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Relaxation of classical many-body Hamiltonians in one dimension
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The relaxation of Fourier modes of Hamiltonian chains close to equilibrium is studied in the framework of
a simple mode-coupling theory. Explicit estimates of the dependence of relevant time scales on the energy
density(or temperaturgand on the wave number of the initial excitation are given. They are in agreement with
previous numerical findings on the approach to equilibrium and turn out to be also useful in the qualitative
interpretation of them. The theory is compared with molecular dynamics results in the case of the quartic
Fermi-Pasta-Ulam potentidlS1063-651X98)05011-9

PACS numbd(s): 05.45+b, 05.70.Ln, 63.10-a

I. INTRODUCTION AND MOTIVATIONS lecular dynamics studid9] gave evidence of the divergence
of the thermal conductivity associated with the algebraic de-
Consider the conceptual experiment where one of the norcay of the correlation function appearing in the correspond-
mal modes of an idealized, one-dimensional crystal is exing Green-Kubo formula.
cited by means of some external source in such a way that The present work aims to give a contribution to the com-
the system is brought far from thermal equilibrium. After prehension of both questions by studying the relaxation of
switching off the external perturbation, it will relax again to chains with an acoustic spectrum. The models we will refer
the equipartition state, described by the canonical measuréQ are introduced Sec. Il. When the system is not too far from
The classical question is how long it will take. Such a basicequilibrium, one can rely on well-established theories, such
issue was seriously reconsidered in the light of recent result@s the perturbative and mode-coupling approximations that
of contemporary nonlinear dynamics’ in particu|ar after theare reviewed in Sec. lll. Their Va||d|ty will be Compared with
discovery that weakly nonlinear systems may display exthe outcomes of numerical simulations for the specific case
tremely long relaxation times. The latter are related to arPf @ interatomic potential with quartic nonlineariti¢Sec.
effective “freezing” of some degrees of freedom, i.e., to the IV). Besides the original motivations, the comparison consti-
slow diffusion in phase spadsee, for example, Ref1] for  tutes a nice test of mode-coupling theory and its typical fea-
a recent critical discussion and further bibliographical refertures, i.e., the existence of long time tails with nontrivial
ence$. Because of their simplicity, Hamiltonian chains of €xponents, and the nonanalytic behavior of the spectrum of
oscillators are suitable model systems to discuss the problerfglaxation times. This latter property is actually a peculiarity
from both an ana|ytica| and a simulation point of view. of nonequilibrium dynamics in one dimension. As it will be
Although some theoretical woi2,3] indicates that equi- hopefully clear, this approach will be extremely useful for
partition in a strict sense is always attained in the thermodythe problems at hand, as they provide estimates of the relax-
namic limit for chains at finite temperatuer energy per ation times of the Fourier modes of the chain. Rather surpris-
particle), no explicit estimates of the time scales needed arégly, @ comparison with some previous numerical results
known. The problem has been attached mainly from the nuwill show that the latter are largely the main cause of slow
merical side, by looking at the time relaxation of suitablerelaxation to equipartitiotSec. ).
indicators of equipartition among the Fourier modes of the
chain[4-7]. In particular, recent studié¢g,8] focused on the  Il. ONE-DIMENSIONAL MANY-BODY HAMILTONIANS
dependence of relaxation times on the energy density or tem- . . . .
perature and some empirical scaling laws were found. None- We (_:on5|der a (_:ham i anharmonic oscn_lators and_ de-
theless, no quantitative explanation of the latter has so fa'?Ote.W',th q thg_d|splacement_ of _thé'th particle from its
been given. The need for some analytic clue is even morgauilibrium position. The Hamiltonian reads
evident as one consider that the computational limits of N 2
simulations can be rapidly reached. This is of course a par- H= E p—'+V(q|+1—q|)
ticularly serious limitation at very low energies, when the =1]2
interaction among modes and the resulting dissipative effects o
are extremely weak. where the usual Born—von Kaan boundary conditions,
A further motivation comes from the closely related prob- =di+n are assumed and the potential energy is of the form
lem of energy transport in such systems. As is well known, )
the rglgxatlon of fluctuat.|0n5 is strictly cor_mected to transport V(x)= X" +VA(X), )
coefficients and the existence of slow time scales must be 2

reflected somehow in their properties. Indeed, extensive mo- ) ) ] ) ]
with V denoting the anharmonic part of it. We will consider

homogeneous lattices, so that all the masses are set equal to
*Electronic address: lepri@mpipks-dresden.mpg.de unity andp,;=q, . The lattice spacing is also set to unity as
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well as the harmonic frequency, so that all variables in theof Q, and P, as relevant variables and define the projection
following are adimensional. This also means that the soun@perator? acting on the scalar observabteas
velocity, as defined in the harmonic approximation, is equal
to one. R
In the following we will always refer to the energy den- PXZEI(:
sity ¢ (energy per particleand/or to the corresponding tem-
peraturekgT=1/8. Obviously, for strongly nonlinear sys- The projection of the equation of motion leads[1®)]
tems, the two quantities are not in general strictly _
proportional. Q= Py, (€]
The (complex amplitudesQ, of the Fourier modes are

(XQE)  (XPE)
qQd? O Tpga @)

defined through the usual transformation - ~ t
g sz_wEQk_J I(t=s)Py(s)ds+Ry, 9
1 ’
Qk:\/_ﬁ 21 qe'®™N Qi =Qf, where R,=(1—P)Py is the so-called random force that is
related to the memory function by the fluctuation-dissipation
N theorem
k=mgtleg ® I(H)= B(R(RE(0)) (10

nd the renormalized frequencies are given, for a generic

Once the Hamiltonian is expressed in these new canonic amiltonian such as Eq1), by

variables, the equations of motion become

~BV(x)
Qk:j;l* =Pk, 4 Z)ﬁ=;2:(l+a)wﬁ a(ﬂ):_u_l_
k B<|Qk| > :8 fxzefﬁv(x)dx
dH 11
Py=— ol — Qi+ Fi, ®) a1

Obviously, in the harmonic limik—0 and the usual bare
dispersion relatior{6) is recovered. Here and in the follow-
8ng we will always deal with bounding potentials so that the
integrals in Eq.(11) are convergent. The definitioflLl)
amounts then to a renormalization of the sound speed from
‘ ) (6)  unity to the temperature dependent value 1+ a.

The main object of study will be the normalized correla-

tion function

with F, being the interaction force among modes, and w
have introduced the usual normal-mode frequencies

[ 7k
wg=2|sin N

Ill. ESTIMATE OF THE RELAXATION TIMES

Gi(t) = Bo(QWQE (0)), (12)

The formulation of stochastic equations for the dynamics = . i . o
of the relevant variables is rather customary to describe th@hich is defined in such a way thgg(0)=1. It satisfies the
relaxation close to equilibriurfil0]. The idea is to describe €duation of motiorj10]
the effective motion of suitable “slow” observables by re- t
ducing the level of the description. The general strategy in- Gt 0= —f T (t—s)G(s)ds. (13
volves projection on their subspace and results in linear non- 0
Markovian equations. Whenever a sharp separation of tim ; .
scales is possible the latter reduce to their Markovian Iimit.ﬁqtlf.O C.th.jcmg the Laplace transforngg(z) andl'y(z) with the
The memory term determines the relaxation properties ange nition
can be estimated self-consistently. Our aim is to apply the ©
above procedure to the present system. In the following two I'(z)= fo e "T(tdt, (14
subsections we summarize the relevant steps.

one has thafwith G,(0)=0]
A. General setting
. iz+T'(2)

Due to the conservation law of total momentum, we ex- W)= =
pect that in the present case the slow dynamics should be Z°— wi—izl'\(2)
associated with the long-wavelength Fourier mo@gswith o ) ~
|k|<N/2. Moreover, translational invariance implies that!f the dissipation is small enough with respectag, the
each mode is uncorrelated from the others so that we cafh@nsformgi(z) has two poles close to the real axis in the
consider each mode separatef@ne can easily convince COMPlex plane approximatively given by
oneself of this statement by computing, for instance, the cor- i
relation(Qy(t)Qy,(0)) and imposing thafq,(t)q;:(0)) de- *wy— > lim I'(2) (16)
pends only orll —1'|.] Accordingly, let us consider the set zo o +io"

(15
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(at fixed wave number and provided the limit exjstShis B(FP ) FP*(0))
corresponds to both a shift of the renormalized frequencies

and a small damping,, given by the imaginary part of Eq. C? 1 D
(16) [i.e., the real part of  (wy)]. Accordingly, the inverse T A%kN2 Ky + KT ka=
of the latter defines a characteristic relaxation time of each

G (DG (DG,

Fourier mode. (23
where we have defined the two constants
B. Mode-coupling approximation 5 5
. . O3 94
The above results are more or less formal manipulations: = = .
p Cs 3—2,3(1+01) , C4 15—2—3[3(1+a) (24)

We obviously need to compute explicitly the memory kernel
and the relaxation rateg, by resorting to some approxima- The nymerical factors come from counting all the possible
tions. A conceptual difficulty of the projection approach is 5 torizations. Before going further, notice that in the present
the fact thatRk.does npt evolve with the full Liouvillean example we can easily understand the assumption of neglect-
operator assquated WllH_ [10]. One generally bypass the ing slow components in Eq17). The forcej’-“(k“) contains
problem by simply replacing indeed a term proportional ©,|Q,|%/N, which is clearly as

(R(DRE (0))—( Fu() FE (0)) 17) slow asQy |ts_e!f. As 'assumed, its weight vanishes likéN1/

but for any finiteN, it may be then regarded as one of the

where the last average is on the full Gibbs measure. In sucpources of finite-size effects in the numerical simulations.
away, it is also implicitly assumed that slow terms possibly Even with all the above simplifications the theory remains

contained in, are negligible in the thermodynamic limit too complicated to be solved. A further assumption is then

(see below. A second simplification amounts to factorizing ?Zeé;erallybreqwrled, garqﬁlzh that tlhe S;;:g 'g 1E@§) at?]d
multiple correlations so that the resulting approximate ex- can be replaced wi elr vaiues [11). For the

pression of the memory kernEl(z), together with Eq(15), cubic case this amounts to settikg= —k,=k" in Eq. (22),

constitutes a closed system of equationsdpr The latter yielding
has to be solved self-consistently. 1 )
Let us focus on the Fermi-Pasta-UldfPU) potential B(]:f(3>(t)]:(k3)*(0)>~c3wﬁﬁ %‘, G (). (25
VA(X) = 593X3+ lg4x4 (18) For the quartic term we can also extend the summation only
3 4 to the smalk terms that are almost resonating, e.g., those for
which k;—k,—kz~0. This simplification is justified as in
so thatF=F 3+ FP with the long time limit only the slowly oscillating contributions
should be significative. One can convince oneself that this
1 kind of approximation leads to the same re<a@k) also for

Fd=—gaox—= X oo QQr,, (19  the quartic term, withCs replaced byC,. Finally, in the
VN K Flg=k limit N—, we let 2rk/N—q and replace the sums with
integrals. The above hypothesis that we carkse® in Egs.
4 _ 1 2 (22) and (23) amounts therefore to saying that the memory
T Tk S, @i, Wk, @k Qi, Qk, Qi kernel can be written in the forni'(q,z)=»(z)g? for q
e (200 —0[11]. As a result, one gets the self-consistency relation
for v from the Laplace transform of E¢10),

where the condition on the indices of the sum is intended to . d

be moduloN (quasimomentum conservationObviously, ,,(Z)QCJ dte“Z‘j daq G3(q.t), (26)
this represent a reasonable approximation of a generic anhar- 0 2m

monic potential in the limit of small anharmonicity. In the
approximation where multiple correlations factorize in prod-
ucts, the memory kernel will be a sum of two terig@ver-
ages with an odd number € vanish

where C=C3+C,. This is readily solved by dimensional
argumentg11] and yields

C
(z)= :
(21)

(27)

This last relation implies thak (q,z)~z Y%g?, so that the
éimit in Eq. (16) leads to a nonanalytic dependence of the

and one can readily evaluate the two contributions from th . )
felaxation rates for small wave number:

cubic and quartic terms, respectively,

CZ 1/3
BFEIOFI*(0) y(q)m(f a*°, (28)
mc?)wﬁi E G (DG (1), (22 Generally speaking, the behavior of the relaxation rates with
N fl=k 2 the temperature will depend on the specific form of the an-
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harmonic potential. Nevertheless, thedependence should 15 ‘ ‘ Tl
be the same for all one-dimensional models where the theon
applies. ol
C. Kinetic vs hydrodynamic relaxation 0" L i 00
The above self-consistent result is expected to hold for__ 05
strong anharmonicity and on very lor{ghydrodynamic™) g— M(\MM
time scales. On the other hand, in the usual perturbative™ 4
limit, the system is basically a set of weakly interacting har-
monic oscillators with renormalized frequencies. We can
then use the perturbation theory in our simple mode-coupling -05 |
scheme. This basically amounts to neglecting the dissipatior
on the right-hand side of Eq26) and approximatej(q,t) o ‘ ‘ ‘
~cosw(g)t. In this limit the factorization of correlations be- o 40 80 120 160 200
comes exact. Accordingly, E¢R6) reduces then to a simpli- ot
fied version of the usual perturbative formuls3], where FIG. 1. Normalized autocorrelatio§,(t) for the quartic FPU

only mode-mode contributions are taken into account. It then, 4e| withg,e =8.8 (T=11.07) andN=256. The inset shows the
follows that the spectrum of the dissipation rates iS proporsigcorrelation of the fluctuations of the mode enegy

tional to wZ times the sum of two terms whose magnitude is

given by the constant§; andC,, respectively. In the limit |5 computing spectra and correlation functions, a fast Fourier
of low temperatures and/or weak couplings the latter scale agansform routine has been used and the data are usually
averaged over an ensemble of several trajectdtigscally

(950)° ) i :
~ s (for the cubic term, between 20 and 20Qo reduce statistical fluctuations.
B(1+a)** (959) ( " Let us first of all comment on the dynamics of Fourier
, (29  modes. The correlation of the fluctuating force decays on a
(949) characteristic time that is expected to be much shorter than

2.2 ;
B (1+ a)772%(94q) e” (for the quartic term the typical period of long-wavelength modes. Thus, if we
neglect memory effects and assume that a single relaxation
for small wave numbers. It is of basic importance to compardime dominates, Eq(9) reduces to its Markovian limitwe
the latter(“kinetic” ) time scale with the one determined in will return to the discrete cage
Sec. lll B. For example, in the case of the quartic FPU model

we have from Eqs(28) and(29) O+ 7ka+ Z’EQk: Ry, (31)
Thyd'_°~q1/3(g48)2/3<1_ (30) Wwhere now the random force is well approximated by a
Tkin Gaussian white process

This implies that, for small enoudlye, the initial relaxation

stage_ is dominated by thg kinetic time scale, up tp some (Rk(t)R’k*(t’)>=&5(t—t’). (32
(possibly large crossover time where the self-consistency B

effects become relevant. In Sec. V we will return to this issue

to show its importance for the approach to equilibrium. ~ For simplicity, in Eq.(31) we have also neglected the small
frequency shift. Equatio31) explains qualitatively the nu-

merical results of Ref[12], where the dynamics of the
modes was studied for the quartic FPU case. In particular,
As many assumptions are required in the theory, it is imthe slow diffusion of energy observed there is immediately
portant to compare it with the outcomes of numerical simu-understood as a consequence of the fact fhato,<1 for
lations. To this aim, we considered the quartic FPU cas@mall k. The renormalization of the frequencies that was
(93=0). In this case, the only relevant parametegjs and  proposed on purely phenomenological basis is, in the present
g,e<1 corresponds to the weakly chaotic regifig context, a straightforward consequence of the projection ap-
The numerical simulations were performed at constant enproach. Furthermore, the effective sound velocity can now
ergy by integrating the equations of motion with a third- be explicitly computed by the definitiafi1) [at least up to a
order symplectic algorithnil4]. We generally consider the correction from Eq(16)].
case where the second constant of mofy Q, is identi- At high energy §,e>1), where relaxation occurs on
cally zero (no uniform rotations of the chainEquilibrium  faster time scales, it is easier to perform direct tests of the
initial conditions were chosen by either assigning randongoodness of Eq31). We first verified that the distributions
velocities from a Gaussian distribution at the correspondingf the real and imaginary parts Qfy andP, are Gaussian. A
temperature or starting from equal mode amplitudes withtypical correlation functiorg, is reported in Fig. 1. More-
uniformly distributed random phases. The system therover, we checked that the distribution of amplitudes and
evolves for a certain transient time in order to start the meaphase jumps agrees with what was predicted from the ap-
surements from the most generic phase-space point possibfaroximation(31) [15]. For completeness, we also measured

IV. MOLECULAR DYNAMICS RESULTS
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FIG. 2. Comparison between the numerical and expected renor-
malized frequencies. The symbols are obtained by measuring thf%r
oscillation period oiG; for N=64 and 128diamonds and triangles,
respectively. The solid line is the theoretical valuggg. (11)] and
the dashed one is the empirical formula of Rgf2]. The small
systematic deviations are due to the small frequency shifts expected
from Eq. (16).

FIG. 4. Scaling of the relaxation rates with the energy density
N=64, 128, and 25€circles, squares, and pluses, respectively
The inset shows the low-energy part. Straight lines correspostl to
ande', respectively.

1,

1
E=2 B B3[P+ 0lQd: (33

the dependence of the effective oscillation frequency and

compared it with the expected value given by the definitionyhich is related to the typical indicators used in equipartition
(1) (see Fig. 2 studies. Forlk|<N/2 (small noise amplitudéswe expect

Clearly, the crucial point to be checked is the energy angrom Eq. (31) that the effective mode enerds is ruled by
wave-number dependence of the. This was accomplished  the |inear equatiofi15]

by measuring the initial decay of the envelope&jpf(see Fig.

1) for severale’s and k’s. Very good agreement with the
mode-coupling prediction is obtained for the dependence of
vk on the wave number. The data reported in Fig. 3 give %

Ex+ i Ex—(EQ)) =Ry, (34

power law with an exponent 1.64, remarkably close to th See t_he inset of Fig.)l This means tha.t the asymptotic
expected value 5/3. Furthermore, Fig. 4 shows that also th _ehaw_or of fluctuationst OT th_e gbove—defmed quantity are
scaling with energy is reasonably obeyed, at least within th@Ven (in the thermodynamic limjtby

limit of our simulations. Obviously, the computations be-
come more and more time consuming with decreasing tem-
perature due to the rapid increase of relaxation times and
finite-size effects(see below. This imposes severe con-

1 dq
o — - t% —a (q)t
(8E(1) 6E(0))= ; e % J S—e7

straints on the accessible lattice lengths and times. oc[t V2 for t<tcg (35
A further analysis has been performed on the quantity t=35 for t>tc.
107" ‘ Heret. is the characteristic time scale at which a crossover
between the two relaxation behaviors occurs. Although its
A magnitude remains undetermined, we expect it to be very
. large for small temperature. The crossover should become
102 | ] actually observable in the intermediate-energy region.

The numerical results are in substantial agreement with
those predictions. The simulationsgfs =0.05 (see Fig. 5
indicate a power-law divergence in the spectrums&fwith
10° | | an exponent—0.5 in the observed domain. The statistical
accuracy and the length of the simulation are not sufficient to
establish whether the apparent saturationder10 2 is the
beginning of the crossover or simply a finite-size effect. A

D second series of simulations in the intermediate energy
10 1072 10" 10° range, i.e., forg,e =0.45, is reported in Fig. 6. Despite the
q strong finite-size effects at low frequency, the spectra seem

FIG. 3. Wave-number dependence of the relaxation rateg 'O approach a power-law behavior with the expected mode-
at g,e=8.8 for the quartic FPU potential. All the points were ob- coupling exponent-0.4 and the data are compatible with
tained from the initial decay of the envelope @f for increasing  Eq. (35) with a value oft¢ of the order of 18. Since further
values ofN up to N=2048. The solid line is a power-law fif*54 support to the validity of the mode-coupling results is also

@)
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. ' ‘ (9460, ) 2 for gee<1

TE= _ _ 36
E [ (948) M0, > for gue>1. (39

The subscripE refers to the fluctuations close to the equi-
librium state. The behavior in the high-energy limit is ob-
tained by means of Eq28) taking into account that is
roughly proportional to the temperature as well as the fact
that 1+« grows with the square root of the temperature
itself [see Eq(1D)].

Indeed, the predicted regimes have been numerically ob-
served[4]. Convincing numerical evidence of scaling laws
(36) has been reported recently in R¢8]. This seem to
suggest that the linear theory already captures the quantita-
tive features. Moreover, qualitatively similar results were
found for different potentials in Refl17].

As concerns the case of larggr , the simulations re-

<|SE(w)[*> (arb.units)

FIG. 5. Low-frequency part of the spectrum &f for the quartic

FPU model forg,e =0.05. The solid Iin_es refer to simuIaEior;s with ported in Ref[4] also showed that relaxation can be one or
N=2048 and 4096 and the dashed line correspond éo 2. A

L 3 two orders of magnitude faster than in the previous situation.
ioi'\gfrz-law fit gives an exponent-0.43-0.01 for 107<w Even if the theory presented here applies better to the case of
' small g, , it is worth remarking that its consequences are
also consistent with this observation.
reported iN16], we reasonably conclude that no significative  Obviously, the very initial stage of the approach to equi-
deviations from the theory itself are observed in those typdibrium may well occur on a different time scale. In the
of measurements. present framework, the latter should be interpreted as a real
“partial equilibration” time scaleryg. On the other hand, it
seem rather reasonable thaz will be strongly dependent
V. PROBLEM OF RELAXATION TO EQUIPARTITION on the chosen class of initial conditions and the specific form
of the potential. As a matter of factyg is determined by a
At this point we want now to discuss some consequencegure nonequilibrium dynamics and is of course inaccessible
of the above analysis on the so-called FPU problem. Let ug the linear theory presented here. Despite this, the present
first focus again on the case of a purely quartic nonlinearityesults are useful in identifying this initial stage. As an ex-
that has been intensivelfre)studied by several authors in ample, we are now able to make an instructive comparison
recent yearg4,6,8. The numerical experiments have beenwith the numerical estimates ef;c. In Ref.[6] it is in fact
performed by feeding the initial energy in a packet of modesound that, for long-wavelength excitations|,(<1), 7yge
and looking at the decay in time of suitable indicators of ~N¥%(q, ¢) %, so that
equipartition(see the quoted references for dedails
In the case when the initial excitation is around a long-
wavelength mode of wave numbegg and the system is not E~8N1’2q*<1
too far from equipartition, we expect, from the discussion of TE
Sec. lll, that the slowest time scale will be of the order of

(37

for smallqg, and/or small energy. We can then conclude that
the equilibration process is, at least for this class of initial
conditions, mainly dominated by the linear regime. In other
words, we can naturally understand it as an initial fast relax-
ation to a quasiequilibrium state followed by the slow diffu-
sion of energy from the long-wavelength modes.

As already mentioned, the mechanisms determinigg
may be rather complex, however, and of very different na-
ture depending on the initial state. An example is the case of
zone-boundary initial conditions|d, |~ ). Those rapidly
decay into localized chaotic excitation$9,8], whose life-
time mainly determines the time to reach the quasither-
malized state. Nevertheless, the comparison of our results
with the numerics may indicate that such a lifetime is, even
‘ in this case, considerably shorter than that of relaxation of
10 10 107 10° Fourier modeg8].

The high-energy scaling of E¢36) can be generalized to

FIG. 6. Same as Fig. 5, but fa,e =0.45. The curves refer to an algebraic potential of the forivia(x) =g,x", with n be-
N=512, 1024, and 204&rom bottom to top and the dashed line ing an even integer. In this case, by extending E84) and
corresponds to the expected asymptotic lan?. (28), it is found thatrg is proportional tog("~1/2),

-y
[=]

<|8E(w)|*> (arb.units)

-
(=]
)

10
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Finally, let us comment on the FPU model with purely tors may be better understood having realized the existence
cubic potential ¢,=0). A recent numerical study18]  of the long time tails such as those of Figs. 5 and 6. Indeed,
showed clear evidence for a divergencesas of the relax- it is clear that the slow diffusion of energy has to be taken
ation time. Nevertheless, only chains as shoflas32 were into account when studying the relaxation from an arbitrary
considered and it is not completely clear if the systems ignitial condition. More generally, such time scales should be
above the equipartition threshdld]. A more detailed analy- always considered in practice when performing simulations
sis would of course be desirable to check the dependence wifith chains of large sizes.
this scaling onN and to compare the results with the ones Although the existence of long time tails is not surprising
presented here. for a low-dimensional system, the substantial agreement be-

tween the theory and numerical simulation is nonetheless a
VI. CONCLUSIONS relevant result by itself. Actually, the direct verification of
mode-coupling theories in one dimension is still a current

The simple mode-coupling approach provided a valuableypject of study, for example, in the field of lattice gases
amount of qualitative and quantitative information on the[20]. Furthermore, the validity of such theories is not granted
relaxation times of the Fourier modes in a Hamiltonian chainn general. It is in fact known that they fail in predicting the
such as Eq(1). In particular, a clear physical interpretation characteristic relaxation times of spin waves of the Heisen-
of them can be achieved. For the paradigmatic example qjerg model in one and two dimensiof&d].
the quartic FPU model, the crossover between the two scal- Finally, let us remark that the theory allows one to esti-

ing regions ag,e~0.2 (see again Fig. ¥could be regarded mate the long time tails of the heat-flux correlation, which is
as the temperature threshold beyond which self-consisteng¥irectly related to the thermal conductivity of the chain. This
and hydrodynamic effects play a major role. Remarkably allows one to explain quantitatively the divergence of such

such a scale is roughly equal to the so-called strong stochagansport coefficient observed in the numerical simulations
ticity threshold @4¢~0.1), above which new dynamical ef- [9,16].

fects (i.e., faster diffusion in phase spacare believed to

appear4]. From this point of view it Wo_uld b_e challengin_g ACKNOWLEDGMENTS
to try to connect the present results with strictly dynamical
properties. | acknowledge useful discussions with Roberto Livi, An-
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out to explain several previous results on the approach tare also to Jochen Rau and Wolfram Just for having clarified
equilibrium at finite temperature. As exemplified above, theyfor me several issues of the projection method, the interest
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