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Synchronized clusters and multistability in arrays of oscillators
with different natural frequencies
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The collective effects in arrays of diffusively coupled Van der Pol oscillators with different natural frequen-
cies are investigated by asymptotic and numerical methods. The conditions for the onset and existence of the
regimes of global~all-to-all! and cluster~inside several subsets of elements! frequency synchronization are
determined. It is found that there exist monostable and multistable regimes of cluster synchronization and the
respective ‘‘soft’’ and ‘‘hard’’ transitions between the structures consisting of a different number of clusters. It
is revealed that the synchronization is observed in a broader range of parameters in a randomly formed array
than for regularly arranged oscillators with the natural frequencies varying monotonically along the array.
@S1063-651X~98!02012-1#

PACS number~s!: 05.45.1b
dy
d
ct

ta
he
ste
he

o
e
di
c
it
o

s.
m

r
e-
m

e
ci
t

lar
g
est.
rs

of
ief
f
r
ion
In
of
of
-
re-
the
it

in-
ich
be-
ered

ng
be-
ious
I. INTRODUCTION

The relationship between the properties of temporal
namics of oscillations and their changes in space in exten
systems and their array analogs has recently been attra
attention of the researchers in terms of both diagnostics@1,2#
and feasibility of different regimes@3–5#. The fact that may
seem surprising at first sight was established: Under cer
conditions time-periodic behavior is realized only in t
presence of spatial disorder generated either by the sy
itself @3# or introduced from the outside, for example, by t
dispersion of parameters of the elements in the array@4,5#. In
particular, a chaotic regime may be realized in an array
identical non-linear pendulums with external forcing und
certain conditions. But this regime is replaced by a perio
one@4# if there is a dispersion in parameters. A similar effe
is observed in an analogous mathematical system, but w
out external periodic forcing, that models a parallel array
current-biased Josephson junctions coupled via inductor
small dispersion in the currents gives rise to enhanced
tual synchronization of oscillations in these junctions@5#. In
the present paper we also analyze the effect of disorde
synchronization but in a slightly different formulation. Sp
cifically: How does the change in the distribution of para
eters~natural frequencies in the case of interest! along the
array influence synchronization, if the range of their valu
remains unchanged? We take as an example coupled os
tors in which the dependence of natural frequencies along
array,

v j5v01
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2
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~ j 51, . . . ,N! ~1!

changes from monotonic, completely regular~for Dv* 50!
to a completely irregular one~for Dv* 5Dv!. Here,j j are
uniformly distributed random numbers in the interval@20.5;
10.5#, N is the number of elements in the array, andDv is
the interval of frequency dispersion. We choose a regu
distribution in the form of linear frequency variation alon
the array because this case may be of independent inter

The paper is organized as follows. Arrays of oscillato
with uniform frequency mismatchDv j5v j2v j 215const
are investigated in detail in the frame of a discrete analog
Ginzburg-Landau equations in Sec. II. We begin with a br
description of the model~Sec. II A! and characteristics o
global synchronization~Sec. II B! that are further used fo
interpretation of the properties of cluster synchronizat
~Sec. II C!. Multistable regimes are described in Sec. II D.
Sec. III formation of the clusters separated by a region
unexcited oscillators is interpreted in terms of the effect
oscillator death@6–9#. The formation of synchronized clus
ters in the presence of the regular nonuniformities of f
quency mismatch the spatial scale of which is close to
size of the clusters is considered in Sec. IV A. In Sec. IV B
is shown that small-scale nonuniformities, irregular ones
clusive, may expand the region of the parameters in wh
synchronization is possible. Nonlinear effects that are
yond the scope of Ginzburg-Landau equations are consid
in Sec. V on an example of Van der Pol oscillators.

II. SYNCHRONIZATION CLUSTERS
AND MULTISTABILITY AT LINEAR VARIATION

OF NATURAL FREQUENCIES ALONG THE ARRAY

Arrays of oscillators with the natural frequencies varyi
linearly along them are interesting both conceptually and
cause they are encountered in a natural fashion in var
7198 © 1998 The American Physical Society



x-
lia
ng
c
d

ng
di
r
a
e-
at

nt
re
fe

nt
in
te
w
a

be
n

e
-

it

t
ls

ie
tu
c
n
e

ar
o
f a

ic
t s

in
lf-
o
-
s-
c
le
s
rt

o

fu-
ns

al
of
rst

after
it-

a

y
o

au
at

PRE 58 7199SYNCHRONIZED CLUSTERS AND MULTISTABILITY IN . . .
situations. We will mention here two rather illustrative e
amples. One of them concerns dynamics of a mamma
small intestine. If one isolates in them sections 1–3 cm lo
then each of them is able to oscillate at a definite frequen
the changes of which along the intestine may be regarde
be linear at rather long distances@10#. The other example, in
which linear variations of the local natural frequency alo
the spatial coordinate are manifested, is the vortex shed
in a flow past cone-shaped bodies~for example, supports o
chimney stacks!. Such research also involves analysis of
array of coupled oscillators with linearly varying natural fr
quencies, if the derivative with respect to the coordin
along the cone axis is replaced by finite differences~see, e.g.,
@11#!. In these and other analogous cases, a sufficie
strong coupling between oscillators gives rise to local f
quencies of excited collective oscillations that strongly dif
from the natural frequencies. Besides, steps in the form
well pronounced and rather extended plateaus that are i
mittent with a relatively narrow transition region appear
their dependence on spatial coordinate. We briefly charac
ize this effect as cluster synchronization. Under a cluster
understand a coupled set of oscillators having the same
erage periodT and the corresponding mean frequencyV
;T21, with no demand for constant phase difference
tween the elements and with allowance for limited variatio
in time.

As the control parameterR ~frequency gradient along th
array, value of coupling, etc.! is changed, the cluster struc
ture is destroyed atR5Rcr . On passing the critical value,
is regenerated again atR5Rcr1DR but now with a different
number of clusters. A chaotic behavior may appear aR
P(Rcr ,Rcr1DR) and, since the relative share of interva
DR increases with the increase of the frequency grad
and/or the weakening of coupling, the clusters will even
ally disappear in the sea of chaos. A well pronounced s
nario of the transition to turbulence through cluster fractio
ing is still another factor stimulating an interest in th
problem considered.

Theoretical investigations of cluster synchronization in
rays with linear frequency variations have been carried
for a long time, including modeling the specific behavior o
mammalian small intestine@10,12–15#. The problem was
formulated and analyzed in the general context in@16# in the
frame of the phase equation. However, the effects in wh
amplitude variations are significant were revealed almos
multaneously@17# ~see also@18#!. A vivid manifestation of
these effects is formation of clusters of oscillators with
finitesimal amplitude, even if the conditions of se
excitation in the absence of coupling are fulfilled for each
them. This effect is known as ‘‘oscillator death’’ or ‘‘ampli
tude death’’@6–9,19,20#. The amplitude effects are also e
sential for the formation and restructuring of cluster stru
tures. Therefore here we employ equations for slow comp
amplitudes. Their solution is more complicated than analy
of phase equations. Consequently, we have to use pa
solutions obtained numerically.

A. Model

The model considered is a one-dimensional array of
cillators ~Van der Pol oscillators for definiteness! having dif-
n
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ferent natural frequencies. Each oscillator is coupled dif
sively with its two nearest neighbors. The model equatio
may be written in the form

ü1~ Î 1eD̂!2u22e~pÎ2Û2!u̇52e dÂ u̇,

Ui j 5 Huj , i 5 j
0, iÞ j ~2!

I i j 5 H1, i 5 j
0, iÞ j .

Here, the column vectoru and the diagonal matrixÛ are
made up ofN functions (u1 ,...,uj ,...,uN) characterizing
self-oscillations ofN oscillators, the elements of the diagon
matrix D̂(D1 ,...,DN) are equal to the frequency mismatch
the oscillators relative to the natural frequency of the fi
oscillator with v151, andd is the coefficient of coupling
between the oscillators. The elements of matrixÂ are equal
to a1,15aN,N521, aj , j522, aj 11, j5aj , j 1151 ( j
51, . . . ,N21), while for all the restai , j50. The parameter
e characterizes the smallness of the quantities standing
it, when the asymptotic methods are employed, and is om
ted in final expressions.

Further consideration, except Sec. V, is carried out in
quasiharmonic approximation (e!1) in its traditional inter-
pretation. The fast (j5vt, v511ev (1)t1¯! and slow
(h5et) time dependences are introduced. Then, Eq.~2! is
written, to an accuracy of the terms;e2, in the form

~112ev~1!!ujj12eujh1u22e~pÎ2Û2!uj

52e~dÂ uj2D̂u!. ~3!

The solution is sought as an expansionu(0)1eu(1)10(e2) to
an accuracy of the terms 0(e2) to give a system

ujj
~0!1u~0!50, ~4!

ujj
~1!1u~1!522~pÎ2Û0

2!uj
~0!22ujh

~0!22v~1!ujj
~0!

12~dÂ uj
~0!2D̂u~0!!. ~5!

From this it follows that

u~0!5z~h!exp~ i j!1z* ~h!exp~2 i j!, ~6!

wherez is the vector column with componentszj . The com-
plex amplitudeszj (h) are determined from the resolvabilit
condition for the system~4!, ~5! that reduces in this case t
requirement of the absence of resonance terms;exp(6ij) in
the right-hand side of Eq.~5!. If this requirement is fulfilled,
we obtain the equation

żj5 iD j zj1~p2zj
2!zj1d~zj 1122zj1zj 21!,

j 51, . . . ,N,

z05z1 , zN115zN . ~7!

Equation ~7! is a discrete analog of the Ginzburg-Land
equation.~Without loss of generality, we can suppose th
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7200 PRE 58G. V. OSIPOV AND M. M. SUSHCHIK
v (1)50 because the solutions in the approximation taken
invariant tov (1) if their final form is written in the initial
variables.!

By passing to real amplitudes and phases,zj
5r j exp(ifj), we obtain a set of equations consisting of tw
groups that can be referred to as amplitude and phase o
respectively:

ṙ j5~p2r j
2!r j1d~r j 11cosu j 1122r j1r j 21cosu j 21!,

~8!

j 51, . . . ,N

u̇ j5D̄ j1dFr j 12

r j 11
sin u j 112S r j

r j 11
1

r j 11

r j
D sin u j

1
r j 21

r j
sin u j 21G , j 51, . . . ,N21 ~9!

ḟ15D11d
r2

r1
sin u1 . ~10!

Here, u j5f j 112f j and D̄ j5D j 112D j . We consider
the following boundary conditions:

r05r1 , rN115rN , f05f1 , fN115fN . ~11!

Below in this section we setD̄ j5D for all j.
We take as the synchronization conditions the coin

dence of averaged partial frequenciesV j estimated as the
2pnj (T)/T ratio, wherenj (T) is the number of typical fea
tures of the time series~e.g., the maxima exceeding certa
values! in the time intervalT. A qualitative picture of the
spatio-temporal structure of oscillations was obtained
plotting shadowgraphs ofzj (t) on the~j,t! plane. Arrays of
100 elements atp50.5 were investigated in all experiment

B. Global synchronization in an assembly.
Stationary phase distributions.

Synchronization band

A stable equilibrium state in the system of equations~8!
and ~9! corresponds to the regime of global synchronizat
in the array. For the synchronous regime (ṙ j50, u̇ j50!,
amplitude equations in a zero approximation give the sa
oscillation amplitudes for all elements of the array. The
with allowance made for the conditionD̄ j5D, the system of
equations for the stationary phase differencesū j is rewritten
in the form

D1d~sin ū222 sin ū1!50, ~12!

D1d~sin ū j 2122 sin ū j1sin ū j 11!50, j 52, . . . ,N22
~13!

D1d~sin ūN2222 sin ūN21!50. ~14!

As follows from @16#, the distribution ofū j is equal to
re

es,

i-

y

n

e
,

sin ū j5
D

2d
~N j2 j 2!. ~15!

It follows from Eq. ~15! that the system~13! has 2N21 equi-
librium states~see, e.g.,@18,21#! and only one of them~for
2p/2, ū j,p/2! is stable. As the frequency mismatchD is
increased, the condition of synchronization for all elemen

U D

2d
~N j2 j 2!U,1, ~16!

that coincides with the condition of the existence of equil
rium states@21#, is violated first for j 5N/2 at evenN, i.e.,
for the middle element of the array. Thus the condition
global synchronization in the array~or the respective syn
chronization band! is given by the inequality

UDN2

8d U,1. ~17!

The correction to the frequency of synchronized oscillatio
Dvc , may be determined from the equation for phasef1 :

ḟ15d sin ū11D, ~18!

so that

Dvc5D~N21!/2. ~19!

For D58d/N2, we have the following stationary values
ūN/25p/2. In this case, the stable and unstable equilibri
states merge and a rotatory~with infinite growth of phase
differencesuN/2! periodic motion is born in the phase spa
of the system of equations for phase difference. All the e
ments of the array are coupled. Consequently, as the p
difference between the middle element and its neighbor
creases, the stationary regime of global synchroniza
changes to the regime of oscillationsu j (t) near a certain
constant value ofu j , with the oscillation amplitude depend
ing on j in all elements of the array. The closer the eleme
are to the ends of the array, the smaller the amplitude
oscillations is. In the case of a long array, the current val
of u j are nearly constant~or constant! for the edge elements
i.e., the regime of synchronization occurs. Thus the arra
divided into two clusters of equal sizes (N/2) that consist of
mutually synchronized elements at different average frequ
cies.

C. Regimes of cluster synchronization

Two principal regimes are realized, asD/d is increased,
depending on the values of the parameters. The first of th
is the regime of multifrequency generation, when most e
ments of the array~except, perhaps, the edge ones! generate
different frequencies as in Figs. 1~a! and 1~b!. The second
one is the regime of cluster synchronization, when all
oscillators are divided into several groups inside which
the elements oscillate at the same average frequency@Fig.
1~b!, Fig. 2#. The values of frequency for each cluster~ex-
cept the edge ones! are close to those obtained by averagi
natural frequencies over all the elements forming the clus
In the considered case of linear dependence of frequenc
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FIG. 1. Averaged frequenciesV j and their differenceDV j5V j 112V j for perfect ~b!, ~e! (d51.2) and intermediate~a!, ~d! (d
51.0), ~c!, ~f! (d51.45) cluster structures forD5231023.
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j in Fig. 2, this corresponds to the intersection of the lin
V5V j5ḟ j andV5 j D exactly in the middle of the cluster
These cluster structures are periodic in time. The freque
differences between the clusters in such structures coin
and are equal to the lowest cluster frequency@in terms of the
amplitude equations~7!#:

Vn5D~N21!/~n11!. ~20!

The size of the clustersNn for smallD may be approximated
to an accuracy of61 element, by the relations for the midd
clusters:

Nn5
N21

n11
, ~21!

and for the edge clusters:

Nn5
3

2

N21

n11
. ~22!

FIG. 2. Averaged frequenciesV j for different values of cou-
pling coefficientsd in the caseD5231023.
s

cy
de

Here, N ~5100! is the number of elements andn
~52, . . .! is the number of clusters. The sizes of midd
clustersNn at the instant they break are plotted in Fig. 3. T
scaling by parametersD and d is similar to the one that
specifies, in the constant amplitude approximati
(uzj u5uz0u), the limiting size of the array with free ends i
which the global synchronization~17! may occur:

Nn;S 8d

D D 1/2

. ~23!

The spatiotemporal behavior of cluster structures is ill
trated in Fig. 4, where the darker regions mark the hig
values of intensities ofuzj u2 @Fig. 4~a!# and real parts Rezj
@Fig. 4~b!# of complex amplitudes of oscillations. Oscillo
grams of intensities for the middle elements of the array
shown in Fig. 5. Detailed comparison of the data given
these figures as well as in Fig. 1 leads to a conclusion
perfect cluster structures may be formed~for d50.8, 1.2, 1.8
in Figs. 1 and 4!.

The intensity ofuzj u2 decays periodically almost to zero a
the cluster boundaries@Fig. 5~b!#. With increasing distance
from the boundary of the clusters, the magnitude of intens
drops decreases so that the change of the real part of c
plex amplitudeszj in the ~j,t! plane shown in Fig. 4~b! rep-
resents correctly the phase ofzj . The formation of a defect
in the spatiotemporal pattern of the phase~or Rezj!, that is
visualized as the singularity of the intensity field ofuzj u2,
corresponds to the transition between the clusters.

Since the number of the defects,nD , formed in one pe-
riod of a perfect cluster structure is a unity less than
number of clustersn and their repetition rate isT
52pVn

21, the number of the defects per unit time is equ
to

rD5
nD

T
5

D~N21!

2p

n21

n11
. ~24!
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7202 PRE 58G. V. OSIPOV AND M. M. SUSHCHIK
Estimates by these formulas agree well with the data
tained directly from numerical solutions. In particular, t
number of the defects is equal to 44, 40, and 39 for the c
shown in Fig. 4~a! at d50.8, 1.2, and 1.8, and to 45, 42, an
38, respectively, when calculated by the formula~24!. Note
that, when the transitions between the structures withn and
n11 clusters are caused by changes of coupling coeffic
d, the average defect density changes only slightly atn>4.
At the same time, their relative position in the~j,t! plane
alters significantly. For example, in Fig. 4~a! it changes from
completely ordered atd51.2 to irregular atd51.45, and
then again to a regular one but now with a different symm
try at d51.8. The time series undergo the correspond
changes too~see Fig. 5!.

We will mention here some consequences of the scal
~23! and ~24! for two limiting transitions to infinitely long
arraysN→` at a constant interval of oscillator frequenci
Dv(5DN5const. In the first of these two transitions~ther-
modynamic!, the coupling coefficientd remains constan
dN5D5const. In the second one~‘‘continuous’’!, the cou-
pling coefficient dN5DN2, so that the correspondin
second-order difference in Eqs.~2! and ~7! tends to the sec
ond derivative with respect to the spatial coordinate. As f
lows from Eq.~23!, the maximal size of the clusters in th
thermodynamic limit changes as

FIG. 3. Critical values of frequency gradient~3! in the range
D'(0.5– 17)31023 for d51 and coupling coefficient~1! in the
ranged'0.3– 3.8 forD5231023, at which then-cluster structure
breaks prior to transition from thenth to the (n11)th cluster de-
pending on the size of middle clustersNn . The scale is logarithmic
to an accuracy of arbitrarily chosen origin; the straight lines co
spond to the dependence~21!.
-

se

nt

-
g

s

l-

Nn;S 8DN

Dv(
D 1/2

.

Consequently, their relative sizeN̄n /N and the interval of
variations of natural frequencies along the cluster leng
N̄n(Dv()/N, tend to zero as the number of elements is
creased. At the same time, the quantitiesNn /N and
N̄n(Dv()/N change approximately as@(8ND)/Dv(#1/2 in
the ‘‘continuous’’ limit. As a result, the regime of globa
synchronizationN15N will inevitably be established asN
→`. The mean density of defects in the~j,t! plane, as is seen
from Eq. ~24!, will remain constant in either case, of cours
if we speak about the range of the parameters in which
number of clusters is much greater than unity.

Both the picture of synchronization presented above
its description in a rather general form on the basis of
merical solutions are possible due to high degree of sym
try and homogeneity of the problem in a quasiharmonic
proximation at small frequency gradients and coupli
coefficients. Actually, the meaningful quantity in this a
proximation is not the frequency itself but the frequency d
ferenceD j . Consequently, the system may be regarded to
a homogeneous one atD j5D5const if the edge effects ar
neglected. The picture is becoming more complicated, aD
andd are increased. This makes the effects of multistabi
and the changes of the amplitudes of oscillations along
array essential.

D. Multistability

Investigations into processes of cluster structure form
tion revealed multistability, the most vivid manifestation

-

FIG. 4. Space-time diagrams:~a!–~i! intensities ofuzj u2 and ~j!
real parts Rezj for D50.002 and different values of coupling coe
ficients: 0.8~a!; 0.9 ~b!; 1.0 ~c!; 1.1 ~d!; 1.2 ~e!; 1.3 ~f!; 1.45~g!; 1.6
~h!; 1.8 ~i!, ~j!. The spatial coordinatej 51, . . . ,100 isplotted on
the abscissa axis, and timetP@0,2000# on the ordinate axis.
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FIG. 5. Intensity oscillograms for the middle elements of the array forD50.002: ~a! d51.45 and~b! d51.8.
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which is formation of the structures containing a differe
number of clusters depending on initial conditions. The
istence domains of the structures having a definite numbe
clusters obtained in numerical experiment with adaptation
the initial conditions to small variations of the parameters
shown in Fig. 6. The adaptation procedure was as follo
The mismatchD was varied successively by1531024 or
by 2531024. The values from the steady-state solution o
tained in the previous variant were taken as the initial c
ditions for zi(t). Although the procedure described does n
guarantee that all possible regimes will be found, it enab
us to reveal qualitatively different transitions in the doma
where the states possessing a different number of clus
coexist, i.e., in the region of multistability and in the regio
of parameters where it is absent. In the first case, asD in-
creases by less than 531024, a ‘‘hard’’ transition without
intermediate structures occurs from the state with four c
ters to the state with five clusters. In the second cas
‘‘soft’’ transition occurs at a much greater interval of vari
tions D'2.231023, with a smooth transition of intermedi
ate structures one into another~Fig. 7!.

Note that a nonmonotonic dependence of the numbe
clusters on the magnitude of frequency mismatch~Fig. 8! is
observed in the region of multistability when solutions und

FIG. 6. The ranges of frequency gradients at which structu
with n perfect clusters of the type shown in Fig. 1~b! are given for
coupling coefficientsd51,2,5.
t
-
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e
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-
t
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the same initial conditions are sought. Namely,xj (0)
[Re@zj(0)#520.01 for evenj, xj (0)50.01 for odd j, and
yj (0)[Im@zj(0)#50.01 for all j. This is evidently due to an
intricate structure of the basins of the corresponding attr
tors in phase space, the deformation of which leads to
alternating initial conditions in each of them. This lays t
basis~see Sec. IV A! for one of the methods of governing th
processes of formation of the structures of mutually synch
nized elements.

The sophisticated structure of the phase portrait of
system considered does not exclude that multistable regi
of other types, when the structure of the clusters rather t
their number is changed, may also be observed. For ve
cation of this hypothesis we conducted a series of exp
ments in which the amplitude and phase distributions form
earlier in the clusters but now with a different number
elements were taken as initial conditions. Usually, the nu
ber of elements in the cluster was changed byNn561,2. It
was found that the same cluster structure was always es
lished in the region of the parameters of interest with su
variations of initial conditions.

III. ‘‘OSCILLATOR DEATH’’

A distinguishing feature of cluster synchronization with
still further increase of couplingd and mismatchD is the

s FIG. 7. Averaged frequenciesV j in the soft transitions fromn to
n11 clusters. The corresponding regions of parameters are i
cated in Fig. 6 bys.
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7204 PRE 58G. V. OSIPOV AND M. M. SUSHCHIK
formation of clusters separated by a region of unexcited
cillators @17,18#. The formation of such regions may be in
terpreted as manifestation of the effect of oscillator de
@6–9,19#. Recall ~see, e.g.,@19#! a bifurcation diagram for
two coupled oscillators the qualitative plot of which is give
in Fig. 9. It is similar to the diagram for an assembly
oscillators coupled all to all, with the frequencies distribut
uniformly in a narrow intervalDv( .

Depending on the qualitative properties of the solutio
one can distinguish in the diagram three main regions:~1!
the region of oscillator death in which a trivial solution
stable~we remind the reader that we consider the case w
the self-excitation conditionp.0 is fulfilled for uncoupled
oscillators!; ~2! the synchronization regionḟ15ḟ2 ; and~3!
the region of nonsynchronized oscillations limT T21(f1
2f2)Þ0. The transition between regions 2 and 3 has a co
plicated structure, with both regularly and chaotically mod
lated oscillations possible in a general case. The transit
between regions 1 and 2 or 1 and 3 are much simpler and
determined from analysis of the stability of trivial solutio
For two oscillators (N52), the eigenvalues for small pertu
bations are equal to

l1,25p2d6Ad22~D/2!2,

whereD5v22v1 is the frequency difference of the oscilla
tors. There occurs the transition to a double-frequency
gime if d5p, D.2d, and to a single-frequency regime
d5(D2/42p2)/2p, D,2d ~Fig. 9!.

All the solutions mentioned above are observed in an
sembly of coupled oscillators. By virtue of collective effec
they may be realized either globally~in all elements! or lo-
cally ~in clusters of neighboring elements!.

For better understanding of the transitions in long arra
the following interpretation of oscillator death may be usef
Consider a linearized equation for one of the oscillators:

ż25 iDz21pz21d~z12z2!.

Here, the term containing the oscillation amplitude of t
first oscillator, on breaking of synchronization, may be
garded as a nonresonant external force, and the second

FIG. 8. Nonmonotonic sequence of the number of clust
~4,5,4,5,6,5,6 upwards! at monotonic variation of frequency grad
ent D and identical initial conditions (d55). The corresponding
values of the parameters are marked in Fig. 6 by3.
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that depends on the magnitude of coupling2dz2 exerts the
same effect as additional losses. If the losses do not exc
the amplification (d,p), a double-frequency regime is pos
sible. Ford.p, there remain only forced oscillations wit
the amplituder25d/u iD1p2du decreasing as the mismatc
D is increased.

An analogous mechanism of oscillator death is obser
in an array. An essential aspect in this case is that, with
increase of mismatchD, the synchronization conditions ar
violated locally and not all at once throughout the arra
namely, in the neighborhood of the weakest element of
array, i.e., in the middle of the array at the site where
regime of global synchronization breaks earliest~see Sec.
II B !. In this case, for sufficiently great mismatches, i.
when the influence of the neighbors is no longer a reson
one, the coupling acts as effective damping, and for 2d.p
the corresponding element becomes unexcited. AsD is in-
creased, the region of oscillator death is expanding so
that there remain only two clusters that are not fraction
due to local desynchronization any longer because the
crease of the parameterD/d, that usually leads to breakin
of synchronization, is compensated by the decrease of
size of the clusters~see@6,21#!. This is illustrated in Fig. 10,
where two clusters of synchronized elements at the edge
the array are separated by an area of unexcited oscillatio

IV. THE EFFECT OF NONUNIFORMITY
OF FREQUENCY MISMATCH GRADIENT

ON FORMATION OF SYNCHRONIZED CLUSTERS

A. Sensitivity of the structures to regular nonuniformities

We can distinguish at least two mechanisms controll
the spatial structure of the system of interest, when ad
tional inhomogeneities of the frequency gradientD j periodic
along the array are introduced. One of them is associa
with transformation of an attractor~or attractors!. The other
one is attributed to changes only of attraction basins~see,
e.g.,@4,5,22#!. It can be expected that the second mechan

s

FIG. 9. Bifurcation diagram of the system of two coupled osc
lators: ~1! region of oscillator death where a trivial solution
stable;~2! region of synchronization;~3! region of nonsynchronized
oscillations.
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is readily realized in the above-mentioned case of nontri
dependence of the number of clusters on the magnitud
frequency mismatch gradient. Indeed, for the parameter
ues and initial conditions like in Fig. 6~marked with an
asterisk ford55!, a relatively small, periodic alongj correc-
tion to the natural frequencies:

v j5D~ j 21!1a sinS 2pn* ~ j 21!

N D ~25!

leads to the change of the number of clusters formed@22#.
Particularly, forD50.009 andn* 55, the number of clusters
is n56 if a50, andn55 if a50.0001. By introducing a
perturbation with a much larger amplitudea>0.002, one can
influence not only the process of cluster formation in t
regime of transition but also the structures that have alre
been formed. For example, the transition from six to fi
clusters occurs ford55.0; a50.002; D50.009 @see Fig.
6~a!#. This case corresponds to the first mechanism of fo
ing, namely, destruction of one of the multistable states
this case, the structure of six clusters. Another possible m
festation of this mechanism is formation of synchronizat
clusters from a nonsynchronized state, when the transi
from a chaotic state in space and time to a state with
clusters takes place~Fig. 11!.

Note that the expression~25! does not give a clear pictur
of the relationship between the magnitudes of uniform a
nonuniform components of frequency mismatch. Only co
parison either of their gradients or of their changes over
modulation period along the array is physically meaningf
By comparing these quantities one can see that the pertu
tion is determined by the parameter (a/D)(2pn/N) that did
not exceed1

3 in all the cases considered.

B. The effect of random dispersion of natural frequencies
on cluster synchronization

We restrict our consideration to one aspect of the eff
exerted by spatially irregular parameter variations on the
mation of synchronized structures. Namely, we investig
the dependence of spatial structures on the magnitude of
dom distribution of mismatch relative to some mean a

FIG. 10. ~a! Squared mean amplitudesur j u2 and ~b! averaged
frequenciesV j in the case of oscillator death in the array ford
55, D50.06. There are two clusters consisting of 20 mutua
synchronized elements at the ends of the array.
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constant complete range of frequency variations accordin
the expression~1!. The critical values ofd averaged over 20
samples of random numbers, at which the transition betw
cluster structures occurs, are presented in Fig. 12. The
gime of global synchronization is established at mu
smaller values of coupling for random frequency distributi
than for linear frequency distribution. This effect was ac
ally observed for each space series of random frequency
tribution.

V. SYNCHRONIZATION IN AN ARRAY
OF VAN DER POL OSCILLATORS

We have already mentioned that the picture of synchro
zation described above and simple scalings at linear varia
of natural frequencies along the array are due to high deg
of symmetry and homogeneity of the problem. This is tru
on the other hand, if the array is sufficiently long so that t
edge effects do not introduce significant distortions into cl
ters. On the other hand, the quasiharmonic approxima

FIG. 11. Restructuring under the action of periodic inhomog
neity: d52, D50.005,a50.005 @see Fig. 6~b!#. The frequencies
were determined by averaging over timeDt5500 prior to subse-
quent record ofV j distribution.

FIG. 12. Average critical values ofd at which the transition
between different cluster structures occurs forD50.002. Region 1
corresponds to the regime of global synchronization. Two and th
clusters of mutually synchronized elements exist in regions 2 an
respectively. The averaging was made over 20 sample random n
ral frequencies.
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should be valid,e!1, when not natural frequencies but the
gradient is the essential parameter. The situation chan
cardinally with the increase ofe because nonlinear distor
tions of the shape of oscillations become pronounced. S
these distortions are greater in the low-frequency region t
in the high-frequency one, the symmetry of the problem
violated. In particular, the amplitude distribution becom
essentially nonsymmetric~Fig. 13! even at stable synchron
zation for smallD, when the amplitude modulation is sever
percent. As a result, the distribution of stationary phase
ferences of the neighbors that matches the amplitude di
bution is no longer symmetric. Consequently, the regime
global synchronization is broken in the elements close to
beginning of the array rather than in the middle eleme
~Fig. 14!. In spite of the strong dependence of the shape
oscillations on nonlinearitye, one can observe in the interva
of its intermediate valuese'1 an almost linear relationshi
betweene and the critical value of mismatch,D* , starting
from which the regime of global synchronization breaks. T
linear relationship exists also betweene and the squared siz

FIG. 13. Mean amplitudesAj5Auj
21u̇ j

2 for different values of
e in the cased55, D50.000 25.

FIG. 14. ~a! Mean amplitudesAj5Auj
21u̇ j

2 and ~b! averaged
frequenciesV j at different values ofe andD for d55. The curves
are marked by1 for e50.02 andD50.0006; by3 for e50.1 and
D50.0006; by* for e50.3 andD50.000 65; and byh for e
50.5 andD50.0007. The values ofD are slightly larger than the
critical valuesDcr at which the regime of global synchronization
disturbed.
es

ce
n

s
s

l
f-
ri-
f
e
s
f

e

of the smallest of the two clusters formed as the global s
chronization breaks. Examples of such relationships
given in Fig. 15.

VI. CONCLUSION

The collective behavior of an array of diffusively couple
Van der Pol oscillators at weak and relatively strong nonl
earity has been investigated employing asymptotic and
merical methods. Typical features of the onset and existe
of the regimes of global~all-to-all! and cluster~partial! syn-
chronization have been explored. Two scenarios, ‘‘soft’’ a
‘‘hard,’’ of the transitions between the structures consisti
of a different number of synchronization clusters have be
revealed. In the first case, gradual tuning of spatial distri
tion of averaged frequencies is observed. In the second c
the transition from the structure ofn synchronized clusters to
the structure ofn11 clusters occurs in a stepwise fashion
a consequence of multistability.

The effect of different types of natural frequency distrib
tions on synchronization in a constant range of freque
variations is investigated. It is revealed that the characte
tics of the synchronization are improved when an irregu
distribution of natural frequencies is used.

Note that many of the effects observed in the arrays
coupled periodic oscillators were also revealed in analysi
the regimes of chaotic phase synchronization in an array
coupled Ro¨ssler oscillators@23#.

The formation of synchronized clusters was observed
some systems in which the distribution of natural frequenc
is almost linear. For example, the measured electrical ac
ity along the~intact! mammalian intestine displays frequenc
plateaus@24#. The stepwise dependence of frequency on
axial coordinate was also observed in the flow around
cone-shaped cylinder@25#. It was established that in bot
cases~see the papers@16# and @24#, respectively! these phe-
nomena resemble the effects of cluster synchronization in
model of coupled oscillators. At the same time, it was
vealed that the shape of the clusters in each particular

FIG. 15. ~a! The dependence one of the squared quantityN*
5502Nc , whereNc is the length of the smaller of the two syn
chronization clusters that are formed after breaking of the regim
global synchronization;~b! the dependence one of the critical value
of mismatchD* starting from which the regime of global synchro
nization is not realized:N5100,d55.
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should be described taking into consideration subtle de
of frequency distribution and features of interaction. As f
lows from the above consideration, one of the reasons
such a sensitivity is a high degree of symmetry and unif
mity of the problem in the presence of a uniform frequen
gradient. Even a small perturbation, that breaks the sym
try, may lead to substantial changes of cluster structure
such a situation. An illustrative example are the frequen
distributions given in Fig. 15 for different values of nonlin
.

at
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ol.
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earity parametere. There are no such nonsymmetric cluste
in the frame of the Ginzburg-Landau equations.
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