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In an earlier work we considered a Gaussian ensemble of random matrices in the presence of a given
external matrix source. The measure is no longer unitary invariant, and the usual techniques based on orthogo-
nal polynomials, or on the Coulomb gas representation, are not available. Neverthelegmothecorrelation
functions are still given in terms of the determinant of a kernel, known through an explicit integral represen-
tation. This kernel is no longer symmetric, however, and is not readily accessible to standard methods. In
particular, finding the level spacing probability is always a delicate problem in Fredholm theory, and we have
to reconsider the problem within our model. We find a class of universality for the level spacing distribution
when the spectrum of the source is adjusted to produce a vanishing gap in the density of the state. The problem
is solved through coupled nonlinear differential equations, which turn out to form a Hamiltonian system. As a
result we find that the level spacing probabilipgs) behaves like exp-Cs°] for large spacings; this is
consistent with the asymptotic behavior x€s?#*2], whenever the density of state behaves near the edge as
p(\)~\P. [S1063-651%98)00112-3

PACS numbdis): 05.45+b, 05.40:+]

[. INTRODUCTION Itzykson-Zuber formuld5]. It is remarkable that these-
point functions are still given by a determinant of axn

The level spacing distributiom(s), first discussed by matrix whose elements are given by a kerigh,u), a
Wigner[1] for nuclear energy levels, has been studied extenwell-known fact[3] when the orthogonal polynomials are
sively in random matrix theory2], and the universality of available. However, in our problem, this kernel is no longer
p(s) has been discussed for many cases, including the disymmetric, but we know an exact integral representation for
tribution of zeros in the Rieman# function[3]. The calcu-  finite N.
lation of this level spacing distribution is always much more If we had considered the level spacing distribution for
delicate than that of the-point correlation functions. Indeed, those ensembles with a source, around a regular point of the
when two neighboring levels are separated by some intervapectrum, the usual proofs of universality would apply, and
s, it implies that all the other eigenvalues are outside of thishe end result, in the appropriate scaling limit, would be
interval, and consequently it involves all the correlationidentical to the Wigner ensemble level spacing. However,
functions of those eigenvalues. In the simplest Gaussian emear singularities of the spectrum, different universality
semble it took many years of development of the theory oftlasses appear. For instance, near the edge of the Wigner
Fredholm determinants, Dyson’s inverse scattering approacisgmicircle, in a region of sizél~%3 a kernel expressed in
and 7 functions before this problem was understood. For théerms of Airy functions controls the correlation functions;
Airy kernel which appears for the spacing in the vicinity of Tracy and Widom succeeded in finding the level spacing for
the edge of Wigner's semicircle, Tracy and Widom devel-this kernel.
oped a technique through coupled nonlinear differential In the source problem, we showed earlier that we can
equations, which we have generalized here and applied tbave gaps in the spectrum ldf when the randomness ¥fis
our previous work on random matrices in a matrix sourcenot strong enough to bridge the gaps between the eigenstates
[4]. of Hy. If we tune the randomness in order to reach the lim-

The problem we had studied concerns a Hamiltorlian iting situation in which a gap closes, a universal singularity
=Hy+V, in whichHg is anNXN nonrandom matrix with a appears at which the density of eigenvalyg€s) vanishes
known spectrum, bu¥ is a random Gaussian potential. The like [\|2. In this paper we obtain the level spacing distribu-
probability measure foH, then being a Gaussian iH tion by an application of Fredholm theory from which we
—Hg, is not unitary invariant. Consequently the standardderive nonlinear differential equations, which remarkably
approach, which consists of tracing out the unitary degreeform a Hamiltonian system. This generalizes earlier work,
of freedom, and then using orthogonal polynomials, or aand makes it clear that the technique is general. For the
Coulomb gas representation, is not available. However, w&Vigner case, with the sine kernel obtained by Gauéip
have obtained exact formulas, i.e., valid for matrices of finite

size, for then-level correlation functions, with the help of the _sinm(X—y)

K(x,y)= —y) (1.0

*Unite propre du Centre National de la Recherche ScientifiqueJimbo et al. [7] long ago obtained a closed equation for
Associe al'Ecole Normale Supeeure et al’Universite de Paris-  E(S), the probability that the interval-s/2,s/2) is empty.
Sud. Tracy and Widon{8] considered the Airy kernel
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Ai(X)A](y)— A (X)A(Y) two cases. In order to explain the method that we follow
= x—y (1.2 here, we present it for the sine kernel and for the Airy kernel
in Appendixes A and B, following closely the derivation of
[where Aj(x) is an Airy function which satisfiesA’(x)  Tracy and Widon{8-10].
=xA(x)], and obtainecE(s) for the semi-infinite interval In all those earlier cases, as well as for our source prob-
(s,%), whensis near a singular edge of the semicircle. Thelem, the probabilityE(s) of emptiness of the interval
method developed in this paper is easily applicable to thosé—s/2,s/2), is a Fredholm determinant

K(x,y)

(—1

J
nrp b
n') fa,..fa E=ldxkde[K(Xi'Xj)]i,j:1 ..... n (13)

-3,

if we choose &= —s/2b= +s/2) for the interval @,b). The  Gaussian in terms & More generally it has been conjec-
sine and Airy kernels are symmetrik(x,y) =K(y.,x). For  tured, on the basis of a Coulomb gas represent4fidri 2],

the source problem(x,y) is no longer symmetric under that for a density of state behaving aéx) ~x?, then
exchange ok andy, although its square under convolution

yields back the kernel itself as for the simpler cagék E(s)~exg — Cs6+2]. (1.6
Starting with Fredholm theory foE(s) and extending the

analysis of Tracy and Widorf8-10|, we derive a Hamil- 400 this ansatz agreed with the results for the sine kernel,
tonian system for our problem, leading to coupled nonllnezilfOr which 8=0, and for the Airy kernel@=1. In our case
L] 2" 1

differential eqqations. Froml those. equaFions one can detefbr which there is no Coulomb gas picture, the ansatz also
mlne.the funcUorE(s)., ar]d n part|pular Its asymptoﬂc ex- agrees with our finding for the gap closing singularity, for
pansion for larges, which is interesting. For the sine kernel, which the density of state gives an expongat . The re-

- — _ 2 . . - .

it behaves ag(s) ~exi (;72/8)5 ; for the Airy kernel, it sult of the present analysis confirms this conjecture since it
become<(s) ~exp(—1/96s°). In our previous work4], we givesE(s)~D exp(—C<R)

had applied a Padanalysis to a functiorR(t) related to '

E(s),
II. KERNEL AT THE CLOSURE OF A GAP

, (1.9 We consider arN XN Hamiltonian matrixH=Hg+V,
whereH, is a given nonrandom Hermitian matrix, awds a
random Gaussian Hermitian matfik3—17. The probability
distribution P(H) is thus given by

E(s)=exp[ JOSR(E)dE

where the variabls is defined as

- s/2
s= X)dx. 1.
fstZP( ) ( 5) P(H) — %e*(N/Z)Tr V2: ief(NIZ)Tr(HZ,ZHOH)_ (21)

Z/
We had made the ansatz in our previous pdgéthat R(s)
behaves likes in the larges limit, namely, thatE(s) is  For then-point correlation functions, defined as

1 1 1

we have earlier derivefll6,17] the expression

Ro(N 1 A 2) =Kn(N 1 A ) KN 2 N ) = Ky(N 1, A ) Kiy(A 2, N ), (2.3
with the kernel
dt [ du N [a,—it) 1 N . N
—(— N—1 - - Y 2 42 _NIi
Kn(A g, Ap)=(—1) fzw 27Tiy];[l ia, u_itexp( S U= ot Nlt)\1+Nu)\2), (2.4)

in which the contour in the plane encloses all the,’s. Similarly then-point functions are given in terms of the determinant
of thenxn matrix whose elements are given by this same keipgh; ,\;) [17,18. In Ref.[15], this kernelKy(\1,);) was
considered in the largl limit, for fixed N(A;—\5). In this limit one can evaluate integrél.4) by the saddle-point method.
The result was found, up to a phase factor that we omit here, to be



7178 E. BREZIN AND S. HIKAMI PRE 58

1
KN(M,)\z)=—W—ySir{Wyp(M)], (2.5

wherey=N(A1—X\,). Apart from the scale dependence provided by the density of gtatee n-point correlation functions
have thus a universal scaling limit, i.e., independent of the deterministiddgaof the random Hamiltonian.

In order to generate a tunable gap we consider the simple case for which the eigenvédlyem®f-a, each value being
N/2 times degenerate. When the randomnessisfsmall, the average density of eigenvalues is made of two disjoint segments
located around the pointsa. When the randomness increases, one reaches a critical point at which the gap closes. When that
happens in the vicinity of the origin of siz¢~** we find a class of universality for the density of states and fomtpeint
functions[4]. Then kernel2.4) becomes

du / aZ+t2
2milu®—a?

- NN Ni N 2.6
u—it°X _Eu_Et_ itA;+NUA, |- (2.6)

dt
Kn(h Ap)=(— 1)(N/2)+1f e

From this expression, we obtain the density of siaf®) From the integral representatid®.8) we obtain easily the
=Ky(\,\). The derivative ofp(\) with respect ton elimi-  Taylor expansion of this function at the origin
nates the factou—it in the denominator of Eq2.4), and
i i 1 m
leads to the factorized expression 5 F(Z+ 5)(—1)m2mX2m

19 p(X)=7=2> . (2149
N ax PV == (M) g(N), 2.7 4mm=o (2m)!
h and its asymptotic behavior at large
where
~ 2 4/3 3\/§ ar
- A C -3 a—(38 a3_ "
N) = ﬂe—(N/z)t2+(N/2)|n(a2+t2)—Nitx 28 B(x) 37TX (e~ (300X COS{ 8 X 6)'
é(N) , (2.8
— 2T (2.15

du For the second functiofEq. (2.9)], in the scaling limit,N
—(N/2)u?—= (N/2)In(a%2—u?)+ Nu NP
yN)= P—e . (29  large,\ small, N¥*\ finite, we may expand up to ordef,
and define

For largeN, we may apply to the two integrals defining the A B

functions¢ andy the saddle-point method. Whan andx, P00 =N"H(N~%). (2.16

are near the origin the saddle points in the variablesdu

move to the origin. Therefore, for obtaining the lafgde-

havior of ¢ nearA =0 we can expand the logarithmic term du

in powers oft. One sees readily that the coefficient of the fp(x)= f —— a(utiay+ux (2.17

quadratic term irt? vanishes fora=1; in fact three saddle o2l

points are merging at the origin wharreaches 1. This is the ) ) o )

critical value at which the gap closes. We must then expand he integral is over a path consisting of four lines of steepest

in the exponential up to ordef, and we obtain descent in the complew plane. Along these straight lines,
the variableu is changed successively in® (™'u and

In the largeN, finite x, limit, we find

= dt e e*(B7iy. This leads to
dN) = f_mﬂe . (2.10 .
#(x)=—1m —f g u(gruo_gxue)| (0 1g
Rescalingt to N~ Y4’ and setting\=N"~%*, we find that mJo
B(x)=NY4p(N~34) (2.11)  in which w=e™*. The functioni(x) satisfies the differen-
tial equation
has a largeN, finite x, limit given by R R
P (X) = = Xih(x), (2.19
5 1(>
d(x)= ;JO dte ¥ cogtx). (212 and again, from Eq(3.19 we find the Taylor expansion
* 4an+1
It is immediate to verify that it satisfies the differential equa- )= 1o (EDXTT2n)! 2.20
tion =0 I I ’
n nl(4n+1)!

" (X)=XP(X). (2.13  and the largex behavior
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. [2 s 343 27
— _— v~ 1/34(3/8)x YT yAIB, T
p(x)~2 wa e cos( 8 X+ 3 )

(2.29

As shown in Ref[4], one may express the whole kernel

Kn(N1,\5) of Eq.(3.2) in terms of the two functiong and
¢ in the scaling limit. Defining

N =N"¥%%, A,=N"%%, (2.22
K(X,y)=NY4 (N3N N34\). (2.23
in the largeN, finite x andy, limit, we showed that
$'00F (¥) = ") d(y) ~ $00 ¥ (v)

X—y

K(x,y)=
(2.24

Note that it follows from Eq.(2.12 that ¢(x) is an even
function, whereag/(x) is odd[Eq. (2.18]. This implies, in
particular, that

K(—=x,—y)=K(x,y).

Therefore, the density of state is given by

(2.25

p(X)=—[ ' (X)"(X) = ¢"(X) " (X) +X(X) h(X)].
(2.26

In the largex limit, it behaves ap(x)~x*3. Hereafter, we
denote simply¢ and ¢ by ¢ and , respectively.

Ill. FREDHOLM THEORY

The level spacing functiok(s), the probability that there
is no eigenvalue inside the intervak-6/2,s/2) centered
around the singular poind=0, is given by the Fredholm
determinant

o

N —1)" (b b
E(a,b)=de(1—K]:nZo( n!) fa~-~faHE:1dxk

XdetK(Xi . X)) ]ij=1,...n (3.0
if we choose for &,b) the interval (~s/2,5/2). The sine and
Airy kernels are symmetric kernelsK(x,y)=K(y,x),
whereas our kernel in E¢2.24) is not symmetric, since the
two functions ¢(x) and #(x) are different. Our notations
here are as follows: the kern&l(x,y) is defined by Eq.
(2.24. However, it acts on the intervah(b); therefore in

Eq. (3.1) we have used the kernél(x,y) defined by the
restriction ofK to the interval:

K(x,y)=K(x,y)0(y—a) 8(b—y)=K(x,y)O(y), s

in which 6(x) is the Heaviside function, and for convenience

we have used the notation

O(y)=6(y—a)é(b—y). (3.3

In order to calculate the derivative of the logarithm of

E(a,b) with respect to the end points one writes
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InE(a,b)=Trin(1-K), (3.9
and thus
dInE(a,b) 1 oK .
b T 1_Rg b’ @5
From Eq.(3.2), we find
K (X,
) _kxbysy-b), (39

and therefore, if we introduce the Fredholm resolvent
K(b,b), defined by

R--K 7
1-K’ '
we obtain
&InE(a,b)_ %(b b 3.8
—5 = —K(bb). (38
Similarly the derivative with respect @is
aInE(a,b)_.R 3.9
— . =K@a. (39

Therefore, when we choose fora,p) the interval
(—s/2,5/2), we have

dinE(s) 1/ 4 d
b oda

ds_

~[S S
INE(S)|p=—a=go="— K(E-E)
(3.10

T2
This leads to

s_[s' s
E(s)=ex;{—f0K(5,§

We now define six functions, obtained by acting with the

operator (+K)~* on the functions¢(x),#(x) and their
first two derivatives,

ds'|. (3.11)

R b
Q0= (1K) 60 =600+ | Koxy) )y
b (b
+L Ja K(x,y)K(y,z)p(z)dy dz+---. (3.12

We find it easier to use Dirac’s notations

1

Ao(b.a;x) = (x| T—=[4)- (3.13
Similarly we define
An(b,a;x) =(x| 1A | ™) (3.19
me 1-K ’
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where¢(M(x) is thenth derivative of¢(x). For the function
¥(x), we act with the operator (2K) ! on bras, i.e., dual

vectors, rather than on kets. Because of the lack of symmetry

of the kernelK this introduces a kernél, and
1
pn<b,a;x>=<—1)“‘1<¢<2‘”>|ﬁlx» (3.19

where

L(y,x)=0(y)K(y,X). (3.16

When we sek=b, anda= —b, then the six functiong,,
andp,, become functions of the single varialidlewhich we
denote as

Qn(b)=an(b,—b;b), Pn(b)=pn(b,—b;b).

(3.17

The calculation of the derivatives of these functions
Q(b) andP,(b) implies considering separate variations in
the functionsg,(b,a;x) andp,(b,a;x) with respect td, a,
and x, before we sea=—b andx=Db. The calculation is
tedious, but not difficult, and we give more details in Appen-
dix C. The resulting differential equations are

- 2
Qo=0Q1+ BlelQo,
. 2
Q1=Qy— Blel_QoU,
. 2
Q2:bQO+BQ1P1Q2_Q1Uy
. 2
P0: _bpz_ BQlPlPO_l_ Plu,
. 2 ,
Pl: - P0+ 6Q1Pl+ PzU,

. 2
P2==P1=Q:P1P2, (3.18

where a dot means taking the derivative with respedb.to
The two auxiliary functionss andv are defined as

u=(¢lar), v=(4'[do), (3.19
and they satisfy
u=—2P,Q;, v=2P;Q. (3.20
From these equations, we successively find the relations
utov= _2P2Qo, (32])
then
: v| - u
Q=0 1+B , Py,=—Py 1—5 . (3.22
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Using Egs.(3.20 and (3.21), we obtain, from the second
equation of Eq(3.18),

o W2
2Q=U" oy Ty, U (323
and, using the fifth equation of E¢3.18, we have
o.p u 2 up? -
T2QoPoTu i T gy TUtY) (324

Taking the derivatives of these two equations and using the
third and sixth equations of E¢3.18), we end up with two
coupled nonlinear equations:

d3u o 1 .. ..
W'ﬁ‘ F—l (U+U)+U+U(UU+ZUU)
uv o 2v(u)? o a0
T @Y Ty 0 BB
dv [2v 1 .. ..
%g'f' F'f’l b(U"‘U)_m(UU'FZUU)
w e 2u(v)® o0 (o
+m( U+U) +m— . ( . @

In the largeb limit, the asymptotic behavior of the solutions
of these equations is obtained under the forms

2

A
UZZ+§b2/3+..., (3.2

b? A
v:_z+§b2/3+..._ (328)

Inserting these expressions in £§.25, we find A from the
coefficient of the terms of ordds*’,

A=—(D™ (3.29
The kernelK(b,b) may then be expressed as

K(b,b)=bP,Qo+Q2P1+Q1Po—UP;Qp—vP,Q;

1 . 2
_%(PlQl_QZPZ_QOPO) . (3.30

Remarkably this kernel at coinciding points is in fact a
Hamiltonian, that we denote as

H(b)=K(b,b), (3.3)
from which Hamilton’s equations
M .
n_&_Pn: n— _aQn ( . 2

coincide with the differential equation8.18. This allows
one to obtain a simple expression, for its derivative with
respect tad becomes
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dH(b) H 2
W:%:QOPZ_FHZPlQl' (3.33

In terms ofu andv, it becomes

dH(b) uto (u)?
db 2 ' 2b3(u+ov)¥

(3.39

Thus, from the previous result, we obtain the lalgleehav-
ior

dH(b) ~5x 2711323 (3.35

scaling variables is in fact related to the actual interval be-
tween the eigenvalues by absorbing a poiN&# 1), If we
let N go to infinity first, at fixed interval, in which caseis
also large, a finite limit of In E(S)/N?], for largeN, implies
that E(s) does fall for larges as E(s)~exg—Cs#*2]. In
other wordsE(s) behaves for largé), at a fixed interval, as
a partition function.
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Integrating once, for the Hamiltonian we findH(b)

~3x 27 M5B 3x 271835 n the larges limit. APPENDIX A: LEVEL SPACING PROBABILITY
From Eq.(3.11), we have FOR THE SINE KERNEL

~ex —9x 2~ /%83, The sine kernel is defined by

(3.3 K(x.y)— ¢(X)¢’(yi:;b(y)¢’(X)

E(s)=D ex;{ - J:H(S')ds'

, (A1)

in which D is an undetermined constant.
We have thus derived the exponsff which was a mere  where $(x)=sinx satifies ¢"(x)=— ¢(x). (For conve-

conjecture in our previous papéd]. There we had per- nience, in the normalization we have absorbed the usual fac-

formed a simple Padanalysis of the smal expansion, and tor ). We consideiq(x) andp(x) defined by

assumed that it was Gaussian at lagyim the variables.

This led us to the estimate 1 o1
X)=(X — , X)= =
A=z l8),  pO)=('l ¢

x), (A2
E(s)~D exd —0.33%?], (3.37)

or, since S~ (3y3/2m) (L)%, E(9~D exp and the Fredholm resolveft

[ —0.035&%°]. Our analytic resul{Eq. (3.22] gives E(s) R

~D exd—0.028&%3]. Thus the estimation by a simple K= —. (A3)
Padeanalysis was not too far from the exact resuilt. 1-K

IV. SUMMARY AND DISCUSSION We have

In this paper, we have investigated the level spacing prob- - -
ability for the case in which two edge singularities collapse. (x=y)K=(X[[X,K]ly)=(x|
By use of the Fredholm theory, we have derived an expres-
sion for the level spacing probability, whose logarithmic de- 1
rivative turns out to act as a Hamiltonian. The same strategy =(x| -
also allows one to solve simpler cases, such as the sine- 1=K
kernel (relevant to the level spacing for ordinary nonsingu- -
lar) points of the spectrum and the Airy kern@bhich ap- The definition(A1) of the kernel reads
plies to a single edge singularity The corresponding _ Y
Hamilton’s equations fully determine the level spacing, and [X.KI=[¢)¢'[=]67)(4| (A5)
in particular one can analytically obtain its asymptotic ex-
pansion at large spacing This allowed us to confirm the
conjecturg that we had madg in our previous paper, on the (x—y)K(x,y) = (xX|[X,K]|y). (A6)
asymptotic Gaussian behavior of the level spacing in terms
of the variables= [¥2,p(x)dx, which is the number of ei- Thus, from Eq.(A4), we obtain
genvalues in the interval of siz4]. We have thus derived
here that the level spacing probabiliy(s) behaves like ~ ax)p(y)—q(y)p(x)
exg —C<?], with a constantC that we have analytically K(x,y)= X—y :
determined. More generally the three cases that we have
solved are consistent with the asymptotic Gaussian behavior Since the functionsj(x) andp(x) depend upon the inter-
of E(s) with respect tos, i.e., to E(s)~ex—Cs#"?] for  val (a,b), we denote them more precisely qb,a;x) and
large spacings, whenever the interval of sizeis around a p(b,a;x). We then sek=b and varyb, i.e., take the deriva-
point at which the density of state behavep@s)~\A. The tive of q(b,a;b) at fixeda:

X,E}M

. 1
[X,K]EM- (A4)

since

(A7)
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dq(b,a;b)
R

oK
W1 —| ?),
(A8)

o+ (0l

where D is the derivative operatokx|D|f)=f'(x). From
the definition ofK, we have

IK(X,
O) _kx.y)a(b-y)=KIB)bl.

(A9)

Thus the second term of E¢A8) becomeK (b,b)q(b).
The first term of Eq(A8) becomes

1
<b|D—|¢> p(b)+(b|| D, TR |$)
b)+ b| D,K] ! |
_p( ) < R[ ’ Jl_R ¢>
(A10)
Since
(XIID.KIly)=| 55+ 75 K Oxy)
=K(x,y)[o(y—a)—é&(y—b)], (All)
we obtain
[D.K]=K|a)(a|~K]b)(b]. (A12)
From Egs.(A8) and (A10), we have
dq(b,a;b)
b p(b,a; b)+K(b, a)q(b,a;a). (A13)
Similarly, we have, fop(b),
dp(b,a;b) ~
T=—q(b,a;b)+K(b,a)p(b,a;a). (A14)
We denoteq(b, —b;b) by Q(b),
dQ(b) 4q(b,a;b)| dq(b,a;b)
do b | _ . da |_
(A15)
Since
aq(b,a;b) oK
—a (b |— 5)1—|¢>——K<b aja(b.a;a),
(A16)
we have
Q(b)=P(b)+2K(b,—b)Q(—b), (A17)
where
K(b,—b)= M. (A18)

b

E. BREZIN AND S. HIKAMI

PRE 58

Note thatQ(—b)=—-Q(b) and P(—b)=P(b). Similarly
we have an equation fd?(b). Thus we obtain finally

Q2 2P2
Q=P 1=/ P=Q - 1 (A19)
The functionK (b,b) is related toP andQ as
~ 2P2Q?
K(b,b)=P?+Q?— bQ : (A20)

which gives the logartihmic derivative of the level spacing
probability E(s). Noting b=s/2, we have

dQP( 4

ds 27 s

dP Q[4

" ds 2

T - 1) (A21)
In the larges limit, we haveQ~ P~s'%/2. From Eq.(A20),

we obtainH (s) =K (b,b) ~s/4. The level spacing probability
E(s) thus behaves, in the largdimit, as

E fﬂSSId , 2 )
(s)~ex o 4 s’ |~ex ?5

For smalls, we have, by solving Eq(A21) iteratively, with
the initial conditionsP(0)=1 andQ(0)=0,

3

_S S+05
Q=520

(A22)

7
P=1+s+ gsz+ 0(s%).

(A23)

Then, from Eq(A20), H(b) =K (b,b) behaves for sma#i as

H(s)=

1+s+s2+0(sd). (A24)

This leads to

E(s):ex;{ - J:H(s’)ds’

which is consistent with all the well-known results on this
well-studied cas¢3].

=1-s+0(s%),

(A25)

APPENDIX B: LEVEL SPACING PROBABILITY
FOR THE AIRY KERNEL

The sine kernel applies to a regular point of the spectrum.
However when one studies the vicinity of the edge of the
spectrum, in the appropriate scaling limit, the correla-
tion functions and the level spacing are given by an Airy
kernel. The level spacing was studied by Tracy and Widom
[8]. Here we repeat the same technique. Consider the interval
(—s/2,s/2) as in the sine case. We denote the Airy function
Ai(X) by ¢(x); it satisfies¢”(x) =x@(Xx). We use the same
notationg(x) andp(x) as in Eq.(A2). As for the sine case,
the Fredholm resolver (a,b) is given by

g(a)p(b)—p(a)q(b)
a—b )

K(a,b)= (B1)

We have
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J J
(a_x+@)K(X’Y):—¢(X)¢(y). (B2)

Therefore, we have
[D,K]=—|p)(¢|O®+K|a)a|—K|b)b|. (B3
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We are looking for a solution which behaves as a power
of s for larges, and thus for whictd?q(a)/da® can be ne-
glected asymptotically. This leads tga) ~ = \/s/2 for large
s, and thus toH(a)~s?/16 in the larges limit. Then we
obtain E(s)~exy —s96]. In order to check the usefulness
of the Padeanalysis, we now expand at small

The Airy function A(x) has the Taylor expansion for

Thus, by the same procedure as in the sine case, we obtaigmall x,

dq(b) o
—p5 —P(b)—qu+K(b,a)q(a), (B4)
ap =
25~ Pa(b) +up(b)—2q(b)v +K(b,a)p(a), (B5)
where
u=(¢la), v=(slp). (B6)

The Fredholm resolver (b,b) becomes

K(b,b)=p2(b)—bg?(b)—2up(b)q(b)+2q¢3(b)v
1
+ poglab)p(a)—p(b)a(a)]

X[q(a)p(b)—p(a)q(b)]. (B7)

Again H(b)=K(b,b) acts as a Hamiltonian, since we have

JH(b) __iq(b)

) ap(b)
ap(b) = b

H(b)
a0 - 2 (B9)

The derivative of the Hamiltonian becomes

[q(b)p(a)—p(b)g(a)]?
(b—a)?

dH(b)
Tap 9T

(B9)

In the Airy kernel, due to the parity around the edg€a)
and H(b) are different. The quantitieg(b) and p(b) be-
come exponentially small in the lardelimit (b>0), the
same as in the Airy function. We have, far —s/2,

dq(a) ~
"a =p(a)—q(a)u—K(a,b)q(b), (B10)
ap(a)_ -
a =ag(a)+up(a)—2q(a)v—K(a,b)p(b).
(B11)

The HamiltonianH (a) becomes
H(a)=p3a)—ag’(a)—2up(a)q(a)+2g3(a)v
+K(a,b)[q(a)p(b)—p(a)q(b)]. (B12

SinceK(a,b) can be neglected for the lardimit, and we
have a relatioru?— 2v =q?, we obtain

d%q(a
)~ ag(a)+ 20

(B13)

A(X) = Cl

1 4
—3 —6 e
1+6x+6!x+ }

2 4 2X5 -
X+EX +TX + -

—C, , (B14)

wherec,=3"23T(2/3) andc,=3"3T'(1/3). If we uses,
defined in Eq(1.5), it is related tos in this Airy case by

“1 5 < S :
12 960

5_

7 9
6 1283 +0(s”). (B15

The level spacing(s) is thus expanded in powers sfas

1

E(s)=1-s+ —( —— | 8%+ ... =1-5+0.544 868"

3 8/c

cic3 cf) 1.
6

2

—42.5418%+0(s?). (B16)

We now apply a Padanalysis toH(s), or rather to

1+a;S5+a,5%+ass’
1+b,s+b,s

R(s) OIIE(~)
s)=—=InE(s)=—
( ds

., (B17)

where we havea;=754.156, a,=1640.76, a;=1638.58,
b,=753.156, andy,=886.601. FromE(s), differentiating

twice with respect tas, we obtainp(s), which is slightly
different from the usual “Wigner surmise” function of the
sine case.

APPENDIX C: LEVEL SPACING PROBABILITY
FOR THE GAP CLOSURE KERNEL

We now consider the kernel

_ YY)~ "X YY) — ¢(X) P (y)

K(xy) vy
(Cy
or, in operator notations,
[X.KI=[" )@ | =" )l = [ )" (C2
Similarly to Eq.(A4), we have
SR = (] X R [y) =
(=YK= (X T XK= I =a(0paly)
—d2(X)Po(Y) = do(X)P2(y)- (€3

The derivative ofg,(b,a;b) for a fixeda becomes
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ddn(b,a;b) . K
T—<b|D1—|¢( "y +(b |—(%

We also have

(X|[D.K]ly)= K(x,y)+(x|K[a)(aly)

Ix (9y
—(x[K|b)(bly). (CH

The first term is simply— ¢(x) (y). This leads to

[D.K]=~]p)(¢|®+K|a)(a|-Klb)b|.  (C6)
Therefore,
dqn(b,a;b) ~
——p ~Un+1TK(b,2)an(a) ~ qo(b){#|an)
(C7)
and
s= (0 T X=X |+ | }|¢>
+ ! F(X !
=X0o(X) (XI 1—f<|¢>
=X0Oo—v201+ U102t v3q0, (C8)

whereu; =(#[do), v2=(¥'|do), andvz=(y"|qo).
The functionp,,(x) is defined by

1
n =(—-1 n—-1/.(2—n) E— , c9
Pa(x) = (=)™ K2 =< 1) (C9
where
Ly x)=0(y)K(y.X). (C10
We have
[D.L]=-0]¢)(y|+|a)(alK—|b)(b]K, (C1D
in which © is a local operator defined by
(yl®ly')=a8(y—y")o(y—a)6(b—y).  (C12
Thus we obtain
apn(b -
p(?k() ):_pn—l(b)_pO(b)<l7[/(27n)|qo>+pn(a)K(avb)v
(C13

with p_,(x) obtained as

E. BREZIN AND S. HIKAMI
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—|¢( Y =0py+1(b,a;b) +(b| _A[D K] |¢(”)>
+<b| |b><b| |¢(”>>. (C4)
[
1
p—l(X)Z—('!f"'|H|X>
- — |L £L|
_XPZ(X) <lr/l 1_I:[X! ]1_|: X>
= —XPo(X) = Pp1(X){¥|ay)
= P2 ¥]a2) — Po(X){(¥]d0), (C14
where
(YILX,L1|x)=(y—=x) O (y)K(y,X)
=0(y)(|¢" X&' |—1d" )l =) W"]).
(C1H

The function ¢(x) is an even function ofx, and
Jo(X) becomes an even function. The functigiix) is an
odd function. Therefore, we hawg=v;=0 for the interval
(—b,b). We also have y]d,)=(1{de) =(¥"|qe) = 0. Non-
vanishing quantities are,=(|q,), andv,=(¥'|qe). We
denote them simply by andv.

Noting that

_ 90n
b

9,
Qn—m .

; (C16

=-b a=-b

we obtain Eq(3.18. The equations foF’n in Eq. (3.18 are

also obtained similarly.
The derivative ofu=u, becomes

u=—2P5(b)Q;(b).

This is obtained as

(C17

au oK 1 ,
%—<¢|®n%ﬁ|¢ Y+ (b)ay(b). (C18
Using
K
—5 = K(x.y)8(y—b)=K]b)(b], (C19
we have
= —p2(b)ga(b). (C20

5=

The derivative ofu by a becomes, similarly,
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22~ P2A)i(a). (C2y
Puttinga= —b, we have
=2 ou = —2P,(b)Q4(b). (C22
N N 2(D)Q1(b). (C22
a=-b a=-b

This is Eq.(3.19.

APPENDIX D: MODIFIED KERNEL

We have considered the case of the fixed external source
eigenvalues ah==*1. Here, we take this external eigen-
valuea asa’=1+2N"Y2a. The parametex measures the

approach to the limia=*1 in the largeN limit, where the

LEVEL SPACING OF RANDOM MATRICES IN AN . ..
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gap is closed. This change afmodifies the functionp(x)
and ¢(x). We have, in the large scaling limit,

= dt .
d)()\):f, Ze—(t4/4)—at2+m, (D1)
and it satisfies
¢"—2a¢d’' —Np=0. (D2)

The equation, whichi(\) satisfies, is also modified as

" — 2y + N p=0. (D3)

Following the same procedure in the Appendix B in Ref.

[4], we have a kernel, which is slightly different fro{8.14):

K(x,y)

Yy (D4)

However, the density of stajx) is expressed by the same equation as(B®6),

(D5)

p(X)=—[&"(X) " (X) = &"(X) " (X) +Xb(X) (X)].

The largex behavior ofé()\), for a fixede, is obtained by a saddle-point method. If we make a changépi %, we
find that the new ternat?> becomes negligible compared with other terms, which becomes ordéfofThen we obtain the
large x behavior ofp(x) asx*® same as before.

Using the same definitions fay, andp,, we have an equation

q1(a)p1(h) +ao(a)po(b) +qz(a) p2(b) —2aqy(a) pa(b)
a—b '
Although there are modifications in the differential equationggfdr) andp(b), the derivative of the Hamiltonian is given
by Eq.(3.33, which gives the same asymptotic behaviolEgE). We note that the functiog(x) in Eq. (D1) appears for the
second Painleve\, Garnier systemAppendix A in Ref.[4]), and the functiong(x) satisfies the coupled linear partial

K(a,b)= (D6)

differential equations abowt and «.
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