.064mm, and
transmitted the pump at 809 nm. The Nd:YVO4 chip was
bonded to a copper heat sink. A laser diode~Opto Power
Corporation OPC-A001-809-FC/100! was used as the pump
ing source. The output of the laser diode was coupled t
0.3-m-long optical fiber with 100-mm core diameter, and fo
cused onto the Nd:YVO4. During our experiments, the ou
put power of the microchip laser was set to a constant of
mW at a diode laser current of 580 mA. In this condition, t
laser had two longitudinal modes, and the relaxation osc
tion frequencies of these two modes weref r151000 kHz and
f r25500 kHz, respectively.

A frequency-shifted feedback light-injection scheme@8–
10,17,18# was utilized as a loss-modulation system, as sho
in Fig. 1. The laser light is incident upon a rotating circu
paper sheet, and weak scattered light whose center frequ
is shifted because of the Doppler effect returns to the la
cavity. The laser intensity is then modulated as a resul
self-mixing between the two light components in the cavi
At the same time the injection current of the laser diode
pumping is sinusoidally modulated, and this acts as a pu
modulation system. Chaotic instabilities appear in the la
output with only one of the two modulations when th
Doppler-shifted feedback light power or the pum
modulation amplitude increases@8,16#.

First, we made a bifurcation diagram for the los
modulation system without pump modulation. The feedba
light power was adjusted with a variable optical attenua
The Doppler-shifted frequency of the feedback light w
controlled by the velocity of the rotating paper sheet. Wh
the Doppler-shifted frequency was set to 500 kHz, wh
was coincident with f r2 , bifurcation accompanied by
period-1, period-2 and chaotic oscillations was observed
the feedback light power was increased@Fig. 2~a!#. Chaotic
oscillations appeared when the transmittance of the vari
attenuator was set to greater than 27%. Next, only the pu
modulation was applied to the microchip laser witho
frequency-shifted feedback light. Different types of bifurc
tion were observed under pump modulation at the mod
tion frequency vc5857 kHz, as shown in Fig. 2~b!. A
period-1 regular oscillation shifted to period-6 and period
with quasiperiodicity, and finally chaotic oscillations as t

FIG. 1. Schematic of a diode-pumped Nd:YVO4 microchip laser
with frequency-shifted optical feedback~loss modulation! and
pump modulation.
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modulation amplitude was increased, whereas the chaotic
cillation changed to period-3 with quasiperiodicity, an
period-6, period-2, and period-1 oscillations as the amplitu
was decreased. This hysteresis can be seen in the bifurc
diagram. Here the fundamental frequencyf fun , which is de-
fined as a frequency of the strongest peak in the power s
trum, of the period-1 and period-2 oscillations, was equa
the pump modulation frequencyvc , whereasf fun of the
period-6 and period-3 oscillations was shifted to3

2 vc because
the relaxation oscillation frequencyf r1 located near32 vc en-
hanced the frequency component of3

2 vc as the amplitude of
the pump modulation was increased.

Next we combined the loss modulation with the pum
modulation in one microchip laser oscillator to stabilize t
chaotic oscillation caused by loss modulation@at the condi-
tion indicated by an vertical arrow in Fig. 2~a!#. The pump-
modulation parameters were selected so that a new peri
orbit was generated without the loss modulation. When
frequency and amplitude of the pump modulation were se
vc5857 kHz andDw50.080, respectively, a periodic lase
output in a period-6 orbit was obtained without the lo
modulation@corresponding to the vertical arrow in Fig. 2~b!#.
Figures 3 and 4 show the temporal wave forms and po
spectra of the microchip laser output obtained~a! with only
loss modulation,~b! with only pump modulation, and~c!
with both modulations. With only the loss modulation@Figs.
3~a! and 4~a!#, the temporal wave form of the laser outp
fluctuates chaotically and the power spectrum spreads. H
ever, when the pump modulation that creates a period-6 o
@Figs. 3~b! and 4~b!# is applied in addition to the loss modu
lation, the temporal wave form of the laser output is sta
lized to a period-18 regular oscillation, which is differe
from the periodic orbit caused by the pump modulation, a
many discrete narrow peaks appear in the power spect
@Figs. 3~c! and 4~c!#. Here, the periodn of the stabilized orbit
is determined by the existence of the 1/n subharmonics of
the fundamental frequencyf fun in the power spectrum. Thes
results show that a high-period oscillation whose orbit do
not exist in the original chaotic attractor and its bifurcation
obtained.

When the amplitude of the pump modulation is decrea

FIG. 2. ~a! Bifurcation diagrams of~a! the loss modulation as a
function of relative feedback light power and~b! the pump modu-
lation as a function of modulation amplitude. Hysteresis is se
when the direction of the modulation amplitude is changed.
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PRE 58 7251NONFEEDBACK CONTROL OF CHAOS IN A MICROCHIP . . .
to 0.035, a period-2 orbit withf fun5vc is applied to the
chaotic attractor produced by the loss modulation. The la
output is stabilized to a period-12 regular oscillation, whi
corresponds to the112 subharmonics off fun . Therefore, in our
control scheme various periodic orbits can be created fro
chaotic oscillation by changing the pump-modulation para
eters.

We examined the robustness of this stabilization aga
small variations in the modulation amplitudeDw. With the
pump-modulation frequency of 857 kHz, period-12 a
period-18 stable oscillation can be maintained in the reg
of 0.01<Dw<0.06 and 0.06<Dw<0.16. These regions ar
roughly coincident with the regions in which the period
oscillations exist in Fig. 2~b!.

III. NUMERICAL CALCULATIONS AND DISCUSSIONS

To verify our experimental results, we analyzed t
chaos-control scheme with a numerical model. The gove
ing equations for multimode solid-state lasers with spa
hole burning were proposed by Tang, Statz, and deM
@19#. In our calculation the scaled Tang-Statz-deMars eq

FIG. 3. Temporal wave forms obtained from the experimen
~a! Chaotic oscillation with only loss modulation.~b! Period-6 os-
cillation with only pump modulation.~c! Period-18 oscillation with
loss and pump modulation. Arrows indicate the period.
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tions proposed by Otsuka, Chern, and Lih@8# for two-mode
lasers were modified as follows:

dn0 /dt5w0@11Dw cos~2ptvct !#2n02g1~n02n1/2!s1

2g2~n02n2/2!s2 , ~3.1!

dn1 /dt5n0g1s12n1~11g1s11g2s2!, ~3.2!

dn2 /dt5n0g2s22n2~11g1s11g2s2!, ~3.3!

ds1 /dt5K@g1~n02n1/2!21#s11s1Km cos~2pt f Dt !,

~3.4!

ds2 /dt5K@g2~n02n2/2!21#s21s2Km cos~2pt f Dt !,

~3.5!

wheren0 is the spatially averaged population inversion de
sity with spatial hole burning normalized by the thresho
value,n1,2 is the first order Fourier component of populatio
inversion density for the two modes,s1,2 is the photon den-
sity normalized by the steady-state value for the two mod
g1,2 is the gain ratio to the first lasing mode, and the su
scripts 1 and 2 show a corresponding mode.K5t/tp is a

: FIG. 4. Power spectra obtained from the experiments:~a!–~c!
Same as in Fig. 3. The power spectra are averaged over 20 s.
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ratio of the lifetime, wheret is the population lifetime of
Nd:YVO4 andtp is the photon lifetime in the laser cavity.m
is the ratio of the feedback light amplitude to the radiati
amplitude.f D is the Doppler-shifted frequency of the fee
back light field.m and f D correspond to the amplitude an
frequency of the loss modulation, respectively. Time
scaled byt. w0 is the bias component of the scaled pum
power. Here the temporal variation of the phase differe
between the lasing field and the feedback light field can
neglected because of relatively weak feedback light@9#. The
first right-hand term of Eq.~3.1! and the second right-han
terms of Eqs.~3.4! and ~3.5! correspond to the effect of th
pump modulation and loss modulation, respectively.

TheK parameter for our microchip laser is relatively hig
at 7.673104 causing high sensitivity against weak extern
light injection, sincet andtp are 88 ms and 1.15 ns, respec
tively. When we setw055.2, g151, andg250.875, the re-
laxation oscillation frequencies for two longitudinal mod
were f r151000 kHz and f r25500 kHz, which were the
same values as those observed in our experiments. Whe
set a Doppler-shifted frequencyf D5500 kHz and a feed-
back ratiom50.0025, chaotic instabilities appeared in t
laser output.

When the pumping was modulated with a frequency
vc5857 kHz and an amplitude ofDw50.08, a period-6 sig-
nal was generated without the loss modulation, and
period-6 orbit was utilized to suppress the chaotic osci
tions caused by the loss modulation. Figures 5 and 6 s
the temporal wave forms and the power spectra of the
crochip laser output obtained by use of numerical calcu
tions ~a! with only loss modulation~chaos!, ~b! with only
pump modulation~period 6! and ~c! with both of the two
modulations~period 18!. The chaotic oscillation is stabilize
to a period-18 regular oscillation by mixing a new period
orbit and the chaotic attractor. The discrete spectrum com
nents are clearly observed at regular intervals of1

18 f fun .
These results agree well with our experimental results sh
in Fig. 3 and 4.

The mechanism of the stabilization to the period-18 os
lation can be explained by internal frequency resonance@20#
among the relaxation oscillation frequenciesf r1 and f r2 and
the modulation frequenciesf D andvc ( f fun). When only the
pump modulation is applied to a microchip laser which h
two commensurable relaxation oscillation frequencies~e.g.,
f r152 f r2), strong internal resonance occurs@20# and a
period-6 orbit is obtained, where there is a series of sub
monic peaks at regular intervals of1

6 f fun in the power spec-
trum, as shown in Fig. 6~b!. When both the pump modulatio
and loss modulation are simultaneously applied to the mic
chip laser, the internal resonance leads to stable freque
mixing betweenf D and one of the subharmonics off fun ~the
nearest frequency component tof D , in this case1

3 f fun), and
thus resonantly create a new subharmonic whose frequ
is shifted upwards fromf D by 1

18 f fun5 f D2 1
3 f fun . Then f D

and this new subharmonic create another higher sub
monic. These processes occur simultaneously, andf D and
subharmonics off fun resonantly create a series of subh
monics with regular intervals of118 f fun from the broad spec
trum @Fig. 6~c!#. A condition for stable periodic oscillation
is that the ratio off fun and f D is set to a rational number. In
this case, these subharmonics are locked to each other@21#,
e
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and the stability of the periodic oscillation is maintaine
even at high-period orbits. Through this resonant freque
mixing and frequency locking, chaotic oscillation is su
pressed and a new stable period-18 oscillation is genera

Now a question arises as to what condition is required
accomplish to control chaos. To answer this question,
compared the bifurcation diagram of pump modulation w
that obtained with both pump and loss modulation as
amplitude of the pump modulationDw was decreased~Fig.
7!. The frequency of the pump modulationvc was set to 857
kHz, and the parameters of the loss modulation was se
f D5500 kHz andm50.0025, respectively. With only pump
modulation, the chaotic oscillation changes to period 3 w
quasiperiodicity, and period-6, period-2, and period-1 os
lations asDw is decreased@Fig. 7~a!#, which is coincident
with our experimental results shown in Fig. 2~b!. When the
pump modulation is applied to a chaotic oscillation gen
ated by the loss modulation, stabilized periodic oscillatio
appear, as shown in Fig. 7~b!. In the region of 0.015<Dw
< 0.09, the stabilized oscillations exhibiting period 24 co
sist of two coexistent period-12 orbits with the phase diff
ence ofp. The region of 0.015<Dw< 0.09, in which the
periodic oscillation exists in Fig. 7~b!, is roughly coincident
with the region of 0.015 <Dw< 0.13 in which

FIG. 5. Temporal wave forms obtained from the numerical c
culations:~a!–~c! same as in Fig. 3.
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the periodic orbits exist in Fig. 7~a!. In higher pump modu-
lations of Dw.0.09, the dynamics of the entire system a
changed due to a mutual strong coupling of two modulat
systems, and chaos control cannot be achieved. From t
results, we can conclude that the selection of the pum
modulation parameters for generation of a periodic orbi
very important to control chaos in the wide range ofDw
except for much largerDw.

To generate arbitrary periods of the stabilized orbits fr
chaos, we need to set two parameters: the period of a p
odic orbit caused by the pump modulation and the ratio
tween the two modulation frequenciesf D andvc . The period
in a stabilized oscillation depends on these two parame
Actually, vc has to be set at a certain value to resonate w
the relaxation oscillation frequencies to create a period-k or-
bit. The period-k orbit always forms discrete subharmon
peaks at regular intervals of (1/k) f fun in the spectrum. When
the ratio betweenf D and f fun(5 3

2 vc) is set tom:n(n is a
multiple of k), many discrete spectral peaks appear at c
stant intervals of (1/n) f fun in the spectrum because of res
nant frequency mixing. Consequently, a period-n temporal
wave form, which is a multiple of periodk, can be generated
In our results, the period-18 temporal wave form was form
by the selection ofk56, m57, andn518.

FIG. 6. Power spectra obtained from the numerical calculatio
~a!–~c! same as in Fig. 3. The power spectra are averaged over
n
se

p-
s

ri-
-

rs.
h

-

d

According to this principle, only certain frequencies
the pump modulationvc and frequencies very close to the
@vc63 kHz# are allowed as the stabilized periodic oscill
tions, since stabilized periodic oscillations can be obtain
only when the ratio of the frequencies between the loss
pump modulation is just or close to a rational number. F
ures 8~a! and ~b! show the power spectra of the period-2
(m:n58:21) and period-24(9:24) oscillations which can be
generated at different frequencies of the pump modula
with vc5875 and 889 kHz, respectively. There are discr
spectrum components at regular intervals of1

21 f fun and 1
24 f fun

in Figs. 8~a! and 8~b!, respectively. In these cases, a period
orbit created by the pump modulation is mixed with a ch
otic attractor for controlling chaos. Even higher-period orb
such as periods 27, 30, and 33 can be generated as we p
by increasingvc until the periodic orbit cannot be create
over the periodic region in the bifurcation.

When irrational ratios are selected for the loss- and pum
modulation frequencies, chaotic oscillations are stabilized
quasiperiodic orbits because frequency locking betweenf D
and subharmonics off fun cannot be achieved. For exampl
there are discrete spectrum components at irregular inter
as shown in Fig. 8~c! with vc5865 kHz. Therefore, we can
assign periods of the stabilized orbits only when setting
two modulation frequencies to a certain rational value.

Next we investigate the conditions for control when t
amplitude of the loss modulation,m, is varied. Figure 9
shows bifurcation diagrams plotted againstm ~a! with only
loss modulation and~b! with loss and pump modulation
With only loss modulation, a period-1 oscillation is chang
to period-2, quasiperiodic and chaotic oscillations in low

s:
s.

FIG. 7. Bifurcation diagrams as a function of the amplitude
the pump modulation~a! with only pump modulation, and~b! with
loss and pump modulation.
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regions of m in Fig. 9~a! as the feedback light power i
increased. When the frequency and amplitude of the pu
modulation are set to 857 kHz and 0.05, respectively, and
pump modulation with a period-6 orbit is applied, two coe
istent period-12 oscillations are generated in the region
0.0011<m<0.0032, as shown in Fig. 9~b!. The lower limit
m50.0011 roughly corresponds to the limit at which the d
namics changes from quasiperiodic to chaotic oscillation
the loss modulation. Chaotic oscillations cannot be stabili
at m. 0.0032 where the shape of chaotic oscillatio
changes to a pulselike behavior with high peak intens
~chaotic spiking oscillation! from the continuous wave-like
behavior, such as shown in Fig. 5~a!. Therefore, our contro
scheme is applicable at the small amplitude of the l
modulation, where the entire chaotic dynamics do
change.

Our scheme is essentially different from convention
nonfeedback chaos-control methods, which apply a sm
perturbation to one of the system parameters. To supp
chaos, we need to use a new periodic orbit that already e
in a bifurcation region caused by the pump modulatio
Since the pump-modulation amplitude needs to be la
enough to generate a periodic orbit in the bifurcation,

FIG. 8. Power spectra with different periods~a! Period 21 (vc

5875 kHz), ~b! Period 24 (vc5889 kHz). ~c! Quasiperiodicity
(vc5865 kHz).
p
e
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of

-
in
d

s
y

s
t

l
ll
ss
ts
.
e
s

shown in Fig. 2~b!, the modulation amplitude in our schem
is larger than typical perturbations used in conventio
chaos-control techniques. Thus the structure of the orig
chaotic system is changed by applying the pump modulat
A new orbit is created from the internal resonance betw
the loss- and pump-modulation frequencies, and the chao
stabilized to this new orbit. Therefore, various periodic o
bits, which are not restricted to those in the original chao
attractor, can be generated as a result of chaos stabiliza
Even high-period orbits that are not realized by using c
ventional nonfeedback chaos-control techniques are obt
able.

IV. CONCLUSIONS

We propose a nonfeedback chaos-control scheme, w
various high-period oscillation states with different perio
are available as stabilized modes, even if these states do
exist in the original chaotic attractor. Suppression of chao
oscillation is achieved by internal frequency resonan
among the relaxation oscillation frequencies and the mo
lation frequencies. The period of stabilized oscillations c
be established by selection of a ratio of the two modulat
frequencies. Our hybrid chaotic system can create a var
of periodic orbits, and could be useful as an arbitrary tem
ral wave form generator in optical information processi
and optical communications.
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FIG. 9. Bifurcation diagrams as a function of the amplitude
the loss modulation~a! with only loss modulation, and~b! with loss
and pump modulation.
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