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Array-induced collective transport in the Brownian motion of coupled
nonlinear oscillator systems
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Brownian motion of an array of harmonically coupled particles subject to a periodic substrate potential, and
driven by an external bias, is investigated. In the linear response limit~small bias!, coupling between particles
may enhance the diffusion process, depending on the competition between the harmonic chain and the sub-
strate potential. An analytical formula of the diffusion rate for the single-particle case is also obtained. In the
nonlinear response regime, the moving kink may become phase locked to its radiated phonon waves; hence the
mobility of the chain may decrease as one increases the external force.@S1063-651X~98!07712-5#

PACS number~s!: 05.40.1j, 05.45.1b
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I. INTRODUCTION

Brownian motion of particles subject to periodic substr
potentials and external forces gained great interest due t
wide applications and practical importance in connect
with transport processes in many fields including damp
pendula, superionic conductor, Josephson tunneling junc
vortex motion in high-Tc oxide superconductors, phas
locked loops, rotation of dipoles, charge-density wave, d
location, and so on@1–7#. Although the collective transpor
of coupled nonlinear oscillators has been studied recently
the two-dimensional case in relation to studies on adsor
islands and monolayer films on surfaces@8#, explorations of
collective behaviors for the one-dimensional~1D! coupled
nonlinear oscillators are still fundamentally important in u
derstanding many physical systems. In dimensionless fo
the Langevin equation in describing the 1D case might
written as

ẍ j1g ẋ j1d sinS 2pxj

b D5(
i 51

N
]V~xj ,xi !

]xj
1F j~ t !1j j~ t !,

~1!

wherexj represents the coordinate of thei th particle andẋ j
5dxj /dt its corresponding velocity,g is the friction coeffi-
cient,d is the height of the periodic potential, andb denotes
the period of the substrate potential.V(xj ,xi) reflects the
interaction between thej th andi th particles.F j (t) andj j (t)
denote the external driving force and the thermal fluctuat
induced random force on thej th particle, respectively. In this
paper we focus on the case when the external driving
uniformly constant, i.e.,F j (t)5F. The thermal noise is fre
quently assumed to be a both spatially and temporally un
related Gaussian-type one,

^j j~ t !&50, ^j i~ t !j j~ t8!&52gkBTd i , jd~ t2t8!, ~2!

wherekB is the Boltzmann constant, andT is the environ-
mental temperature. When the interaction among particle
very weak, in many cases one may approximately treat
PRE 581063-651X/98/58~6!/7085~6!/$15.00
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above problem in terms of Brownian motion of a single p
ticle under a biased periodic potential. The correspond
Fokker-Planck equation then reads@1#

]W

]t
52 ẋ

]W

]x
1g

]

] ẋ
S ẋW1kBT

]W

] ẋ
D . ~3!

Here W(x,ẋ,t) denotes the probability distribution of th
particle, where the indices of particles are omitted. T
equation is sufficiently complicated to solve analytically,
that a closed analytical solution in describing the diffusi
process is far from obtainable. Based on the inverse-frict
expansion method, we recently gave an analytical pertu
tive solution of the mobility for the single-particle case val
for arbitrary friction cases@9#. When the interaction among
particles can no longer be ignored, one has to treat
coupled case@Eq. ~1!#. Interactions between particles intro
duce new time scales, which leads to more complicated p
nomena, and furthermore an analytical treatment of the c
responding Fokker-Planck equation is almost impossible@3#.
One of the simplest models in describing the competit
between the coupling and the substrate potential is the w
known Frenkel-Kontorova~FK! system @10#, which de-
scribes a chain of particles with nearest-neighboring h
monic couplings subject to a periodic potential, where
interaction is reduced to

V~xj ,xj 21!5 1
2 K~xj2xj 212a!2, ~4!

whereK anda are the coupling strength and the static leng
of the spring, respectively. Now there are two compet
lengths:a andb. The winding number~or the frustration! is
defined asd5a/b, which may strongly affect the spatia
configuration of the system. During the past few years,
FK model was applied to investigations of the ground st
of competing systems, and commensurate-incommensu
phase transitions were found and theoretically explored@11#.
The theory developed by Aubry stands as one of the dee
achievements in theoretical comprehension of the physic
modulated phases@12#. Dynamics of the FK chain was als
7085 © 1998 The American Physical Society
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explored in relating to many fields, such as the char
density wave, nanotribology and surface problems, s
organized criticality, and Josephson-junction arrays and
ders@13,14#. In the following investigations, we simply setb
to be 2p. Then the Langevin equation connected to the
chain can be followed from Eq.~1!:

ẍ j1g ẋ j1d sinxj5K~xj 1122xj1xj 21!1F1j j~ t !.
~5!

One may notice that the static length of the springa does not
enter Eq.~5!, but it may play a very significant role in de
scribing the motion of the coupled systems. The correspo
ing Fokker-Planck equation reads

]W

]t
5(

j
F2 ẋ j

]W

]xj
1

]U

]xj

]W

]xj
1g

]

] ẋ j
S ẋ jW1kBT

]W

] ẋ j
D G ,

~6!

whereW5W($xj%,$ẋ j%,t) is the joint probability distribution
function, and here we use the total potentialU($xj%), and for
the case of the FK modelU($xj%)5( j@d(12cosxj)
1 1

2K(xj112xj2a)2#. In the high-friction limit one may obtain
the Smoluchowski equation by averaging velocities, wh
can be written as

]P

]t
5

1

g(
j

]

]xj
S ]U

]xj
P1kBT

]P

]xj
D , ~7!

where P($xj%,t)5*W($xj%,$ẋ j%,t)) jdẋj is the reduced
probability distribution for only spatial variables. In man
cases one is interested in the mobility of the chain:

m5
^v&
F

, ~8!

where ^•& includes both time and particle averages. T
definition was introduced in discussions of Brownian moti
of a single particle in the biased periodic potential. We w
give a unified solution for the single particle case in t
following discussion. Analytical investigations of th
coupled case may be more difficult; therefore we will discu
this problem mainly in terms of numerical simulations. T
collective diffusion coefficient, which is relevant for studying
commensurability effects@15#, is given by the linear part o
the mean-square displacement:

D5 lim
t→`

1

2Nt(i , j ^@xi~ t !2xj~0!#2&. ~9!

This coefficient is connected to the mobility in the sm
force limit ~linear response! @1# by

D~T,K,d!5kBT lim
F→0

m~F,T,K,d!. ~10!

One may notice that the diffusion coefficient relates to
temperature, the coupling strength, and the frustration
particular, the dependence on the coupling strength and
frustration does not happen for the single-particle case. S
ies of their dependences are very interesting and signific
In the following discussions, we will investigate both th
-
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linear and nonlinear response regimes. We find that in
limit of linear response, the coupling between particles c
greatly increase the diffusion rate, which may be import
in realistic experiments and technologies. Additionally, w
shall investigate the commensurability effects. In the vicin
of the golden meand5dG5(A521)/2, the chain possesse
the maximum diffusion coefficient. In the nonlinear respon
regime, the transport is dominated by the strong reson
behavior due to the competitive phase locking between
traveling wave and its radiated linear phonons. This re
nance may lead to the suppression of the mobility. In
following investigations, we mainly perform numerica
simulations for the coupled case. The fourth-order Run
Kutta integration algorithm is applied and the time step
adjusted according to the numerical accuracy. Perio
boundary conditions are applied, i.e.,xj 1N(t)5xj (t)
12pM , whereM is an integer that counts the net number
kinks trapped in the ring, therefore the frustration isd
5M /N and the spring constant will bea52pd. Throughout
the paperg50.1, andd is set to be 1.

II. LINEAR RESPONSE: ENHANCEMENT
OF THE DIFFUSION

In Fig. 1~a!, we give the relation between the diffusio
coefficientD and the coupling strengthK for the incommen-
surate case~e.g., the gold mean cased5dG) and for differ-
ent temperatures. The first phenomenon we observe is
the relation between the diffusion coefficient and the co

FIG. 1. ~a! The diffusion coefficientD of the FK chain vs the
coupling strengthK for different temperatureskBT50.25, 0.5, and
1.0. The vertical coordinate is shown by using a logarithm sc
The diffusion coefficient first decreases against the coupling
then increases and exceeds the value for the uncoupled case,
cating a competition between order and disorder. For moderate
pling, the D-K relation is a power type.~b! The diffusion rateD
against the winding number~frustration! d of the chain for different
temperatureskBT50.25, 0.5, and 1.0. The diffusion indicates
strong commensurability effect.
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pling strength is not monotonic. For weak couplin
strengths, the diffusion process is suppressed. WhenK
.Kc1 ~the first threshold!, the diffusion coefficient begins to
increase as one increases the coupling strength. Near
critical value, the diffusion coefficientD is found to obey the
relation

D5D0~T!uK2Kc1ua~T!, ~11!

where the scaling exponenta(T) decreases with increasin
the temperatureT. At a second threshold Kc2 , D begins
exceeding the single-particle value (K50, the noninteracting
case!, exhibiting anarray-enhanced diffusion process. For
the moderate coupling strength, we find that theD-K relation
obeys the power law:

D}Kb~T!, ~12!

where the scaling exponent scales with the temperatur
b(T);T21/2, i.e., it decreases with increasing the tempe
ture. At the high coupling constant, the diffusion coefficie
may saturate to a value much higher than the single-par
case. This behavior is very interesting, because one m
overcome athreshold couplingbefore one can obtain
higher diffusion rate. Additionally,Kc1 and Kc2 increase
with the temperature; i.e., for higher temperatures, one m
overcome stronger coupling thresholds to obtain higher
fusion rates. The result indicates that if one introduces so
coupling between the particles~elements!, then a higher dif-
fusion rate than uncoupled systems can be achieved. In m
realistic applications one hopes that the diffusion process
be improved as quickly as possible. Our exploration in
cates that for the incommensurate case the coupling betw
particles may enhance the diffusion process.

The above behavior can be heuristically interpret
which is a typical consequence ofthe competition betwee
order and disorder. The mechanism of order comes from th
coupling among particles, where the coupling tends to or
nize the chain to move in a collective way; the mechanism
disorder is the thermal fluctuation, which tends to destr
the ordered motion. For very weak couplings, thermal no
may dominate; thus particles cannot organize themse
very well to diffuse collectively. In this case interaction
between elements introduce another resource of the dis
tion that leads to higher friction@18#. When the coupling
between particles increases and exceeds a threshold, the
role of disorder may be supressed, and particles can gr
ally move collectively, leading to high diffusion rates. A
higher temperatures, the noise produces much more diso
hence the chain needs a stronger coupling to organize
collective diffusion.

All the above discussions are valid for the incommen
rate case. In Fig. 1~b!, we give the numerical result of th
diffusion coefficient against the winding number~frustration!
d for different temperatures, and the coupling strengthK
51.0, which is strong enough for the chain to diffuse. It c
be found that, for high temperatures, the commensurab
effect is not very significant. Because the curve is symme

about 1
2 , we only discuss the rangedP@0,1

2 #. For small
winding numbers, the relation is a linear one@see Fig. 1~b!#,

D5D0Td, ~13!
his
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where the slope is proportional to the temperature. This
dicates that for small frustrations, the diffusion is suppres
by introducing the coupling among particles. The curve b
comes flat whend further increases. This result indicates th
although the particles are coupled, for small frustrations,
diffusion process is still very slow. In this case couplin
between particles act as an additional source of dissipa
@18#. This suppression of the diffusion is because the Peie
Nabarro~PN! barrier is high~for the coupled case the motio
of the chain is dominated by the moving kink, as pointed o
below. The Peierls-Nabarro barrier corresponds to the ba
for the kink translation along the chain. It is also the min
mum energy necessary to move the kink along the cha!,
and the collision of particles with the substrate poten
plays a more significant role, thus one needs a higher a
vated energy to overcome the PN barrier. A commensu
effect is clearly shown when the temperature decreases.
the casekBT50.25, we observe that the diffusion ra
reaches a maximum value at approximatelyd5 1

3 and 2
3 .

These two values are very close to the golden mean v
dG5(A521)/2 and 12dG . In order to obtain a higher dif-
fusion, one should choose winding numbers near the gol
mean. This result can be applied to the dynamics
Josephson-junction arrays, where the frustration can be
tered by changing the magnetic field strength@19#.

The relation betweenD andT is not trivial. We first dis-
cuss the noninteracting case. For the very small damp
constant and high enough temperature case, the diffusion
efficient was approximately obtained as@1#

D5
pkBT

2g
expS 2

2d

kBTD , ~14!

i.e., the diffusion rate increases with the temperature. In
high damping and low temperature limit, the diffusion
dominated by thermally activated hoppings; then one has
formula @1#

D5
kBT

g F I 0S d

kBTD G22

→
2pd

g
expS 2

2d

kBTD , ~15!

where I n(x) is the modified Bessel function. One may fin
the same Boltzmann factor~Arrhenius form! exp(22d/kBT)
as in the low damping case, except the prefactor. The c
mon factor comes from the thermal-fluctuation-induced h
ping effect. In general cases, we are still able to deriv
unified formula of the diffusion rate. We investigated th
mobility and obtained a successively perturbative solution
the mobility @9#. By using the relation between the mobilit
and the diffusion coefficient~10!, in the linear response limit
F→0, we have the formula

D5
~2p!2kBT

g@V~d,T,0!D~d,T,0!2L~g,T,d,0!#
, ~16!

whereV(d,T,F), D(d,T,F), andL(g,T,d,F) are given by
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V~d,T,F !5E
0

2p

exp$@ f ~x!2Fx#/kBT%dx,

D~d,T,F !5E
0

2p

exp$@2 f ~x!1Fx#/kBT%dx,

L~g,T,d,F !5E
0

2p

dx exp$@2 f ~x!1Fx#/kBT%

3E
0

x

q~j!exp$@ f ~j!2Fj#/kBT%dj,

~17!

wheref (x)52d cosx. The kernel functionq(x) can be ob-
tained from the operation~see Ref.@9# for a detailed discus-
sion!

q~x!5
1

c
gĤc, ~18!

wherec is a constant, andĤ is a continued-fraction operato
acting on the constantc:

Ĥ5 Î 2
1

g2
K̂1

1

Î 2
1

2g2
K̂1

•••K̂2

K̂2, ~19!

where Î is the unit operator, andK̂1 and K̂2 are given as

K̂15AkBT
]

]x
, K̂25K̂11

1

AkBT
Fd f~x!

dx
2F G . ~20!

This is a unified formula of the diffusion coefficient valid fo
arbitrary damping and temperature cases.

When the particles are coupled in an array way, they w
move collectively, leading to the wave motion. In this ca
the diffusion is mainly related to the kink motion~traveling
wave! @14,16#. The kink describes the minimally possibl
topologically stable, compression of the commensurate st
ture. The kink is a quasiparticle, characterized by an eff
tive mass, rest energy and the PN amplitudeEPN. In the low
temperature case, the diffusion rate can be given as@17#

D5D0expS 2
EPN

kBTD , ~21!

whereD0 is the prefactor that scales withEPN as D0}EPN
1/2

for the low damping case andD0}EPN for the high damping
case. In the strong coupling case, one may have

D'CkBTF12
1

8S EPN

kBTD 2G . ~22!

Equation~22! indicates that there are two competing term
For very high temperatures, the diffusion rate may be do
nated byD0 . In the low temperature regime, the two term
may compete and the exponential term plays an impor
role. Because the PN barrier closely relates to the comm
ll
,

c-
-

.
i-

nt
n-

surability effect, the diffusion rate will be strongly affecte
by the commensurability of the system. It may be eas
found that, for both single-particle and coupled-particle s
tems, an Arrhenius factor always exists, except thatfor the
single-particle case the factor relates to the potential ba
rier, but for the chain it relates to the PN barrier.

III. NONLINEAR RESPONSE: SUPPRESSION
OF THE MOBILITY

When one increases the external driving force, the tra
port behavior becomes a drift one. In this case one usu
uses the mobilitym5^v&/F to describe the transport proce
of the system. In Figs. 2~a! and 2~b!, we give the the numeri-
cal m-F relation ford5 3

8 and 1
8 , respectively. The mobility

of the single particle forkBT50.50 is also plotted to make
clearer comparison. The first result one may clearly obse
is that when the driving force is small, the mobility of th
chain is much higher than that of the single-particle case.
one increases the force, the mobility decreases. These
phenomena are much different from the single-particle c
~see the single-particle line in Fig. 2!. Another behavior dif-
ferent from the single-particle case is that at the left side
the decreasing lines@e.g., different lines between 0.15 an
0.4 in Fig. 2~a! corresponding to different temperatures, s
the left sideF50.15#, the mobility decreases when one in
creases the temperature@see, for example,F50.15 in the
inset of Fig. 2~a!; the mobilities corresponding to higher tem
peratures are smaller#. In the middle of the decreasing line

FIG. 2. The mobility of the chainm varying with the external
driving force F for cases~a! N58 and M53 and ~b! N58 and
M51 for different temperatures. The comparison line correspo
to the case of a single particle at the temperaturekBT50.5. The
inset of~a! is plotted forF50.0520.2 to make a clearer observa
tion. In many regions the mobility decreases when increasing
external force for the coupled case. This anomalous behavior
consequence of the competition between the moving kink~traveling
wave! and the phonons radiated by the collision between the h
monic chain and the periodic potential.



th
th

in
le

ng
m
ve
a

cit

in

-
on

r
e

ne

e

nsi-

a

in-

and
em-
-
city

rnal
es
g a

am-
w
ins
ere
pli-
lly
the

cited
a
truct
so-

o-
nce

nce.
to a
the
re-
we

ure

the
n
the
ide

o
ab

de-

PRE 58 7089ARRAY-INDUCED COLLECTIVE TRANSPORT IN THE . . .
@e.g.,F50.25 in Fig. 2~a!#, the mobility is almost unaffected
by the increasing temperature. At the right hand side of
decreasing lines, the mobility increases with increasing
temperature, which is a natural consequence~similar phe-
nomenon could also occur at approximatelyF50.1). The
above anomalous phenomena are consequences of the
action among particles. In fact, one may study the noise
case to find this intrinsic cause. In this case it is found@20–
22# that the motion of the chain is dominated by the movi
localized kink, i.e., a distorted traveling wave that is co
posed of a moving kink and the oscillating linear wa
around it. In the underdamped case, the moving kink m
become phase locked to its radiated phonons@14#. We have
obtained a mean-field formula of the resonance-velo
spectrum~see Ref.@21# for a detailed derivation!:

v~m1 ,m2!5
m2

m1
Ab14K sin2S m2dp

m1
D . ~23!

The resonance is denoted by a pair of integers (m1 ,m2).
Here b5^( j 51

N 1/Ncos„(x* (t)…& is called thecontraction
factor, which describes the collective effect of the cha
~kink!. Herex* (t) denotes the steady state of system~5!, and
^•& represents the time average. In Fig. 3~a!, we give the
relation betweenb andd for F50. In this case, a commen
surate effect can be clearly observed, where some rati
peaks correspond to commensurate casesd

50,1,12 , 1
3 , 2

3 , . . . . In Fig. 3~b!, we plot the contraction facto
b vs the external drivingF. The dashed horizontal line is th
value forF50. It is clearly illustrated thatb varies withF in
a nonmonotonic way. The value ofb for FÞ0 is higher than
that of F50, i.e., the chain is further contracted when o

FIG. 3. ~a! The contraction factorb varies with the frustrationd

with F50 for K50.5 and 1.0. Peaks at the rationald50,1,12 , . . .
shows the commensurate effect.~b! b against the external forceF
with d5

3
8 . The dashed horizontal line corresponds to the value

b at F50. The hysteresis loop can be observed due to the bist
ity of the system.
e
e

ter-
ss

-

y

y

al

increasesF. At F'0.47,b suddenly drops off to a negativ
value. The compressed topology of the chain~kink! becomes
extended, indicating a transition to a new state. This tra
tion is also shown in Figs. 2~a! and 2~b!, where the mobility
jumps to a much higher value. We called this regime with
high mobility the ‘‘high velocity regime.’’ This effect will be
described in another work, which is beyond our present
terest.

The resonance behavior between the traveling wave
its radiated phonons remains robust even when finite t
perature effect~thermal noise! is considered. The mode lock
ing behavior leads to resonant steps of the averaged velo
of the chain when one adiabatically increases the exte
force; thus a decrease of the mobility with increasing forc
can be expected. When the driving force is increased alon
resonant step, the input energy is mainly consumed for
plifying the excited linear phonon and even exciting ne
linear modes, while the average velocity of the chain rema
nearly constant. Thus the coupling between particles h
acts as an additional source of dissipation. Due to the am
fication of the linear wave, the resonance will be gradua
unstable, and will eventually destruct when one increases
external force. As one increases the temperature, the ex
linear waves will be further amplified. At the right end of
resonant step these very strong linear waves would des
the resonances, thus the mobility increases. This is the
called ‘‘smearing effect.’’ At the left hand side of the res
nance, the noise can only slightly affect the resonance, he
the coupling between particles may stabilize the resona
In this case the noise tends to drive the resonance state
lower resonance state; thus the mobility decreases when
temperature is increased. This interprets the observation
ported above. To obtain a deeper understanding, in Fig. 4
give the relation between the mobility and the temperat
for different external forcesF50.05 and 0.10 atd5 3

8 . F
50.10 corresponds approximately to the left hand side of
resonance andF50.05 to the middle of the resonance. It ca
be clearly shown that, in the middle of the resonance,
mobility keeps nearly constant, while on the left hand s
the mobility decreases with increasing temperature.

f
il-

FIG. 4. The mobility of the chainm varying with the tempera-
turekBT for the casesN58 andM53 for different external drives
F50.05 and 0.1. The mobility remains almost unchanged or
creases, which is much different from the single-particle case.
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In conclusion, in this paper we investigated the collect
transport behavior of the underdamped Frenkel-Kontor
chain under a constant external driving force and the in
ence of the environmental noise, and found complicated
haviors. Results reported in this paper should be valuable
applications in many physical cases, such as charge-de
waves, Josephson-junction arrays and ladders, and tribol
Some results need a theoretical exploration, and stu
along this line are currently in progress.
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