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Stochastic resonance: Noise-enhanced phase coherence
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We study stochastic resonance in periodically driven stochastic bistable systems in terms of phase synchro-
nization. By introduction of an instantaneous phase for the output we show explicitly the effect of phase
locking between the input and output. The stochastic dynamics of the phase difference between input and
output appears to be similar to that of synchronized classical self-sustained oscillators. The degree of phase
coherence is estimated by employing the effective diffusion constant for the phase difference. This coherence
becomes maximal for optimal noise intensities. However, phase synchronization effects can only be observed
for sufficiently large magnitude of the periodic inputting signal.@S1063-651X~98!11812-3#

PACS number~s!: 05.40.1j
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I. INTRODUCTION

The phenomenon of stochastic resonance~SR! @1# has
been extensively studied over the last two decades@2,3#. SR
occurs in a wide class of nonlinear systems driven simu
neously by noise and a signal. The necessary property w
a nonlinear system should possess to be able to demons
SR is the existence of a noise-controlled time scale.

The traditional description of SR defines this effect
amplification of a weak signal applied to the input of t
system by tuning the noise intensity. SR manifests itsel
the existence of a bell-shaped maximum in the depende
of the spectral power amplification~SPA! @4# or of the
signal-to-noise ratio~SNR! @5# versus noise intensity. Fo
extremely weak signals SR is correctly described by lin
response theory@6#. In this case a stochastic resonator mig
be thought of as an equivalent filter with a noise-tuned tra
fer function determined by the linear susceptibility of t
system. In order to calculate the response of the system
have to know its statistical properties in an unperturbed
tionary state~i.e., in the absence of signal!. From this point
of view the structure of weak signals is immaterial: the s
nal can be harmonic, quasiperiodic@7#, or even aperiodic
broadband noisy@8,9#.

An alternative description of SR, based on the statistics
residence times, has been proposed in@10,11# and character-
izes SR as a kind of synchronization of the switching eve
by external periodic signal. Based on an accurate system
theory this approach has been reconsidered recently by
et al. @12#. In the absence of the periodic excitation the re
dence time distribution possesses an exponential sh
However, when the periodic signal is switched on and
amplitude is sufficiently strong, the residence time distrib
tion becomes structured and contains series of peaks cen
at the odd multiples of the half period of the signal. At
optimal noise level the peak at the half driving period b
comes dominant and its height with subtracting exponen
background@12# passes through a maximum by varying t
noise intensity.

For vanishingly small driving amplitudes the residen
time distribution is not structured at all@12#. That is, the
PRE 581063-651X/98/58~6!/7118~8!/$15.00
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residence time distribution indeed refers to nonlinear effe
with respect to the signal amplitude. However, it provides
information about the instantaneous matching of outputt
switching events and of the input signal. For how long a
noise-induced switchings between metastable states in
chrony with periodic input? Is it possible to observe fr
quency locking effects in finite regions in the parame
space of the system as it is in classical self-sustained o
lators? It is important that such a formulation of the proble
is just the same as in classical theory of oscillations, wh
synchronization is originally understood as instantane
matching of the input/output phases. The positive answe
the second question has recently already been given in@13#
and in @14# where the phenomena of a mean switching f
quency locking have been reported for periodically driv
and coupled stochastic bistable systems, respectively. Ar
tongues of synchronized states were also observed in in
tigations of periodically driven noisy excitable systems@15#.

The goal of the present study is to bridge between
classical notion of synchronization as instantaneous ph
locking @16# and synchronizationlike effects occurring in S
systems. For this purpose we first go back to the class
definition of synchronization in Sec. II. In Sec. III we discu
various definitions of an instantaneous phase for periodic
driven stochastic bistable systems. The effects of phase
frequency locking are discussed in Sec. IV and compa
with other descriptions of SR in Sec. V.

II. SYNCHRONIZATION
IN SELF-SUSTAINED OSCILLATORS

The fundamental phenomenon of synchronization@16# oc-
curs in coupled or periodically forced nonlinear se
sustained oscillators. In the absence of the periodic force
if uncoupled the system should possess a stable limit cycl
the phase space which reflects stable oscillations occurrin
the system. The properties of these oscillations, i.e., th
natural frequency and their amplitude, are determined
their internal dynamics, only, and do not depend~in some
reasonable ranges! on initial conditions.

Synchronization can be defined as the locking betw
7118 © 1998 The American Physical Society
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the instantaneous phasesF(t) of a state variable of the os
cillator and the phaseC(t)5V0t of the external periodic
force, i.e., if unF(t)2mC(t)u,const. A weaker condition
requires frequency lockingV5Ḟ5(m/n)V0 . In both cases
m,n are integer numbers. In the parameter space of the
tem these requirements are fulfilled in finite regions cal
Arnold tongues. Thereby, the onset of synchronization c
responds to a birth of resonant limit cycles lying on a tw
dimensional torus in the phase space of the system. Fu
we will restrict to the simplest case of 1:1 mode locki
(m5n51).

To the best of our knowledge the topic of the influence
noise on synchronizing self-sustained oscillators was
raised by Ritov@17#. The effect of Gaussian white noise wa
studied in detail by Stratonovich@18# and generalized to col
ored noise@19#. Inclusion of noise in periodically forced
self-sustained oscillators led to amplitude and phase fluc
tions @18#. As a result, the phase differencef(t)5F(t)
2C(t) also fluctuates. If the external periodic force is co
taminated by additive Gaussian noise and under the assu
tion of a constant amplitude its slow dynamics can be
scribed by the stochastic differential equation~SDE!

ḟ5D2eG~f!1j~ t !. ~1!

HereD5V2V0 is the frequency mismatch,G(f) is a 2p
periodic function,e is the parameter of nonlinearity, andj(t)
is noise. In the case of a van der Pol oscillatorG(f)
[sinf and the phase difference performs overdamp
Brownian motion in the tilted periodic potentialU(f)5
2Df2e cosf @18#. If D,e and the noise strength is sma
the phase difference fluctuates for a long time inside a w
of the potentialU(f) ~that means phase locking!. It rarely
makes jumps from one potential well to another one~i.e.,
displays phase slips!.

The definition of synchronization in the presence of no
appears to be ‘‘blurred.’’ For noisy systems one has to
the notion of aneffective synchronization@20#. It can be
defined via imposing restrictions to~i! phase fluctuations,~ii !
frequency fluctuations, and~iii ! output signal-to-noise ratio
@20# whereby the conditions in this sequence of restrictio
are subsequently lowered. Note that SR measures base
the residence time distribution refer to the second type
definition.

Further on, our investigations use the strongest defini
of effective synchronization based on the statistics of ph
fluctuations. We assert that a noisy system is effectively s
chronized to an external periodic force ifTmeanis larger than
some given value, whereTmeanis the mean time in the cours
of which the instantaneous phase of the system is locked.
will require that this mean time between two phase sl
should be greater than large multiples of the driving per
Tmax5n2p/V0 , n@1.

A quantity related to this definition and which will b
used later on as the measure of phase coherence repre
Deff , is defined as

Deff5
1

2

d

dt
@^f2~ t !&2^f~ t !&2#. ~2!
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This is the effective diffusion constant describing the spre
ing of an initial distribution of the phase difference along t
potential profile. It can be shown thatDeff is proportional to
the mean escape rater from a well of the potentialU(f),
i.e., Deff54p2r @18#. Hence,Deff is proportional to the in-
verse mean time interval of a locked phase difference. A
result, effective synchronization of noisy oscillators
achieved, if

Deff<2p
V0

n
. ~3!

This condition determines regions of effective synchroni
tion in the parameter space of the system.

The influence of additive noise on synchronized se
sustained oscillators is well known@18,19#: the effective dif-
fusion constant grows with the increase of the noise stren
e.g., phase slips appear more frequently. In other wo
noise acts against synchronization leading to the loss
phase coherence and shrinks Arnold tongues@21,22#.

In the next sections we show that SR systems display
an opposite behavior: With the increase of the noise inten
the degree of phase coherence first grows and only for
ficiently large noise does the system become asynchron
Hence, SR systems become effectively synchronized i
finite region of optimally selected noise intensities.

III. INSTANTANEOUS PHASE
FOR PERIODICALLY DRIVEN

STOCHASTIC BISTABLE SYSTEMS

An overdamped stochastic bistable oscillator, the m
popular example of a SR system, obviously does not hav
deterministic frequency. Instead, it possesses a no
controlled time scale represented by the Kramers time
mean escape time from a potential well and has essent
relaxation features. In the frequency domain this time sc
determines the mean switching frequency~MSF! of the sys-
tem. A periodic signal subjected to the input of a stochas
resonator represents therefore a single external ‘‘clock’’@3#
which is amenable to synchronize the switchings betw
the metastable states of the system.

Further, we numerically treat this overdamped Kram
oscillator driven by an external periodic force with frequen
V. In canonical units it is governed by the SDE@23#

ẋ5x2x31A2Dj~ t !1A cos~V0t1c0!, ~4!

wherej(t) is white Gaussian noiseD scales the intensity o
this noise andc0 is the initial phase of the signal. We se
c050 for convenience. The amplitudeA of the periodic
force is always sufficiently small: the signal cannot swit
the system from one state to the other one in the absenc
noise. For the low-frequency modulation this requires tha

A,A05
2

3A3
}0.3849 . . . . ~5!

The case of suprathreshold values (A.A0) has been studied
recently in@24# in connection with the phenomenon of res
nant trapping.
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7120 PRE 58ALEXANDER NEIMAN et al.
In order to study synchronization in the above describ
classical sense we need to introduce an instantaneous p
of the system. It is well known that for aperiodic signals t
definition of the phase becomes ambiguous.

A formal but general definition of an instantaneous ph
is based on the concept of an analytic signal introduced
Gabor@25#. It is widely used in the theory of nonlinear os
cillations and waves@26,27# as well as in communication
theory @28#. Recently, the definition of an instantaneo
phase by this concept has been applied to the study of p
synchronization of chaotic systems@29#. The analytic signal
w(t) is a complex function of time defined as

w~ t !5x~ t !1 iy~ t !5a~ t !eiF~ t !. ~6!

Herey(t) is the Hilbert transform~HT! of the original pro-
cessx(t),

y~ t !5
1

pE2`

` x~t!

t2t
dt. ~7!

In the latter expression the integral is taken in the sense
Cauchy principal value. In the case of stochastic signalx(t)
the convergence of this integral should be understood in
mean square sense@28#. As known, the Hilbert transform
performs a2p/2 phase shift for each frequency compone
of an arbitrary signal. The instantaneous amplitudea(t) and
phaseF(t) of x(t) are unambiguously defined through th
concept as

F~ t !5arctanFy~ t !

x~ t !G , a2~ t !5x2~ t !1y2~ t !, ~8!

as well as the instantaneous frequencyv(t)5Ḟ(t),

v~ t !5
1

a2~ t !
@x~ t !ẏ~ t !2y~ t !ẋ~ t !#. ~9!

Afterwards the mean frequency^v& is given by

^v&5 lim
T→`

1

TE0

T

v~ t !dt. ~10!

It is also convenient to introduce the phase difference
tween the output and input as

f~ t !5F~ t !2V0t. ~11!

The concept of the analytical signal can directly be a
plied to the bistable dynamics~4! in order to derive explicit
SDEs for the instantaneous amplitude and the phase di
ence. In doing so we use the remarkable property of
analytic signal that its Fourier transform vanishes for ne
tive frequencies. Then the SDE for the analytic signal of
periodically driven bistable system reads

ẇ5w2
1

4
~3a2w1w3!1J~ t !1AeiV0t. ~12!

The analytic noiseJ(t)5j(t)1 ih(t) with h(t) being the
Hilbert transformation ofj(t).
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From Eq.~12! we derive the SDEs for the instantaneo
amplitude and phase:

ȧ5a2
1

2
a3@11cos2~f1V0t !#1A cosf1j1~ t !,

ḟ52V02
1

4
a2 sin@2~f1V0t !#2

A

a
sinf1

1

a
j2~ t !,

~13!

where the noise sourcesj1,2(t) are defined as

j1~ t !5j~ t ! cosF1h~ t ! sinF,

j2~ t !5h~ t ! cosF2j~ t ! sinF.

Note that Eqs.~13! are exact and similar to those for amp
tude and phase fluctuations of a van der Pol oscillator@18#.
This similarity arises due to the structure of the nonline
transformation which we have used. However, there is a
an important difference. This distinction appears in the s
ond equation for the phase. In the case of a van der
oscillator, an additional term~V! occurs in the right-hand
side of Eq.~1! remaining in the frequency mismatch. It refe
to the natural frequency of the oscillator. The absence of
item in Eq.~13! reflects simply the fact that the overdamp
oscillator has no deterministic natural frequency, e.g., th
is no rotational term in the equation for the phase of
unperturbed system (A50).

The exact SDEs~13! are highly nonlinear with multipli-
cative noise. For computational reasons it is more conven
to integrate original SDE~4! numerically and then to per
form the HT by well established techniques~see, for ex-
ample,@30#!. In Fig. 1 we show a typical time series of th
state variablex(t), of the instantaneous amplitudea(t), and
of the phaseF(t).

Clearly, other definitions of the phase are possible too
particular, for stochastic bistable systems we can introd
an instantaneous phase basing on the occurrence of sw
ings. Consider interwell switchings: by an appropriate tr
gering of the original processx(t) the continuous proces
x(t) can be mapped into a stochastic point process$tk%,
where tk are the times of a successive level crossingx5
61 ~see@10# for details!. The residence time between tw
subsequent switching events is thenT(t)5tk112tk , tk,t
,tk11 . A corresponding dichotomic processu(t) can be
introduced via the ansatz

u~ t !5xmsgn@cosF~ t !#, ~14!

where the phaseF(t) is defined as@31#

F~ t !5p
t2tk

tk112tk
1pk, tk,t,tk11 . ~15!

A phase defined in this way is a piecewise-linear function
time. In the case of a purely periodic switching proce
when transitions between metastable states are fully sync
nized with the period 2p/V0 , this definition gives exactly
V0t. The instantaneous frequencyv(t)5p/T(t) is constant
during the waiting periodtk,t,tk11 inside a potential well,
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while the mean frequency for this definition is equivalent
the mean switching frequency of the system:

^v&5 lim
M→`

1

M (
k51

M
p

tk112tk
. ~16!

It can also be calculated via residence time distribution.
Note that the first definition of the phase bears both in

well and intrawell motions, while the second one takes i
account only global switching dynamics. We underline th
the first definition does not require the introduction of
threshold value. Nevertheless, both definitions disp
equivalent averaged behavior up to a constant phase s
~The problem of constant phase lag between input and p
odic response in SR systems versus the noise strength
been discussed in detail in@6#!. This coincidence is not by

FIG. 1. ~a! Time series of the state variablex(t) ~solid line! and
of the instantaneous amplitudea(t) ~dashed line!. ~b! Time series
for instantaneous phaseF(t) of the bistable system defined accor
ing to the concept of the analytical signal~solid line! and according
to the interwell switching analysis~dashed line!. Its convergence is
nearly perfect. As seen the instantaneous phase of the bistable
tem except some rare events strictly follow the applied perio
force ~linear slope!. Phase jumps are accompanied by positive
cursions of the instantaneous amplitude. The time axis is give
units of driving period T052p/V0 . A50.089, D50.04, V0

50.002.
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chance. The analytic signal concept causes an autom
separation of different time scales@27#. This follows from
the property of the Hilbert transformation to freeze slo
variables. In our situation we have fast intrawell fluctuatio
and slow switchings between metastable states. The gl
dynamics of the system, e.g., transitions between the m
stable states, gives the main contribution to the phase
namics, while the short-time fluctuations inside a poten
well are immaterial for global phase dynamics.

IV. NOISE-ENHANCED PHASE LOCKING

Typical time series of the phase differencef(t)5F(t)
2V0t using the analytic signal representation are shown
Fig. 2 for different values of the noise intensity. For sm
and large noise the switching process and the periodic fo
are incoherent: on average the phase difference mono
cally decreases or increases with time. For weak noise
mean switching frequency is much smaller than the driv
frequency and the signal phase surpasses the phas
switchings. On the contrary, for a large noise intensity
signal phase lags behind as the mean switching freque
becomes higher than the driving frequency. However, wit
some region of noise intensities the phase coherence
comes amenable to observation. This situation is shown
Fig. 2. At an optimal noise level the phase is locked dur
the course of observation time. As noise intensity devia
from this optimal value the phase slips appear, so that we
speak about partially synchronized dynamics. It is rema
able that the dynamics of the phase differencef(t) is very
similar to that of a synchronized self-sustained oscillator a
can be qualitatively described by the SDE~1! with coeffi-
cients depending on the noise intensity, driving amplitu
and frequency.

Figure 2 clearly shows the effect of synchronization: t
phases of the switching process and of the input signal
instantaneouslylocked at an optimal noise level. It is als
seen from this figure that by tuning noise we can increase
duration of time intervals of locking. We remark that th

ys-
c
-
in

FIG. 2. The instantaneous phase difference calculated using
analytic signal approach for indicated values of noise intensity.
medium noise the phase difference is locked.A50.268, V0

50.002.
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7122 PRE 58ALEXANDER NEIMAN et al.
same behavior has also been observed for phases determ
via switching times~15!.

The mean frequency, determined via the analytic sig
concept~10!, and of the mean switching frequency, calc
lated by averaging the residence times~16! is shown in Fig.
3 versus noise intensity for different values of the drivi
amplitude. Again this figure displays the effect of locking t
mean switching frequency reported in@13#. For vanishingly
small signals the mean frequency follows the Kramers
and grows exponentially with increasing noise streng
However, with a sufficiently largeA the mean frequency
matches the driving frequency in a finite region of the no
intensity. Note that the behavior of the mean frequenc
calculated using two different definitions of instantaneo
phase is nearly converging. It is important to mention t
the effect of mean frequency locking occurs in a finite reg
of noise intensities. The width of this region depends on
driving amplitude and the frequency@13#.

Although the effects of the phase and of the mean
quency locking already indicate a synchronizationlike beh
ior we need to calculate second-order statistical quantitie
order to determine synchronization according to the defi
tions given above. We aim to answer the question: how lo
is the phase at the output locked by the signal? For
purpose we calculate the effective diffusion constant.

The dependence of the effective diffusion constant~2! vs
noise intensity is shown in Fig. 4 for different values
driving amplitude. In contrast to classical oscillators, whe
Deff monotonically increases, here the effective diffusi
constant passes through a minimum. This means in its
that the phase becomes locked for longer time intervals w
the increase of the noise intensity. In other words, we
enhance phase coherence by increasing the noise level i
system. This can be considered as a new manifestatio
stochastic resonance.

It is important to underline that effects of phase and f
quency locking occur for strong~but undercritical! signals
only. For a weak signal the system is only partially synch
nized even in the case when the mean switching freque

FIG. 3. Mean frequency~10! ~solid line! and the mean switching
frequency~16! ~symbols! versus noise intensity for different value
of driving amplitude. For sufficiently large amplitudes over a fin
range of noise intensity the frequencies are locked to the freque
of the driving signal.A50 ~1!, A50.089 ~2!, A50.178 ~3!, and
A50.268~4!; V050.002.
ned

al

.

e
s
s
t

n
e

-
-
in
i-
g
is

e

rn
th
n
the
of

-

-
cy

equals exactly the driving frequency. This situation is sho
in Fig. 5. Although there are relatively short locking se
ments, the phase difference displays random-walk-like
havior without a preferred slope.

From Fig. 4 we conclude that for sufficiently strong si
nals the diffusion of the phase difference is extremely sm
in a finite region of noise intensities. It enables us to defi
regions of effective synchronization in the parameter spa
We indicate a system~4! as effectively synchronized to a
external periodic signal if its instantaneous phase is loc
during 100 periods of the signal. This condition is express
asDeff<2pV0/100.

Regions of synchronization in the parameter planeA-D
are shown in Fig. 6 for different values of driving frequenc
A periodic force with amplitude less than the presen
curves does not synchronize the bistable system in the ab
defined sense. The regions have a tonguelike shape.
thresholdlike character of the synchronization is clearly se
It means that for a given frequency the minimal amplitu
necessary for synchronization never vanishes. Recall tha
perimentally obtained ‘‘Arnold tongues’’ of a periodicall
driven noisy Schmitt trigger@13# also have the same thresh

cy

FIG. 4. The effective diffusion constant versus noise intens
for indicated values of driving amplitude forV050.002.

FIG. 5. The phase difference versus time~in units of driving
period! for small amplitudes. Only partial synchronization ov
short-time segments can be observed.A50.089,D50.04.
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old feature. With the increase of the driving frequency t
threshold value of the driving amplitude also increases
the region of synchronization shrinks. This feature is de
mined by the low-frequency character of SR in bistable s
tems. Our numerical experiments have verified that the m
sures of phase coherence do not display any resonanc
~nonmonotonous! behavior as functions of driving fre
quency.

Qualitatively the same results have been obtained for
other representative of SR systems, the Fitz Hugh-Nagu
neuron model@32#. SR and synchronization in this mod
have been extensively studied in@33,15#. The basic features
in this case can be gained by studying the spike trains g
erated by the system. A suitable definition of the instan
neous phase is given by

F~ t !52p
t2tk

tk112tk
12pk, tk,t,tk11 ~17!

where thetk label times of firing events.

V. SPECTRAL POWER AMPLIFICATION,
RESIDENCE TIME DISTRIBUTIONS,

AND PHASE SYNCHRONIZATION

In the traditional description of SR in terms of spect
density, information about the instantaneous phase is los
Fig. 7 we show numerically obtained SPA versus noise
tensity for different value of the driving amplitude. In th
inset we show the SPA for an extremely weak signal and
approximation according to linear response theory@4#. The
SPA decreases with the increase of the driving amplitude
the value of optimal noise intensity at which the SP
achieves maximal values shifts to lower noise level@4#. At
the same time, the shape of the SPA curve flattens as
amplitude of the signal increases. However, the effect of

FIG. 6. The effective synchronization regions for indicated v
ues of driving frequency. The output is effectively synchronized
amplitudes above the presented curves. To achieve synchron
states for a given frequency there exists a nonvanishing thres
for the amplitudes.
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still exists. The SPA takes its maximum at a certain value
noise intensity.

It is important to note that the values of noise intens
maximizing the SPA approximately correspond to those
which the effective diffusion constant is minimal, i.e., to th
most phase coherent state of the system. On the other h
the signal-to-noise ratio is maximized at sufficiently larg
values of noise intensity.

The residence time distribution gives a weaker definit
of synchronization in SR systems based on the restric
imposed to the frequency fluctuations. This approach defi
synchronization in an averaged sense. Really, the existe
of the peak at the half driving period indicates that the nu
ber of residence times which are near the half driving per
is much larger than the whole number of switchings occ
ring during an observation time. However, it does not requ
instantaneous phase locking during the course of long tim
Therefore the residence time distribution recovers an ave
phase preference of the system. That is why the meas
based on the residence time distribution reflect the sync
nization nature of SR even for weak signals.

Let us take a comparatively small amplitude of the sign
A50.089. The residence time distributions are shown in F
8 for different noise intensities. Although the residence tim
distribution reflects synchronizationlike behavior, the pha
dynamics cannot be viewed as synchronized: even when
mean switching frequency equals the driving frequen
^v&5V0 , the phase difference performs Brownianlike m
tion with zero slope~see Fig. 5!. In the synchronization
~phase locking! region the residence time distribution is re
resented by a single narrow peak at the half driving perio

A meaningful criterion of SR based on the residence ti
distribution that has been proposed recently in@12# is the
height of the peak of the residence time distribution min
unmodulated residence time distribution~the deviation from
the unperturbed residence time distribution! at the half driv-
ing period. This quantity, labeled asa, is shown in Fig. 9 for
the different values of driving amplitude as a function
noise intensity. With the increase of driving amplitude,a

-
r
ed
ld

FIG. 7. SPA versus noise intensity for different values of t
driving amplitude: A50.089 ~boxes!, A50.179 ~triangles!, A
50.268 ~circles!. Inset: SPA versusD for A50.02. The linear re-
sponse approximation is shown by the dashed line.V050.002.
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also increases and the value of noise intensity which m
mizesa is shifted towards smaller values ofD.

VI. CONCLUSION

We have studied SR in classical terms of phase sync
nization. We used two definitions of the instantaneous ph

FIG. 8. Residence time distributions for indicated values
noise intensity and driving amplitude.V50.002.
s

ys
i-

o-
e,

basing on the analytic signal concept and on the switch
time sequences. Both phase definitions provide the same
sults for averaged quantities. The effect of phase synchr
zation of the stochastic switching process is shown to oc
in finite regions of the noise intensities. However, this effe
is restricted by comparatively large amplitudes of exter
signal. A measure of phase coherence, the effective diffus
constant, passes through a minimum being plotted ve
noise intensity. Therefore stochastic resonance manifest
self as a phenomenon of noise-enhanced phase coher
This noise-enhanced ordering is also reflected in the non
notonous behavior of the source entropy as was found
@34#.

For a weaker signal the synchronization features of
systems can be gained by the residence time distribut
This approach gives an averaged description of SR as a
chronization phenomenon. However, synchronization is
sent for extremely weak signals.

ACKNOWLEDGMENTS

We acknowledge fruitful discussions with F. Moss,
Khovanov, M. Rosenblum, A. Pikovsky, and J. Kurths. A.
is a recipient of financial support from the Fetzer Institu
This work has been supported in part by INTAS Grant N
96-0305, by common research project of DFG and RF
@Grant No. 436 RUS 113/334/0~R!#, and by the State Com
mittee on Higher Education of the Russian Federation~Grant
No. 97-0-8.3-47!.

f
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