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Level spacing of random matrices in an external source
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1Laboratoire de Physique The´orique, Ecole Normale Supe´rieure, 24 rue Lhomond 75231, Paris Cedex 05, France*
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In an earlier work we considered a Gaussian ensemble of random matrices in the presence of a given
external matrix source. The measure is no longer unitary invariant, and the usual techniques based on orthogo-
nal polynomials, or on the Coulomb gas representation, are not available. Nevertheless then-point correlation
functions are still given in terms of the determinant of a kernel, known through an explicit integral represen-
tation. This kernel is no longer symmetric, however, and is not readily accessible to standard methods. In
particular, finding the level spacing probability is always a delicate problem in Fredholm theory, and we have
to reconsider the problem within our model. We find a class of universality for the level spacing distribution
when the spectrum of the source is adjusted to produce a vanishing gap in the density of the state. The problem
is solved through coupled nonlinear differential equations, which turn out to form a Hamiltonian system. As a
result we find that the level spacing probabilityp(s) behaves like exp@2Cs8/3# for large spacings; this is
consistent with the asymptotic behavior exp@2Cs2b12#, whenever the density of state behaves near the edge as
r(l);lb. @S1063-651X~98!00112-3#

PACS number~s!: 05.45.1b, 05.40.1j
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I. INTRODUCTION

The level spacing distributionp(s), first discussed by
Wigner@1# for nuclear energy levels, has been studied ext
sively in random matrix theory@2#, and the universality of
p(s) has been discussed for many cases, including the
tribution of zeros in the Riemannz function @3#. The calcu-
lation of this level spacing distribution is always much mo
delicate than that of then-point correlation functions. Indeed
when two neighboring levels are separated by some inte
s, it implies that all the other eigenvalues are outside of t
interval, and consequently it involves all the correlati
functions of those eigenvalues. In the simplest Gaussian
semble it took many years of development of the theory
Fredholm determinants, Dyson’s inverse scattering appro
andt functions before this problem was understood. For
Airy kernel which appears for the spacing in the vicinity
the edge of Wigner’s semicircle, Tracy and Widom dev
oped a technique through coupled nonlinear differen
equations, which we have generalized here and applie
our previous work on random matrices in a matrix sou
@4#.

The problem we had studied concerns a HamiltonianH
5H01V, in whichH0 is anN3N nonrandom matrix with a
known spectrum, butV is a random Gaussian potential. Th
probability measure forH, then being a Gaussian inH
2H0 , is not unitary invariant. Consequently the standa
approach, which consists of tracing out the unitary degr
of freedom, and then using orthogonal polynomials, o
Coulomb gas representation, is not available. However,
have obtained exact formulas, i.e., valid for matrices of fin
size, for then-level correlation functions, with the help of th
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Itzykson-Zuber formula@5#. It is remarkable that thesen-
point functions are still given by a determinant of ann3n
matrix whose elements are given by a kernelK(l,m), a
well-known fact @3# when the orthogonal polynomials ar
available. However, in our problem, this kernel is no long
symmetric, but we know an exact integral representation
finite N.

If we had considered the level spacing distribution f
those ensembles with a source, around a regular point o
spectrum, the usual proofs of universality would apply, a
the end result, in the appropriate scaling limit, would
identical to the Wigner ensemble level spacing. Howev
near singularities of the spectrum, different universal
classes appear. For instance, near the edge of the Wi
semicircle, in a region of sizeN22/3, a kernel expressed in
terms of Airy functions controls the correlation function
Tracy and Widom succeeded in finding the level spacing
this kernel.

In the source problem, we showed earlier that we c
have gaps in the spectrum ofH, when the randomness ofV is
not strong enough to bridge the gaps between the eigens
of H0 . If we tune the randomness in order to reach the li
iting situation in which a gap closes, a universal singular
appears at which the density of eigenvaluesr(l) vanishes
like ulu1/3. In this paper we obtain the level spacing distrib
tion by an application of Fredholm theory from which w
derive nonlinear differential equations, which remarkab
form a Hamiltonian system. This generalizes earlier wo
and makes it clear that the technique is general. For
Wigner case, with the sine kernel obtained by Gaudin@6#,

K~x,y!5
sinp~x2y!

p~x2y!
, ~1.1!

Jimbo et al. @7# long ago obtained a closed equation f
E(s), the probability that the interval (2s/2,s/2) is empty.
Tracy and Widom@8# considered the Airy kernel

,
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K~x,y!5
Ai~x!Ai8~y!2Ai8~x!Ai~y!

x2y
~1.2!

@where Ai(x) is an Airy function which satisfiesAi9(x)
5xAi(x)#, and obtainedE(s) for the semi-infinite interval
(s,`), whens is near a singular edge of the semicircle. T
method developed in this paper is easily applicable to th
r
n

ea
te
-
l,
e

two cases. In order to explain the method that we follo
here, we present it for the sine kernel and for the Airy ker
in Appendixes A and B, following closely the derivation o
Tracy and Widom@8–10#.

In all those earlier cases, as well as for our source pr
lem, the probabilityE(s) of emptiness of the interval
(2s/2,s/2), is a Fredholm determinant
E~s!5 (
n50

`
~21!n

n! E
a

b

•••E
a

b

Pk51
n dxkdet@K~xi ,xj !# i , j 51, . . . ,n ~1.3!
-

nel,

lso
or

e it
if we choose (a52s/2,b51s/2) for the interval (a,b). The
sine and Airy kernels are symmetric:K(x,y)5K(y,x). For
the source problem,K(x,y) is no longer symmetric unde
exchange ofx and y, although its square under convolutio
yields back the kernel itself as for the simpler cases@4#.
Starting with Fredholm theory forE(s) and extending the
analysis of Tracy and Widom@8–10#, we derive a Hamil-
tonian system for our problem, leading to coupled nonlin
differential equations. From those equations one can de
mine the functionE(s), and in particular its asymptotic ex
pansion for larges, which is interesting. For the sine kerne
it behaves asE(s);exp@2(p2/8)s2#; for the Airy kernel, it
becomesE(s);exp(21/96s3). In our previous work@4#, we
had applied a Pade´ analysis to a functionR(t) related to
E(s),

E~s!5expF E
0

s

R~ s̃!ds̃G , ~1.4!

where the variables̃ is defined as

s̃5E
2s/2

s/2

r~x!dx. ~1.5!

We had made the ansatz in our previous paper@4# that R( s̃)
behaves likes̃ in the large-s̃ limit, namely, thatE(s) is
r
r-

Gaussian in terms ofs̃. More generally it has been conjec
tured, on the basis of a Coulomb gas representation@11,12#,
that for a density of state behaving asr(x);xb, then

E~s!;exp@2Cs2b12#. ~1.6!

Indeed this ansatz agreed with the results for the sine ker
for which b50, and for the Airy kernel,b5 1

2 . In our case,
for which there is no Coulomb gas picture, the ansatz a
agrees with our finding for the gap closing singularity, f
which the density of state gives an exponentb5 1

3 . The re-
sult of the present analysis confirms this conjecture sinc
givesE(s);D exp(2Cs8/3).

II. KERNEL AT THE CLOSURE OF A GAP

We consider anN3N Hamiltonian matrixH5H01V,
whereH0 is a given nonrandom Hermitian matrix, andV is a
random Gaussian Hermitian matrix@13–17#. The probability
distributionP(H) is thus given by

P~H !5
1

Z
e2~N/2!Tr V2

5
1

Z8
e2~N/2!Tr~H222H0H !. ~2.1!

For then-point correlation functions, defined as
nt

.

Rn~l1 ,l2 , . . . ,ln!5 K 1

N
Tr d~l12H !

1

N
Tr d~l22H !•••

1

N
Tr d~ln2H !L , ~2.2!

we have earlier derived@16,17# the expression

R2~l1 ,l2!5KN~l1 ,l1!KN~l2 ,l2!2KN~l1 ,l2!KN~l2 ,l1!, ~2.3!

with the kernel

KN~l1 ,l2!5~21!N21E dt

2p R du

2p i )g51

N S ag2 i t

u2ag
D 1

u2 i t
expS 2

N

2
u22

N

2
t22Nitl11Nul2D , ~2.4!

in which the contour in theu plane encloses all theag’s. Similarly then-point functions are given in terms of the determina
of then3n matrix whose elements are given by this same kernelKN(l i ,l j ) @17,18#. In Ref. @15#, this kernelKN(l1 ,l2) was
considered in the largeN limit, for fixed N(l12l2). In this limit one can evaluate integral~2.4! by the saddle-point method
The result was found, up to a phase factor that we omit here, to be
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KN~l1 ,l2!52
1

py
sin@pyr~l1!#, ~2.5!

wherey5N(l12l2). Apart from the scale dependence provided by the density of stater, then-point correlation functions
have thus a universal scaling limit, i.e., independent of the deterministic partH0 of the random Hamiltonian.

In order to generate a tunable gap we consider the simple case for which the eigenvalues ofH0 are6a, each value being
N/2 times degenerate. When the randomness ofV is small, the average density of eigenvalues is made of two disjoint segm
located around the points6a. When the randomness increases, one reaches a critical point at which the gap closes. W
happens in the vicinity of the origin of sizeN23/4 we find a class of universality for the density of states and for then-point
functions@4#. Then kernel~2.4! becomes

KN~l1 ,l2!5~21!~N/2!11E dt

2p R du

2p i S a21t2

u22a2D N/2 1

u2 i t
expS 2

N

2
u22

N

2
t22Nitl11Nul2D . ~2.6!
e

m
he

an

a

est
,

From this expression, we obtain the density of stater(l)
5KN(l,l). The derivative ofr(l) with respect tol elimi-
nates the factoru2 i t in the denominator of Eq.~2.4!, and
leads to the factorized expression

1

N

]

]l
r~l!52f~l!c~l!, ~2.7!

where

f~l!5E
2`

` dt

2p
e2~N/2!t21~N/2!ln~a21t2!2Nitl, ~2.8!

c~l!5 R du

2p i
e2~N/2!u22~N/2!ln~a22u2!1Nul. ~2.9!

For largeN, we may apply to the two integrals defining th
functionsf andc the saddle-point method. Whenl1 andl2
are near the origin the saddle points in the variablest andu
move to the origin. Therefore, for obtaining the largeN be-
havior of f nearl50 we can expand the logarithmic ter
in powers oft. One sees readily that the coefficient of t
quadratic term int2 vanishes fora51; in fact three saddle
points are merging at the origin whena reaches 1. This is the
critical value at which the gap closes. We must then exp
in the exponential up to ordert4, and we obtain

f~l!5E
2`

` dt

2p
e2~N/4!t42Nitl. ~2.10!

Rescalingt to N21/4t8, and settingl5N23/4x, we find that

f̂~x!5N1/4f~N23/4x! ~2.11!

has a largeN, finite x, limit given by

f̂~x!5
1

pE0

`

dt e2~1/4!t4cos~ tx!. ~2.12!

It is immediate to verify that it satisfies the differential equ
tion

f̂-~x!5xf̂~x!. ~2.13!
d

-

From the integral representation~2.8! we obtain easily the
Taylor expansion of this function at the origin

f̂~x!5
A2

4p (
m50

` GS 1

4
1

m

2 D ~21!m2mx2m

~2m!!
, ~2.14!

and its asymptotic behavior at largex,

f̂~x!;A 2

3p
x2~1/3!e2~3/8!x4/3

cosS 3A3

8
x4/32

p

6 D .

~2.15!

For the second function@Eq. ~2.9!#, in the scaling limit,N
large,l small, N3/4l finite, we may expand up to orderu4,
and define

ĉ~x!5N1/4c~N23/4x!. ~2.16!

In the largeN, finite x, limit, we find

ĉ~x!5E
c

du

2p i
e~u4/4!1ux. ~2.17!

The integral is over a path consisting of four lines of steep
descent in the complexu plane. Along these straight lines
the variableu is changed successively intoe6(p/4)iu and
e6(3p/4)iu. This leads to

ĉ~x!52ImFv

pE0

`

e2 u4/4~exuv2e2xuv!G , ~2.18!

in which v5ep i /4. The functionĉ(x) satisfies the differen-
tial equation

ĉ-~x!52xĉ~x!, ~2.19!

and again, from Eq.~3.19! we find the Taylor expansion

ĉ~x!52
1

Ap
(
n50

`
~21!nx4n11~2n!!

n! ~4n11!!
~2.20!

and the largex behavior
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ĉ~x!;2A 2

3p
x2 1/3e~3/8!x4/3

cosS 3A3

8
x4/31

2p

3 D .

~2.21!

As shown in Ref.@4#, one may express the whole kern
KN(l1 ,l2) of Eq. ~3.1! in terms of the two functionsf̂ and
ĉ in the scaling limit. Defining

l15N23/4x, l25N23/4y, ~2.22!

K~x,y!5N1/4KN~N3/4l1 ,N3/4l2!. ~2.23!

in the largeN, finite x andy, limit, we showed that

K~x,y!5
f̂8~x!ĉ8~y!2f̂9~x!ĉ~y!2f̂~x!ĉ9~y!

x2y
.

~2.24!

Note that it follows from Eq.~2.12! that f(x) is an even
function, whereasc(x) is odd @Eq. ~2.18!#. This implies, in
particular, that

K~2x,2y!5K~x,y!. ~2.25!

Therefore, the density of state is given by

r̂~x!52@f̂8~x!ĉ9~x!2f̂9~x!ĉ8~x!1xf̂~x!ĉ~x!#.
~2.26!

In the largex limit, it behaves asr(x);x1/3. Hereafter, we
denote simplyf̂ and ĉ by f andc, respectively.

III. FREDHOLM THEORY

The level spacing functionE(s), the probability that there
is no eigenvalue inside the interval (2s/2,s/2) centered
around the singular points50, is given by the Fredholm
determinant

E~a,b!5det@12K̂#5 (
n50

`
~21!n

n! E
a

b

•••E
a

b

Pk51
n dxk

3det@K~xi ,xj !# i , j 51, . . . ,n ~3.1!

if we choose for (a,b) the interval (2s/2,s/2). The sine and
Airy kernels are symmetric kernels,K(x,y)5K(y,x),
whereas our kernel in Eq.~2.24! is not symmetric, since the
two functionsf(x) and c(x) are different. Our notations
here are as follows: the kernelK(x,y) is defined by Eq.
~2.24!. However, it acts on the interval (a,b); therefore in
Eq. ~3.1! we have used the kernelK̂(x,y) defined by the
restriction ofK to the interval:

K̂~x,y!5K~x,y!u~y2a!u~b2y!5K~x,y!Q~y!,
~3.2!

in which u(x) is the Heaviside function, and for convenien
we have used the notation

Q~y!5u~y2a!u~b2y!. ~3.3!

In order to calculate the derivative of the logarithm
E(a,b) with respect to the end points one writes
ln E~a,b!5Tr ln~12K̂ !, ~3.4!

and thus

] ln E~a,b!

]b
52Tr

1

12K̂

]K̂

]b
. ~3.5!

From Eq.~3.2!, we find

]K̂~x,y!

]b
5K~x,b!d~y2b!, ~3.6!

and therefore, if we introduce the Fredholm resolve
K̃(b,b), defined by

K̃5
K̂

12K̂
, ~3.7!

we obtain

] ln E~a,b!

]b
52K̃~b,b!. ~3.8!

Similarly the derivative with respect toa is

] ln E~a,b!

]a
5K̃~a,a!. ~3.9!

Therefore, when we choose for (a,b) the interval
(2s/2,s/2), we have

d ln E~s!

ds
5

1

2S ]

]b
2

]

]aD ln E~s!ub52a5s/252K̃S s

2
,
s

2D .

~3.10!

This leads to

E~s!5expF2E
0

s

K̃S s8

2
,
s8

2 Dds8G . ~3.11!

We now define six functions, obtained by acting with t
operator (12K̂)21 on the functionsf(x),c(x) and their
first two derivatives,

q0~x!5~12K̂ !21f~x!5f~x!1E
a

b

K~x,y!f~y!dy

1E
a

bE
a

b

K~x,y!K~y,z!f~z!dy dz1•••. ~3.12!

We find it easier to use Dirac’s notations

q0~b,a;x!5^xu
1

12K̂
uf&. ~3.13!

Similarly we define

qn~b,a;x!5^xu
1

12K̂
uf~n!&, ~3.14!
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wheref (n)(x) is thenth derivative off(x). For the function
c(x), we act with the operator (12K̂)21 on bras, i.e., dua
vectors, rather than on kets. Because of the lack of symm
of the kernelK this introduces a kernelL̂, and

pn~b,a;x!5~21!n21^c~22n!u
1

12L̂
ux&, ~3.15!

where

L̂~y,x!5Q~y!K~y,x!. ~3.16!

When we setx5b, anda52b, then the six functionsqn
andpn become functions of the single variableb, which we
denote as

Qn~b!5qn~b,2b;b!, Pn~b!5pn~b,2b;b!.
~3.17!

The calculation of the derivatives of these functio
Qn(b) and Pn(b) implies considering separate variations
the functionsqn(b,a;x) andpn(b,a;x) with respect tob, a,
and x, before we seta52b and x5b. The calculation is
tedious, but not difficult, and we give more details in Appe
dix C. The resulting differential equations are

Q̇05Q11
2

b
Q1P1Q0 ,

Q̇15Q22
2

b
Q1

2P12Q0u,

Q̇25bQ01
2

b
Q1P1Q22Q1v,

Ṗ052bP22
2

b
Q1P1P01P1u,

Ṗ152P01
2

b
Q1P1

21P2v,

Ṗ252P12
2

b
Q1P1P2 , ~3.18!

where a dot means taking the derivative with respect tob.
The two auxiliary functionsu andv are defined as

u5^cuq1&, v5^c8uq0&, ~3.19!

and they satisfy

u̇522P2Q1 , v̇52P1Q0 . ~3.20!

From these equations, we successively find the relations

u1v522P2Q0 , ~3.21!

then

Q̇05Q1S 11
v̇
b
D , Ṗ252P1S 12

u̇

b
D . ~3.22!
ry

-

Using Eqs.~3.20! and ~3.21!, we obtain, from the second
equation of Eq.~3.18!,

22P2Q25ü2
u̇v̇

u1v
1

2

b

v̇u̇2

u1v
1u~u1v !, ~3.23!

and, using the fifth equation of Eq.~3.18!, we have

22Q0P05 v̈2
u̇v̇

u1v
2

2

b

u̇v̇2

u1v
1v~u1v !. ~3.24!

Taking the derivatives of these two equations and using
third and sixth equations of Eq.~3.18!, we end up with two
coupled nonlinear equations:

d3u

db3 1S 2u̇

b
21D Fb~u1v !1

1

u1v
~ v̈u̇12v̇ü!

2
u̇v̇

~u1v !2 ~2v̇1u̇!G2
2v̇~ u̇!2

b2~u1v !
50, ~3.25!

d3v
db3 1S 2v̇

b
11D Fb~u1v !2

1

u1v
~ üv̇12u̇v̈ !

1
u̇v̇

~u1v !2 ~2u̇1 v̇ !G1
2u̇~ v̇ !2

b2~u1v !
50. ~3.26!

In the largeb limit, the asymptotic behavior of the solution
of these equations is obtained under the forms

u5
b2

4
1

A

2
b2/31•••, ~3.27!

v52
b2

4
1

A

2
b2/31•••. ~3.28!

Inserting these expressions in Eq.~3.25!, we findA from the
coefficient of the terms of orderb1/3,

A52~ 1
4 !1/3. ~3.29!

The kernelK̃(b,b) may then be expressed as

K̃~b,b!5bP2Q01Q2P11Q1P02uP1Q02vP2Q1

2
1

2b
~P1

2Q1
22Q2P22Q0P0!2. ~3.30!

Remarkably this kernel at coinciding points is in fact
Hamiltonian, that we denote as

H~b!5K̃~b,b!, ~3.31!

from which Hamilton’s equations

Q̇n5
]H

]Pn
, Ṗn52

]H

]Qn
~3.32!

coincide with the differential equations~3.18!. This allows
one to obtain a simple expression, for its derivative w
respect tob becomes
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dH~b!

db
5

]H

]b
5Q0P21

2

b2 P1
2Q1

2 . ~3.33!

In terms ofu andv, it becomes

dH~b!

db
52

u1v
2

1
~ u̇v̇ !2

2b2~u1v !2 . ~3.34!

Thus, from the previous result, we obtain the largeb behav-
ior

dH~b!

db
;532211/3b2/3. ~3.35!

Integrating once, for the Hamiltonian we findH(b)
;332211/3b5/3;332216/3s5/3 in the larges limit.

From Eq.~3.11!, we have

E~s!5D expF2E
0

s

H~s8!ds8G;exp@2932225/3s8/3#,

~3.36!

in which D is an undetermined constant.
We have thus derived the exponents8/3 which was a mere

conjecture in our previous paper@4#. There we had per-
formed a simple Pade´ analysis of the smalls expansion, and
assumed that it was Gaussian at larges in the variables̃.
This led us to the estimate

E~s!;D exp@20.332s̃2#, ~3.37!

or, since s̃;(3A3/2p)( 1
2 )4/3s4/3, E~s!;D exp

@20.0358s8/3#. Our analytic result@Eq. ~3.22!# gives E(s)
;D exp@20.0280s8/3#. Thus the estimation by a simpl
Padéanalysis was not too far from the exact result.

IV. SUMMARY AND DISCUSSION

In this paper, we have investigated the level spacing pr
ability for the case in which two edge singularities collap
By use of the Fredholm theory, we have derived an exp
sion for the level spacing probability, whose logarithmic d
rivative turns out to act as a Hamiltonian. The same strat
also allows one to solve simpler cases, such as the s
kernel ~relevant to the level spacing for ordinary nonsing
lar! points of the spectrum and the Airy kernel~which ap-
plies to a single edge singularity!. The corresponding
Hamilton’s equations fully determine the level spacing, a
in particular one can analytically obtain its asymptotic e
pansion at large spacings. This allowed us to confirm the
conjecture that we had made in our previous paper, on
asymptotic Gaussian behavior of the level spacing in te
of the variables̃5*2s/2

s/2 r(x)dx, which is the number of ei-
genvalues in the interval of sizes @4#. We have thus derived
here that the level spacing probabilityE(s) behaves like
exp@2Cs8/3#, with a constantC that we have analytically
determined. More generally the three cases that we h
solved are consistent with the asymptotic Gaussian beha
of E(s) with respect tos̃, i.e., to E(s);exp@2Cs2b12# for
large spacings, whenever the interval of sizes is around a
point at which the density of state behaves asr(l);lb. The
b-
.
s-
-
y
e-

-

d
-

e
s

ve
ior

scaling variables is in fact related to the actual interval be
tween the eigenvalues by absorbing a powerN1/(b11). If we
let N go to infinity first, at fixed interval, in which cases is
also large, a finite limit of@ ln E(s)/N2#, for largeN, implies
that E(s) does fall for larges as E(s);exp@2Cs2b12#. In
other words,E(s) behaves for largeN, at a fixed interval, as
a partition function.
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APPENDIX A: LEVEL SPACING PROBABILITY
FOR THE SINE KERNEL

The sine kernel is defined by

K~x,y!5
f~x!f8~y!2f~y!f8~x!

x2y
, ~A1!

where f(x)5sinx satifies f9(x)52f(x). ~For conve-
nience, in the normalization we have absorbed the usual
tor p). We considerq(x) andp(x) defined by

q~x!5^xu
1

12K̂
uf&, p~x!5^f8u

1

12K̂
ux&, ~A2!

and the Fredholm resolventK̃

K̃5
K̂

12K̂
. ~A3!

We have

~x2y!K̃5^xu@X,K̃#uy&5^xuFX,
1

12K̂
G uy&

5^xu
1

12K̂
@X,K̂#

1

12K̂
uy&. ~A4!

The definition~A1! of the kernel reads

@X,K#5uf&^f8u2uf8&^fu ~A5!

since

~x2y!K~x,y!5^xu@X,K#uy&. ~A6!

Thus, from Eq.~A4!, we obtain

K̃~x,y!5
q~x!p~y!2q~y!p~x!

x2y
. ~A7!

Since the functionsq(x) andp(x) depend upon the inter
val (a,b), we denote them more precisely asq(b,a;x) and
p(b,a;x). We then setx5b and varyb, i.e., take the deriva-
tive of q(b,a;b) at fixeda:
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]q~b,a;b!

]b
5^buD

1

12K̂
uf&1^bu

1

12K̂

]K̂

]b

1

12K̂
uf&,

~A8!

where D is the derivative operator:̂xuDu f &5 f 8(x). From
the definition ofK̂, we have

]K̂~x,y!

]b
5K~x,y!d~b2y!5Kub&^bu. ~A9!

Thus the second term of Eq.~A8! becomesK̃(b,b)q(b).
The first term of Eq.~A8! becomes

^buD
1

12K̂
uf&5p~b!1^buFD,

1

12K̂
G uf&

5p~b!1^bu
1

12K̂
@D,K̂#

1

12K̂
uf&.

~A10!

Since

^xu@D,K̂#uy&5S ]

]x
1

]

]yD K̂~x,y!

5K~x,y!@d~y2a!2d~y2b!#, ~A11!

we obtain

@D,K̂#5Kua&^au2Kub&^bu. ~A12!

From Eqs.~A8! and ~A10!, we have

]q~b,a;b!

]b
5p~b,a;b!1K̃~b,a!q~b,a;a!. ~A13!

Similarly, we have, forp(b),

]p~b,a;b!

]b
52q~b,a;b!1K̃~b,a!p~b,a;a!. ~A14!

We denoteq(b,2b;b) by Q(b),

dQ~b!

db
5

]q~b,a;b!

]b U
a52b

2
]q~b,a;b!

]a U
a52b

.

~A15!

Since

]q~b,a;b!

]a
5^bu

1

12K̂
S ]K̂

]a
D 1

12K̂
uf&52K̃~b,a!q~b,a;a!,

~A16!

we have

Q̇~b!5P~b!12K̃~b,2b!Q~2b!, ~A17!

where

K̃~b,2b!5
Q~b!P~b!

b
. ~A18!
Note that Q(2b)52Q(b) and P(2b)5P(b). Similarly
we have an equation forP(b). Thus we obtain finally

Q̇5PS 12
2Q2

b D , Ṗ5QS 2P2

b
21D . ~A19!

The functionK̃(b,b) is related toP andQ as

K̃~b,b!5P21Q22
2P2Q2

b
, ~A20!

which gives the logartihmic derivative of the level spaci
probability E(s). Noting b5s/2, we have

dQ

ds
5

P

2 S 12
4

s
Q2D ,

dP

ds
5

Q

2 S 4P2

s
21D . ~A21!

In the larges limit, we haveQ;P;s1/2/2. From Eq.~A20!,
we obtainH(s)5K̃(b,b);s/4. The level spacing probability
E(s) thus behaves, in the larges limit, as

E~s!;expF2E
0

pss8

4
ds8G;expF2

p2

8
s2G . ~A22!

For smalls, we have, by solving Eq.~A21! iteratively, with
the initial conditionsP(0)51 andQ(0)50,

Q5
s

2
2

s3

48
1O~s5!, P511s1

7

8
s21O~s3!.

~A23!

Then, from Eq.~A20!, H(b)5K̃(b,b) behaves for smalls as

H~s!511s1s21O~s3!. ~A24!

This leads to

E~s!5expF2E
0

s

H~s8!ds8G512s1O~s4!, ~A25!

which is consistent with all the well-known results on th
well-studied case@3#.

APPENDIX B: LEVEL SPACING PROBABILITY
FOR THE AIRY KERNEL

The sine kernel applies to a regular point of the spectru
However when one studies the vicinity of the edge of t
spectrum, in the appropriate scaling limit, the corre
tion functions and the level spacing are given by an A
kernel. The level spacing was studied by Tracy and Wid
@8#. Here we repeat the same technique. Consider the inte
(2s/2,s/2) as in the sine case. We denote the Airy functi
Ai(x) by f(x); it satisfiesf9(x)5xf(x). We use the same
notationq(x) andp(x) as in Eq.~A2!. As for the sine case
the Fredholm resolventK̃(a,b) is given by

K̃~a,b!5
q~a!p~b!2p~a!q~b!

a2b
. ~B1!

We have
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S ]

]x
1

]

]yDK~x,y!52f~x!f~y!. ~B2!

Therefore, we have

@D,K#52uf&^fuQ1Kua&^au2Kub&^bu. ~B3!

Thus, by the same procedure as in the sine case, we ob

]q~b!

]b
5p~b!2qu1K̃~b,a!q~a!, ~B4!

]p

]b
5bq~b!1up~b!22q~b!v1K̃~b,a!p~a!, ~B5!

where

u5^fuq&, v5^fup&. ~B6!

The Fredholm resolventK̃(b,b) becomes

K̃~b,b!5p2~b!2bq2~b!22up~b!q~b!12q2~b!v

1
1

b2a
@q~b!p~a!2p~b!q~a!#

3@q~a!p~b!2p~a!q~b!#. ~B7!

Again H(b)5K̃(b,b) acts as a Hamiltonian, since we hav

]H~b!

]p~b!
52

]q~b!

]b
,

]H~b!

]q~b!
522

]p~b!

]b
. ~B8!

The derivative of the Hamiltonian becomes

dH~b!

db
52q2~b!1

@q~b!p~a!2p~b!q~a!#2

~b2a!2 . ~B9!

In the Airy kernel, due to the parity around the edge,H(a)
and H(b) are different. The quantitiesq(b) and p(b) be-
come exponentially small in the largeb limit ( b.0), the
same as in the Airy function. We have, fora52s/2,

]q~a!

]a
5p~a!2q~a!u2K̃~a,b!q~b!, ~B10!

]p~a!

]a
5aq~a!1up~a!22q~a!v2K̃~a,b!p~b!.

~B11!

The HamiltonianH(a) becomes

H~a!5p2~a!2aq2~a!22up~a!q~a!12q2~a!v

1K̃~a,b!@q~a!p~b!2p~a!q~b!#. ~B12!

SinceK̃(a,b) can be neglected for the largeb limit, and we
have a relationu222v5q2, we obtain

d2q~a!

da2 5aq~a!12q3~a!. ~B13!
in

We are looking for a solution which behaves as a pow
of s for larges, and thus for whichd2q(a)/da2 can be ne-
glected asymptotically. This leads toq(a);6As/2 for large
s, and thus toH(a);s2/16 in the larges limit. Then we
obtainE(s);exp@2s3/96#. In order to check the usefulnes
of the Pade´ analysis, we now expand at smalls.

The Airy function A(x) has the Taylor expansion fo
small x,

A~x!5c1F11
1

6
x31

4

6!
x61••• G

2c2Fx1
2

4!
x41

235

7!
x71••• G , ~B14!

wherec15322/3/G(2/3) andc25321/3/G(1/3). If we uses̃,
defined in Eq.~1.5!, it is related tos in this Airy case by

s̃5c2
2s1

c1c2

12
s32

c1
2

960
s52

c2
2

16 128
s71O~s9!. ~B15!

The level spacingE(s) is thus expanded in powers ofs̃ as

E~s!512 s̃1
1

6S c1c2
3

3
2

c1
4

8 D 1

c2
8s̃41•••512 s̃10.544 868s̃4

242.5418s̃61O~ s̃8!. ~B16!

We now apply a Pade´ analysis toH(s), or rather to

R~ s̃!5
d

ds̃
ln E~ s̃!52

11a1s̃1a2s̃21a3s̃3

11b1s̃1b2s̃
, ~B17!

where we havea15754.156, a251640.76, a351638.58,
b15753.156, andb25886.601. FromE( s̃), differentiating
twice with respect tos̃, we obtainp( s̃), which is slightly
different from the usual ‘‘Wigner surmise’’ function of th
sine case.

APPENDIX C: LEVEL SPACING PROBABILITY
FOR THE GAP CLOSURE KERNEL

We now consider the kernel

K~x,y!5
f8~x!c8~y!2f9~x!c~y!2f~x!c9~y!

x2y
,

~C1!

or, in operator notations,

@X,K#5uf8&^c8u2uf9&^cu2uf&^c9u. ~C2!

Similarly to Eq.~A4!, we have

~x2y!K̃5^xu
1

12K̂
@X,K̂#

1

12K̂
uy&5q1~x!p1~y!

2q2~x!p0~y!2q0~x!p2~y!. ~C3!

The derivative ofqn(b,a;b) for a fixeda becomes
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]qn~b,a;b!

]b
5^buD

1

12K̂
uf~n!&1^bu

1

12K̂
S ]K̂

]b
D 1

12K̂
uf~n!&5qn11~b,a;b!1^bu

1

12K̂
@D,K̂#

1

12K̂
uf~n!&

1^bu
K̂

12K̂
ub&^bu

1

12K̂
uf~n!&. ~C4!
We also have

^xu@D,K̂#uy&5S ]

]x
1

]

]yDK~x,y!1^xuKua&^auy&

2^xuKub&^buy&. ~C5!

The first term is simply2f(x)c(y). This leads to

@D,K̂#52uf&^cuQ1Kua&^au2Kub&^bu. ~C6!

Therefore,

]qn~b,a;b!

]b
5qn111K̃~b,a!qn~a!2q0~b!^cuqn&

~C7!

and

q35^xu
1

12K̂
Xuf&5^xuX

1

12K̂
uf&1^xuF 1

12K̂
,XG uf&

5xq0~x!1^xu
1

12K̂
@K̂,X#

1

12K̂
uf&

5xq02v2q11u1q21v3q0 , ~C8!

whereu15^cuq0&, v25^c8uq0&, andv35^c9uq0&.
The functionpn(x) is defined by

pn~x!5~21!n21^c~22n!u
1

12L̂
ux&, ~C9!

where

L̂~y,x!5Q~y!K~y,x!. ~C10!

We have

@D,L̂#52Quf&^cu1ua&^auK2ub&^buK, ~C11!

in which Q is a local operator defined by

^yuQuy8&5d~y2y8!u~y2a!u~b2y!. ~C12!

Thus we obtain

]pn~b!

]b
52pn21~b!2p0~b!^c~22n!uq0&1pn~a!K̃~a,b!,

~C13!

with p21(x) obtained as
p21~x!52^c-u
1

12L̂
ux&

5xp2~x!2^cu
1

12L̂
@x,L̂#

1

12L̂
ux&

52xp0~x!2p1~x!^cuq1&

2p2^cuq2&2p0~x!^cuq0&, ~C14!

where

^yu@X,L̂#ux&5~y2x!Q~y!K~y,x!

5Q~y!~ uf8&^c8u2uf9&^cu2uf&^c9u!.

~C15!

The function f(x) is an even function ofx, and
q0(x) becomes an even function. The functionc(x) is an
odd function. Therefore, we haveu15v350 for the interval
(2b,b). We also havêcuq2&5^cuq0&5^c9uq0&50. Non-
vanishing quantities areu25^cuq1&, andv25^c8uq0&. We
denote them simply byu andv.

Noting that

Q̇n5
]qn

]b U
a52b

2
]qn

]b U
a52b

, ~C16!

we obtain Eq.~3.18!. The equations forṖn in Eq. ~3.18! are
also obtained similarly.

The derivative ofu5u2 becomes

u̇522P2~b!Q1~b!. ~C17!

This is obtained as

]u

]b
5^cuQ

1

12K̂

]K̂

]b

1

12K̂
uf8&1c~b!q1~b!. ~C18!

Using

]K̂

]b
5K~x,y!d~y2b!5Kub&^bu, ~C19!

we have

]u

]b
52p2~b!q1~b!. ~C20!

The derivative ofu by a becomes, similarly,
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]u

]a
5p2~a!q1~a!. ~C21!

Puttinga52b, we have

u̇5
]u

]bU
a52b

2
]u

]aU
a52b

522P2~b!Q1~b!. ~C22!

This is Eq.~3.19!.

APPENDIX D: MODIFIED KERNEL

We have considered the case of the fixed external so
eigenvalues ata561. Here, we take this external eige
valuea asa25112N21/2a. The parametera measures the
approach to the limita561 in the largeN limit, where the
ce

gap is closed. This change ofa modifies the functionf(x)
andc(x). We have, in the large scaling limit,

f~l!5E
2`

` dt

2p
e2~ t4/4!2at21 i tl, ~D1!

and it satisfies

f-22af82lf50. ~D2!

The equation, whichc(l) satisfies, is also modified as

c-22ac81lc50. ~D3!

Following the same procedure in the Appendix B in R
@4#, we have a kernel, which is slightly different from~3.14!:
n

l

K~x,y!5
f8~x!c8~y!2f9~x!c~y!2f~x!c9~y!12af~x!c~y!

x2y
. ~D4!

However, the density of stater(x) is expressed by the same equation as Eq.~2.26!,

r~x!52@f8~x!c9~x!2f9~x!c8~x!1xf~x!c~x!#. ~D5!

The largel behavior off(l), for a fixeda, is obtained by a saddle-point method. If we make a change oft by l1/3t, we
find that the new termat2 becomes negligible compared with other terms, which becomes order ofl4/3. Then we obtain the
largex behavior ofr(x) asx1/3 same as before.

Using the same definitions forqn andpn , we have an equation

K̃~a,b!5
q1~a!p1~b!1q0~a!p0~b!1q2~a!p2~b!22aq0~a!p2~b!

a2b
. ~D6!

Although there are modifications in the differential equations forq(b) andp(b), the derivative of the Hamiltonian is give
by Eq.~3.33!, which gives the same asymptotic behavior ofE(s). We note that the functionf(x) in Eq. ~D1! appears for the
second Painleve´ A2 Garnier system~Appendix A in Ref. @4#!, and the functionf(x) satisfies the coupled linear partia
differential equations aboutx anda.
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