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A new form of a binary Darboux transformation is used to generate analytical solutions of a nonlinear
Liouville—von Neumann equation. General theory is illustrated by explicit examples.
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. INTRODUCTION nonlinear effective Hamiltoniaii (p) to the first nontrivial

term (linear inp).

Nonlinear operator equations one encounters in quantum To begin with, let us recall that the well-known
optics and quantum field theory are typically solved by tech-{iouville—von Neumann equatiofLvNE)
niques which are either perturbative or semiclassicdl
[1,2]). The situation is caused by the fact that analytic meth- ip=[H,p], 1)
ods of dealing with “non-Abelian” nonlinearites are still at a
rather preliminary stage of development. An important stepvhereH is a Hamiltonian operatop is a density matrix, and
towards more efficient analytical techniques is associatethe dot denotes the time derivative, is linear. In Hartree-type
with the notion of an inverse spectral transformation. Thetheories one considers more general, nonlinear equations of
use of the method in the context of matrix equations can bé&e form
found in [3-5] where an analytical treatment of Maxwell- )
Bloch equations is given. In application to the Maxwell- ip=[H(p),pl, (2
Bloch system describing three-level atoms interacting with ) . o )
light [6] one makes use of a degenerate Zakharov-Shab#¢hereH(p) is a nonlinear Hamiltonian operator. Both kinds
spectral problem with reduction constraifg. The same of nonlinear LVNE's can be written in either Lie-Poisson
problem is used in the context of the complex modified[13,14 or Lie-Nambu formg15-19. The Lie-Nambu ver-
Korteweg—de Vries equation for a slowly varying envelopeSion involves a three-bracket and the LvNE’s can be written

of electromagnetic field in an optical fibgs]. as
A technical complication occurs if a solution obtained by )
an inverse method should additionally satisfy some con- ipa={pa,H1,—S/2}={pa,H1}, 3
straint. For example, it is often essential to guarantee that the i ) )
solution one gets is Hermitian or positive. Difficulties of this Where {-.-}={-,-,—$,/2} is a Lie-Poisson bracket. Here

kind were one of the motivations for the development of newPa:=Paa(8,@") are components gf in some basisA and
Darboux-type operator techniques of solving non-Abelian®” a@re discretesay, spinorindices anda, &’ are the con-
equations. Particularly useful turned out to be the method ofinuous onesH; =Tr(pH) is a Hamiltonian function an&,
elementary and binary Darboux transformations introduced® theq=2 case of the generalizefentropy of Tsallig21]
by one of us[9—11]. These particular versions of the Dar- and Darezy [22] [for an arbitraryqe R the entropy isS,
boux transformations are more primitive than the ordinary=[1-Tr(p1/(1-a)].
ones[12] in the sense that the latter can be obtained by their An extension from a Lie-Poisson bracket to a three-
composition. The so-called binary transformation, a result ofracket led Nambu to a generalization of classical Hamil-
an application of two mutually conjugated elementary Dar-tonian dynamic§23]. The three-bracket equatia) natu-
boux transformations one after another, was successfully apally leads to the question of possible Nambu-type
plied to a three-state Maxwell-Bloch system with degeneracyxtensions of the Lie-Poisson dynamics of density matrices.
in [9], and various multisoliton solutions, including the well- An interesting class of such generalizations occurs if one
known 2r-pulse and breathers, were found. keeps the Hamiltonian function linear inbut takesS; with
In this paper we apply a generalization of this techniquedther values of the Tsallis parametgr The equations so
[11] to a new type of nonlinear Liouville—von Neumann obtained are rather unusual from the point of view of gener-
equation, formally similar to the Euler-Arnol&A) equation ~ alized Nambu-Poisson theori¢g4-34. The peculiarity is
for a Lie-algebraic generalized Euler tégee the Appendjx that although the thr.ee—b.racket _itself does not satisfy the so-
What is perhaps more important, the technique we discuss R@lled fundamental identity, typically regarded as a Nambu
applicable to a large class of nonlinear Hartree-type equa@nalog of the Jacobi identity, but the two-bracket defined via
tions obtained by truncating a Taylor-type expansion of & }n,*={-,H1,-} does satisfy the ordinary Jacobi identity
if H,(p) is a linear functional op [18]. The choice of linear
H, and generalize&, can be also motivated by difficulties
*Electronic address: leble@mifgate.pg.gda.pl with probability interpretation of generalized observables
"Electronic address: mczachor@sunrise.pg.gda.pl since there is nphysicallynatural definition of spectrum of
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nonlinear operator§l6,35,38. Moreover, it can be shown other operators are finite-dimensional matrices, but the trans-
that the link with Tsallis generalized statistical physics isformation works in a much more general setting, as shown
even deeper than what we have written so far. It turns oubn the example of the harmonic oscillator. This example is
that the same nonlinear LVNE would have been obtained ipartly infinite dimensional in the sense that the Hilbert space
we had kept the standard Lie-Poisson structure unchangas infinite dimensional but the density matrix has a finite

but used the Tsallig averaggH),=Tr(p9H) as the Hamil- number of nonvanishing eigenvalues. The application of the
tonian function. A more detailed analysis of the connectiontechnique to general infinite-dimensional systems is a subject
between theag-generalized LVNE and generalized statistical of current study. Let us note that we can immediately obtain

physics will be discussed elsewhéBY]. “truly” infinite-dimensional solutions if we relax the posi-
The nonlinear LvVNE corresponding to the brackettivity, Hermiticity, or trace-class constraints typical of den-
{-,(H).,S,} is, up to constant factors, sity matrices. Of some interest may be the fact that our tech-
] nique can be applied also to the linear LvN equation.
ip=[H.,p"" '], (4)
and was introduced iflL6]. General properties of such equa- Il. LAX PAIR AND ITS DARBOUX COVARIANCE
tions were discussed [i17] and[18]. It was shown, in par- The technique of Darboux-type transformations is perhaps

tiCUlar, that SpeCtra of their Hermitian Hilbert-Schmidt solu- the most powerfu| ana|ytica| method of So|ving differential
tions are time independent. This opens a possibility of gquations. Although it was developed mainly in the context
denSity matrix interpretation of the solutions. Let us note thabf nonlinear equationS, it |Bnp||c|t|y used also in standard
for p?=p (pure statesthe equations reduce to the linear texthook quantum mechanics under the name of the creation-
LVNE and, therefore, the pure state dynamics is indistinannihilation operator method. The method of creation opera-
guishable from the ordinary linear Sckifoger one. tors is simultaneously a good illustration of the way the Dar-
Equation (4) is directly related to general Hartree-type houx technique works. In short, to use the method one has to
equations. Indeed, let us take a nonlinear operd{gr) and  begin with an initial solution which is found by other means
consider its Taylor-type expansion (a “ground state’). Then one has to find a “creation opera-
R tor” and the Darboux transformation is a systematic proce-
H(p)=Ho+ApB+BTpAT+ (higher-order terms). (5) dure that allows one to do it. In linear cases once we have
] ) o ) these two elements, we are able to generate an entire Hilbert
The simplest linear term is just a symmetrized product ofspace of solutions. In nonlinear cases the spaces of solutions
some HermitiamA andp, i.e., are bigger and therefore a given “ground state” and a “cre-
- . ation operator” may generate only a subset of this space. Itis
H(p)=Ho+Ap+pA+(higher-orderterms).  (6)  mainly for this reason that much effort was devoted to find-
ing different generalizations of Darboux transformatidcis
(ETLZ]). The method we will use was devised for noncommu-
tative equations such as Heisenberg equations of motion. The
- 5 construction given if10,1] led to a transformation more
tp=[Ho.p]+[A.p7]. @) general than the one we use and its derivation from elemen-
ary transformations is somewhat tedious. However, once

In such a case the Hartree equation is, up to the first corre
tion,

The aim of this paper is to describe an algebraic method thd h licit f heck b iahtf d
leads to solutions of such nonlinear equations. The metho@n€ Nas our explicit form, one can check by a straightforwar

we shall propose is simultaneously applicable to all Hartreé:aICUIat'on that the binary transformation indeed maps one

equations with Hamiltonians whose leading nonlinear Cor_solu'[ion into another. To make this paper self-contained we

give the explicit proof in the Appendix.

ton i
recuon Is Consider the following pair of Zakharov-Shabat equa-
Alp+AT oA+ AN 2pAZ (8  fions:

As our first step we will show how to solve a slightly more () =(U—uH)e(pn)=:Z,0(u), (11
general equation

. i = - 2

h=[H.p?]+ip H+iHp', ) io(u)=(UH+HU—uH ) o(u), 12
where the prime denotes a derivative with respect to some . 1 U2 72 13
additional parameter. The solutions of Eq(9) that satisfy _;( Wk, 13

the constraint

whereU and H are Hermitian matrices the dot and prime
denote, respectively, derivatives with respect to tinand
$ome auxiliary parameter, andu is complex. The solution

p'H+Hp' =0 (10

will be the ones we are interested in. The question of how t | ; : )
solve equations corresponding to arbitrary valueg isfstill ~ #(#) IS @lso in general a matrix. We assume thas t and
open. 7 independent an_w= U(t,7). The compatibility condition
We will generate the solutions from a Lax pair with the for Eas.(11), (12) is

help of a binary Darboux transformation. To avoid techni- ]

calities we will generally assume that the Hamiltonkmand iU=[H,U?]+iU'H+iHU", (14
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and therefore the above pair is the Lax pair for E).[38]. uri t=ur1 — 28
We will stick to the notation witHJ instead ofp since non- (L)) (L)) 8
Hermitian and nonpositive solutions are also of some interest ;t_

andp will be reserved for density matrices. '

. iy . Using Eq.(24) one can show by a straightforward calcu-
We will need two additional conjugated problems ing Eq.(24 W by 'g u

lation (see the Appendixthat the binary transformed

—i1g(N)" =¢(N)(U—\H), (15 —
—ip(\)=(\)(UH+HU—\H?), (16) L=y 1_%P> 29
—ix(»)' = x(¥)(U=vH), (17 indeed satisfies
—ix(»)=x(v)(UH+HU~vH?), (18) —iy[1]"=y¢{1](U[1]—AH), (30)

each of them playing a role of a Lax pair for E§).
Consider for the moment the following general Zakharov-
Shabat problems:

ide(u)=(V—ud)e(u),

—idgp(N)=¢(N)(V=1NJ), (20

—iy[1]=¢[1](U[1]H+HU[1]—\H?) (3D
with U[1]=U[1](u«,x) and, therefore,
iU[1]=[H,U[1]4]+iU[1]'H+iHU[1]". (32

i — _ Subsequent iterations of the Darboux transformation gener-

id = V—1J), 21 . . . i
X()=x(r)(V=rd) @) ate further solutions. Starting with a Hermitian solutldrnve

whered denotes a derivative with respect to some paramete@btain an infinite sequence of Hermitian solutiod$1],

We will take the binary transformation in the form U[2], ... satisfying TU=TrU[1]=Tru[2]....

= _rme Ill. COVARIANCE OF THE CONSTRAINT U'H+HU'=0
YL 2, 7) wm[l )

In order to generate solutions df =[H,U?] one has to
(22) maintain the constraintU’'H+HU'=U[1]'"H+HU[1]’
=U[2]'H+HU[2]'=...=0. Starting with stationary so-
lutions

X(px(v)e(p)p) *x(v)

v

=:(\) 1—HP , (23

io(u) =zo(u), (33

where p is a constant projectordp=0) and the inverse gne finds that)’ =0 impliesU[1]’=0. An alternative ap-
means an inverse in theinvariant subspacepp) ‘pPXp  proach can be applied to Hamiltonians of the Dirac type
=pxp(pxp) 1=p. The operatoP defined by Eq.(23) is

idempotent P2=P) but in general non-Hermitiar® satis- H=p- a+mg (34)
fies the nonlinear master equati39] '

i0P=(V—ud)P—P(V—d)+(u—v)PIP. (24y Which satisfyH?=E(p)?1 and therefore imply

The binary transformation implies the following transforma- U[1]’H+HU[1] =U'H+HU’ +(u—w)[P’,H?]
tion of the potential:

—U’H+HU’, (35
V[11(p,v)=V+(n—v)[P,J]. (25)
_ _ which makes the constraint hereditary.
Applying this general result tY =U, J=H we get In general, using Eq24), one finds that the constraint is
hereditary if
U], ) =U + (u=»)[P.H]. (26) Y

—_ _ _ 27—
The second triple of equations we have started with corre- [P, (U=pH)P=PU—-2»H)P, H"]=0, (36)

sponds toV=UH+HU andJ=H?2. In this case

VI1](p,v)=U[1] (s, )H+HU[1](p,v).  (27)

This means that Eq26) guarantees simultaneous covariance

whereP, =1-P.

IV. PARTICULAR CASES

of the Lax pairs under the binary transformati@®). In this section we shall discuss properties of solutions
Another important feature of the binary transformation iscorresponding to several choices of the initial
the fact that forr=p andpy(u)=pe(x)' the Hermiticity For some applications one can restrict the general form

of the potential is Darboux covariant, i.e., (22) by choosing
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1 0... 0 ¢ 0... O

0 0... O ¢, 0... O
p=| . . oe(w)=| . . s

0 0... O ¢y 0... O

37

v=p andx(u)=¢(u). Denoting the first column ig(u)
by |¢) one finds that

UL1](p,p)=U+(u—w)[PH], (39)
where
o) el
P=Tele) 39

The transition from the column solutidp) to Eq.(37) is a

SERGEI B. LEBLE AND MAREK CZACHOR

PRE 58

(u—v)(PIPI+IPIP-JIPJ)

=[P,V]I+J[P,V]+ul?P—vPJ. (49

The latter formula leads directly to E¢6).00

Lemma 2. AssumeP’=0 andP is given by Eq.(24)
with V=HU+UH, J=H?2 Then

U[1]?=U?—(u—»)iP. (49

Proof:
~iP,P=—P,(UH+HU-uH?)P, (50
—iPP, =P(UH+HU-vH?P_, (51)

and therefore

U[11?=U%=i(u—»)(P,P+PP,)=U2=i(p—v)P.

useful trick that allows one to consider expressions such as

pep which otherwise would not make any sense.

A. U’=U, U'=0

This is an interesting case sintke=U(t) is a solution of
the ordinary linear LVNE:

U(t)=exd —iHtJU(O)exdiHt]. (40
Let us take a solution stationary with respectrto
ilo(n)) =(U—uH)|e(n)=2,le(w)) (41)
and define
[¢)=exiiHt]]e). (42)
The Lax pair is now
2,[0)=(U(0)~ uH)[¢), 43
1 b~
ilo)= ;(ZM_ZM)W) (44)
with the solution
|p(t,7))=e" M) 0(0,0), (45)

wherea, ,=(1/u)z,(1-2,)t+2,7. The projector39) is 7
independent and satisfies tleear LvNE. This implies that
U[ 1] satisfies the same linear equationtasThe following

lemmas explain the origin of this effect. Consider the general

P defined by Eq(23) andV[1]=V[1](u,v).
Lemma 1. JP=0 implies

V[11?=V?+ (u—»)[P(IV+VI-1vI®)P,

—P, (JV+VI—uJ?P]. (46)
Proof. Eq. (24) implies
P(V=2d)—(V—ud)P=(un—v)PIP 47

and

O
An immediate consequence of Lemma 2 is
Lemma 3. Assume P’=0 and U?=U. Then U[1]?

=U[1] if and only if iP=[H,P], i.e., P satisfies the linear
LvNE.

B. CaseU?—aU#const 1, [U?2—aU,H]=0, U’'=0
Let a be a real numbefU?—aU,H]=0 implies

U(t)=exd —iaHt]U(0)exd iaHt]. (52

Repeating the steps from the previous subsection we obtain
the Lax pair

z,[0)=(U(0)— uH)|9), (53)

. A 1 ~
il @)= L (Aat az,—7.)|e), (54)
where A,=U(0)?2—aU(0). The projectorP is 7 indepen-
dent but possesses a nontrivialependence which follows
from the fact thatu — u# 0. Define the function

Fa“)=<¢<0v0>lexp( i %Aa) #(0,0) (59
satisfying
(et Dot 1) =extli(ay,~ a)IFa(t),  (56)
Wherea, = (1/u)z,(a—2z,)t+2,r. We find finally
U[1](tH)=e YU (0) + (u— u)F (1) ~te~ (mat
X[|@(0,0)(@(0,0)],H]ellmAdtelatt  (57)
=g iaHly, (p)elatt, 59)

Let us note that what maké# 1](t) nontrivial is essentially
the presence of (t) in the denominator. It is precisely this
property of the binary Darboux transformation that is respon-
sible for the soliton solutions in the Maxwell-Bloch cd€4.
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The situation would be of course much less complicated if 1 2
we allowedH to be non-Hermitian since the® would im- st 0 0
mediately evolve in a nonlinear waypecause of the non-
trivial contribution from({¢|¢) in the denominator But then 1 2
the solutionU[1] would be also non-Hermitian. It is pre- u(0)= 0 2 o 0. (60)
cisely the Hermiticity constraint that does not allow for gen-
eration of nontrivial solutions from the seed solutidhsat- 0 0 1
isfying U?=U. 2
V. EXAMPLES U(0) does not commute withl but

We shall now demonstrate on explicit examples how the 10 0
method works. We will concentrate on the first Darboux U(O)Z—U(O)=U(t)2—U(t)=£ 01 0 (61)
transformationU[ 1]. Further iterationsU[2], ...,U[n], 4 0 0 -1

are also interesting and their relation tg 1] is similar to

this between solitons and multisolitons. The problem will be . . B .
discussed in a forthcoming paper. All explicit solutions Wedoes. The eigenvalues O(0)—iH arez, =(1xi \/E)/Z and

give below have been obtained and checked by means & has degeneracy 2. The two orthonormal eigenvectors cor-

Mathematica 3.0. fesponding ta_ are
0 ei w4
A. 3x3 matrix Hamiltonian, a=1 0 1 1 62
Consider the Hamiltonian 1) 1 o= J2 0 ' (62
01 0 ,
10 0 Taking
H= 1| (59 1
0 0 — |0(0,0)=—=(le1)+|¢2)), (63
2 2
and takeu=i (for real u the binary transformation is we getF(t)=cosh{/2) and the internal part defined by Eq.
trivial). We begin with (58) is given explicitly by
|
1+V2 2 0 —1—i
2 1+¢ 24/2 costit/2)
- 0 1-V2 2 1
Uin(t)= 2 1+et 2 coslit/2) 64)
—1+i 1 1
22 costit/2) 2 costit/2) 2

One can check by an explicit calculation that E88) with U(t) for t— +o. As a consequendd[1](t) is neither nor-

Egs.(59) and(64) is a Hermitian solution of malized (TrU[1]+# 1) nor positive and hence cannot be re-
] garded as a density matrix. It is, however, very easy to obtain
iU[1]=[H,U[1]%]. (65  a density matrix solution once we kndw{ 1](t). The prob-

. ~ lem reduces to generating a new solution whose spectrum is
Let us note that the solutio(64) corresponds to an initial shifted with respect to the original one by a number. This can

conditionU[1](0) which is different fromU(0) and is N0 be accomplished by a gauge transformation. Indeed,
longer block diagonal in the basis block diagonalizidg

This is a consequence of the fact tRait not block diagonal, U[l] =e 2IAHIY[1]+ A1)e? ARt (66)

a fact that explains the importance of the degeneracy condi-

tion for z_ [had we choserz, we would have obtained a is also a solution of Eq65), and its spectrum is shifted by
(2x2)®1 block-diagonalP]. The eigenvalues ofJ[1](t) with respect to this ofJ[ 1]. Such positive solutions can be
are nevertheless the same as thosa@J0®). This follows regarded as non-normalized density matrices and are suffi-
immediately from thet independence of spectrum of cient for a well-defined probability interpretation of the
U[1](t) and the fact thatJ[1](t) tends asymptotically to theory. Let us finally note that the fact that spectrum of a
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Hermitian solution is conserved by the dynamics is not acciand non-negative. Positivity 06(0) requires also thaa
dental but follows from general properties of Lie-Nambu >0, a—\4b+a”=0. We will require thath#0 (otherwise

equationg 17]. we will not get a nontrivialp[1]) so that the parameters
finally satisfy 0<4m?<a?+4b<a?. Let us note that(c
B. 3x3 Hamiltonian with equally spaced spectrum —a)=b—m? independently of the choice of sign in the de-

Jgeneracy conditiozy=z.. .

This example is an intermediate step towards a nonline C . . .
b b Denote by|k+m) the joint eigenstate ofi (with eigen-

generalization of the harmonic oscillator. Consider the

Hamiltoni R valuek+m) andp(0)—iH [with eigenvaluec—i(k+m)J;
amiltonian & me &) the corresponding projector By, ,=|k+m)(k+m|. Let
kK+m —m 0 13=|k)(k|+ |k+m){k-+m|+|k+2m){(k+2m|, where the
Hel -m ktm o | 67) three projectors project on eigenstatedHofWe can write
0 0 k+m A=bl;—m?Py, . (70)
whose eigenvalues akg k+m, k+2m, and takeu=i. We  The two eigenstates corresponding to the degenerate eigen-
begin with a non-normalized density matrix value c—i(k+m) are orthogonal. One of them is simply
1 |<P1>:>|k+m>i the other one is|@,)= @i |k)+ by i omlk
< T +2m), where the explicit form ofg; is for the moment
p@at 4b+a’) 0 0 irrelevant. Now take| ¢(0,0))=A|¢,)+B|¢,), |Al?+|B|?
(0)= 1 =1. We find
P 0 ~(a—+4b+a? O]’ 2
2 Fa()=e [ 1+(e*™ '~ 1)[A[2]. (7D)
0 0 c
(68) The above formulas can also be written as
satisfying B
H= >  (k+n)|k+n)k+n|, (72)
b 0 0 n=0m,2m
p(0)*—ap(0)=p(t)>~ap(t)={ 0 b 0 a
0)= = (|k){k|+ |[k+2m)(k+2m|)+c|k+m)k+m
0 0 oo p(0)= 5 ([K)(K| +[ K-+ 2m)(k+ 2m) + clk+ m) (k+m]
(69 1
2
Eigenvalues ofp(0)—iH are zg=c—i(k+m), z.=1[a — 5V4b+aZ(|k+2m)(k| +[k)(k+2m[). (73

+Ja?+4(b—m?])—i(k+m). We need this spectrum to

satisfy a degeneracy conditiory=z, or z,=z_ with creal = The solution is

pLL1(1) = p(t)+2im[ 1+ (€2™ 1~ 1)|A[2] Y| [B|2( bys am+ 1) (Brcs 2m— i) [ K, D) (k+2mt]

1 _ _ 1 _ _
+ —— e AB( s amt i) K DK+ Mt + —= ™ AB( s om— B |K+2m, t)(k+m,t|—H.c.|, (74

V2 V2

where|k+j,ty=e @l k+j).

C. One-dimensional harmonic oscillator

L + L +
27 N\z2Tn
One can directly apply the construction from the above example. We have to choose some three-dimensional subspace which
definesp(0). Setk=3+1 (I, meN), andu=i/(%w). The solution is

We begin with the Hamiltonian

: (75

p[11(t)=p(t)+2im[L+ (€2~ 1)|A|2] Y| [BIX(dics om+ 1) (Brcs am— i [K, 1) (k+2m, ]

1 _ _ 1 _ _
+ Eew”‘Z‘AB(¢k+2m+ D)k, (k+m,t| + EewmztAB(qsmm— ) k+2m,t)(k+mt|—H.c|. (76
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p[1] has interesting asymptotic properties. Assumep. . 3+ 5|1 2 |5
For t>0 p[1](t)=p(t) which suggests that the nonlinear | o) =—i % 12 + NS (80
effect is transient. However, far<0 9"‘3\/5
p[1](t)~p(t) +2iM[( i+ 2mT i) ( Pkt 2m— Pi) Trp(0)=(15+5)/2 and the eigenvalues p{0) are 4, 1,
x|k, t)(k+2m,t|— H.c]. (77 and (5+5)/2.

It follows that the asymptotic dynamics pf 1](t) is linear
but around =0 some sort of “phase transition” occurs, and
the result of this transition is stable. Let us also note that the Assumeibe= e[H,pE] and define
linear evolution is determined by expiaHt) with |aj>2m
andme N . The choice ofais related to the initial condition. p=exd —iHt]pexdiHt]. (81)
We obtain, therefore, an effective nonlinear modification of
frequency of the oscillator. Then

Let us finally makeg; explicit. Assumel =0, m=1, a ’
=5, b=—4, z,=z, [i.e.,, c=(5+.5)/2], A=B=1/\2.

D. Linear equation with nonlinear perturbation

Now ip=[H,p]+e[H,p?]. (82
5((1\ /1] |s\/s|\ 5++5[3\|/3 . _ _ _ .

p(0)= 31 12/\ 2 + 51\3 + 5 12/\3 This is a Nambu-type equation obtained by taking a linear
Hamiltonian function H;=Tr(Hp) and S=Tr(p?)/2

+

5) +€Tr(p%)/3, the average energy is, by definitiogfH)
E 1

3
- 5( (78)  =Tr(Hp)/Trp.

21313

|<P1>:

< Returning to the example of the harmonic oscillator we
> proceed as before but now we chogsei/(ehw). The so-

3
5 (79)  lution becomes

p[1] (1) =€+ 5(0)+ 2im(1+ (€2<™ — 1)| A[2) Y [BIX( by 2m+ B (bics2m— bi0) | K}k + 2m|

el (1+aeHt

1 o, _ 1, _
+ —e“™AB + ¢y) [K(k+m|+ —=e““™AB — ) [k+2m)(k+m|—H.c.
A (br+2m+ i) [K)( | 2 (bx+2m= P )(k+m|

(83

The asymptotic dynamics is again linear and the frequencpe obtained by the substitutidr>C(p)t in the correspond-
shift is Aw=aew. Let us note that according to the defini- ing formulas given above. The multiplication pfby con-

tion of (H) the eigenvalues of energy should be assumed tgtants is a symmetry operation so that we can easily produce
take valuesi (1/2+n) and not (Hae)hw(1/2+n). This  solutions satisfying Tp=1. To get the equation from the

point is essential for the probability interpretation of such aNambu-type formalism one také&p)=2[Trp Tr (p°)]"2
nonlinear theory.

E. Homogeneous modification of the equation F. Two spin-1/2 particles

The equation we have solved is nonhomogeneous which
implies thatp—const p is not a symmetry transformation.
This fact makes it necessary to work with non-normalized

density matrices. In order to obtain a homogeneous equatio ming that the nonlinear dyna}mlcs IS def!ned for a two-
one can utilize the fact that Tal) is time independentas a particle system, the corresponding two-patrticle density ma-

Casimir invariant DefineC()=[Tr o/Tr (03)1¥2 and con- trix has time_—indepe.ndent eigenvalues..When it comes to
sider . (p)=[TrplTr (p7)] reduceddensity matrices of the one-particle subsystems the

situation is less simple. Assume the two-particle system is
ip=C(p)[H,p?]. (84)  described by the Hamiltonian

The above Nambu-type formalism implies that spectra of
Hermitian solutions are time independent. In particular, as-

The equation is one-homogeneouspiand its solutions can H=H;®1+1®H,. (85
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On the one hand, it is clear that traces of the reduced densifjakea=5. We find
matrices are time independent. On the other hand, it can be
shown[18] that

d 9 0 0O
IaTrl((Tr 20)9)=2Tri([ Tr(p?), Tra(p)IHy), 110 9 0 0

(86) Bs=p(0=5p(0)==5| | o & o (90
where Tr, k=1,2 are partial traces. Fgr*+p the right- 0 0 0 5

hand side of Eq(86) dos not in general vanish and this
means that the eigenvalues of the reduced density matrix

Tr,p can be time dependent. What is interesting the average i A H1=0. Takindu=i we find thato(0)—iH has
energies of the subsystems do not change as both, Tr eigenve[llu:sz]l—(.1+i)lzg’L;2—(1+3i)/2 ZZ(—()l 5i)/2,

®1p and Trl®H,p are separately conserved. It follows that where z, has degeneracy 2. The two eigenvectors corre-
although the two subsystems do not exchange average ef
ponding toz, are

ergy, they nevertheless exhibit some kind of collective be-
havior. Since it is difficult to investigate the effect from a
general perspective, it may be instructive to consider an ex- 0 —3+i\7
plicit example of a two-particle system whose density matrix 1 4
can be explicitly calculated by the Darboux technique. lo1)= l@,) =

Consider two spin-1/2 particles described by the Hamil- 4\/5 1+'\/_5 \/E 0

tonian 4 0
91
H=0-a®1l+1® o-b. (87) (1)
To make the example concrete assume thgt1 and|a)]  Assuming
=2. We will start with the non-normalized density matrix
5+y7 O 0 0 1
V7 10(0,0)=—=(l¢1) +[e2)), (92
1l 0 5-y7 0 0 V2
p(0)=3 ,
2l o 0 5+J15 0
0 0 0 5-15 we obtain
(88)
which is written in such a basis that
1
12 0 O Fs(t)= E(e5t+e9t), (93
21 0
H=20@1+180,=| o o | (89
00 2 -1 and p[ 1](t) = exd —5iHt]p;«(t) exd 5iHt] where
Pint(t)
—13—37—-15-i\105 —7i+3\7—-315+i/105
5—7tanh 2 0
8 cosh2 8 cosh2
151+ +7—+/15—iy105 7++15
0 5+ {7 tanh2 V7= V151 JTHVIS
1 8 cosh2 2cosh2
T2 13 —-3y7—+15+iy105 —-15++7—+15+i/105
V715 V7 15 5+15tanh 2 0
8 cosh2 8 cosh2
7i+3\7—315—-i105 7+ 15
V7-3/15-i N7+115 0 5— /15tanh 2
8 cosh2 2cosh2

(94
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Eigenvalue® . (k), k=1, 2, of(hormalized reduced density can also be regarded as a Heisenberg-picture equation of

matrices of thekth subsystems are motion for an operatot), since writing it in the form
1 V15-y7 iU=IH U2]=[HU +
pt(l):_iJ— LA ©5 iU =[H,U2]=[HU+UH,U], (99)
2 20
one obtains a nonlinear Heisenberg equation with the time-
1 A /26Jr 2./105 dependent Hamiltonian operatét(U)=—-HU—UH. The
p.(2)=—F————. (96) choice of non-HermitiatJ (typical of the binary transforma-
2 40cosh2 tion with v+ ) leads to non-Hermitiafd, a fact that may

. - be of interest for a theory of open systems.
In order to check that Eq86) is indeed satisfied one has to Restricting the initial solutiorU to projectors (2=U)

lézihr;ﬁ;nc;;n;il&zse? edensslg mﬁ t;'(c.l(f‘? nc)ez)tioec?ua?g?z IS we have shown that there exists a linear orbit of the Darboux
9 o 1\ 2P P+ transformation Y[1]?=U[1] and, henceJ[1] is a solu-

2 .
+p-(1)°]. Average energies of both subsystems are 0 forion of thelinear LvNE). This shows incidentally that the

anyt, which also agrees with general theorems. The effeck)inary transformation can be used to generate solutions of

can be eliminated if we begin with one-particle Hartree : ' . :
HamiltoniansH, (p) = pH1+ Hyp, Ha(p) = pHa+ H,p, and the or'dmary linear LVNE, a property that may find applica
use the two-particle extension of Hartree Hamiltonians dis—tlons in other contexts.

P Looking more closely at the origin of the simultaneous

g;:tseenﬂslggsl\?\;ezl(ljésl\lt%\;\é (t)?eth(ejecnosrlr?é)orgi?gg;sste?ri \E\t‘oeulzuﬁavcova_riance _of both gquations consti.tuting the Lax pai_r,.(_)ne
time-independent spectra, but the two-particle equatio Gan |_rr_1med|atel_y write other_ Lax pairs whqse compatibility
would not have the form ' r2:ond|t|on.s provide new nonlmee}r Darboux—lntegrable'operg—
tor equations. For example, taking the second equation with
V=H?U+HUH+UH?, J=H3 and assuming the con-

T _ 2
Ipri2=[H1@ 1+ 10H2,p1 ] 7 straintU’ =0 one obtains the compatibility condition

but .
iU=[H2U+HUH+UH?U]. (100

'p1+2=[Malpy) @1+ 18 H(p2) P2, 8 This highly non-Abelian nonlinear equation can be solved by
wherep,.,, p1, p, are density matrices of the composite the binary Darboux transformation in a way similar to this
system and the two subsystems, respectively. The twodescribed above.
particle Hartree equatio®8) cannot be directly solved by
the technique we have developed. ACKNOWLEDGMENTS
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VI. CONCLUSIONS

APPENDIX A: PROOF OF DARBOUX COVARIANCE
We will show that Eq.(23) satisfies

—iay[1]=¢[1](V[1]-\J) (A1)
with V[ 1] given by Eq.(25):

v

—idyP[ LI\, u,v) = l//()\)(V—}\J)[l— mp VTR

+ mzﬁ()\)[(V—MJ)P— P(V=vd)+(u—v)PJIP]

= 1]\, ) (V—\J) + %¢()\)[—(V—)\J)P+(V—,uJ)P—()\— V)PI+(u—v)PIP]

= {110 w)(V—A)+ ;:—Zm)[(x—ma P— (A= »)PI+(u—)PIP]

= [ 1]\, 1, v)(V[1]—NJ).
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APPENDIX B: EULER-ARNOLD TOP ip=[H,p?]. (B1)

The equation we have solved is algebraically similar toR€placinge by structure constants of a general Lie algebra,
the so-called Euler-AmoldEA) equation describing a Lie- andH by a more generat ,,x°x°, wherex are coordinates
algebraic generalization of the classical Euler equations! the Lie algebra, we can generalize EB1) from the ro-
Since the method we have developed is purely algebraic {¢io" @lgebra s@) to other Lie algebras. Such a generaliza-
can be applied also to the EA top. This Appendix describe%'on of Eq.(B2) is what one terms the EA top. Let the s_truc-
the essential ingredients of the EA formulation. ure constants of the Lie algebra Bi,c. The EA equation

_ . ; L

Consider the classical angular momentum vedtand a corresponds Pap 'Q:”‘bcx ¥ From this deflnltpn itis clear .

T . . that the EAp is the Lie-Poisson tensor and in the generic
moment-of-inertia diagonal matrix=diag(l,,l,,l3). De-

. i . case does not have a density matrix interpretation. For this
note by p the 3<3 matrix defined byp_k|=|ek,me;lThe reason there is no direct physical link between the EA and
Hamiltonian function of the Euler top iBi(J)=J-1""3/2. " oy | yN equations. In finite-dimensional Lie algebra, one
Defining the “Hamiltonian operator” byH, = d*H/3J%3J' can use our gauge transformati@®6) to map thisp into a

=, /1 one can write the Euler equations as Hermitian and nonzero-trace matrix.
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