PHYSICAL REVIEW E VOLUME 58, NUMBER 6 DECEMBER 1998

Synchronized clusters and multistability in arrays of oscillators
with different natural frequencies
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The collective effects in arrays of diffusively coupled Van der Pol oscillators with different natural frequen-
cies are investigated by asymptotic and numerical methods. The conditions for the onset and existence of the
regimes of globalall-to-all) and cluster(iinside several subsets of elemgnfi®quency synchronization are
determined. It is found that there exist monostable and multistable regimes of cluster synchronization and the
respective “soft” and “hard” transitions between the structures consisting of a different number of clusters. It
is revealed that the synchronization is observed in a broader range of parameters in a randomly formed array
than for regularly arranged oscillators with the natural frequencies varying monotonically along the array.
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PACS numbd(s): 05.45+b

I. INTRODUCTION (j=1,...N) 1)

The relationship between the properties of temporal dy€hanges from monotonic, completely regu(for A w* =0)
namics of oscillations and their changes in space in extende a completely irregular onffor Aw* =Aw). Here,¢; are
systems and their array analogs has recently been attractingiformly distributed random numbers in the interyal0.5;
attention of the researchers in terms of both diagno§tic +0.5], N is the number of elements in the array, akd is
and feasibility of different regimel3—5]. The fact that may the interval of frequency dispersion. We choose a regular
seem surprising at first sight was established: Under certaidistribution in the form of linear frequency variation along
conditions time-periodic behavior is realized only in thethe array because this case may be of independent interest.
presence of spatial disorder generated either by the system The paper is organized as follows. Arrays of oscillators
itself [3] or introduced from the outside, for example, by thewith uniform frequency mismatch ;= w;— w;_;=const
dispersion of parameters of the elements in the gd&l. In  are investigated in detail in the frame of a discrete analog of
particular, a chaotic regime may be realized in an array ofGinzburg-Landau equations in Sec. Il. We begin with a brief
identical non-linear pendulums with external forcing underdescription of the mode{Sec. Il A and characteristics of
certain conditions. But this regime is replaced by a periodigylobal synchronizatiofSec. Il B that are further used for
one[4] if there is a dispersion in parameters. A similar effectinterpretation of the properties of cluster synchronization
is observed in an analogous mathematical system, but withSec. Il Q. Multistable regimes are described in Sec. II D. In
out external periodic forcing, that models a parallel array ofSec. Ill formation of the clusters separated by a region of
current-biased Josephson junctions coupled via inductors. Anexcited oscillators is interpreted in terms of the effect of
small dispersion in the currents gives rise to enhanced muwscillator deatf6—9]. The formation of synchronized clus-
tual synchronization of oscillations in these junctidb$ In ters in the presence of the regular nonuniformities of fre-
the present paper we also analyze the effect of disorder oguency mismatch the spatial scale of which is close to the
synchronization but in a slightly different formulation. Spe- size of the clusters is considered in Sec. IV A. In Sec. IV B it
cifically: How does the change in the distribution of param-is shown that small-scale nonuniformities, irregular ones in-
eters(natural frequencies in the case of inteyemibng the clusive, may expand the region of the parameters in which
array influence synchronization, if the range of their valuessynchronization is possible. Nonlinear effects that are be-
remains unchanged? We take as an example coupled oscillgend the scope of Ginzburg-Landau equations are considered
tors in which the dependence of natural frequencies along thi@ Sec. V on an example of Van der Pol oscillators.
array,

Ao* (j—1)(Aw—Aw*) II. SYNCHRONIZATION CLUSTERS
Wj=wg > N_1 +Aw* fj AND MULTISTABILITY AT LINEAR VARIATION
OF NATURAL FREQUENCIES ALONG THE ARRAY
Arrays of oscillators with the natural frequencies varying
*Electronic address: osipov@bu.edu linearly along them are interesting both conceptually and be-
"Electronic address: sushch@euler.appl.sci-nnov.ru cause they are encountered in a natural fashion in various
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situations. We will mention here two rather illustrative ex- ferent natural frequencies. Each oscillator is coupled diffu-
amples. One of them concerns dynamics of a mammaliasively with its two nearest neighbors. The model equations
small intestine. If one isolates in them sections 1-3 cm longmay be written in the form

then each of them is able to oscillate at a definite frequency,

the changes of which along the intestine may be regarded to i+ (1+eA)?u—2e(pl—U%)u=2edAu,

be linear at rather long distancg)]. The other example, in

which linear variations of the local natural frequency along U.. :[Uj , 1= @)
the spatial coordinate are manifested, is the vortex shedding 110, i#j

in a flow past cone-shaped bodidger example, supports or

chimney stacKs Such research also involves analysis of an L, 0=

array of coupled oscillators with linearly varying natural fre- 700, i#j.

guencies, if the derivative with respect to the coordinate

along the cone axis is replaced by finite difference=, e.g., Here, the column vecton and the diagonal matriX) are
[11]). In these and other analogous cases, a sufficientlynade up ofN functions (y,...,u;,...,uy) characterizing
strong coupling between oscillators gives rise to local fre-self-oscillations ol oscillators, the elements of the diagonal

guencies of excited collective oscillations that strongly diﬁermatrixA(Al ,...,Ay) are equal to the frequency mismatch of
from the natural frequencies. Besides, steps in the form ofhe oscillators relative to the natural frequency of the first
well pronounced and rather extended plateaus that are integscijlator with w,;=1, andd is the coefficient of coupling

mittent with a relatively narrow transition region appear in between the oscillators. The elements of makiare equal

their dependence on spatial coordinate. We briefly characte{b A =agn=—1 é, =—2 a...=a i..=1 q(.

ize this effect as cluster synchronization. Under a cluster we_ 11 N—NllN) while for all the’resE{-Jr-le 'Ilﬁélparamejter
FECEEREN 3 i, Y

understand a coupled set of oscillators having the same av- . , . ;
. . € characterizes the smallness of the quantities standing after
erage periodT and the corresponding mean frequeriQy

~T~1, with no demand for constant phase difference be_lt,(;/v.hep thle asymptotic methods are employed, and is omit-
tween the elements and with allowance for limited variationste N Tinat expressions. . . :
Further consideration, except Sec. V, is carried out in a

in time. . ) L0 g o .
As the control parameteR (frequency gradient along the gquasiharmonic approximatiore{<1) II’](I;[)S traditional inter-
. . ~ pretation. The fast {=wt, w=1+€ew't+---) and slow
array, value of coupling, etcis changed, the cluster struc (7= et) time dependences are introduced. Then, @yis

ture is destroyed @R=R_. On passing the critical value, it written. to an accuracy of the termse2. in the form
is regenerated again B= R+ AR but now with a different ' y €

number of clusters. A chaotic behavior may appeaRat

e (Rg R+ AR) and, since the relative share of intervals

AR increases with the increase of the frequency gradient — A A

and/or the weakening of coupling, the clusters will eventu- 2e(dAU -~ Au). @

ally disappear in the sea of chaos. A well pronounced scefhe solution is sought as an expansidf + eu")+0(€?) to

nario of the transition to turbulence through cluster fraction-an accuracy of the terms &) to give a system

ing is still another factor stimulating an interest in the

problem considered. uY +u®=o, (4
Theoretical investigations of cluster synchronization in ar-

rays with linear frequency variations have been carried out ud+u®=—-2(pl- 03 u® - 202 - 20 Mu

for a long time, including modeling the specific behavior of a K

mammalian small intesting10,12—19. The problem was +2(dAu(§°)—Au(°)). (5)

formulated and analyzed in the general contextlif] in the

frame of the phase equation. However, the effects in whichrrom this it follows that

amplitude variations are significant were revealed almost si-

multaneously[17] (see alsd18]). A vivid manifestation of u@=z(n)expi&)+z* (n)exp —ié), (6)

these effects is formation of clusters of oscillators with in- . .
finitesimal amplitude, even if the conditions of self- Wherezis the vector column with componerts. The com-

excitation in the absence of coupling are fulfilled for each ofP!€x amplitudes;(#) are determined from the resolvability
them. This effect is known as “oscillator death” or “ampli- condition for the systent4), (5) that reduces in this case to
tude death”[6-9,19,20. The amplitude effects are also es- réquirement of the absence of resonance terre2p(*ié) in
sential for the formation and restructuring of cluster struc-tn€ right-hand side of E@5). If this requirement is fulfilled,
tures. Therefore here we employ equations for slow comple}/€ obtain the equation

amplitudes. Their solution is more complicated than analysis
of phase equations. Consequently, we have to use partial
solutions obtained numerically.

(1+2ewM)ug+2eu,,+u—2e(pi—U?)u;,

ZJ=|AJZJ+(p_ZJZ)Z]+d(ZJ+l_ZZJ+ZJ,1),
i=1,... N,

A. Model 20=2;, ZN+1=2IN- (7

The model considered is a one-dimensional array of osEquation(7) is a discrete analog of the Ginzburg-Landau
cillators (Van der Pol oscillators for definitengdsaving dif-  equation.(Without loss of generality, we can suppose that
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»®M=0 because the solutions in the approximation taken are _
invariant to w® if their final form is written in the initial sin 0;=54 (Nj=j?). (15
variables)

By passing to real amplitudes and phases, It follows from Eq.(15) that the systenil3) has 2~ equi-

=p; expl¢;), we obtain a set of equations consisting of two librium states(see, e.g.[18,21]) and only one of thentfor

groups that can be referred to as amplitude and phase ONes, /o< 9. < 1/2) is stable. As the frequency mismatdhis
respectively: J

increased, the condition of synchronization for all elements:

: 2
pi=(P—pj)pj+d(p;+1€0S 0 1—2p;+p;_1C0S O _1),

® <1, (16)

A Ni_ i
2g (Ni—i9
ji=1,...N o . . . .
that coincides with the condition of the existence of equilib-
rium stateq21], is violated first forj =N/2 at evenN, i.e.,
Pit2 g [P Pt o for the middle element of the array. Thus the condition of
Pj+1 i+l Pi+1 P ! global synchronization in the arraypr the respective syn-
chronization bandis given by the inequality

0]:KJ+d

+%sin ajl}, ji=1,...N-1 (9) AN?
j [
8d <1. (17)
¢1=A1+d P2 sin 6. (10 The correction to the frequency of synchronized oscillations,
p1 Aw., may be determined from the equation for phéase
Here, 6= ¢;.1—¢; and Aj=A;,;—A;. We consider $1=d sin 6, +A, (18)
the following boundary conditions:
so that
PO=P1:  PN+1=PNy  Po=d1 1= én- (1) Awe=A(N—1)/2. (19)
Below in this section we sei;=A for all j. For A=8d/N?, we have the following stationary values:

We take as the synchronization conditions the coinci-g,=m/2. In this case, the stable and unstable equilibrium
dence of averaged partial frequenci@s estimated as the states merge and a rotatofwith infinite growth of phase
27n;(T)/T ratio, wheren;(T) is the number of typical fea- differencesfy,,) periodic motion is born in the phase space
tures of the time seriee.g., the maxima exceeding certain of the system of equations for phase difference. All the ele-
values in the time intervalT. A qualitative picture of the ments of the array are coupled. Consequently, as the phase
spatio-temporal structure of oscillations was obtained byifference between the middle element and its neighbor in-
plotting shadowgraphs dfi(t) on the(j,t) plane. Arrays of creases, the stationary regime of global synchronization
100 elements gb=0.5 were investigated in all experiments. changes to the regime of oscillatioms(t) near a certain

constant value of;, with the oscillation amplitude depend-

B. Global synchronization in an assembly. ing onj in all elements of the array. The closer the elements
Stationary phase distributions. are to the ends of the array, the smaller the amplitude of
Synchronization band oscillations is. In the case of a long array, the current values

o ) ) of #; are nearly constarfor constantfor the edge elements,
A stable equilibrium state in the system of equatié8s e ‘the regime of synchronization occurs. Thus the array is

and(9) corresponds to the regime of global synchronizationgjyiged into two clusters of equal sizeNlf2) that consist of

in the array. For the synchronous regimg €0, 6;=0),  mutually synchronized elements at different average frequen-
amplitude equations in a zero approximation give the sameies.

oscillation amplitudes for all elements of the array. Then,

with allowance made for the conditi(ﬁj =A, the system of C. Regimes of cluster synchronization

equations for the stationary phase diﬁerenEpias rewritten

, Two principal regimes are realized, a4d is increased,
in the form

depending on the values of the parameters. The first of them
is the regime of multifrequency generation, when most ele-
ments of the arrayexcept, perhaps, the edge ongenerate
different frequencies as in Figs(dl and Xb). The second
A+d(sin§j,1—2 Sinyﬁsingm):o, j=2,...N-2 one is the regime of cluster synchronization, when all the
(13 oscillators are divided into several groups inside which all
the elements oscillate at the same average frequffigy
1(b), Fig. 2]. The values of frequency for each clustex-
cept the edge ongsre close to those obtained by averaging
. natural frequencies over all the elements forming the cluster.
As follows from[16], the distribution of¢; is equal to In the considered case of linear dependence of frequency on

A+d(sin 6,—2 sin 6;) =0, (12)

A+d(SIn?N,2—ZSIn5N,1)=0 (14)
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FIG. 1. Averaged frequencieQ; and their differenceAQ;=Q;.,—; for perfect(b), (¢) (d=1.2) and intermediatéa), (d) (d
=1.0), (c), (f) (d=1.45) cluster structures fax=2x10"3,

j in Fig. 2, this corresponds to the intersection of the lines Here, N (=100 is the number of elements and

Q:Qj:('l')j andQ=jA exactly in the middle of the cluster. (=2,...) is the .number of clusters. The sizgs qf middle
These cluster structures are periodic in time. The frequencglustersN, at the instant they break are plotted in Fig. 3. The
differences between the clusters in such structures coincidgcaling by parameterd and d is similar to the one that

and are equal to the lowest cluster frequefinyterms of the ~ specifies, in  the constant amplitude approximation

amplitude equationé7)]: (Izj]=|z0|), the limiting size of the array with free ends in
which the global synchronizatiof17) may occur:
Q,=A(N-1)/(n+1). (20 T
The size of the clustend,, for smallA may be approximated, Np~ X) . (23)
to an accuracy of-1 element, by the relations for the middle
clusters: The spatiotemporal behavior of cluster structures is illus-
trated in Fig. 4, where the darker regions mark the higher
N _N-1 (21) values of intensities ofz;|* [Fig. 4@)] and real parts Re
" n+1’ [Fig. 4(b)] of complex amplitudes of oscillations. Oscillo-
grams of intensities for the middle elements of the array are
and for the edge clusters: shown in Fig. 5. Detailed comparison of the data given in
these figures as well as in Fig. 1 leads to a conclusion that
N :§ N—-1 22) perfect cluster structures may be form#ar d=0.8, 1.2, 1.8
" 2n+1l° in Figs. 1 and 4
The intensity of ;| ? decays periodically almost to zero at
0.3 - P Ty — the cluster boundaridg=ig. 5b)]. With increasing distance
g;?;gg S from the boundary of the clusters, the magnitude of intensity
0.25 ¢ d=3.80 1 drops decreases so that the change of the real part of com-
plex amplitudegz; in the (j,t) plane shown in Fig. @) rep-
0.2r resents correctly the phase gjf. The formation of a defect
o 015] in the spatiotemporal pattern of the phase Rez), that is
‘ visualized as the singularity of the intensity field |<z§|2,
01l corresponds to the transition between the clusters.
Since the number of the defects;, formed in one pe-
0.05 | riod of a perfect cluster structure is a unity less than the
= number of clustersn and their repetition rate isT
0 . =27TQ;1, the number of the defects per unit time is equal
0 50 100 to

J

FIG. 2. Averaged frequencieQ; for different values of cou- Mo _ AN-1)n-1 (24)

pling coefficientsd in the caseA =2x10"3. Po=T 27 n+1°
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InA Nn ficients: 0.8(a); 0.9 (b); 1.0(c); 1.1(d); 1.2(e); 1.3(f); 1.45(g); 1.6

(h); 1.8 (i), (j). The spatial coordinatg=1, ...,100 isplotted on
FIG. 3. Critical values of frequency gradiefi) in the range  the abscissa axis, and time[0,200Q on the ordinate axis.
A~(0.5-17)x10 3 for d=1 and coupling coefficient+) in the 12
ranged~0.3—-3.8 forA=2X 1073, at which then-cluster structure N N(@)
breaks prior to transition from theth to the fi+1)th cluster de- " Aws)
pending on the size of middle clusté¥s . The scale is logarithmic _
to an accuracy of arbitrarily chosen origin; the straight lines corre-Consequently, their relative siz¢,/N and the interval of
spond to the dependen¢2l). variations of natural frequencies along the cluster length,
N,(Aws)/N, tend to zero as the number of elements is in-
Estimates by these formulas agree well with the data obcreased. At the same time, the quantitids/N and
tained directly from numerical solutions. In particular, the N, (Aws)/N change approximately d8ND)/Aws]*? in
number of the defects is equal to 44, 40, and 39 for the casie “continuous” limit. As a result, the regime of global
shown in Fig. 4a) atd=0.8, 1.2, and 1.8, and to 45, 42, and synchronizationN;=N will inevitably be established ail
38, respectively, when calculated by the form(#4). Note  —o°. The mean density of defects in tfj¢) plane, as is seen
that, when the transitions between the structures witind ~ from Eq.(24), will remain constant in either case, of course,
n+1 clusters are caused by changes of coupling coefficierit we speak about the range of the parameters in which the
d, the average defect density changes only slightipa#t.  number of clusters is much greater than unity.
At the same time, their relative position in tfigt) plane Both the picture of synchronization presented above and
alters significantly. For example, in Fig(a} it changes from  its description in a rather general form on the basis of nu-
completely ordered atl=1.2 to irregular atd=1.45, and merical solutions are possible due to high degree of symme-
then again to a regular one but now with a different symmelry and homogeneity of the problem in a quasiharmonic ap-
try at d=1.8. The time series undergo the corresponding’'oximation at small frequency gradients and coupling
changes todsee Fig. 5. coefficients. Actually, the meaningful quantity in this ap-
We will mention here some consequences of the scalingBroximation is not the frequency itself but the frequency dif-
(23) and (24) for two limiting transitions to infinitely long ferenced;. Consequently, the system may be regarded to be
arraysN—o at a constant interval of oscillator frequencies @ homogeneous one af=A=const if the edge effects are

Aws=AN=const. In the first of these two transitiofteer-  Neglected. The picture is becoming more complicated) as
modynamial the Coup"ng coefficientd remains constant andd are increased. This makes the effects of mu|t|5tab|l|ty

dy=D=const. In the second or&continuous”), the cou- and the changes of the amplitudes of oscillations along the

pling coefficient dy=DN2, so that the corresponding &rray essential.
second-order difference in Eq®) and(7) tends to the sec-

ond derivative with respect to the spatial coordinate. As fol-

lows from Eq.(23), the maximal size of the clusters in the  Investigations into processes of cluster structure forma-
thermodynamic limit changes as tion revealed multistability, the most vivid manifestation of

D. Multistability
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FIG. 5. Intensity oscillograms for the middle elements of the arrayAfer0.002: (a) d=1.45 and(b) d=1.8.

which is formation of the structures containing a differentthe same initial conditions are sought. Namely;(0)
number of clusters depending on initial conditions. The ex= Re7(0)]=-0.01 for even;j, x;(0)=0.01 for oddj, and
istence domains of the structures having a definite number qu(o)z|m[zj(o)]=o_01 for allj. This is evidently due to an
clusters obtained in numerical experiment with adaptation ofntricate structure of the basins of the corresponding attrac-
the initial conditions to small variations of the parameters ardors in phase space, the deformation of which leads to the
shown in Fig. 6. The adaptation procedure was as followsalternating initial conditions in each of them. This lays the
The mismatchA was varied successively by 5x10 # or  basis(see Sec. IV Afor one of the methods of governing the
by —5x 10 “. The values from the steady-state solution ob-processes of formation of the structures of mutually synchro-
tained in the previous variant were taken as the initial connized elements. .

ditions forz;(t). Although the procedure described does not 'he sophisticated structure of the phase portrait of the
guarantee that all possible regimes will be found, it enableSystem considered does not exclude that multistable regimes
us to reveal qualitatively different transitions in the domain,f Other types, when the structure of the clusters rather than
where the states possessing a different number of cluste tgelr number is changed, may also be observed. For verifi-

coexist, i.e., in the region of multistability and in the region Cmaé'not'; i?]fvf/?llischht%]ioghnisiistuvt\jlg ;r?gdlrjggg dai‘s:csrieb”uetisor?; feo);%eerg
of parameters where it is absent. In the first case) as- P P

by | than<glo™ 4 a “hard” t i thout earlier in the clusters but now with a different number of
creases by less tha » a ‘hard " transition Without = e yants were taken as initial conditions. Usually, the num-
intermediate structures occurs from the state with four Clusber of elements in the cluster was changed\by= = 1,2. It
ters to the state with five clusters. In the second case, @5 found that the same cluster structure was always estab-

“soft” transition ogeurs at a much greater interval of varia- jished in the region of the parameters of interest with such
tions A~2.2x10"°, with a smooth transition of intermedi- griations of initial conditions.

ate structures one into anoth@iig. 7).
Note that a nonmonotonic dependence_ of the number of Il “OSCILLATOR DEATH"
clusters on the magnitude of frequency mismdfely. 8) is

observed in the region of multistability when solutions under A distinguishing feature of cluster synchronization with a
still further increase of couplingl and mismatchA is the

10
0.6 S —
S © A=00042 — e
c 5(_ - 1 A=0.005 -
ok ‘ ‘ . 051  A=00055 j
0 0.005 0.01 0.015 0.02 A=0.006 - D e
A 04| A=00064 —----m- T ]
10 \ . , . e -
S — b —
c 5  — - i g 03¢
05 0.005  0.01 0.215 002 0025 003 02}
10 T T . —a 0.1+
c 5 oS 1 0 X X . . , . \ . .
oL , . . 0 10 20 30 40 50 60 70 80 90 100
0 0.01 0f2 5.03 0.04 j

FIG. 6. The ranges of frequency gradients at which structures FIG. 7. Averaged frequencié3; in the soft transitions from to
with n perfect clusters of the type shown in FigbLare given for n+1 clusters. The corresponding regions of parameters are indi-
coupling coefficientsl=1,2,5. cated in Fig. 6 byO.
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FIG. 8. Nonmonotonic sequence of the number of clusters
(4,5,4,5,6,5,6 upwardisat monotonic variation of frequency gradi-
ent A and identical initial conditionsd=5). The corresponding P d
values of the parameters are marked in Fig. 6y

FIG. 9. Bifurcation diagram of the system of two coupled oscil-

formation of clusters separated by a region of unexcited OSIf;\tors: (1) region of oscillator death where a trivial solution is

cillators [17,18. The formation of such regions may be in- staple;(_Z) region of synchronization(3) region of nonsynchronized
terpreted as manifestation of the effect of oscillator deathoscmat'ons'
[6—9,19. Recall (see, e.g.[19]) a bifurcation diagram for ) .
two coupled oscillators the qualitative plot of which is given that depends on the magnitude of couplinglz, exerts the

in Fig. 9. It is similar to the diagram for an assembly of same effect as additional losses. If the losses do not exceed

oscillators coupled all to all, with the frequencies distributedth® @mplification §<p), a double-frequency regime is pos-

uniformly in a narrow interval ws . sible. Ford>p, there remain only forced oscillations with
Depending on the qualitative properties of the solutionsth® @mplitudep,=d/[iA+p—d| decreasing as the mismatch

one can distinguish in the diagram three main regigts; 2 IS increased. _ _ _

the region of oscillator death in which a trivial solution is . AN @nalogous mechanism of oscillator death is observed

stable(we remind the reader that we consider the case wheff! @1 array. An essential aspect in this case is that, with the
the self-excitation conditiom>0 is fulfilled for uncoupled ~'ncrease of mismatch, the synchronization conditions are

. o - . violated locally and not all at once throughout the array,
oscillatorg; (2) the synchronization regio; = ¢,; and(3) namely, in theyneighborhood of the Weake?st element of t)rlle
the region of nonsynchronized oscillations i~ *(¢, '

0. Th ition b ) 5 and 3 h array, i.e., in the middle of the array at the site where the
~ ¢2) #0. The transition between regions 2 an asacomFegime of global synchronization breaks earli€ste Sec.

plicated structure, with both regularly and chaotically modu—II B). In this case, for sufficiently great mismatches, i.e.,

lated oscillat'ions possible in a general case. The transitior\ﬁlhen the influence of the neighbors is no longer a resonant
between regions 1 and 2 or 1 and 3 are much simpler and agg. . 4o coupling acts as effective damping, and e
determined from analysis of the stability of trivial solution. the ’corresponding element becomes unexci'tedAAis in-
Eor_ two oscnlatorls N=2), the eigenvalues for small pertur- creased, the region of oscillator death is expanding so fast
ations are equal to that there remain only two clusters that are not fractioned
due to local desynchronization any longer because the in-
— [H2 _ 2
1= p—dEVd"—(A2)%, crease of the parametdr/d, that usually leads to breaking
hereA = wa— - is the f diff fh i of synchronization, is compensated by the decrease of the
¥V er?l’h_ Wy~ Wy IS the trequipcyt : erdencglof € oscllla- 76 of the cluster¢éseg[6,21]). This is illustrated in Fig. 10,
goirr:é i g)r_epocAcirZ d Zn:ja?cflallogingleafre?quueﬁ-c;eﬁeugei};cey ifreﬁvhere two clusters of synchronized elements at the edges of
M ' : ) the array are separated by an area of unexcited oscillations.
d=(A%4—p?)/2p, A<2d (Fig. 9). y P y

All the solutions mentioned above are observed in an as-

sembly of coupled oscillators. By virtue of collective effects, IV. THE EFFECT OF NONUNIFORMITY
they may be realized either global(in all elements or lo- OF FREQUENCY MISMATCH GRADIENT
cally (in clusters of neighboring elemeits ON FORMATION OF SYNCHRONIZED CLUSTERS

For better understanding of the transitions in long arrays

N . . '’ A. Sensitivity of the structures to regular nonuniformities
the following interpretation of oscillator death may be useful.

Consider a linearized equation for one of the oscillators: We can distinguish at least two mechanisms controlling
the spatial structure of the system of interest, when addi-
Z,=1Az,+pz,+d(z,—2,). tional inhomogeneities of the frequency gradidntperiodic

along the array are introduced. One of them is associated
Here, the term containing the oscillation amplitude of thewith transformation of an attractdor attractors. The other
first oscillator, on breaking of synchronization, may be re-one is attributed to changes only of attraction badsee,
garded as a nonresonant external force, and the second temy.,[4,5,23). It can be expected that the second mechanism
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FIG. 10. (@) Squared mean amplitud¢ﬁj|2 and (b) averaged FIG. 11. Restructuring under the action of periodic inhomoge-

frequencies(); in the case of oscillator death in the array fbr  neity: d=2, A=0.005, «/=0.005[see Fig. €)]. The frequencies
=5, A=0.06. There are two clusters consisting of 20 mutually were determined by averaging over timé=500 prior to subse-
synchronized elements at the ends of the array. quent record of}; distribution.

is readily realized in the above-mentioned case of nontriviatonstant complete range of frequency variations according to
dependence of the number of clusters on the magnitude ahe expressionil). The critical values ofl averaged over 20
frequency mismatch gradient. Indeed, for the parameter vakamples of random numbers, at which the transition between
ues and initial conditions like in Fig. émarked with an  cluster structures occurs, are presented in Fig. 12. The re-
asterisk ford=5), a relatively small, periodic alongcorrec-  gime of global synchronization is established at much
tion to the natural frequencies: smaller values of coupling for random frequency distribution
) than for linear frequency distribution. This effect was actu-
: (2mn*(j—1) ally observed for each space series of random frequency dis-
wj=A(j-D+a sinl ——— (25 2
tribution.
leads to the change of the number of clusters forifzs. V. SYNCHRONIZATION IN AN ARRAY
Particularly, forA =0.009 anch* =5, the number of clusters OF VAN DER POL OSCILLATORS
isn=6 if «=0, andn=5 if «=0.0001. By introducing a
perturbation with a much larger amplitude=0.002, one can We have already mentioned that the picture of synchroni-
influence not only the process of cluster formation in thezation described above and simple scalings at linear variation
regime of transition but also the structures that have alread9f natural frequencies along the array are due to high degree
been formed. For example, the transition from six to fiveOf symmetry and homogeneity of the problem. This is true,
clusters occurs fod=5.0; a=0.002; A=0.009 [see Fig. ©n the other hand, if the array is sufficiently long so that the
6(a)]. This case corresponds to the first mechanism of forcedge effects do not introduce significant distortions into clus-
ing, namely, destruction of one of the multistable states, ifers. On the other hand, the quasiharmonic approximation
this case, the structure of six clusters. Another possible mani-
festation of this mechanism is formation of synchronization 60
clusters from a nonsynchronized state, when the transition
from a chaotic state in space and time to a state with five  so
clusters takes placd-ig. 11).
Note that the expressid25) does not give a clear picture 40
of the relationship between the magnitudes of uniform and
nonuniform components of frequency mismatch. Only com- © 30
parison either of their gradients or of their changes over the

modulation period along the array is physically meaningful. 20 ¢
By comparing these quantities one can see that the perturba
tion is determined by the parameter/\)(27n/N) that did 10

not exceed; in all the cases considered.

ST .,

O N . i ""l a = x s il LiTyrEtiriiiraryrae-csien

0 001 002 003 004 0.05 006 0.07 008 009 0.1
. . . *

B. The effect of random dispersion of natural frequencies A®

on cluster synchronization B ) »
FIG. 12. Average critical values a at which the transition

We restrict our consideration to one aspect of the effechetween different cluster structures occurs Aor 0.002. Region 1
exerted by spatially irregular parameter variations on the forcorresponds to the regime of global synchronization. Two and three
mation of synchronized structures. Namely, we investigate|usters of mutually synchronized elements exist in regions 2 and 3,
the dependence of spatial structures on the magnitude of rarespectively. The averaging was made over 20 sample random natu-
dom distribution of mismatch relative to some mean at aal frequencies.
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FIG. 13. Mean amplitudes; = \u?+ 07 for different values of FIG. 15. (a) The dependence oaof the squared quantiti*
€ in the cased=5, A=0.000 25. =50—-N., whereN_. is the length of the smaller of the two syn-
chronization clusters that are formed after breaking of the regime of

should be valide<1, when not natural frequencies but their global synchr(inizatic_)er) the dependence onof the critical value
gradient is the essential parameter. The situation changé)g m'_sma_‘tChA starting from which the regime of global synchro-
cardinally with the increase of because nonlinear distor- nization is not realizedN=100,d=5.
tions of the shape of oscillations become pronounced. Since
these distortions are greater in the low-frequency region thaflf the smallest of the two clusters formed as the global syn-
in the high-frequency one, the symmetry of the problem isc_hrom;atpn breaks. Examples of such relationships are
violated. In particular, the amplitude distribution becomesgiven in Fig. 15.
essentially nonsymmetrid=ig. 13 even at stable synchroni-
zation for smallA, when the amplitude modulation is several
percent. As a result, the distribution of stationary phase dif-
ferences of the neighbors that matches the amplitude distri- The collective behavior of an array of diffusively coupled
bution is no longer symmetric. Consequently, the regime ofvan der Pol oscillators at weak and relatively strong nonlin-
global synchronization is broken in the elements close to thearity has been investigated employing asymptotic and nu-
beginning of the array rather than in the middle elementsnerical methods. Typical features of the onset and existence
(Fig. 14). In spite of the strong dependence of the shape obf the regimes of globalall-to-all) and clusterpartia) syn-
oscillations on nonlinearityg, one can observe in the interval chronization have been explored. Two scenarios, “soft” and
of its intermediate valuee~1 an almost linear relationship “hard,” of the transitions between the structures consisting
betweene and the critical value of mismatckh*, starting  of a different number of synchronization clusters have been
from which the regime of global synchronization breaks. Therevealed. In the first case, gradual tuning of spatial distribu-
linear relationship exists also betweeand the squared size tion of averaged frequencies is observed. In the second case,
the transition from the structure afsynchronized clusters to

1.009 . —— : the structure oh+ 1 clusters occurs in a stepwise fashion as

b | a consequence of multistability.
. 1eoey ] The effect of different types of natural frequency distribu-
1003 P 1 tions on synchronization in a constant range of frequency
variations is investigated. It is revealed that the characteris-
tics of the synchronization are improved when an irregular
distribution of natural frequencies is used.

Note that many of the effects observed in the arrays of
coupled periodic oscillators were also revealed in analysis of
the regimes of chaotic phase synchronization in an array of
coupled Rasler oscillator$23].

The formation of synchronized clusters was observed in
) ) ) ) some systems in which the distribution of natural frequencies

0 20 0 60 80 100 is almost linear. For example, the measured electrical activ-
J ity along the(intac) mammalian intestine displays frequency

FIG. 14. (8) Mean amplitudesh; = \u7+ U7 and (b) averaged plateaug 24]. The stepwise dependence of frequency on the
frequencies); at different values ot andA for d=5. The curves ~@xial coordinate was also observed in the flow around a
are marked by+ for e=0.02 andA =0.0006; byx for e=0.1 and ~ cone-shaped cylindei25]. It was established that in both
A=0.0006; by* for e=0.3 andA=0.00065; and byl for e  casessee the paperfs 6] and[24], respectively these phe-
=0.5 andA=0.0007. The values ok are slightly larger than the nomena resemble the effects of cluster synchronization in the
critical valuesA, at which the regime of global synchronization is model of coupled oscillators. At the same time, it was re-
disturbed. vealed that the shape of the clusters in each particular case

VI. CONCLUSION
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should be described taking into consideration subtle detailearity parametee. There are no such nonsymmetric clusters
of frequency distribution and features of interaction. As fol-in the frame of the Ginzburg-Landau equations.

lows from the above consideration, one of the reasons for

such a sensitivity is a high degree of symmetry and unifor- ACKNOWLEDGMENTS
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