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Semiconductor laser with phase-conjugate feedback: Dynamics and bifurcations
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This paper presents the dynamics and bifurcations of a semiconductor laser subject to instantaneous phase-
conjugate feedback. Recently, the behavior of such a laser has been explored by means of bifurcation diagrams.
However, the exact nature of the involved dynamics and bifurcations remained unclear. Here we present a
detailed study of the changes of the dynamics as the feedback strength is varied. Most prominent are
symmetry-breaking and -restoring bifurcations, tori and their bifurcations, and a sudden transition between
chaos and a stable limit cycle due to a saddle-node bifurcation of limit cyf8&663-651X98)01812-1

PACS numbgs): 05.45+b, 42.65.5f

I. INTRODUCTION Our main point here is that one is likely to miss important
phenomena if one just considers a bifurcation diagram. This

There has been considerable interest recently in the cois why we show the behavior of the laser for a single value of
pling of semiconductor lasers to phase-conjugate mirroréhe feedback strength in different ways: by a time series of

(PCM$ due to potential practical applications as well as tot€ POWer, by an optical spectrum, by(@vo-dimensional
the interesting resulting dynami¢g—10]. On the practical projection of a trajectory, and by the respective attractor of

; : - the Poincaremap. By comparing these representations for
side, such a laser with phase-conjugate feedgB€H can ;
be used for mode lockinfl], phase locking2—4], and fre- different values of the feedback strength, one can get a very

ency contro[5,6]. PCF can lead to very complex dynam detailed picture of the bifurcations, that is, of the qualitative
qu P]/ h roL>,0l. b Vb VPr()éF pbx y 'd- changes of the dynamics. The optical spectra also predict
Ics, which seems to be partly because can beé ConsIterg,y the dynamics and the bifurcations could be most easily
a combination of regular feedba@iecause of the delayand

ST , ) identified in an experiment.
injection (because of the presence of detunin§ compari- The paper is organized as follows. In Sec. Il we describe

son of PCF with regular feedback has recently been cong,s model, and in Sec. IIl we explain the bifurcation dia-
ducted[4]. This comparison, however, was performed with oo “\which serves as our starting point. In Sec. IV we look
the aid of bifurcation diagrams, without exploring in detail j, qetail at the laser dynamics. Section V discusses the im-

the underlying dynamics. Iplications of bifurcations involving the symmetry, and Sec.

In this paper we explore the complex dynamical behavio,| gxpains the sudden transition to chaos. We draw general
of a single-mode semiconductor laser subject to weak instansonclusions and summarize in Sec. VII.

taneous PCF. The main chain of events as the feedback
strength is increased can be sketched as follows. When th= 15 T P
laser is detuned slightly from the PCM, the solitary-laser "_3 10}
solution becomes unstable and then phase locking occurs, I s}
which the laser locks to the phase generated by the phasiZ
conjugate mirror. The locked solution undergoes a Hopf bi-&
furcation generating a stable limit cycle that corresponds tc ™ 05
periodic changes in the power, the so-called relaxation oscil
lations. In the bifurcation diagram one finds intervals with = 15 '
stable limit cycles, interspersed with intervals, which we call ' 19
bubbles with more complicated dynamic&ig. 1). The tran- St
sition from one stable limit cycle to the next differs from
bubble to bubble. In bubble 1 we find a transition to chaos
via period doublings. In other bubbles there is a transition tc™
chaos via motion on an invariant tor(sith quasiperiodic or
phase-locked dynamigsWe also find a sudden transition = 5
between chaos and a limit cycle via a saddle-node bifurca '3 0
tion of limit cycles. Finally, symmetry-breaking and 2 _s
symmetry-restoring bifurcations are prominent features olZ _y,
the dynamics. © 45 . . . .
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*Present address: Department of Engineering Mathematics, Uni- FIG. 1. The bifurcation diagram fotre[0.5,7], showing nor-
versity of Bristol, Bristol BS8 1TR, U.K. Electronic address: malized inversion when the power crosses its average, consists of
B.Krauskopf@bristol.ac.uk three bubbles.
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IIl. SINGLE-MODE RATE EQUATIONS WITH PCF @=3, Gy=1190 s, No=1.64x 10,

We assume that a single-mode semiconductor laser is ob-
taining weak feedback from a PCM which responds instan-
taneously. The assumption of weak PCF allows us to include
only a single round-trip in the external cavity. The assump-
tion of a very fast PCM allows us to ignore the dynamics of
the mirror itself. In fact, it was recently showWtl-13 that
even the interaction time within the PCM must be taken intoThese values lead to a threshold current of 61.9 mA. Also,
account for an accurate treatment of the laser dynamichecause of the presence of nonlinear gain, there is an effec-
However, for short interaction times, the exact treatment retive detuning of§=166 MHz. Finding the numerical values
duces to that of the instantaneous mirror. The interactiomf these parameters in practice is hard, but good estimates
time can in fact be controlled by the PCM pump poWEt].  can be found by making a number of key experimental mea-

The theoretical model for this paper is described by thesurement$14].
following rate equations for the slowly varying complex am-  From a dynamical systems point of view, Eq$a) and
plitude of the intracavity optical fiel&(t) and for the inver- (1b) are a three-dimensional delay-differential system
sion N(t): [15,16. These equations describe how a function defined on

the interval[ — 7,0] (the initial condition with values inR®
”E( ) [the (E,N) spacg evolves in the time intervdl0,7] and so
t

€=3.57x10"8 1=65.1 mA,
7,=1.4 ps, =2 ns, R,=0.12,

71.=9.3 ps, and Lg=10 cm.

de 1
Gt~ 2| " TaGNIN() —Nsol + on for all future(positive) values of time. The intervdl0,r]
can be shifted back tp— 7,0], so that Egs(1a and (1b)
+ kE* (t—71)exd 2i 5(t— 1/2)], (1a define an operator on the infinite-dimensional space of func-
tions over[— 7,0] with values in E,N) space. Here we
dN 1 N(Y) adopt the common and probably most physical way of think-
= —G|E(1)]% (1b)  ing about Egs(1a and(1b), namely, we simply consider the
time evolution(E(t),N(t)) in the three-dimensionalg,N)
space of a given initial condition, specified by the values of
In these equationE(t)|? is the photon number. To convert (E(t),N(t)) on[— 7,0]. [Mathematically speaking, this is a
to the power, there are 1.X110" photons per mW. Further- projection of the infinite-dimensional dynamics ont, K)
more, a is the linewidth-enhancement fact@), is related to  space] This is particularly useful once the system has settled
the derivative of the optical gail\ is the electron popula- down to an attractor.
tion, Ngg is its steady-state value in the absence of feedback, An important feature of Eqg1a and (1b) is their sym-
G is the net rate of stimulated emissior, is the photon  metry with respect to the transformati@s->— E, which is a
lifetime, | is the injection currentq is the magnitude of the  rotation by of the E plane. As a consequence, any attractor
electron charge, and, is the electron lifetime. The stimu- e find will be either symmetric, or have a symmetric coun-
lated emission ternG includes the effect of nonlinear gain, terpart, which can be found by changing the phase of an
that is, G=G(1—€P), whereG, =Gn(N—Ny) is the lin-  appropriate initial condition byr. This symmetry also al-
ear gain anck is the nonlinear-gain coefficient. HeMy is  lows for the possibility of symmetry-breaking and -restoring
the transparency electron number, which is relateNdgby  bifurcations. As general references to the aspects of symme-
Nsoi=No+Gy/7p. The last term in Eq(la models the try in dynamical systems see Refd7,18. In symmetry
phase-conjugate feedback, and it contains three parametetseaking, a symmetric attractor becomes unstable, creating
the feedback rat&, the detunings, and the external-cavity two nonsymmetric attractors, which are mapped to each

1
G__
Tp

a_q Te

round-trip timer. They are given by other by the transformatioB—> —E. In symmetry restora-
tion, two nonsymmetric attractors grow in size, collide, and
(1— Ry 7cRext| *2 2L oyt give rise to a symmetric attractor. We refer to Sec. IV for
K= T | R, and 7= ——, (2)  examples of these bifurcations, and to Sec. V for their physi-

cal implications.

whereR,, is the laser front-facet reflectivity is the round-
trip time in the solitary laser cavityy, is the coupling effi-
ciency and is taken to be unity due to the self-aligning nature A first impression of the dynamics and the bifurcations of
of the PCM, Ry is the power reflectivity of the PCM, and the laser in the presence of PCF can be obtained by a bifur-
Ley is the distance between the laser and the PCM. cation diagram, in which a key quantity is plotted against the
Note that the field which is fed back to the laser has beemnain (dimensionless parameter «7; see, for example,
conjugated by the PCM. Spontaneous-emission Langevif4,10,11. However, the bifurcation diagrams in the literature
noise terms are intentionally left off in Eq&la) and (1b), are guite crude, and they do not make it clear what the actual
since we want to consider only deterministic effects in thisdynamics are and how they depend on
paper. We also neglect multiple feedback terms for &g\ As a starting point for our study we consider the bifurca-
due to the assumption of weak feedback. The numerical vakion diagram in much higher resolution in three pieces in Fig.
ues of the parameters used in the model were chosen th It has been obtained as in REf1] in the following way:
model a typical laser used for writing to optical disks. after allowing transients to die away, the normalized value
Throughout all computations we used [10*(N/Ng,—1)] is recorded whenever the power crosses

Ill. THE BIFURCATION DIAGRAM
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its average valugover the orbit P, in the increasing di- spectra, 4096 points were used with 32 ps between points, so
rection. This procedure is repeated for increasing PCRhat the resolution in the frequency domain is 7.63 MHz.
strength, that is, for increasingre[0.5,7]. Each time we Each spectrum shown represents an average over ten spectra,
increase or decrease the PCF strength, the laser variabl#simprove the signal-to-noise ratio. Further, we have plotted
retain their final values from the previous PCF strength aghe optical spectra on a logarithmic vertical scale, so that the
initial condition, just as would be the case in an experimentWwidely varying magnitudes of the peaks show up better.

We stress that there is no hysteresis: computing the bifurca-

tion diagram by decreasingr gives the same result. In other A. Outside the bubbles

words, for anyx 7 there is exactly one attractéup to sym-
metry; see Sec. f which is very different from the situation
for conventional optical feedbad®].

The interpretation of the bifurcation diagram is as fol-
lows. For a given feedback strength, the absence of points i
the diagram indicates a stable equilibrium solutierg., x 7
=0.5). A small number of points for a give«ar corresponds
to a periodic limit-cycle solutiorfe.g., x7=2.0). Finally, a
large number of points corresponds to quasiperiodicity o
chaos(e.g.,x7=3.0). One can clearly see thrbabbleswith
more complicated dynamics.

It is the purpose of this paper to study the dynamics an
bifurcations in great detail. To this end we will give a careful
analysis of how the dynamics ifE(N) space depend oxr.

We will concentrate on the study of the first three bubbles
for k7€[0.5,7], by means of simulation. This will explain
many features in the bifurcation diagram in Fig. 1, which
remain somewhat mysterious at this point. We argue that it i
practically impossible to interpret all features of the bifurca-
tion diagram without good knowledge of the dynamics in
(E,N) space.

In contrast with conventional optical feedback, PCF im-
mediately destabilizes the laser power even for extremely
low feedback strengths. For exampler=0.01 already pro-
g'uces a limit cycle with oscillation frequency of 320 MHz.

uch a low value of feedback corresponds to an effective
PCM power reflectivity ofR.,=—85 dB. The 320 MHz
frequency is about twice the detuning between the PCM
pump laser and the solitary laser frequency. Such a detuning
obviously does not exist in ordinary optical feedback. The
origin of the oscillations is the beating between the pump
laser and the solitary laser. As the feedback level increases

eyond k7=0.01, the feedback induces a frequency shift
which attempts to cancel the pump detuning. In other words,
the PCF is pulling the laser frequency toward the pump fre-
guency[4] until locking occurs atc7~0.222.

Although locking to an external-cavity frequency can oc-
cur with ordinary feedback, the frequency locking occurring
Rere is accompanied by phase locking as well, so that the
laser phase no longer undergoes diffudiar8]. Since phase
diffusion is responsible for the laser linewidth, the phase
locking found here manifests itself in an ultranarrow laser
linewidth; the linewidth becomes limited by the linewidth of
IV. DESCRIPTION OF THE DYNAMICS the pump laser. Simulations have shown that this narrow

. . . . . linewidth state is stable even when the spontaneous-emission
In this section we take a dynamical systems point of view

. ) . oise terms are turned @¢4].
and describe the p|fL_1rcat|ons as we pass through bubbles 9 The next destabilizatciﬁor]1 occurs as the feedback reaches
B i ST 050, ich marks the cage f he locking ik
X y o 0 give 1(a)]. A Hopf bifurcation occurs corresponding to the un-

the reader agood. idea of the dynamics and the bn‘urc:atlon%,ampmg of the relaxation oscillations. which leads to a
gge‘:rtehseegt ;g%r?c'snf;’re\;errsl ;’;"’;‘Zi't;ic\)/ :aes&;ihmft\)/itl)l?éi \;Vr? dcons'table limit cycle in E,N) space. The attracting limit cycle

lect th ?]/1 in one main ﬁp re. For h valuexaf w is not symmetric and, consequently, its symmetric counter-
cotiect the Oneé main figure. For each vajue € part is a second attractor. Whear is increased further,
show (in three panelsthe time series of the powdleft

panel, units are ns and m\Mhe optical spectrunimiddle bubble 1 is entered.
panel, units are GHz and arbitrary udjtand the orbit pro- Although occasional locking is seen inside the bubbles,

! : X between the bubbles the laser is always frequency locked,
ected onto theE plane(right panel, the units are such that ; o
J|E|2 is the photonpnuméegln gseparate figure we show the although not phase locked, with the power oscillating close

. gy . ) to some multiple of the fundamental external-cavity fre-
respective attractors of the Poincanap, given by the inter- b Y

: ) . I quency 1#=1.5 GHz. Thus fork7~=2.0, k7~4.2, andxr
sections of the attractor inE(N) space with the Poincare _ L ! '
plane N=N,.. This means that a limit cycle results in a 7.0, the frequency of the limit cycle is approximately 1.5

discrete set of pointgguasiperiodif motion on a torus re- GHz, 3 GHz, and 4.5 GHz, respectively. An explanation for
. torp Auasiperioc : : (}he width of these locking regions was recently derij/&d).
sults in a circle, and chaotic motion results in a complicate

set in the Poincarg@lane. For pictures of the dynamics in
(E,N) space and for RIN spectra see R¢fxl,22.

The data have been obtained as follows. With the initial The chain of events is depicted in Fig. 2 and the associ-
condition (E(t),N(t))=0 for all te[—7,0] Egs.(1a and ated attractors of the Poincameap can be found in Fig. 3;
(1b) were integrated on the computer using a fourth-ordeccompare also Fig.(&). The stable limit cycle, corresponding
Runge-Kutta algorithm. Note that this initial condition cor- to the relaxation oscillation, undergoes a sequence of period-
responds to first blocking the path to the PCM in an experi-doubling bifurcations until a chaotic attractor is created
ment. The integration time step was generally 8 ps, but wafFigs. 2a)-2(c) and 3a)—3(c)]. When « is increased fur-
regularly reduced to ensure the accuracy of the algorithm. Ither, the chaotic attractor grows until it collides with its sym-
order to allow for transient behavior to die off, we discardedmetric counterpart £7=0.8), which is responsible for
the data for the initial 1000 ns. For calculation of the opticalclearly visible excursions into the region where Re€0 in

B. Transition through bubble 1
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3 bubble 1 for the values ot in Fig. 2.
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while it shrinks in size, and it finally disappears in a Hopf
bifurcation of the Poincarenap. After this, we leave bubble
1 and are left with a symmetric limit cyclg-igs. 2h) and

_, Power (mW)
o o
=2

Im(E)
o
o
o o

000 1015 —4-2 0 2 4 —200 0 200
5 3(h)].
z 200}
E2p gy T C. Transition through bubble 2
%1 E 000l * The transition through bubble 2 is depicted in Figs. 4 and
5 _onnl

j : : 5; compare also Fig.(h). When bubble 2 is entered, the
1000 1015 -4-2 0 2 4 -200 0 200 Poincaremap undergoes a Hopf bifurcation, so that the

8 stable limit cycle bifurcates to a torus. The motion on the

%2 ,,,,,,,,,,,, torus may be quasiperiodickf=2.3) or locked k7

Py =2.45); see Figs. (@-4(d) and 5a)-5(d). [When the mo-
£ tion is locked, the torus is still present, but it is not visible

- because all points are attracted to the locked soldtibhe
1000 1015 -4-2 0 2 4 -200 0 200 torus changes shape and starts to break uprds increased

=3 further, up until the dynamics become chadfigs. 4e) and

%2 4(f) and Fe) and 5f)]. The chaos suddenly stops with the

5 appearance of a stable limit cycle £=4.147), which marks
31 the end of bubble 2Figs. 4g) and 4h) and g) and 5h)].

& This bifurcation is maybe even more stunning if we consider
10 decreasingcr from 4.147 to 4.145: practically without any
=3 warning the dynamics change from periodicity to chaos. For
%2 a detailed description of this bifurcation see Sec. VI. We
§1 finally remark that all attractors in bubble 2 are symmetric.

ng_ -200 -~ N
10 200 0 200 D. Transition through bubble 3
3 1 The transition through bubble 3 can be found in Fig. 6 and
%2 777777 . 200~ the associated attractors of the Poincarap are in Fig. 7;
g N U WO WO O compare also Fig. (t). First, the symmetric limit cycle in
%1 E Figs. 4h) and 5h) becomes unstable and two nonsymmetric
a : -200 ; limit cycles appear, one of which is shown in Figéagand
1000_ 10156 —4-2 0 2 4 -200_0_ 200 5(a). As a consequence of this symmetry-breaking bifurca-
Time (ns) Freq. (GHz) Re(E)

tion, the power develops an extra maximum per period. In
FIG. 2. Transition through bubble 1, showing the time series ofother words, we have identified the transitioncat~4.7 as a

the power(left pane}, the optical spectruntmiddie panel, and the ~ Symmetry breaking bifurcation. It isot period doubling as

trajectory in theE p|ane (r|ght pane]. From (a) to (h) KT one m|ght surmise by Study'ng Only the bifurcation d|agram,

=0.7, 0.735, 0.79, 0.8, 1.45, 1.5, 1.71, and 1.75. see also Sec. V. _ _
The Poincaremap then undergoes a Hopf bifurcation

Figs. 2d) and 3d). This is a symmetry-restoring bifurcation, which results in the appearance of a torus. The motion on the
and the attractor is symmetric through the remainder oforus can be quasiperiodic or lockHeigs. b) and Gc) and
bubble 1. The chaotic regimec7=1.45, Figs. 2e) and 3e)]  7(b) and 7c)]. The torus breaks up and becomes chaotic for
is interspersed with windows of periodic orbits in the regiona large range ofr [Figs. 6d) and 7d)]. For k7=6.45 a

of chaos, for example, nearr=1.5[Figs. 4f) and 3f)]. The  torus reemerges, but it is very fold¢Higs. §e) and 7e)].

end of the chaotic region is marked by the appearance ofhat we are indeed dealing with a torus becomes clear by
motion on a torus, which appears to be quasiperipdigs.  considering the enlargement in Fig. 8 of the attractor of the
2(g) and 3g)]. The torus becomes smoother and roundePoincaremap in Fig. Te): it shows a very folded, but closed
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FIG. 5. Attractors of the Poincamap of the transition through
bubble 2 for the values ofr in Fig. 4.

V. CONSEQUENCES OF THE SYMMETRY

A change of the symmetry property of an attractor has
important physical implications that are observable experi-
mentally. Furthermore, the possibility of symmetry-breaking
and -restoring bifurcations fundamentally distinguishes a la-
ser with PCF from a laser with conventional optical feed-
back. In the latter case the system is symmetric under any
rotation of the complex electric fiell®3], and consequently
the bifurcations discussed here cannot occur there. It is sur-
prising that this has not been observed earlier.

Let us consider what happens when a symmetric periodic
orbit loses its stability and creates two symmetric stable limit
cycles. This happens in the transition from Figh)to Fig.

6(a) when k7 is increased through=4.7 and also in the
transition from Fig. 6h) to 6(g) when 7 is decreased
through ~6.65. Suppose the symmetric limit cycle has the
period T, so that it is of the form{(E(t),N(t))|te[0,T)}.
Notice that rotating the limit cycle by around theN axis is
equivalent with waiting for timeT/2. Mathematically this
means that

(—E(t—T/2),N(1))=(E(t),N(t)) for all te[0T),

which implies that the time series of the power is periodic
with periodT/2; see Figs. ¢h) and 6g). In other words, the
frequency of the power is twice that of the limit cycle. When
symmetry breaking occurs, this property is lost and the time
series of the power is now periodic with periddinstead of
T/2. Eventually the power will develop an extra maximum
per period; see Figs.(& and &g). This creates new inter-
section points that show up in the bifurcation diagram in
Figs. Xc). In other words, this symmetry breaking may be
mistaken for a period doubling.

In the optical spectrum one notices the appearance of ex-
tra peaks at frequency T/ But there is also another feature
in the optical spectra, which allows one to distinguish sym-
metry breaking from period doubling. When the limit cycle
is not symmetric there is an extremely narrow peak at the

curve. The torus gradually unfolds and becomes smoothefenter of the optical spectrufiFigs. §a) and Gg)]. This
[Figs. @f) and 7f)], with occasional bursts into chaos; com- narrow peak is dominant when the phase of the laser is
pare Fig. 1c). Finally there is a Hopf bifurcation, the torus bounded, which means that the projection of the limit cycle
disappears, and we are left with a nonsymmetric limit cycledoes not surround the origin of tleplane. In other words,
[Figs. 6g) and 7g)]. At x7~6.65 there is a symmetry- the laser phase no longer visits the entire range of Ostp 2
restoring bifurcation after which we are left with a symmet-and then the linewidth is significantly narrowed. This peak
ric limit cycle [Figs. §h) and 7h)].

becomes smaller the more symmetric the limit cycle be-
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= 200
‘53 % 0 with its symmetric counterpart. This leads to the diappear-
z, ~ _oo0| NP ance of the central peak in the optical spectrum as was just
& discussed. Note that the change in the phase dynamics can-

10 not be detected by just looking at the time series of the
5 power, because the two halves of the attractor that are visited
% __ 200} chaotically are symmetric images of each other.

5 g o
31 ~200 VI. GLOBAL SADDLE-NODE BIFURCATION

1000 OF LIMIT CYCLES
§5 At the end of bubble 2 there is no hysteresis: the laser
E, m 200 jumps directly from chaos to stable oscillationsasis in-
§ E O : creased through=4.146, and it jumps from stable oscilla-
o1 -200 tions to full-scale chaos asr is decreased througi 4.146,

1000 200 0 200 both virtually without warnind Figs. 4g) and 4h) and 5g)

5 and §h)]. This transition is a saddle-node bifurcation of limit
s pool - cycles, Whgre the unstable piece of_t(m/o-dlmensmnal _
E, m center manifold intersects the stable piece of the center mani-
§ E O o fold. This global aspect of this bifurcation is known to create
1 —200[ complicated dynamics instantly, when the stable limit cycle

1000 200 6 200 collides with an unstable limit cycle and disappei®4,25.

5 There are several cases of complicated dynamics, like a sus-
s ] T — pension of a solenoid, or so-called random dynz_ir[ﬁﬁ._
Egl i Here we show that indeed a saddle-node bifurcation of
5 0.01) 11 E O O """"""" limit cycles is the bifurcation at hand. The question of which
o1 (8) J -2001 of the different cases of global dynamics occurs is beyond

1000 1005 —4-2 0‘ 2 4 2200 0 200 the scope of this paper. The _fact that_we are deal?ng _vvith a

5 saqldle-node bifurcation of limit cycles is c_onflrm_ed in Flg. 9,
s ] s00l- : which shows an enlargement of the bifurcation diagram
Es 0.01 o, Q aroundx7=4.14. One notices that the curve of stable limit
< : E
§1WWN\AMMWNW o | 200 o -

1000 1006 —4-2 0 2 4 —200 0 200

Time (ns) Freq. (GHz) Re(E) 200

FIG. 6. Transition through bubble 3, showing the time series of
the power(left pane), the optical spectrunimiddle panel, and the 100
trajectory in the E plane (right panel. From (a) to (h) «7
=5.0, 5.1, 5.47, 5.6, 6.45, 6.58, 6.6, and 6.7.

Im(E)

comes. Indeed, when symmetry restoration occurs, as in

Figs. 4h) and Gh), then the narrow central peak disappears. -100
This appearance and disappearance of the central peak is

also present in the symmetry restoration involving a chaotic 20

attractor in Figs. &) and 2d). Note that the phase is =100 0 RL‘%%) 200 300

bounded fork 7=0.79, even though the dynamics is chaotic.

When k7= 0.8 the dynamics is still chaotic, but the phase is FIG. 8. Enlarging Fig. &) («7=6.45) shows that this attractor

no longer bounded, because the chaotic attractor has mergetithe Poincaremap is a closed curve with many self-intersections.
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FIG. 9. Enl t of the bif tion di th d of FIG. 10. Time series of the power farr=4.145 669 3 showing
- 2. =hlargement ot the bilurcation diagram near the end of ;0915 where the dynamics is near the “ghost” of the limit cycle
bubble 2. The curve of stable limit cycles appears as a parabol

fhat is about t d | t of the largest such
which is typical for a saddle-node bifurcation of limit cycles. intaer\l/sala(b;)u © appeas), and an enlargement of the largest suc

cycles is a parabola that is tangent to the region of chaotic An important feature is the symmetry of the system under
dynamics. This is a tell-tale sign of a saddle-node bifurcationm phase changes. This leads to attractors that are either sym-
of limit cycles[20]. More evidence is given by the fact that metric or that have symmetric counterparts. We found sev-
the “ghost” of the limit cycle that is about to appear is eral examples of symmetry-breaking and -restoring bifurca-
already present fok7=4.145[Figs. 4g)]. The laser wants tions_. _The optical spectrum turns out to be useful _for
to settle down to the almost stable limit cycle, but thenPredicting whether the system has settled on a symmetric or
makes long chaotic excursions, which is an example of in NONSymmetric attractor. This is because when the attractor
termittency. This effect is shown more dramatically in Fig. IS honsymmetric, then the laser phase tends to be bounded,
10 with a time series of the power fafr=4.145 669 3. No- which leads to a narrowing of the low frequency part of the

tice several longer intervals where the dynamics is close t8ptical spectru_m. . . .
the ghost of thg limit cycle before it drif)t/s off agalFig. The dynamics and their bifurcations are only hinted at by

. ; = a bifurcation diagram, even if it is as detailed as in Fig. 1.
10(a)]. The longest such interval is enlarged in Fig(d0 . o .
and it should be compared with the time series in Fig).4 We have argued that a detailed analysis in phase space is

needed to completely describe the dynamics. This is also true
for other systems, such as the laser with conventional optical
VII. CONCLUSIONS feedback from a regular mirror.

The PCF laser shows a wealth of dynamical behavior. We
believe that we have discovered most, if not all, of the dy-
namics and bifurcations in the PCF laser, at least up to feed- The authors thank J. Guckenheimer and Yu. llyashenko
back levels consistent with the assumption of weak PCFor helpful comments on the global saddle-node bifurcation
Most prominent are periodic orbits, motion on a torus, andof limit cycles, and The Geometry Center, University of
chaos. We find the well-known transitions to chaos via peMinnesota, for its hospitality and support. This work was
riod doublings at the beginning of bubble 1, but most com-partially supported by NATO under Collaborative Research
mon is the transition via the breaking up of a torus. MostGrant No. CRG 941327. The research of B.K. was supported
surprising is the immediate transition from a stable limitby the Foundation for Fundamental Research on Matter
cycle to chaos at the end of bubble 2, which we identified agFOM), which is financially supported by The Netherlands
a global saddle-node bifurcation of limit cycles. Organization for Scientific Resear€(NWO).
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