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Hyperchaotic dynamics and synchronization of external-cavity semiconductor lasers
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Two unidirectionally coupled external cavity semiconductor lasers showing chaotic intensity fluctuations are
studied by numerically solving the Lang-Kobayashi model equafitfisE J. Quantum ElectroiQE-16, 347
(1980]. The systems are shown to synchronize when operating in the regime of low-frequency fluctuations,
which is characterized by a very high-dimensiondi(150) attractor. The influence of parameter differences
between the two lasers on the synchronization quality is investiged63-651X%98)02512-4

PACS numbeis): 05.45+b, 42.55.Px, 42.65.5f

[. INTRODUCTION dimensional chaotic attractor. This observation, together
with recent experimental result$5] corroborating the deter-

Synchronization phenomena are of fundamental imporministic model, indicates that LFFs are essentially a hyper-
tance for many physical, biological, and technical systems¢haotic deterministic process. Because of the high-
Since the pioneering work by Fujisaka and YamgtiaPik-  dimensional attractor, the LFF signal is very difficult to
ovsky[2], and Afraimovich, Verichev, and Rabinovi¢8], it  distinguish from a stochastic signal.
has been known that even chaotic systems may synchronize. In the following sections synchronization of ECSLs in the
This aspect of nonlinear dynamics became an issue of gre&fFF regime is investigated by numerically solving the usual
interest when Pecora and Carroll demonstrated synchroniz&ate equations. Synchronization of ECSLs has previously
tion of unidirectionally coupled chaotic systefd§ and sug- been studied numerically using different coupling schemes
gested potential applications in communication systems. ExX-16,17. The synchronization scheme employed in our simu-
amples of encoding methods based on chaos synchronizatid@tions is similar to but different from that used in REE6].
were presented in Ref5] using electronic circuits. Since In particular, we consider a coupling that in principle allows
many modern communication devices are optoelectronic operfect synchronization and also works if the driven laser
all optical, in this paper we address the question of chaogoes not possess an external cavity, which makes it easier to
synchronization of unidirectionally coupled laser systemsimplement the scheme experimentally. Furthermore, the ef-
Synchronization of chaotic lasers has been shown experfects of parameter mismatch between both coupled lasers are
mentally and numerically for Nd:YAG and GOlasers studied in terms of unstable cw solutions embedded in the
(where YAG denotes yttrium aluminum garhdb]. Re-  chaotic drive attractor.
cently, synchronization of chaotic erbium-doped fiber ring
lasers has been shown experimentally and numeri¢Zlly
Of special interest in optical communication, however, is the
semiconductor lasgfSL), mainly due to its size and its pos-  The schematic setup of an ECSL is shown in Fig. 1. Light
sibility to be easily modulatefB]. A communication scheme from the SL is reflected by the mirror and reinjected into the
based on synchronization of chaotic laser diodes withaser cavity.
electro-optical feedback has recently been implemented ex- To model the first ECSL, we use the well-known Lang-
perimentally[9]. Kobayashi equationgl8] for the complex electric field am-

External cavity semiconductor laseiiSCSL9 have been plitude E(t) (just behind the right laser fagednd the carrier
a subject of extensive researid0] during the past 15 years numberN(t). These equations are generally considered to
because of the importance of optical feedback phenomena igive a valid approximation of a single-mode SL with weak to
technical applications such as optical data storage or opticahoderate optical feedback from an external resonator. Writ-
fiber communications. In most of these cases, one tries tihg E(t) = Eq(t)expli[wgt+#(1)]}, splitting the complex
avoid the effects of optical feedback. A typical effect due toequation forE(t) into two real ones for the real amplitude
feedback are IOW'frequency ﬂUCtuatiOﬂS:F’S), which can EO(t) and the S|0w|y Varying phaw(t), and using the car-

be observed for moderate feedback and low pump currentier number above the value for the solitary Skithout an
This phenomenon has attracted considerable interest duringternal resonatarn(t) =N(t) — Ny, these equations read

the past few years. In particular, the question whether thei9 13
underlying dynamics i$mainly) a stochastic process or gov-
erned by a chaotic attractor has been discussed very contro- |

Il. HYPERCHAOTIC LASER DYNAMICS

versially [11-14. The numerical simulations presented in
Sec. Il, which are based on deterministic model equations, SL
show that the LFF dynamics correspond to a very high- M I

FIG. 1. Schematic setup of an external cavity semiconductor
*Electronic address: vahlers@physik3.gwdg.de laser(SL, semiconductor laseN, mirror).
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TABLE I. Parameters used in the simulations. Values are taken a)
from Ref.[13].

N
T
|

E,(t) [arb. units]

solitary laser carrier number Ngol 1.707x 108
differential optical gain Gy 2.142x10* st
external cavity round-trip time T 10 ns 0
L 0.0 0.5 1.0 1.5 2.0
linewidth enhancement factor a 5.0 t [units of 7]
carrier decay rate y 0.909 nst b) 7
cavity decay rate r 0.357 pst T
pump current relative tdy, p 1.02 g
wavelength 2rcl wg 635 nm =2
spontaneous emission rate Csp 10°% st 1::0 " i
0 25 50 75 100
t [units of 7]
d 1 Coy[NegrtN(1)]~1 E oL
gEo(D= 3 GNN(DEN(D) + = 5 :
o 5
+ kEg(t—7)cod wo7+ (1) — (t—7)], (1) g M
¥ 00 0.5 1.0 1.5 2.0

t [units of 7]

d t)= EQG n(t _KM FIG. 2. Dynamics of the ECSL fdi) =10 s ! and(b) and

o(t) (c) k=10 s™1. Note the different scales of the axes.
XsiMwor+ (1) — Pp(t—17)], (2
i 0 4 ¢ I 11l. UNIDIRECTIONALLY COUPLED
SEMICONDUCTOR LASERS

The synchronization arrangement assumed for the simu-
=(p— - _ 2

" =(P=1)In=yn() ~[I'+Cyn(D]E(M), (3 |ations presented in this paper is shown in Fig. 5. It consists
of two external cavity semiconductor lasers that are coupled

unidirectionally via an optical diode, which can be realized

where we have included the average spontaneous emissi§Perimentally using a Faraday isolator. In a real experimen-
rateCs,. The exact value of the angular frequenay of the tal situation, variable attenuators would be necessary to con-
solitary laser is found to be of no importance for the quali-rol feedback and coupling strengths. Coherent light from the
tative results. We have chosen a value corresponding to a rdtist external cavity SL, the drive system, is injected into the

laser diode.x is the feedback rate anpJy, is the pump
current in units of the electron charge, wheg= YN is 0.010F
the threshold value of the solitary laser. The other parameter a) 0.005
are explained in Table [; the values are taken from Ri]. C

Equations (1)—(3) include delay differential equations. . %90
We used a fourth-order Runge-Kutta-Fehlberg integrator anc  _g gos £
a sixth-order Hermite interpolation scherf#0] for all nu- .
merical calculations presented in this paper. Results art
shown in Fig. 2a) for k=10 s and in Figs. #) and -0.015t
2(c) for k=10'! s, In the latter case, the intensity break-
downs known as LFFs as well as the picosecond pulse:
[13,15 are observed.

In order to estimate the dimension of the underlying at- b) 1.000¢
tractor a method introduced by Farnj@d] is used to calcu- C
late the largest Lyapunov exponents of the infinite- 0.100
dimensional system. The ten largest Lyapunov exponents a _- :
a function of the feedback rate are shown in Fig. &) for
10° s l<k=<10 s! and in Fig. 3b) for 10° s i<k
<10 s . As can be seen, the system is hyperchaotic for
both valuesk=10'" and 13* s, which were used to cal- 00015 - 00
culate the time series shown in Fig. 2. ’ ’ )

In order to characterize the dynamics of the LFFs in more
detail the spectrum of the 150 largest Lyapunov exponents is F|G. 3. Ten largest Lyapunov exponents of the ECSL for
shown in Fig. 4 fork=10" s™1. As can be seen, the first different values of the feedback rate For x>4x1G s ! the

150 exponents are positive or vanish. The Lyapunov dimensystem is chaotic with an increasing number of positive Lyapunov
sion of the LFF attractor is thus larger than 150. exponents. Note the log-log scale (in).
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FIG. 4. Spectrum of the 150 largest Lyapunov exponant®r
the LFF attractor =10'% s71).

(t) [arb. units]

EO

om

second external cavity SL, the response system.
The light that is injected into the second system through 10°

coupling is included in the equations in a way similar to the

light coming from the external resonator. This approach |5v

widely used to describe the effects of coherent light injection< 10 N

into semiconductor lasef&2]. The equations for the second

system thus read 10710 ‘ ,
0 50 : : 100 150
t [units of T
O GEo(D)= 1GNn<t>Eo<t>+ M +*Eo(t—1) o .
2Eq(t) FIG. 6. Synchronization of drive and response lasers in the LFF
- - regime. Plotted are the electric field amplitudggt) andEO(t) of
X cod woT+ p(t) = p(t—1)] drive and response, respectively, and their normalized difference

AE(t)=|Eq(t) — Eo(t— At)|/(Eo(t)). Due to time delays the in-
tensity signalEy(t) of the response laser is shifted in time with
TE ( ) respect to the drive bjt=7,— r=1.058 3% 10 7 s=10.5833.
t—7 i i
~Eo . ~ e e The parameters of the lasers are given in Table | and are assumed to
dtd)(t) aGNn( )= ’E (t) = o SiMwor+ (1) = $(t=1)] be exactly the same for both systems with a coupling givenc by

0 -
=10" s, k=10 s7!, andoe=9x 101 s71,

+ o E(t— 1) CO§ woe+ (1) — B(t—1)],  (4)

Eo(t Tc)
—_ _ 5 ~
Eo(t) TEp Sreortd-dt-ml O d(t)=p(t—At)— woAt  (mod 2m),
aﬁm:(p—l)am—yﬁ<t)—[r+GNﬁ<t)JEé<t>, (6) n(t)=n(t—At),

needs to travel from the right facet of the first SL to the rlghtn'za'“On mtroduced through.. A synchronous solution ex-
facet of the second one. Note the difference betweersts if

Eq(t),#(t) and Eo(t),qb(t), describing the electric fields in ~
the drive and the response lasers, respectively. K=kK+0. (7)
Synchronization is possible if there exists a solution of

Egs.(1)~(3) and(4)—(6) with This condition can be realized by adjusting the coupling and

feedback strengths. Equatid) includes the possibility of
the response system consisting of a solitary SL, ie.,
=0 s !; in this case the feedback strength of the first sys-
tem and the coupling strength have to be equal,o.

Eo(t)=Eo(t—At),

SL

BS M IV. SYNCHRONIZATION OF IDENTICAL LASERS

\L oD Equation(7) provides a necessary condition for synchro-
nization; it does not tell, however, anything about the stabil-

ity of the synchronized solution. Therefore, EqH—(3) and

SL (4)—(6), which include delay differential equations, have to

BS M be solved numerically.
Figure 6 shows the results fox=10" s 1
FIG. 5. Synchronization arrangeme(@®L, semiconductor laser; =10 s71, and ¢=9x10" s 1. For this feedback

M, mirror; BS, beam splitter; OD, optical dioge strength the drive laser is in the LFF regifis], while the
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FIG. 8. Response amplitudE,y(t) vs drive amplitudeEq(t
0 50 100 150 —At) shifted in time. For largeeq synchronized dynamics along
t [units of 7] the diagonal occurs, but during intensity breakdowns of the drive
both lasers desynchronize. The parameters are the same as in Fig. 7.
FIG. 7. Synchronization of drive and response systems with
slightly different parameters fok=10'1 s, k=10 s, and the amplitudeEy(t—At) of the driving laser shifted in time.
o=9x10"° s (compare Fig. 5 Perfect synchronization would lead to a motion along the
diagonal, but here deviatiori§excursions”) occur mainly
response laser is in another hyperchaotic state without coder small values of the driving amplitudg,.
pling (compare Figs. 2 and)3Plotted are the electric field The desynchronization during the intensity breakdowns

amplitudesE(t) andEq(t) for the drive and the response does not affect their joint occurrence. Figure 9 shows the
laser, respectively, as well as the synchronization errofime traces of the intensit(t) =Eg(t) that would be ob-

which is defined as served in an experimental situation using a photodiode with
finite detection time; the original amplitude traces from Fig.
|Eo(t)— Eq(t—At)| 7 have been squared and averaged over 5 ns. On a “mac-
AT T Ry ®

where (Eqy(t)) is the temporal average of the electric field

amplitude of the drive laser. €50 g
At t= 257, the coupling is switched on. Synchronization =

occurs after some transient time. The electric field amplitude 3

of the response laser then follows the amplitude of the drive & o

laser with a time delay ofAt=7r.— 7, which is taken into
account in the definitio8) of the synchronization error. As
can be seen from Fig. 6, nearly perfect synchronization is
achieved. Similar results have been obtained for the case of ¢

response laser without an external resonaf@#() s b,
with the difference that shorter transient times are observed
before perfect synchronization occurs.

¢,

P(t) [arb. units]

~
(@]

10°F .
V. SYNCHRONIZATION OF NONIDENTICAL LASERS —_

Since in practice no lasers are identical, those parameters% 1072
of the response laser that cannot be adju§ted Gy, «, v,
I', andCgp have been varied randomly within 1.0% differ- 10-4 , ,
ence from the drive laser values. Figure 7 shows a typical 0 50 100 150
result. As expected, no perfect synchronization is achieved, t [units of 7]
but over I_ong tim_es thg systems synchronize in a less perfect FIG. 9. Same parameters as in Fig. 7 but intensifis)
way. Durlng_ the intensity _breakd(_)wns, however, the system_s: E(Z,(t) averaged over 5 ns to take into account finite detection
dpsynchrqmze. Synchromzauop is regained when th.e elgctngme. Note thatP(t— At) is plotted including the time shift to
field amplitude rises again. This can also be seen in Fig. &emonstrate the simultaneous occurrences of the intensity break-
where the amplitud&(t) of the response laser is plotted vs downs.
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roscopic” scale the systems synchronize quite well, includ-q)
ing the occurrence of the intensity breakdowns. Their inten-
sities differ, however, on a “microscopic” scale.

VI. UNSTABLE PERIODIC ORBITS

Short events of desynchronization such as those shown i
Fig. 7 are typical for weakly coupled systems in the presence
of noise or parameter mismat¢@3]. The origin of this so- |
called bubbling phenomenon are unstable invariant subsets
[such as unstable fixed pointslFP9 or unstable periodic
orbits (UPOS9] of the drive attractor that fail to entrain the
corresponding fixed point or periodic orbit of the response
system. When driven with one of these UFPs or UPOs the
response system does not synchronize, but oscillates in
different way from the drive. In the joint state space of drive 10 20 30
and response these UFPs and UPOs are transversally u t [units of 7]
stable, i.e., in their vicinity the manifold containing the syn- o ) ) )
chronized dynamics is repelling and not attracting. When- FIG. 10. Electric field amplitudes of drivedashed ling and
ever an almost synchronized trajectory comes close to ?esponsésolld line) I_asers when the response system is qlrlven with
transversally unstable UFP or UPO it is repelled from thel® 2" €xternal cavity mode ari@) an antimode, respectively. At
synchronization manifold and synchronization breaks dowr} 107 the coupling is switched on. The parameters are the same as
for a short period of time until the trajectorye)enters a In Fig. 6.
region where the synchronization manifold is attracting,. I : .
again. This mechanism explains also the intermittent chara t'—ilg dFerlvatIl%/e gre S"’:fjdlﬁ pokl)r:ts and are caltimodes
ter of the desynchronization bursts shown in Fig. 7. In ordei |. From Eq.(3) we finally obtain

to investigate this source of synchronization breakdown for S
the coupled laser system we have studied the transversal s [(P=1)JIpp—yn
r+Gyn®

2.0

o
o

E,(t), go(t) [orb. units] E (1), Eo(t) [arb. units]

o

(in)stability of unstable fixed point§.e., cw solutions A Eo= (10

stationary(cw) solution of Egs(1)—(3) has a complex elec-

tric field The process of LFFs has been explained in the following

way [12,13. During the intensity buildup phase, the system
oscillates in the vicinity of théunstablé foci. From time to
time, it moves from one focus to the next, preferably in the
direction of decreasing values gf. At some point, the sys-
n(t)=ns, tem comes too close to a saddle point and is carried away by
its unstable manifold. This leads to an intensity breakdown,
where w®=wy+Aw is the angular light frequency that is after which the buildup phase recommences.
shifted from the valuev, of the solitary laser by an amount  To investigate the hypothesis that unstable periodic orbits
Aw. For the slowly varying phasep(t) it follows that  might be the reason for the loss of synchronization during
d()=Awt+ ¢y, so that the phase differencg(t)=¢(t)  the intensity breakdowns, we used stationary solutions
— ¢(t—7) is constant, [which are fixed points of the systeri&({, »,n)] of the drive
system to drive an identical response system. For this task,
7°=Awr. the value ofy® was calculated by numerically solving E§)
and then the value foEg from Eqg. (10) and the phase
¢(t)=n%t/T were used as drive variables in Edgd)—(6).
The parameters were the same as in Sec. IV. The systems
24 synchronize when an unstable focus is used to drive the re-
nS= — —cog wor+ 7°). sponse system, as can be seen in Figa)l®hen a saddle
Gn point is used as a drive, however, no synchronization is
achieved[cf. Fig. 1Qb)]. In this case the response system
also generates cw output, but at a different value of the elec-

St erJ1F asi + 75+ arctany) =0, g tric field amplitudeEq(t). _
e a”sin(wor+ 7 ) © When the system comes too close to a saddle point, two

E(t)=Egexpi ot + ¢o)

and a carrier number

SubstitutingEg, n°, and %° in Eq. (1) and neglecting spon-
taneous emission, we obtain

Using this in Eq.(2), we obtain an equation fop®,

(9) with positive derivative the drive system breaks down and the value of the inversion
n(t) increases very rapidly due to the saddle node instability.
1+ km/1+ a’cog wor+ 7°+ arctany) >0 Second, the synchronization between the drive and the re-

sponse systems is lost because of the desynchronizing prop-
have been shown to be unstable foci and are generally rerty of the saddle point. When the drive system has left the
ferred to aexternal cavity modesvhile solutions with nega- vicinity of the saddle point, synchronization is regained.
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Since the unstable foci do not have that desynchronizingnental implementationgwhere noise and parameter mis-

property, they are of no danger for the synchronization. Thisnatch are unavoidablesuch a setup nevertheless may be
mechanism also explains the occurrence of desynchronizaiseful for practical applications because the synchronization
tion events atlow drive intensitiesP (see Figs. 7 and)8 breakdowns coincide with intensity breakdowns. Therefore,
because all unstable cw solutions have amplitudgs the envelope of the intensity fluctations of the driving laser is

<3 (arbitrary units), as can be computed using @g). well reproduced by the response laser even in the case of
parameter mismatch and despite the very high dimension
VII. CONCLUSION (d>150) of the underlying chaotic attractor. If this envelope

_ . _ _ is of importance(for example, in a chaos-based communica-
In this paper we have presented numerical simulations ofion system then the “low-quality” synchronization ob-

synchronizing hyperchaotic semiconductor lasers that argerved with parameter mismatch may be sufficient.
unidirectionally coupled by their electric fields. For perfectly

identical lasers the synchronization error converges to zero

very rapidly, but(slight) parameter mismatch leads to inter- ACKNOWLEDGMENTS
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