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Brownian motion of an array of harmonically coupled particles subject to a periodic substrate potential, and
driven by an external bias, is investigated. In the linear response(Bmill biag, coupling between particles
may enhance the diffusion process, depending on the competition between the harmonic chain and the sub-
strate potential. An analytical formula of the diffusion rate for the single-particle case is also obtained. In the
nonlinear response regime, the moving kink may become phase locked to its radiated phonon waves; hence the
mobility of the chain may decrease as one increases the external [{8@63-651X98)07712-5

PACS numbdrs): 05.40:+j, 05.45+b

[. INTRODUCTION above problem in terms of Brownian motion of a single par-
ticle under a biased periodic potential. The corresponding
Brownian motion of particles subject to periodic substrateFokker-Planck equation then regdd
potentials and external forces gained great interest due to its
wide applications and practical importance in connection IW - oW d
with transport processes in many fields including damped E:_XWJ”’_)'((
pendula, superionic conductor, Josephson tunneling junction,

vortex motion in hight. oxide superconductors, phase- yere W(x,x,t) denotes the probability distribution of the
locked loops, rotation of dipoles, charge-density wave, disparicle, where the indices of particles are omitted. This
location, and so o1-7]. Although the collective transport gqyation is sufficiently complicated to solve analytically, so
of coupled nonlinear oscillators has been studied recently fofa¢ 4 closed analytical solution in describing the diffusion
the two-dimensional case in relation to studies on adsorbatg,cess is far from obtainable. Based on the inverse-friction
islands and monolayer films on surfad&}, explorations of gy nansion method, we recently gave an analytical perturba-
collective behaviors for the one-dimensionaD) coupled e solution of the mobility for the single-particle case valid
nonlinear oscillators are still fundamentally important in un-., arbitrary friction case§9]. When the interaction among
derstanding many physical systems. In dimensionless fombarticles can no longer be ignored, one has to treat the

the Langevin equation in describing the 1D case might b&qpied caséEq. (1)]. Interactions between particles intro-

. W
XW+ kBT—.) . 3)
ax

written as duce new time scales, which leads to more complicated phe-
N nomena, and furthermore an analytical treatment of the cor-
;(J_ I 75<j +d sin( 277)(1) _ E IV(xj,%i) +F()+E(D), responding Fqkker-PIanck eqqation is _almost impossﬁmilg.
b =1 X One of the simplest models in describing the competition

(1) between the coupling and the substrate potential is the well-
i known Frenkel-Kontorova(FK) system [10], which de-
wherex; represents the coordinate of thé particle andx;  scribes a chain of particles with nearest-neighboring har-
=dx; /dt its corresponding velocityy is the friction coeffi-  monic couplings subject to a periodic potential, where the
cient,d is the height of the periodic potential, abdlenotes interaction is reduced to
the period of the substrate potentiad(x;,x;) reflects the . 5
interaction between thigh andith particles.F;(t) and &(t) V(X ,Xj-1) = s K(Xj=X;—1—a)%, (4)
denote the external driving force and the thermal fluctuation

induced random force on théh particle, respectively. In this whereK anda are the coupling strength and the static length
.of the spring, respectively. Now there are two competing

paper we focus on the case when the external driving i - L Cor
uniformly constant, i.e.E;(t)=F. The thermal noise is fre- engths.a andb. The Wllndmg numbecor the frustration is
quently assumed to be a both spatially and temporally uncoid€fined asé=a/b, which may strongly affect the spatial
related Gaussian-type one, configuration of the_syster_n. Durlng_the past few years, the
FK model was applied to investigations of the ground state
(&(1))=0, (&(V)&())=29kgT 5 ;8(t—t"), (2) of competing systems, and commensurate-incommensurate
phase transitions were found and theoretically expldidd
wherekg is the Boltzmann constant, andis the environ- The theory developed by Aubry stands as one of the deepest
mental temperature. When the interaction among particles iachievements in theoretical comprehension of the physics of
very weak, in many cases one may approximately treat thenodulated phasd42]. Dynamics of the FK chain was also
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explored in relating to many fields, such as the charge- 10
density wave, nanotribology and surface problems, self- ;
organized criticality, and Josephson-junction arrays and lad-

ders[13,14. In the following investigations, we simply skt _— . KTeto
to be 2. Then the Langevin equation connected to the FK 0.01 2'kBT=_O'50
chain can be followed from Ed1): e 3. k72025
XJ+’yXJ+dSInX]:K(XJ+1—2X]+XJ_1)+F+§](I). 1E'4| — T 1T
(5) 00 01 02 03 04 05 06 07 08
K
One may notice that the static length of the spindpes not
enter Eq.(5), but it may play a very significant role in de- 8 o
scribing the motion of the coupled systems. The correspond- 1 k,I=1. “‘\:
ing Fokker-Planck equation reads 61
. oW U oW d IW D 47 P20 0000000070000, \\
=> |- Xjm—t —— ——+ty— xW+kBT— 1 k,T=0.5
j &XJ aXJ (9X] 07X] (9XJ 2 4 AAAAAAAAAAAAAA AAAAAMMAAAAAA
(6) 1 k,T=0.25
. 0 T T T T T T T T T
whereW=W({x;},{x;},t) is the joint probability distribution 0.0 02 04 06 08 1.0
function, and here we use the total potentigfx;}), and for ®
the case of the FK modelU({x})=2; [d(l CcosX) FIG. 1. (a) The diffusion coefficienD of the FK chain vs the

+3K(X+1—%—a)%]. In the high- friction limit one may obtain coupling strengtiK for different temperaturekgT=0.25, 0.5, and
the Smoluchowski equation by averaging velocities, which1.0. The vertical coordinate is shown by using a logarithm scale.
can be written as The diffusion coefficient first decreases against the coupling and
then increases and exceeds the value for the uncoupled case, indi-
cating a competition between order and disorder. For moderate cou-
() pling, the D-K relation is a power typeb) The diffusion rateD
against the winding numbéfrustratiorn) & of the chain for different

where P({Xj},t)=fW({Xj},{5(j},t)de§(j is the reduced temperatureS<BT=O.2_5_, 0.5, and 1.0. The diffusion indicates a
probability distribution for only spatial variables. In many Stong commensurability effect.
cases one is interested in the mobility of the chain:

P 1g 9 (U JP
at oy ox ’

linear and nonlinear response regimes. We find that in the
(v) limit of linear response, the coupling between particles can
K=" (8) greatly increase the diffusion rate, which may be important
in realistic experiments and technologies. Additionally, we
where (-) includes both time and particle averages. Thisshall investigate the commensurability effects. In the vicinity
definition was introduced in discussions of Brownian motionof the golden mead= 562(\/5_ 1)/2, the chain possesses
of a single particle in the biased periodic potential. We will the maximum diffusion coefficient. In the nonlinear response
give a unified solution for the single particle case in theregime, the transport is dominated by the strong resonant
following discussion. Analytical investigations of the behavior due to the competitive phase locking between the
coupled case may be more difficult; therefore we will discussraveling wave and its radiated linear phonons. This reso-
this problem mainly in terms of numerical simulations. Thenance may lead to the suppression of the mobility. In the
collective diffusion coefficientvhich is relevant for studying following investigations, we mainly perform numerical
commensurability effectgl5], is given by the linear part of simulations for the coupled case. The fourth-order Runge-

the mean-square displacement: Kutta integration algorithm is applied and the time step is
1 adjusted according to the numerical accuracy. Periodic

D= "m_E ([xi(t)—xj(O)]Z>. (9) boundary condit_ions _are applied, i.ex;n(t)=x;(t)
2Nt +27M, whereM is an integer that counts the net number of

kinks trapped in the ring, therefore the frustration ds
This coefficient is connected to the mobility in the small =M/N and the spring constant will kie=2# 5. Throughout

force limit (linear responsg[1] by the papery=0.1, andd is set to be 1.
D(T,K,8) =kgT lim u(F,T,K,9). (10)
F—0 Il. LINEAR RESPONSE: ENHANCEMENT

. . . - OF THE DIFFUSION
One may notice that the diffusion coefficient relates to the

temperature, the coupling strength, and the frustration. In In Fig. 1(a), we give the relation between the diffusion
particular, the dependence on the coupling strength and thepefficientD and the coupling strengtk for the incommen-
frustration does not happen for the single-particle case. Studsurate casée.g., the gold mean case= 5g) and for differ-

ies of their dependences are very interesting and significanent temperatures. The first phenomenon we observe is that
In the following discussions, we will investigate both the the relation between the diffusion coefficient and the cou-
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pling strength is not monotonic. For weak coupling where the slope is proportional to the temperature. This in-
strengths, the diffusion process is suppressed. WKen dicates that for small frustrations, the diffusion is suppressed
>K; (the first thresholy the diffusion coefficient begins to by introducing the coupling among particles. The curve be-
increase as one increases the coupling strength. Near thiemes flat wherd further increases. This result indicates that
critical value, the diffusion coefficierd is found to obey the although the particles are coupled, for small frustrations, the
relation diffusion process is still very slow. In this case couplings
between particles act as an additional source of dissipation
D =Do(T)|K—Keq|*™, (1) [18]. This suppression of the diffusion is because the Peierls-
Nabarro(PN) barrier is high(for the coupled case the motion
of the chain is dominated by the moving kink, as pointed out
below. The Peierls-Nabarro barrier corresponds to the barrier
for the kink translation along the chain. It is also the mini-
mum energy necessary to move the kink along the chain.
and the collision of particles with the substrate potential
plays a more significant role, thus one needs a higher acti-
DocKAM (12) vated energy to overcome the PN barrier. A commensurate
' effect is clearly shown when the temperature decreases. For
where the scaling exponent scales with the temperature 48¢ casekgT=0.25, we observe that the diffusion rate
B(T)~T 2 ie., it decreases with increasing the temperaféaches a maximum value at approximatél 3 and 5.
ture. At the high coupling constant, the diffusion coefficient These two values are very close to the golden mean value
may saturate to a value much higher than the single-particlés=(V5—1)/2 and 1~ 8. In order to obtain a higher dif-
case. This behavior is very interesting, because one mu#tsion, one should choose winding numbers near the golden
overcome athreshold couplingbefore one can obtain a mean. This result can be applied to the dynamics of
higher diffusion rate. AdditionallyK.; and K., increase Josephson-junction arrays, where the frustration can be al-
with the temperature; i.e., for higher temperatures, one mugered by changing the magnetic field strenptB].
overcome stronger coupling thresholds to obtain higher dif- The relation betwee® andT is not trivial. We first dis-
fusion rates. The result indicates that if one introduces someuss the noninteracting case. For the very small damping
coupling between the particléslement then a higher dif- constant and high enough temperature case, the diffusion co-
fusion rate than uncoupled systems can be achieved. In mar@fficient was approximately obtained g
realistic applications one hopes that the diffusion process can
be improved as quickly as possible. Our exploration indi- T 2d
cates that for the incommensurate case the coupling between D= W_Bex% — _) (14)
particles may enhance the diffusion process. 2y kgT/’
The above behavior can be heuristically interpreted,

which is a typical consequence tiie competition between . e : .
order and disorderThe mechanism of order comes from the € the diffusion rate increases with the temperature. In the
high damping and low temperature limit, the diffusion is

coupling among patrticles, where the coupling tends to orga- ° . . L

nize the chain to move in a collective way; the mechanism ofjomlnated by thermally activated hoppings; then one has the
disorder is the thermal fluctuation, which tends to destruc ormula[1]

the ordered motion. For very weak couplings, thermal noise

where the scaling exponent(T) decreases with increasing
the temperaturel. At a second threshold }s, D begins
exceeding the single-particle valuk € 0, the noninteracting
case, exhibiting anarray-enhanced diffusion procesBor
the moderate coupling strength, we find thatEh relation
obeys the power law:

may dominate; thus particles cannot organize themselves kT d\1"2 2d 2d
very well to diffuse collectively. In this case interactions D=—[I0(ﬁ” —>—exp( K T)’ (15
between elements introduce another resource of the dissipa- Y B Y B

tion that leads to higher frictiof18]. When the coupling

between particles increases and exceeds a threshold, then figere| (x) is the modified Bessel function. One may find

role of disorder may be supressed, and particles can gradihe same Boltzmann factéArrhenius form exp(—2d/kgT)

a!ly move collectively, Iead_ing to high diffusion rate;. At 55 in the low damping case, except the prefactor. The com-

higher temperatures, the noise produces much more disordgqon factor comes from the thermal-fluctuation-induced hop-

hence the chain needs a stronger coupling to organize thgng effect. In general cases, we are still able to derive a

collective diffusion. _ _ _ unified formula of the diffusion rate. We investigated the
All the above discussions are valid for the incommensuygpjjity and obtained a successively perturbative solution of

rate case. In Fig. (b), we give the numerical result of the e mopility [9]. By using the relation between the mobility
diffusion coefficient against the winding numliéustration 44 the diffusion coefficier(tL0), in the linear response limit,
o for different temperatures, and the coupling strenth  £_.o e have the formula

=1.0, which is strong enough for the chain to diffuse. It can

be found that, for high temperatures, the commensurability

effect is not very significant. Because the curve is symmetric 3 (27)%KkgT

about 3, we only discuss the rangée[0,5]. For small D= Y[ Q(d,T,0A(d,T,0—A(,T,d,0)]’
winding numbers, the relation is a linear drsee Fig. )],

(16)

D=DgyTé, (13  whereQ(d,T,F), A(d,T,F), andA(v,T,d,F) are given by
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L(a)

Q(d,T,F)=J'zwexp[[f(x)—Fx]/kBT}dx,
0

27 —a—k,T=0.1

A(d,'l',F):f exp{[ — f(x)+Fx]/kgT}dXx, | ——KT=02

0 ——k T=0.3

——k,T=0.5
single

A(y,T,d,F)zfozwdxexp{[—f(x)JrFx]/kBT}

x f “q(e)expl[F(£)— FEl/kgTdE,

0
(17)

wheref(x)= —d cosx. The kernel functiomg(x) can be ob-
tained from the operatiofsee Ref[9] for a detailed discus-
sion)

1 .
q00=5 7fte, 18

FIG. 2. The mobility of the chainu varying with the external
driving force F for cases(@ N=8 andM=3 and(b) N=8 and
M =1 for different temperatures. The comparison line corresponds
to the case of a single particle at the temperaky€=0.5. The

wherec is a constant, and is a continued-fraction operator
acting on the constartt

H=1— iRJr 1 l;\*, (19 ipset of(a) is plottgd forF=0.05fO.2 to make a clear_er obsgrva-
yz R 1 . . tion. In many regions the mobility decreases when increasing the
- —2K+‘ K™ external force for the coupled case. This anomalous behavior is a
2y consequence of the competition between the moving kiakeling

o ) n R ] wave and the phonons radiated by the collision between the har-
wherel is the unit operator, and™ andK ™~ are given as monic chain and the periodic potential.

> =0 - > 1 df(x) surability effect, the diffusion rate will be strongly affected
+ . - + o~ 3
K kBTﬁx’ Ko=K"+ JkgTL dX (20 by the commensurability of the system. It may be easily

found that, for both single-particle and coupled-particle sys-
This is a unified formula of the diffusion coefficient valid for tems, an Arrhenius factor always exists, except fbathe
arbitrary damping and temperature cases. single-particle case the factor relates to the potential bar-

When the particles are coupled in an array way, they willrier, but for the chain it relates to the PN barrier.

move collectively, leading to the wave motion. In this case,
the diffusion is mainly related to the kink motidtraveling
wave [14,16]. The kink describes the minimally possible,
topologically stable, compression of the commensurate struc-
ture. The kink is a quasiparticle, characterized by an effec- \When one increases the external driving force, the trans-
tive mass, rest energy and the PN amplitégg . In the low  port behavior becomes a drift one. In this case one usually

IIl. NONLINEAR RESPONSE: SUPPRESSION
OF THE MOBILITY

temperature case, the diffusion rate can be givefl@s uses the mobility = (v )/F to describe the transport process
of the system. In Figs.(2) and Zb), we give the the numeri-
D=D exp( _ @) 21) cal u-F relation for =3 and g, respectively. The mobility

0 keT)’ of the single particle fokgT=0.50 is also plotted to make a

clearer comparison. The first result one may clearly observe
where Dy, is the prefactor that scales withpy asDoxEpg s that when the driving force is small, the mobility of the
for the low damping case ardlyEpy for the high damping chain is much higher than that of the single-particle case. As
case. In the strong coupling case, one may have one increases the force, the mobility decreases. These two
phenomena are much different from the single-particle case
(see the single-particle line in Fig).2Another behavior dif-
ferent from the single-particle case is that at the left side of
the decreasing linege.g., different lines between 0.15 and
Equation(22) indicates that there are two competing terms.0.4 in Fig. 2a) corresponding to different temperatures, see
For very high temperatures, the diffusion rate may be domithe left sideF=0.15], the mobility decreases when one in-
nated byD,. In the low temperature regime, the two terms creases the temperatufsee, for exampleF=0.15 in the
may compete and the exponential term plays an importaritset of Fig. Za); the mobilities corresponding to higher tem-
role. Because the PN barrier closely relates to the commerperatures are smallerin the middle of the decreasing lines

2
Epn

DWCkBT kB_T

(22

-3
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1.0 N~on (@ 1/1/ 6 s
08 ] ——F=0.1
p o5 ——TF=0.05
= K=0.5 5 4] At d
Ffeaidt o R IT N
04 i "-fﬁvgasx» YRR
: K=1.0 ; | o S/Dbf\fy%[\t D\WP\
- \\ a
021 ./ ) f T u !
1 12 23 4
. - 8 v T 44........ o R W S WA VWA LY A VAN SR - P P
%050 02 04 06 08 10 sttt A AN o A pption,
3
3 T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
kT
PE=0 FIG. 4. The mobility of the chaim varying with the tempera-
turekgT for the casedN=8 andM = 3 for different external drives
F=0.05 and 0.1. The mobility remains almost unchanged or de-
creases, which is much different from the single-particle case.
T T T

increases$-. At F~0.47, 8 suddenly drops off to a negative

FIG. 3. (a) The contraction factog varies with the frustratiod value. The.compr-essed topqlc_)gy of the chimk) beCQmes )
with F=0 for K=0.5 and 1.0. Peaks at the ratior 0,12, . .. extended, indicating a transition to a new state. This transi-
shows the commensurate effe@it) 8 against the external forde F'On is also shown ',n Figs.(3 and 2b), Where_ the fT‘Ob"'tY
with §= % The dashed horizontal line corresponds to the value ofu_mps to _a. much h'_gher Vall_Je' W? called t.h's reglme_ with a
p atF=0. The hysteresis loop can be observed due to the bistabil?igh mobility the “high velocity regime.” This effect will be
ity of the system. described in another work, which is beyond our present in-

terest.

[e.g.,F=0.25 in Fig. Za)], the mobility is almost unaffected The resonance behavior between the traveling wave and
by the increasing temperature. At the right hand side of thdts radiated phonons remains robust even when finite tem-
decreasing lines, the mobility increases with increasing theerature effecfthermal noisgis considered. The mode lock-
temperature, which is a natural consequefgimilar phe- ing behavior leads to resonant steps of the averaged velocity
nomenon could also occur at approximatély=0.1). The of the chain when one adiabatically increases the external
above anomalous phenomena are consequences of the intfijrce; thus a decrease of the mobility with increasing forces
action among particles. In fact, one may study the noiselesgan be expected. When the driving force is increased along a
case to find this intrinsic cause. In this case it is fom— resonant Step, the input energy is main|y consumed for am-
22] that the motion of the chain is dominated by the movingp|ifying the excited linear phonon and even exciting new
localized kink, i.e., a distorted traveling wave that is com-jnear modes, while the average velocity of the chain remains
posed of a moving kink and the oscillating linear waveneaqy constant. Thus the coupling between particles here

Eround it k:n thle uEdgrda{mpe%'cas;, Lhe mOVi\?\? krink M&Ycts as an additional source of dissipation. Due to the ampli-
ecome phase locked to its radiated phorida. We have fication of the linear wave, the resonance will be gradually

obtained a mean-field formula of the resonance-velocity . :
spectrum(see Ref[21] for a detailed derivation unstable, and will eventually destruct when one increases the

external force. As one increases the temperature, the excited
) linear waves will be further amplified. At the right end of a

(23)  resonant step these very strong linear waves would destruct
the resonances, thus the mobility increases. This is the so-
. . . called “smearing effect.” At the left hand side of the reso-
The resonance 1S denotfd by a par of Integemg,(ng). nance, the noise can only slightly affect the resonance, hence
Here B=(Z;_; 1/Ncog(x* (1)) is called thecontraction o ¢oling between particles may stabilize the resonance.
factor, Wh'Ch* describes the collective effect of the chain|, yhis case the noise tends to drive the resonance state to a
(kink). Herex* (t) denotes the steady state of syst@nand  |q,yer resonance state; thus the mobility decreases when the
(-) represents the time average. In Figa)3we give the  omperature is increased. This interprets the observation re-
relation betweer and é for F=0. In this case, a commen- ,,rted above. To obtain a deeper understanding, in Fig. 4 we
surate effect can be clearly observed, where some rationglye the relation between the mobility and the temperature
peaks correspond  to  commensurate  cased  for different external forced=0.05 and 0.10 ap=2. F
=0,13,5.5, ... . InFig. 3b), we plot the contraction factor =0.10 corresponds approximately to the left hand side of the
B vs the external driving-. The dashed horizontal line is the resonance anB = 0.05 to the middle of the resonance. It can
value forF=0. It is clearly illustrated thaB varies withF in be clearly shown that, in the middle of the resonance, the
a nonmonotonic way. The value gffor F#0 is higher than  mobility keeps nearly constant, while on the left hand side
that of F=0, i.e., the chain is further contracted when onethe mobility decreases with increasing temperature.

v(mg,my)= 2—?\/,8+4K sinz(

m25ﬂ'
m;
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