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Semiconductor laser with phase-conjugate feedback: Dynamics and bifurcations
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This paper presents the dynamics and bifurcations of a semiconductor laser subject to instantaneous phase-
conjugate feedback. Recently, the behavior of such a laser has been explored by means of bifurcation diagrams.
However, the exact nature of the involved dynamics and bifurcations remained unclear. Here we present a
detailed study of the changes of the dynamics as the feedback strength is varied. Most prominent are
symmetry-breaking and -restoring bifurcations, tori and their bifurcations, and a sudden transition between
chaos and a stable limit cycle due to a saddle-node bifurcation of limit cycles.@S1063-651X~98!01812-1#

PACS number~s!: 05.45.1b, 42.65.Sf
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I. INTRODUCTION

There has been considerable interest recently in the
pling of semiconductor lasers to phase-conjugate mirr
~PCMs! due to potential practical applications as well as
the interesting resulting dynamics@1–10#. On the practical
side, such a laser with phase-conjugate feedback~PCF! can
be used for mode locking@1#, phase locking@2–4#, and fre-
quency control@5,6#. PCF can lead to very complex dynam
ics, which seems to be partly because PCF can be consid
a combination of regular feedback~because of the delay! and
injection ~because of the presence of detuning!. A compari-
son of PCF with regular feedback has recently been c
ducted@4#. This comparison, however, was performed w
the aid of bifurcation diagrams, without exploring in deta
the underlying dynamics.

In this paper we explore the complex dynamical behav
of a single-mode semiconductor laser subject to weak ins
taneous PCF. The main chain of events as the feedb
strength is increased can be sketched as follows. When
laser is detuned slightly from the PCM, the solitary-las
solution becomes unstable and then phase locking occur
which the laser locks to the phase generated by the ph
conjugate mirror. The locked solution undergoes a Hopf
furcation generating a stable limit cycle that corresponds
periodic changes in the power, the so-called relaxation os
lations. In the bifurcation diagram one finds intervals w
stable limit cycles, interspersed with intervals, which we c
bubbles, with more complicated dynamics~Fig. 1!. The tran-
sition from one stable limit cycle to the next differs fro
bubble to bubble. In bubble 1 we find a transition to cha
via period doublings. In other bubbles there is a transition
chaos via motion on an invariant torus~with quasiperiodic or
phase-locked dynamics!. We also find a sudden transitio
between chaos and a limit cycle via a saddle-node bifu
tion of limit cycles. Finally, symmetry-breaking an
symmetry-restoring bifurcations are prominent features
the dynamics.

*Present address: Department of Engineering Mathematics,
versity of Bristol, Bristol BS8 1TR, U.K. Electronic addres
B.Krauskopf@bristol.ac.uk
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Our main point here is that one is likely to miss importa
phenomena if one just considers a bifurcation diagram. T
is why we show the behavior of the laser for a single value
the feedback strength in different ways: by a time series
the power, by an optical spectrum, by a~two-dimensional
projection of a! trajectory, and by the respective attractor
the Poincare´ map. By comparing these representations
different values of the feedback strength, one can get a v
detailed picture of the bifurcations, that is, of the qualitati
changes of the dynamics. The optical spectra also pre
how the dynamics and the bifurcations could be most ea
identified in an experiment.

The paper is organized as follows. In Sec. II we descr
the model, and in Sec. III we explain the bifurcation di
gram, which serves as our starting point. In Sec. IV we lo
in detail at the laser dynamics. Section V discusses the
plications of bifurcations involving the symmetry, and Se
VI explains the sudden transition to chaos. We draw gen
conclusions and summarize in Sec. VII.

i- FIG. 1. The bifurcation diagram forktP@0.5,7#, showing nor-
malized inversion when the power crosses its average, consis
three bubbles.
7190 © 1998 The American Physical Society
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II. SINGLE-MODE RATE EQUATIONS WITH PCF

We assume that a single-mode semiconductor laser is
taining weak feedback from a PCM which responds inst
taneously. The assumption of weak PCF allows us to incl
only a single round-trip in the external cavity. The assum
tion of a very fast PCM allows us to ignore the dynamics
the mirror itself. In fact, it was recently shown@11–13# that
even the interaction time within the PCM must be taken i
account for an accurate treatment of the laser dynam
However, for short interaction times, the exact treatment
duces to that of the instantaneous mirror. The interac
time can in fact be controlled by the PCM pump power@11#.

The theoretical model for this paper is described by
following rate equations for the slowly varying complex am
plitude of the intracavity optical fieldE(t) and for the inver-
sion N(t):

dE

dt
5

1

2F2 iaGN@N~ t !2Nsol#1S G2
1

tp
D GE~ t !

1kE* ~ t2t!exp@2id~ t2t/2!#, ~1a!

dN

dt
5

I

q
2

N~ t !

te
2GuE~ t !u2. ~1b!

In these equationsuE(t)u2 is the photon number. To conve
to the power, there are 1.713104 photons per mW. Further
more,a is the linewidth-enhancement factor,GN is related to
the derivative of the optical gain,N is the electron popula
tion, Nsol is its steady-state value in the absence of feedba
G is the net rate of stimulated emission,tp is the photon
lifetime, I is the injection current,q is the magnitude of the
electron charge, andte is the electron lifetime. The stimu
lated emission termG includes the effect of nonlinear gain
that is,G5GL(12eP), whereGL5GN(N2N0) is the lin-
ear gain ande is the nonlinear-gain coefficient. HereN0 is
the transparency electron number, which is related toNsol by
Nsol5N01GN /tp . The last term in Eq.~1a! models the
phase-conjugate feedback, and it contains three parame
the feedback ratek, the detuningd, and the external-cavity
round-trip timet. They are given by

k5
~12Rm!

tL
FhcRext

Rm
G1/2

and t5
2Lext

c
, ~2!

whereRm is the laser front-facet reflectivity,tL is the round-
trip time in the solitary laser cavity,hc is the coupling effi-
ciency and is taken to be unity due to the self-aligning nat
of the PCM,Rext is the power reflectivity of the PCM, an
Lext is the distance between the laser and the PCM.

Note that the field which is fed back to the laser has b
conjugated by the PCM. Spontaneous-emission Lange
noise terms are intentionally left off in Eqs.~1a! and ~1b!,
since we want to consider only deterministic effects in t
paper. We also neglect multiple feedback terms for Eq.~1a!
due to the assumption of weak feedback. The numerical
ues of the parameters used in the model were chose
model a typical laser used for writing to optical disk
Throughout all computations we used
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a53, GN51190 s21, N051.643108,

e53.5731028, I 565.1 mA,

tp51.4 ps, te52 ns, Rm50.12,

tL59.3 ps, and Lext510 cm.

These values lead to a threshold current of 61.9 mA. Al
because of the presence of nonlinear gain, there is an e
tive detuning ofd5166 MHz. Finding the numerical value
of these parameters in practice is hard, but good estim
can be found by making a number of key experimental m
surements@14#.

From a dynamical systems point of view, Eqs.~1a! and
~1b! are a three-dimensional delay-differential syste
@15,16#. These equations describe how a function defined
the interval@2t,0# ~the initial condition! with values inR3

@the (E,N) space# evolves in the time interval@0,t# and so
on for all future~positive! values of time. The interval@0,t#
can be shifted back to@2t,0#, so that Eqs.~1a! and ~1b!
define an operator on the infinite-dimensional space of fu
tions over @2t,0# with values in (E,N) space. Here we
adopt the common and probably most physical way of thi
ing about Eqs.~1a! and~1b!, namely, we simply consider th
time evolution„E(t),N(t)… in the three-dimensional (E,N)
space of a given initial condition, specified by the values
„E(t),N(t)… on @2t,0#. @Mathematically speaking, this is
projection of the infinite-dimensional dynamics onto (E,N)
space.# This is particularly useful once the system has sett
down to an attractor.

An important feature of Eqs.~1a! and ~1b! is their sym-
metry with respect to the transformationE°2E, which is a
rotation byp of theE plane. As a consequence, any attrac
we find will be either symmetric, or have a symmetric cou
terpart, which can be found by changing the phase of
appropriate initial condition byp. This symmetry also al-
lows for the possibility of symmetry-breaking and -restori
bifurcations. As general references to the aspects of sym
try in dynamical systems see Refs.@17,18#. In symmetry
breaking, a symmetric attractor becomes unstable, crea
two nonsymmetric attractors, which are mapped to e
other by the transformationE°2E. In symmetry restora-
tion, two nonsymmetric attractors grow in size, collide, a
give rise to a symmetric attractor. We refer to Sec. IV f
examples of these bifurcations, and to Sec. V for their phy
cal implications.

III. THE BIFURCATION DIAGRAM

A first impression of the dynamics and the bifurcations
the laser in the presence of PCF can be obtained by a b
cation diagram, in which a key quantity is plotted against
main ~dimensionless! parameter kt; see, for example,
@4,10,11#. However, the bifurcation diagrams in the literatu
are quite crude, and they do not make it clear what the ac
dynamics are and how they depend onkt.

As a starting point for our study we consider the bifurc
tion diagram in much higher resolution in three pieces in F
1. It has been obtained as in Ref.@11# in the following way:
after allowing transients to die away, the normalized va
@103(N/Nsol21)# is recorded whenever the power cross
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its average value~over the orbit! Pave in the increasing di-
rection. This procedure is repeated for increasing P
strength, that is, for increasingktP@0.5,7#. Each time we
increase or decrease the PCF strength, the laser varia
retain their final values from the previous PCF strength
initial condition, just as would be the case in an experime
We stress that there is no hysteresis: computing the bifu
tion diagram by decreasingkt gives the same result. In othe
words, for anykt there is exactly one attractor~up to sym-
metry; see Sec. V!, which is very different from the situation
for conventional optical feedback@9#.

The interpretation of the bifurcation diagram is as fo
lows. For a given feedback strength, the absence of poin
the diagram indicates a stable equilibrium solution~e.g.,kt
50.5). A small number of points for a givenkt corresponds
to a periodic limit-cycle solution~e.g.,kt52.0). Finally, a
large number of points corresponds to quasiperiodicity
chaos~e.g.,kt53.0). One can clearly see threebubbleswith
more complicated dynamics.

It is the purpose of this paper to study the dynamics a
bifurcations in great detail. To this end we will give a care
analysis of how the dynamics in (E,N) space depend onkt.
We will concentrate on the study of the first three bubbl
for ktP@0.5,7#, by means of simulation. This will explain
many features in the bifurcation diagram in Fig. 1, whi
remain somewhat mysterious at this point. We argue that
practically impossible to interpret all features of the bifurc
tion diagram without good knowledge of the dynamics
(E,N) space.

IV. DESCRIPTION OF THE DYNAMICS

In this section we take a dynamical systems point of vi
and describe the bifurcations as we pass through bubble
2, and 3 whenkt is increased from 0.5 to 7.0. As gener
references to bifurcation theory see@19,20#. In order to give
the reader a good idea of the dynamics and the bifurcati
we present them in several ways. For each bubble we c
sider the dynamics for a representative set ofkt values and
collect them in one main figure. For each value ofkt we
show ~in three panels! the time series of the power~left
panel, units are ns and mW!, the optical spectrum~middle
panel, units are GHz and arbitrary units!, and the orbit pro-
jected onto theE plane~right panel, the units are such th
uEu2 is the photon number!. In a separate figure we show th
respective attractors of the Poincare´ map, given by the inter-
sections of the attractor in (E,N) space with the Poincar´
plane N5Nave. This means that a limit cycle results in
discrete set of points,~quasiperiodic! motion on a torus re-
sults in a circle, and chaotic motion results in a complica
set in the Poincare´ plane. For pictures of the dynamics
(E,N) space and for RIN spectra see Refs.@21,22#.

The data have been obtained as follows. With the ini
condition „E(t),N(t)…50 for all tP@2t,0# Eqs. ~1a! and
~1b! were integrated on the computer using a fourth-or
Runge-Kutta algorithm. Note that this initial condition co
responds to first blocking the path to the PCM in an exp
ment. The integration time step was generally 8 ps, but
regularly reduced to ensure the accuracy of the algorithm
order to allow for transient behavior to die off, we discard
the data for the initial 1000 ns. For calculation of the optic
F
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spectra, 4096 points were used with 32 ps between points
that the resolution in the frequency domain is 7.63 MH
Each spectrum shown represents an average over ten sp
to improve the signal-to-noise ratio. Further, we have plot
the optical spectra on a logarithmic vertical scale, so that
widely varying magnitudes of the peaks show up better.

A. Outside the bubbles

In contrast with conventional optical feedback, PCF im
mediately destabilizes the laser power even for extrem
low feedback strengths. For example,kt50.01 already pro-
duces a limit cycle with oscillation frequency of 320 MH
Such a low value of feedback corresponds to an effec
PCM power reflectivity ofRext5285 dB. The 320 MHz
frequency is about twice the detuning between the PC
pump laser and the solitary laser frequency. Such a detu
obviously does not exist in ordinary optical feedback. T
origin of the oscillations is the beating between the pu
laser and the solitary laser. As the feedback level increa
beyond kt50.01, the feedback induces a frequency sh
which attempts to cancel the pump detuning. In other wor
the PCF is pulling the laser frequency toward the pump f
quency@4# until locking occurs atkt'0.222.

Although locking to an external-cavity frequency can o
cur with ordinary feedback, the frequency locking occurri
here is accompanied by phase locking as well, so that
laser phase no longer undergoes diffusion@2,3#. Since phase
diffusion is responsible for the laser linewidth, the pha
locking found here manifests itself in an ultranarrow las
linewidth; the linewidth becomes limited by the linewidth o
the pump laser. Simulations have shown that this narr
linewidth state is stable even when the spontaneous-emis
noise terms are turned on@4#.

The next destabilization occurs as the feedback reac
kt'0.59, which marks the edge of the locking band@Fig.
1~a!#. A Hopf bifurcation occurs corresponding to the u
damping of the relaxation oscillations, which leads to
stable limit cycle in (E,N) space. The attracting limit cycle
is not symmetric and, consequently, its symmetric coun
part is a second attractor. Whenkt is increased further,
bubble 1 is entered.

Although occasional locking is seen inside the bubbl
between the bubbles the laser is always frequency lock
although not phase locked, with the power oscillating clo
to some multiple of the fundamental external-cavity fr
quency 1/t51.5 GHz. Thus forkt'2.0, kt'4.2, andkt
'7.0, the frequency of the limit cycle is approximately 1
GHz, 3 GHz, and 4.5 GHz, respectively. An explanation
the width of these locking regions was recently derived@11#.

B. Transition through bubble 1

The chain of events is depicted in Fig. 2 and the asso
ated attractors of the Poincare´ map can be found in Fig. 3
compare also Fig. 1~a!. The stable limit cycle, correspondin
to the relaxation oscillation, undergoes a sequence of per
doubling bifurcations until a chaotic attractor is creat
@Figs. 2~a!–2~c! and 3~a!–3~c!#. Whenkt is increased fur-
ther, the chaotic attractor grows until it collides with its sym
metric counterpart (kt50.8), which is responsible fo
clearly visible excursions into the region where Re(E),0 in
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Figs. 2~d! and 3~d!. This is a symmetry-restoring bifurcation
and the attractor is symmetric through the remainder
bubble 1. The chaotic regime@kt51.45, Figs. 2~e! and 3~e!#
is interspersed with windows of periodic orbits in the regi
of chaos, for example, nearkt51.5 @Figs. 2~f! and 3~f!#. The
end of the chaotic region is marked by the appearance
motion on a torus, which appears to be quasiperiodic@Figs.
2~g! and 3~g!#. The torus becomes smoother and roun

FIG. 2. Transition through bubble 1, showing the time series
the power~left panel!, the optical spectrum~middle panel!, and the
trajectory in the E plane ~right panel!. From ~a! to ~h! kt
50.7, 0.735, 0.79, 0.8, 1.45, 1.5, 1.71, and 1.75.
f

of

r

while it shrinks in size, and it finally disappears in a Ho
bifurcation of the Poincare´ map. After this, we leave bubble
1 and are left with a symmetric limit cycle@Figs. 2~h! and
3~h!#.

C. Transition through bubble 2

The transition through bubble 2 is depicted in Figs. 4 a
5; compare also Fig. 1~b!. When bubble 2 is entered, th
Poincare´ map undergoes a Hopf bifurcation, so that t
stable limit cycle bifurcates to a torus. The motion on t
torus may be quasiperiodic (kt52.3) or locked (kt
52.45); see Figs. 4~a!–4~d! and 5~a!–5~d!. @When the mo-
tion is locked, the torus is still present, but it is not visib
because all points are attracted to the locked solution.# The
torus changes shape and starts to break up askt is increased
further, up until the dynamics become chaotic@Figs. 4~e! and
4~f! and 5~e! and 5~f!#. The chaos suddenly stops with th
appearance of a stable limit cycle (kt54.147), which marks
the end of bubble 2@Figs. 4~g! and 4~h! and 5~g! and 5~h!#.
This bifurcation is maybe even more stunning if we consid
decreasingkt from 4.147 to 4.145: practically without an
warning the dynamics change from periodicity to chaos. F
a detailed description of this bifurcation see Sec. VI. W
finally remark that all attractors in bubble 2 are symmetri

D. Transition through bubble 3

The transition through bubble 3 can be found in Fig. 6 a
the associated attractors of the Poincare´ map are in Fig. 7;
compare also Fig. 1~c!. First, the symmetric limit cycle in
Figs. 4~h! and 5~h! becomes unstable and two nonsymmet
limit cycles appear, one of which is shown in Figs. 6~a! and
5~a!. As a consequence of this symmetry-breaking bifur
tion, the power develops an extra maximum per period.
other words, we have identified the transition atkt'4.7 as a
symmetry breaking bifurcation. It isnot period doubling as
one might surmise by studying only the bifurcation diagra
see also Sec. V.

The Poincare´ map then undergoes a Hopf bifurcatio
which results in the appearance of a torus. The motion on
torus can be quasiperiodic or locked@Figs. 6~b! and 6~c! and
7~b! and 7~c!#. The torus breaks up and becomes chaotic
a large range ofkt @Figs. 6~d! and 7~d!#. For kt56.45 a
torus reemerges, but it is very folded@Figs. 6~e! and 7~e!#.
That we are indeed dealing with a torus becomes clear
considering the enlargement in Fig. 8 of the attractor of
Poincare´ map in Fig. 7~e!: it shows a very folded, but close

f

FIG. 3. Attractors of the Poincare´ map of the transition through
bubble 1 for the values ofkt in Fig. 2.
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curve. The torus gradually unfolds and becomes smoo
@Figs. 6~f! and 7~f!#, with occasional bursts into chaos; com
pare Fig. 1~c!. Finally there is a Hopf bifurcation, the toru
disappears, and we are left with a nonsymmetric limit cy
@Figs. 6~g! and 7~g!#. At kt'6.65 there is a symmetry
restoring bifurcation after which we are left with a symme
ric limit cycle @Figs. 6~h! and 7~h!#.

FIG. 4. Transition through bubble 2, showing the time series
the power~left panel!, the optical spectrum~middle panel!, and the
trajectory in the E plane ~right panel!. From ~a! to ~h! kt
52.2, 2.3, 2.45, 2.51, 2.55, 2.6, 4.145, and 4.147.
er

e

V. CONSEQUENCES OF THE SYMMETRY

A change of the symmetry property of an attractor h
important physical implications that are observable exp
mentally. Furthermore, the possibility of symmetry-breaki
and -restoring bifurcations fundamentally distinguishes a
ser with PCF from a laser with conventional optical fee
back. In the latter case the system is symmetric under
rotation of the complex electric field@23#, and consequently
the bifurcations discussed here cannot occur there. It is
prising that this has not been observed earlier.

Let us consider what happens when a symmetric perio
orbit loses its stability and creates two symmetric stable li
cycles. This happens in the transition from Fig. 4~h! to Fig.
6~a! when kt is increased through'4.7 and also in the
transition from Fig. 6~h! to 6~g! when kt is decreased
through'6.65. Suppose the symmetric limit cycle has t
period T, so that it is of the form$„E(t),N(t)…utP@0,T)%.
Notice that rotating the limit cycle byp around theN axis is
equivalent with waiting for timeT/2. Mathematically this
means that

„2E~ t2T/2!,N~ t !…5„E~ t !,N~ t !… for all tP@0,T!,

which implies that the time series of the power is period
with periodT/2; see Figs. 4~h! and 6~g!. In other words, the
frequency of the power is twice that of the limit cycle. Whe
symmetry breaking occurs, this property is lost and the ti
series of the power is now periodic with periodT, instead of
T/2. Eventually the power will develop an extra maximu
per period; see Figs. 6~a! and 6~g!. This creates new inter
section points that show up in the bifurcation diagram
Figs. 1~c!. In other words, this symmetry breaking may b
mistaken for a period doubling.

In the optical spectrum one notices the appearance of
tra peaks at frequency 1/T. But there is also another featur
in the optical spectra, which allows one to distinguish sy
metry breaking from period doubling. When the limit cyc
is not symmetric there is an extremely narrow peak at
center of the optical spectrum@Figs. 6~a! and 6~g!#. This
narrow peak is dominant when the phase of the lase
bounded, which means that the projection of the limit cy
does not surround the origin of theE plane. In other words,
the laser phase no longer visits the entire range of 0 to 2p,
and then the linewidth is significantly narrowed. This pe
becomes smaller the more symmetric the limit cycle b

f

FIG. 5. Attractors of the Poincare´ map of the transition through
bubble 2 for the values ofkt in Fig. 4.
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comes. Indeed, when symmetry restoration occurs, a
Figs. 4~h! and 6~h!, then the narrow central peak disappea

This appearance and disappearance of the central pe
also present in the symmetry restoration involving a cha
attractor in Figs. 2~c! and 2~d!. Note that the phase i
bounded forkt50.79, even though the dynamics is chaot
Whenkt50.8 the dynamics is still chaotic, but the phase
no longer bounded, because the chaotic attractor has me

FIG. 6. Transition through bubble 3, showing the time series
the power~left panel!, the optical spectrum~middle panel!, and the
trajectory in the E plane ~right panel!. From ~a! to ~h! kt
55.0, 5.1, 5.47, 5.6, 6.45, 6.58, 6.6, and 6.7.
in
.
is

ic

.

ed

with its symmetric counterpart. This leads to the diappe
ance of the central peak in the optical spectrum as was
discussed. Note that the change in the phase dynamics
not be detected by just looking at the time series of
power, because the two halves of the attractor that are vis
chaotically are symmetric images of each other.

VI. GLOBAL SADDLE-NODE BIFURCATION
OF LIMIT CYCLES

At the end of bubble 2 there is no hysteresis: the la
jumps directly from chaos to stable oscillations askt is in-
creased through'4.146, and it jumps from stable oscilla
tions to full-scale chaos askt is decreased through'4.146,
both virtually without warning@Figs. 4~g! and 4~h! and 5~g!
and 5~h!#. This transition is a saddle-node bifurcation of lim
cycles, where the unstable piece of the~two-dimensional!
center manifold intersects the stable piece of the center m
fold. This global aspect of this bifurcation is known to crea
complicated dynamics instantly, when the stable limit cy
collides with an unstable limit cycle and disappears@24,25#.
There are several cases of complicated dynamics, like a
pension of a solenoid, or so-called random dynamics@25#.

Here we show that indeed a saddle-node bifurcation
limit cycles is the bifurcation at hand. The question of whi
of the different cases of global dynamics occurs is beyo
the scope of this paper. The fact that we are dealing wit
saddle-node bifurcation of limit cycles is confirmed in Fig.
which shows an enlargement of the bifurcation diagr
aroundkt54.14. One notices that the curve of stable lim

f

FIG. 7. Attractors of the Poincare´ map of the transition through
bubble 3 for the values ofkt in Fig. 6.

FIG. 8. Enlarging Fig. 6~e! (kt56.45) shows that this attracto
of the Poincare´ map is a closed curve with many self-intersection
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cycles is a parabola that is tangent to the region of cha
dynamics. This is a tell-tale sign of a saddle-node bifurcat
of limit cycles @20#. More evidence is given by the fact tha
the ‘‘ghost’’ of the limit cycle that is about to appear
already present forkt54.145 @Figs. 4~g!#. The laser wants
to settle down to the almost stable limit cycle, but th
makes long chaotic excursions, which is an example of
termittency. This effect is shown more dramatically in F
10 with a time series of the power forkt54.145 669 3. No-
tice several longer intervals where the dynamics is close
the ghost of the limit cycle before it drifts off again@Fig.
10~a!#. The longest such interval is enlarged in Fig. 10~b!,
and it should be compared with the time series in Fig. 4~h!.

VII. CONCLUSIONS

The PCF laser shows a wealth of dynamical behavior.
believe that we have discovered most, if not all, of the d
namics and bifurcations in the PCF laser, at least up to fe
back levels consistent with the assumption of weak P
Most prominent are periodic orbits, motion on a torus, a
chaos. We find the well-known transitions to chaos via
riod doublings at the beginning of bubble 1, but most co
mon is the transition via the breaking up of a torus. Mo
surprising is the immediate transition from a stable lim
cycle to chaos at the end of bubble 2, which we identified
a global saddle-node bifurcation of limit cycles.

FIG. 9. Enlargement of the bifurcation diagram near the end
bubble 2. The curve of stable limit cycles appears as a parab
which is typical for a saddle-node bifurcation of limit cycles.
-

ic
n

-
.

to

e
-
d-
.

d
-
-
t
t
s

An important feature is the symmetry of the system un
p phase changes. This leads to attractors that are either
metric or that have symmetric counterparts. We found s
eral examples of symmetry-breaking and -restoring bifur
tions. The optical spectrum turns out to be useful
predicting whether the system has settled on a symmetri
a nonsymmetric attractor. This is because when the attra
is nonsymmetric, then the laser phase tends to be boun
which leads to a narrowing of the low frequency part of t
optical spectrum.

The dynamics and their bifurcations are only hinted at
a bifurcation diagram, even if it is as detailed as in Fig.
We have argued that a detailed analysis in phase spac
needed to completely describe the dynamics. This is also
for other systems, such as the laser with conventional opt
feedback from a regular mirror.
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