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Hyperchaotic dynamics and synchronization of external-cavity semiconductor lasers

Volker Ahlers,* Ulrich Parlitz, and Werner Lauterborn
Drittes Physikalisches Institut, Universita¨t Göttingen, Bürgerstraße 42-44, D-37073 Go¨ttingen, Germany

~Received 15 May 1998!

Two unidirectionally coupled external cavity semiconductor lasers showing chaotic intensity fluctuations are
studied by numerically solving the Lang-Kobayashi model equations@IEEE J. Quantum Electron.QE-16, 347
~1980!#. The systems are shown to synchronize when operating in the regime of low-frequency fluctuations,
which is characterized by a very high-dimensional (d.150) attractor. The influence of parameter differences
between the two lasers on the synchronization quality is investigated.@S1063-651X~98!02512-4#

PACS number~s!: 05.45.1b, 42.55.Px, 42.65.Sf
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I. INTRODUCTION

Synchronization phenomena are of fundamental imp
tance for many physical, biological, and technical syste
Since the pioneering work by Fujisaka and Yamada@1#, Pik-
ovsky@2#, and Afraimovich, Verichev, and Rabinovich@3#, it
has been known that even chaotic systems may synchro
This aspect of nonlinear dynamics became an issue of g
interest when Pecora and Carroll demonstrated synchron
tion of unidirectionally coupled chaotic systems@4# and sug-
gested potential applications in communication systems.
amples of encoding methods based on chaos synchroniz
were presented in Ref.@5# using electronic circuits. Since
many modern communication devices are optoelectronic
all optical, in this paper we address the question of ch
synchronization of unidirectionally coupled laser system
Synchronization of chaotic lasers has been shown exp
mentally and numerically for Nd:YAG and CO2 lasers
~where YAG denotes yttrium aluminum garnet! @6#. Re-
cently, synchronization of chaotic erbium-doped fiber ri
lasers has been shown experimentally and numerically@7#.
Of special interest in optical communication, however, is
semiconductor laser~SL!, mainly due to its size and its pos
sibility to be easily modulated@8#. A communication scheme
based on synchronization of chaotic laser diodes w
electro-optical feedback has recently been implemented
perimentally@9#.

External cavity semiconductor lasers~ECSLs! have been
a subject of extensive research@10# during the past 15 year
because of the importance of optical feedback phenomen
technical applications such as optical data storage or op
fiber communications. In most of these cases, one trie
avoid the effects of optical feedback. A typical effect due
feedback are low-frequency fluctuations~LFF’s!, which can
be observed for moderate feedback and low pump curr
This phenomenon has attracted considerable interest du
the past few years. In particular, the question whether
underlying dynamics is~mainly! a stochastic process or gov
erned by a chaotic attractor has been discussed very co
versially @11–14#. The numerical simulations presented
Sec. II, which are based on deterministic model equatio
show that the LFF dynamics correspond to a very hi
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dimensional chaotic attractor. This observation, toget
with recent experimental results@15# corroborating the deter
ministic model, indicates that LFFs are essentially a hyp
chaotic deterministic process. Because of the hi
dimensional attractor, the LFF signal is very difficult
distinguish from a stochastic signal.

In the following sections synchronization of ECSLs in th
LFF regime is investigated by numerically solving the usu
rate equations. Synchronization of ECSLs has previou
been studied numerically using different coupling schem
@16,17#. The synchronization scheme employed in our sim
lations is similar to but different from that used in Ref.@16#.
In particular, we consider a coupling that in principle allow
perfect synchronization and also works if the driven la
does not possess an external cavity, which makes it easi
implement the scheme experimentally. Furthermore, the
fects of parameter mismatch between both coupled lasers
studied in terms of unstable cw solutions embedded in
chaotic drive attractor.

II. HYPERCHAOTIC LASER DYNAMICS

The schematic setup of an ECSL is shown in Fig. 1. Lig
from the SL is reflected by the mirror and reinjected into t
laser cavity.

To model the first ECSL, we use the well-known Lan
Kobayashi equations@18# for the complex electric field am
plitudeE(t) ~just behind the right laser facet! and the carrier
numberN(t). These equations are generally considered
give a valid approximation of a single-mode SL with weak
moderate optical feedback from an external resonator. W
ing E(t)5E0(t)exp$i@v0t1f(t)#%, splitting the complex
equation forE(t) into two real ones for the real amplitud
E0(t) and the slowly varying phasef(t), and using the car-
rier number above the value for the solitary SL~without an
external resonator!, n(t)5N(t)2Nsol, these equations rea
@19,13#

FIG. 1. Schematic setup of an external cavity semiconduc
laser~SL, semiconductor laser;M, mirror!.
7208 © 1998 The American Physical Society
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d

dt
E0~ t !5

1

2
GNn~ t !E0~ t !1

Cspg@Nsol1n~ t !#21

2E0~ t !

1kE0~ t2t!cos@v0t1f~ t !2f~ t2t!#, ~1!

d

dt
f~ t !5

1

2
aGNn~ t !2k

E0~ t2t!

E0~ t !

3sin@v0t1f~ t !2f~ t2t!#, ~2!

d

dt
n~ t !5~p21!Jth2gn~ t !2@G1GNn~ t !#E0

2~ t !, ~3!

where we have included the average spontaneous emis
rateCsp. The exact value of the angular frequencyv0 of the
solitary laser is found to be of no importance for the qua
tative results. We have chosen a value corresponding to a
laser diode.k is the feedback rate andpJth is the pump
current in units of the electron charge, whereJth5gNsol is
the threshold value of the solitary laser. The other parame
are explained in Table I; the values are taken from Ref.@13#.

Equations ~1!–~3! include delay differential equations
We used a fourth-order Runge-Kutta-Fehlberg integrator
a sixth-order Hermite interpolation scheme@20# for all nu-
merical calculations presented in this paper. Results
shown in Fig. 2~a! for k51010 s21 and in Figs. 2~b! and
2~c! for k51011 s21. In the latter case, the intensity brea
downs known as LFFs as well as the picosecond pu
@13,15# are observed.

In order to estimate the dimension of the underlying
tractor a method introduced by Farmer@21# is used to calcu-
late the largest Lyapunov exponents of the infini
dimensional system. The ten largest Lyapunov exponent
a function of the feedback ratek are shown in Fig. 3~a! for
108 s21<k<109 s21 and in Fig. 3~b! for 109 s21<k
<1011 s21. As can be seen, the system is hyperchaotic
both valuesk51010 and 1011 s21, which were used to cal
culate the time series shown in Fig. 2.

In order to characterize the dynamics of the LFFs in m
detail the spectrum of the 150 largest Lyapunov exponen
shown in Fig. 4 fork51011 s21. As can be seen, the firs
150 exponents are positive or vanish. The Lyapunov dim
sion of the LFF attractor is thus larger than 150.

TABLE I. Parameters used in the simulations. Values are ta
from Ref. @13#.

solitary laser carrier number Nsol 1.7073108

differential optical gain GN 2.1423104 s21

external cavity round-trip time t 10 ns
linewidth enhancement factor a 5.0
carrier decay rate g 0.909 ns21

cavity decay rate G 0.357 ps21

pump current relative toJth p 1.02
wavelength 2pc/v0 635 nm
spontaneous emission rate Csp 1025 s21
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III. UNIDIRECTIONALLY COUPLED
SEMICONDUCTOR LASERS

The synchronization arrangement assumed for the si
lations presented in this paper is shown in Fig. 5. It cons
of two external cavity semiconductor lasers that are coup
unidirectionally via an optical diode, which can be realiz
experimentally using a Faraday isolator. In a real experim
tal situation, variable attenuators would be necessary to c
trol feedback and coupling strengths. Coherent light from
first external cavity SL, the drive system, is injected into t

n

FIG. 2. Dynamics of the ECSL for~a! k51010 s21 and~b! and
~c! k51011 s21. Note the different scales of the axes.

FIG. 3. Ten largest Lyapunov exponentsl i of the ECSL for
different values of the feedback ratek. For k.43108 s21 the
system is chaotic with an increasing number of positive Lyapun
exponents. Note the log-log scale in~b!.
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second external cavity SL, the response system.
The light that is injected into the second system throu

coupling is included in the equations in a way similar to t
light coming from the external resonator. This approach
widely used to describe the effects of coherent light inject
into semiconductor lasers@22#. The equations for the secon
system thus read

d

dt
Ẽ0~ t !5

1

2
GNñ~ t !Ẽ0~ t !1

Cspg@Nsol1ñ~ t !#

2Ẽ0~ t !
1k̃Ẽ0~ t2t!

3cos@v0t1f̃~ t !2f̃~ t2t!#

1sE0~ t2tc!cos@v0tc1f̃~ t !2f~ t2tc!#, ~4!

d

dt
f̃~ t !5

1

2
aGNñ~ t !2k̃

Ẽ0~ t2t!

Ẽ0~ t !
sin@v0t1f̃~ t !2f̃~ t2t!#

2s
E0~ t2tc!

Ẽ0~ t !
sin@v0tc1f̃~ t !2f~ t2tc!#, ~5!

d

dt
ñ~ t !5~p21!Jth2gñ~ t !2@G1GNñ~ t !#Ẽ0

2~ t !, ~6!

wheres is the coupling strength andtc is the time the light
needs to travel from the right facet of the first SL to the rig
facet of the second one. Note the difference betw
E0(t),f(t) and Ẽ0(t),f̃(t), describing the electric fields in
the drive and the response lasers, respectively.

Synchronization is possible if there exists a solution
Eqs.~1!–~3! and ~4!–~6! with

Ẽ0~ t !5E0~ t2Dt !,

FIG. 4. Spectrum of the 150 largest Lyapunov exponentsl i for
the LFF attractor (k51011 s21).

FIG. 5. Synchronization arrangement~SL, semiconductor laser
M, mirror; BS, beam splitter; OD, optical diode!.
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f̃~ t !5f~ t2Dt !2v0Dt ~mod 2p!,

ñ~ t !5n~ t2Dt !,

whereDt5tc2t accounts for the time delay of the synchr
nization introduced throughtc . A synchronous solution ex
ists if

k5k̃1s. ~7!

This condition can be realized by adjusting the coupling a
feedback strengths. Equation~7! includes the possibility of
the response system consisting of a solitary SL, i.e.k̃
50 s21; in this case the feedback strength of the first s
tem and the coupling strength have to be equal,k5s.

IV. SYNCHRONIZATION OF IDENTICAL LASERS

Equation~7! provides a necessary condition for synchr
nization; it does not tell, however, anything about the sta
ity of the synchronized solution. Therefore, Eqs.~1!–~3! and
~4!–~6!, which include delay differential equations, have
be solved numerically.

Figure 6 shows the results fork51011 s21, k̃
51010 s21, and s5931010 s21. For this feedback
strength the drive laser is in the LFF regime@13#, while the

FIG. 6. Synchronization of drive and response lasers in the L

regime. Plotted are the electric field amplitudesE0(t) andẼ0(t) of
drive and response, respectively, and their normalized differe

DE0(t)5uẼ0(t)2E0(t2Dt)u/^E0(t)&. Due to time delays the in-

tensity signalẼ0(t) of the response laser is shifted in time wi
respect to the drive byDt5tc2t51.058 3331027 s510.5833t.
The parameters of the lasers are given in Table I and are assum
be exactly the same for both systems with a coupling given bk

51011 s21, k̃51010 s21, ands5931010 s21.
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PRE 58 7211HYPERCHAOTIC DYNAMICS AND SYNCHRONIZATION . . .
response laser is in another hyperchaotic state without
pling ~compare Figs. 2 and 3!. Plotted are the electric field
amplitudesE0(t) and Ẽ0(t) for the drive and the respons
laser, respectively, as well as the synchronization er
which is defined as

DE0~ t !5
uẼ0~ t !2E0~ t2Dt !u

^E0~ t !&
, ~8!

where ^E0(t)& is the temporal average of the electric fie
amplitude of the drive laser.

At t525t, the coupling is switched on. Synchronizatio
occurs after some transient time. The electric field amplitu
of the response laser then follows the amplitude of the d
laser with a time delay ofDt5tc2t, which is taken into
account in the definition~8! of the synchronization error. As
can be seen from Fig. 6, nearly perfect synchronization
achieved. Similar results have been obtained for the case
response laser without an external resonator (k̃50 s21),
with the difference that shorter transient times are obser
before perfect synchronization occurs.

V. SYNCHRONIZATION OF NONIDENTICAL LASERS

Since in practice no lasers are identical, those parame
of the response laser that cannot be adjusted~i.e., GN , a, g,
G, andCsp) have been varied randomly within 1.0% diffe
ence from the drive laser values. Figure 7 shows a typ
result. As expected, no perfect synchronization is achiev
but over long times the systems synchronize in a less pe
way. During the intensity breakdowns, however, the syste
desynchronize. Synchronization is regained when the ele
field amplitude rises again. This can also be seen in Fig
where the amplitudeẼ0(t) of the response laser is plotted v

FIG. 7. Synchronization of drive and response systems w

slightly different parameters fork51011 s21, k̃51010 s21, and
s5931010 s21 ~compare Fig. 6!.
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the amplitudeE0(t2Dt) of the driving laser shifted in time
Perfect synchronization would lead to a motion along
diagonal, but here deviations~‘‘excursions’’! occur mainly
for small values of the driving amplitudeE0 .

The desynchronization during the intensity breakdow
does not affect their joint occurrence. Figure 9 shows
time traces of the intensityP(t)5E0

2(t) that would be ob-
served in an experimental situation using a photodiode w
finite detection time; the original amplitude traces from F
7 have been squared and averaged over 5 ns. On a ‘‘m

h

FIG. 8. Response amplitudeẼ0(t) vs drive amplitudeE0(t
2Dt) shifted in time. For largeE0 synchronized dynamics alon
the diagonal occurs, but during intensity breakdowns of the dr
both lasers desynchronize. The parameters are the same as in F

FIG. 9. Same parameters as in Fig. 7 but intensitiesP(t)
5E0

2(t) averaged over 5 ns to take into account finite detect
time. Note thatP(t2Dt) is plotted including the time shiftDt to
demonstrate the simultaneous occurrences of the intensity br
downs.



d
en

n
nc

e

e
s
th
in
ve

n-
en
o
th
w

ng
ra
de
fo
r

-

s
t

-

r

ing
m

he

y by
n,

bits
ing
ns

ask,

tems
re-

is
m
lec-

two
ty of
ion

lity.
re-
rop-
the
d.

ith
t
e as

7212 PRE 58VOLKER AHLERS, ULRICH PARLITZ, AND WERNER LAUTERBORN
roscopic’’ scale the systems synchronize quite well, inclu
ing the occurrence of the intensity breakdowns. Their int
sities differ, however, on a ‘‘microscopic’’ scale.

VI. UNSTABLE PERIODIC ORBITS

Short events of desynchronization such as those show
Fig. 7 are typical for weakly coupled systems in the prese
of noise or parameter mismatch@23#. The origin of this so-
called bubbling phenomenon are unstable invariant subs
@such as unstable fixed points~UFPs! or unstable periodic
orbits ~UPOs!# of the drive attractor that fail to entrain th
corresponding fixed point or periodic orbit of the respon
system. When driven with one of these UFPs or UPOs
response system does not synchronize, but oscillates
different way from the drive. In the joint state space of dri
and response these UFPs and UPOs are transversally
stable, i.e., in their vicinity the manifold containing the sy
chronized dynamics is repelling and not attracting. Wh
ever an almost synchronized trajectory comes close t
transversally unstable UFP or UPO it is repelled from
synchronization manifold and synchronization breaks do
for a short period of time until the trajectory~re!enters a
region where the synchronization manifold is attracti
again. This mechanism explains also the intermittent cha
ter of the desynchronization bursts shown in Fig. 7. In or
to investigate this source of synchronization breakdown
the coupled laser system we have studied the transve
~in!stability of unstable fixed points~i.e., cw solutions!. A
stationary~cw! solution of Eqs.~1!–~3! has a complex elec
tric field

E~ t !5E0
sexp~ ivst1f0!

and a carrier number

n~ t !5ns,

where vs5v01Dv is the angular light frequency that i
shifted from the valuev0 of the solitary laser by an amoun
Dv. For the slowly varying phasef(t) it follows that
f(t)5Dvt1f0 , so that the phase differenceh(t)5f(t)
2f(t2t) is constant,

hs5Dvt.

SubstitutingE0
s , ns, andhs in Eq. ~1! and neglecting spon

taneous emission, we obtain

ns52
2k

GN
cos~v0t1hs!.

Using this in Eq.~2!, we obtain an equation forhs,

hs1ktA11a2sin~v0t1hs1arctana!50, ~9!

which can only be solved numerically@8#. Solutions of Eq.
~9! with positive derivative

11ktA11a2cos~v0t1hs1arctana!.0

have been shown to be unstable foci and are generally
ferred to asexternal cavity modes, while solutions with nega-
-
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tive derivative are saddle points and are calledantimodes
@10#. From Eq.~3! we finally obtain

E0
s5A~p21!Jth2gns

G1GNns
. ~10!

The process of LFFs has been explained in the follow
way @12,13#. During the intensity buildup phase, the syste
oscillates in the vicinity of the~unstable! foci. From time to
time, it moves from one focus to the next, preferably in t
direction of decreasing values ofhs. At some point, the sys-
tem comes too close to a saddle point and is carried awa
its unstable manifold. This leads to an intensity breakdow
after which the buildup phase recommences.

To investigate the hypothesis that unstable periodic or
might be the reason for the loss of synchronization dur
the intensity breakdowns, we used stationary solutio
@which are fixed points of the system (E0 ,h,n)] of the drive
system to drive an identical response system. For this t
the value ofhs was calculated by numerically solving Eq.~9!
and then the value forE0

s from Eq. ~10! and the phase
f(t)5hst/t were used as drive variables in Eqs.~4!–~6!.
The parameters were the same as in Sec. IV. The sys
synchronize when an unstable focus is used to drive the
sponse system, as can be seen in Fig. 10~a!. When a saddle
point is used as a drive, however, no synchronization
achieved@cf. Fig. 10~b!#. In this case the response syste
also generates cw output, but at a different value of the e
tric field amplitudeẼ0(t).

When the system comes too close to a saddle point,
independent events take place. First, the average intensi
the drive system breaks down and the value of the invers
n(t) increases very rapidly due to the saddle node instabi
Second, the synchronization between the drive and the
sponse systems is lost because of the desynchronizing p
erty of the saddle point. When the drive system has left
vicinity of the saddle point, synchronization is regaine

FIG. 10. Electric field amplitudes of drive~dashed line! and
response~solid line! lasers when the response system is driven w
~a! an external cavity mode and~b! an antimode, respectively. A
t510t the coupling is switched on. The parameters are the sam
in Fig. 6.
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Since the unstable foci do not have that desynchroniz
property, they are of no danger for the synchronization. T
mechanism also explains the occurrence of desynchron
tion events atlow drive intensitiesP ~see Figs. 7 and 8!
because all unstable cw solutions have amplitudesE0

s

,3 (arbitrary units), as can be computed using Eq.~10!.

VII. CONCLUSION

In this paper we have presented numerical simulation
synchronizing hyperchaotic semiconductor lasers that
unidirectionally coupled by their electric fields. For perfec
identical lasers the synchronization error converges to z
very rapidly, but~slight! parameter mismatch leads to inte
mittent breakdown of the synchronization, i.e., the differen
of the electric field amplitudes of drive and response las
becomes rather large for short periods of time. The m
reason for these desynchronization events is the existenc
transversally unstable cw solutions that are embedded in
chaotic attractor. Although these results indicate that
may not obtain ‘‘high-quality’’ synchronization in exper
,

ev
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mental implementations~where noise and parameter mi
match are unavoidable!, such a setup nevertheless may
useful for practical applications because the synchroniza
breakdowns coincide with intensity breakdowns. Therefo
the envelope of the intensity fluctations of the driving lase
well reproduced by the response laser even in the cas
parameter mismatch and despite the very high dimens
(d.150) of the underlying chaotic attractor. If this envelo
is of importance~for example, in a chaos-based communic
tion system! then the ‘‘low-quality’’ synchronization ob-
served with parameter mismatch may be sufficient.
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