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A fine-scale, quasistatic model was used to study the removal of a disordered adhesive layer by a uniform
force applied perpendicular to the layer. The model includes randomly chosen bonding forces of adhesion
between imaginary “gridblocks” within the layer and a substrate, as well as cooperative forces of cohesion
between adjacent gridblocks. For small cooperative forces, the amount of failure varies continuously with the
applied forceF. From infinitesimal failure at a minimum threshold value of the force, the fraction of the layer
removed,f,(F), increases to encompass the total layer, as the applied force increases. This layer-removal
function sharpens as the cooperative forces are increased; i.e., the slope of the layer-removal function,
Af,/AF, increases, so that the amount of failure is more and more sensitive to changes in the applied force.
Indeed, this slope diverges with an exponent0.85 when the cooperative forces are approximately 2.1 as
large as the adhesive forces. At small values of the cooperative forces, the layer-removal initiates at many
locations and spreads to nearby blocks. The perimeter enclosing the area removed is fractal with a dimension
D,~1.3. Increasing the cooperative forces causes the failure to initiate at fewer locations in the array, but to
spread farther because of the larger cooperative forces. At the critical value of 2.1 for the ratio of cohesive to
adhesive forces, the number density of these initiation sites goes to zero, and the “correlation’{ésmegdye
range of the spread of failuréliverges with exponeni~0.5. The characteristic time required for failure also
diverges at the same critical value of cohesive/adhesive ratio with an expdreft9. Therefore, increasing
the cooperative forces of cohesion effects a transition from the continuous response reminiscent of systems
with depinning transitions to the discontinuous response characteristic of standard material fracture. Indeed, the
divergent correlation length signals a transition to the long-range elastic forces that have enabled mean-field
(fiber-bundlg models to be used in the study of standard material fracf8¥E63-651X98)07012-3

PACS numbe(s): 81.40.Np, 62.20.Mk, 02.70.Ns, 61.43.Bn

[. INTRODUCTION threshold(i.e., lowers the stress at which layer removal oc-
curs and decreases the range of stresses required to advance

Material failure is an issue of major importance and hasfrom infinitesimal to complete layer removyalFor strong
therefore, been widely studied for well over a century. Muchcohesive forces, we observed the familiar first-order-like be-
of this work has naturally focused on the buildup of stress ahavior associated with a steplike threshold, as in fiber-bundle
defects, the formation of cracks, the energy changes durinmodels[14,24], where nearly total removdi.e., failure oc-
the process, and the dynamics of the crack propagftien curs above threshold but no failure occurs below threshold.
21]. A number of guasimicroscopic or microscopic modelsin subsequent papers, we focused on the continuous failure
have been used to study these important quest{@s in the model for small cohesive forces, discussing its simi-
12,22,23. Recently, it has been appreciated that the londarities and its differences compared to depinning transitions
range of the elastic interactions permits a mean-field treatand sandpile model25]; in another paper, we focused on
ment of ordinary fracturind18], which treatment can be the size and shape of the fragments formed during the re-
mapped onto the democratic fiber-bundle mdd€l-17. moval of the layef26]. In this paper, we focus on the tran-

Although similar in spirit to much of this quasimicro- sition from continuous failure to discontinuous failure at a
scopic modeling, our model has two distinct material“critical” ratio of the strengths of the cohesive and adhesive
strengths: an adhesive strength, which tries to maintain corferces.
tact of the layer with the substrate, and a cohesive strength, In general, this model describes the strength of a layer
which tries to maintain the integrity of the layer. The sepa-adhering to a substrate in the presence of a uniform force that
ration of these two effects in the model enables the indeperattempts to remove the layer. Although this model was mo-
dent study of various features of material failure, which aretivated by problems encountered in the removal of the layer
less easily disentangled in the more traditional models. Thef filter cake from cylindrical filterSsee Fig. 1 during the
applied stress causes failure at a threshold that scales primbackpulse cleaning cycle of hot gas filtration for pressurized
rily with the adhesive force. However, the cohesive forcedluidized bed combustiof27—-30, more mundane realiza-
introduce cooperative effects that lead to the familiar buildugtions include the flaking of paint off of a wall or the adhesion
of stress at defects; this both lowers and sharpens the failuf tape. A similar model was used to study the electrical
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a) perimental results for removal of dust cake from filtE38];
S 7 7 7 7 7 7 ' also the sharpening of the layer-removal function is consis-
/ [ ] [ ] tent with the practical engineering observation that cleaning
{ [ L] efficiency is poor if the cake is too thin and that efficiency
\ \ \ \ \ \ \ \ \ \ \ \ impr_oves with a thicker cak[éB4]_. _ _
\ 1\ T\ Figures 2 show the near-midpoint failure patterns for a
N N N G N N N N AN given realization at a variety of cohesive strengths. As dis-

cussed in the next section, “thickness factofl,"is propor-
tional to the cohesive strength, being the ratio of cohesive to
adhesive strengths. For all cases in Fig. 2, failure starts at
initiation sites(the darkest regionsand progresses to nearby
sites (the gray scale lightens as time evolyethere is no
failure in the white regions. An important consequence of the
cohesive forces can be seen in these failure patterns. Increas-
ing the cooperative forces) decreases the number of initia-
tion sites andii) increases the range of failure. In Sec. IV,
we present quantitative evidence that the number density of
the initiation sites decreases to zero for an infinite system,
while the range of the failure spreading out from these ini-
tiation sites diverges. In Sec. V, we show that the character-
istic times required for failure diverge at the same critical
FIG. 1. (a) Cylindrical filter cake subdivided into blocks.(b) ~ Value of the cohesive strength.
Simplified “planar” model with periodic boundary conditions con-

necting they=0 andy=200 edges to mimic the cylindrical sym- Il. DESCRIPTION OF THE FINE-SCALE MODEL
metry. (c) A small cross section showing forces and displace- ) o )
ments. In the physical system motivating this model, a layer of

filter cake is deposited on a cylindrical candle filter to some
ductivity of a | h in that K the | thicknesst; then a backpulse of compressed air is applied
conductivity of a 1ayer, Nowever, in that work, the 1ayer 1€~ ¢, , iha inside of the candle filter to blow the filter cake off,

mained on the s_ubstrate b_ecause thE.} adhesive f_orces W%I%aning the filter. The force actually responsible for remov-
very strong, making the ratio of cohesive to adhesive forceT<hg the layer of filter cake is due to the pressure dRp
approximately zero, and fragmentation occurred within the

. across the layer. Details specific to the filter cake removal
layer because of lateral thermal expansion of the SUbStratf%nction have been discussed in R4B4—26. In this sec-
[31]. i :

| del. | ina the st th of th hesi tion, we present a simplified version of the model.
f n oufrf mto € t lncr_?_asn}g € str_eng 0 ¢ € ?c} ?S'Ve In our model, the layer is gridded into rectangular blocks.
orces effects a transition from continuous material failure,y " 4o, systerfishown in Fig. 1b)] is assumed to be flat,

reminiscent of depinning transitions and sandpile models . " : -
. X ) ; - ing in the x-y plane; however, continui round th I-
[32], to the discontinuous material failure, reminiscent of&.Fy g in the x-y plane; however, continuity around the cy

. , inder is preserved by periodic boundary conditions inyhe
otrdtljnqry f:ﬁptutre ar?f.' thef f|ber-burEQIe mo‘i[ﬂsé.‘l_lai. " direction. The layer-removal forde is applied, perpendicu-
studying this transition from continuous 1o diSCONUNUOUS . 1 e layer, at the base of each block; as a result each
material failure, we focus ofi) the layer-removal function

(threshold in earlier papers, e.fR4]), which we define to be block will be displaced by some small amoustin the z

the force dependence of the fraction of mass remoyiex: d_irection. This _applie(_d force Wi_II be b_alanced by the adhe-
the spatial characteristics of the regions of failure; &iid '+ siveand cqheswe SPring forcasith spring cons.tantka.and
the characteristic time required for the material faiI’ure K%, respectwely. Equation(1) presents the ba_s Ic rela_t lon be-
The layer-removal function is defined as the fraciionaltween the applied forcE on a block ar =3(i, ) and( and

) . j are even integers determining the location alongxthady
mass(number of blocksthat is removed at a given value of directions, respective}yand the displacements of that block
applied force, i.e.f,(F)=Ilim_,. m(F,t)/My. For values '

of the cohesive forces below the transition, this layer re-and the surrounding blocks:

moval, f,(F), is a continuous functioi25] whose slope F=k? e~k 1j(ei_5— &1 ) HKE 1 j(ei2)— 1))
increases to infinity as one approaches the transition at a s ’ ’ ’ ' ' ’
critical value of the ratio of cohesive to adhesive forces. For +Kj_q(eijo—ei ) TK il jo—ei )} 1)

stronger cohesive force@bove the transition the layer-

removal function is steplike to within the accuracy of our Here eachk? is the spring constant of the adhesive spring
finite-size simulations. In Sec. lll, we characterize the depenbetween thei,j) block and the substrate, and edchis the
dence of this layer-removal function upon the cohesive tcspring constant of the cohesive spring between two adjacent
adhesive strength ratio. We find that the slogé&,,/dF, of  blocks. The model is defined so that the average stiffness of
the layer removal diverges at a critical value of this cohesiveéhe adhesive springs is one-half, and the average stiffness of
to adhesive ratio, while the position of the midpoint of thethe cohesive springs i¥/2 (i.e., (k=3 and (k%) =T/2).

layer function,F,,,, varies smoothly through this transition. This parametef, which we have called the thickness param-
The shape of these layer-removal functions and their shargeter, gives the ratio of average cohesive to average adhesive
ening with thickness are in qualitative agreement with exforce. As discussed in Reff24—-26, this thickness param-
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T=1.0 ’ T=1.7

T=1.5 A T=2.0

T=2.5

(b)

FIG. 2. Failure patterns for &systems with thicknesss=1.0, 1.5, 1.7, 2.0, and 2.5. The mass was removed first in the darkest region
and last in the lightest gray region. Mass still adheres to the substrate in the white regions. These show the effect of increasing cohesive
forces on decreasing the number of failure initiation siges of early time failureand in increasing the growth of the regions of failure.
Except for the change in thickness, the realizations are ideritieal same sets of random numbers, relatively weak bonds in the same
locations, etg.

eter depends upon the thickness of the filter cake layethat cohesive spring will break. As with the spring constants,

which is sensible since the cohesive strength of a layethe strengths are chosen so that the average value of the

should depend upon the thickness of that layer. Equatipn  strength of the adhesive springs is given($?)=3 and so

may now be solved for the displacement of any one blockhat the average value of the strength of the cohesive springs

(i.j), € ;. Given the distributions of stiffnesses and the valuejs given by(S? = T/2. This model is similar to many models

of the forceF, one guesses values of the displacements angs quasistatic, tensile fracturing in the scientific literat{e

then iterates this set of equations for all of the displacement$2]. However, to our knowledge, this is the only modeling

&j until the displacements stabilize between iterations. |fstudy of the material failure process in which the Sing|e_

any adhesive spring is stretched beyond its strer&fthi.e.,  particle forces and two-particles force are clearly delineated
a in that their relative effect can be tuned through a parame-

khjei > S @  terT.

_ ) o _ ) o It is natural to assume that the observed time dependence
that spring will break. Similarly, if any cohesive spring is of the filter cake removalon the order of a few millisec-
stretched beyond its strengt, i.e., onds [35] is much slower than the elastic relaxation of the

. layer of filter cake(e.g., the inverse frequency of elastic
ki,j+1|8i,j_8i,j+2|>slc,j+lv € waves or the speed of sound—on the order of fractions of
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millisecond$ [36,37. This justifies a quasistatic process pass 709
where the layer reaches elastic equilibriias given by Eq.

(1)] between successive breaking of bonds; this quasistatic 3
model seems especially justified near the threshold, where S0x10°%
the failure occurs slowly, requiring many time steps. The
computations in our quasistatic model proceed as folldiys: g
with the layer, at equilibrium, under no load, the removal 30x10%
force F is applied;(ii) the layer reaches a new elastic equi- g

T
dF=0.020

60x103-

40x10%F

librium (the set of equations for the displacements is iterated Zomsg

until stabilization is reached(iii) then at the end of this time 10x10°%F

step, each bond weaker than the actual stress is broken, Eqs e 3
(2) and(3); (iv) steps(ii) and(iii ), which together constitute o e e e s o
one time step, are repeated, until a final time step at which no time step

further bonds break. Once some bonds have broken at the

end of a time step, the nearby bonds will be under a greater FIG. 3. Mass removed vs time for K4nodels with thickness
stress, increasing the likelihood that they will break at thel =1.5 at forcesF=F,,+dF from dF=-0.010 todF=0.020.
end of the next time step. In this cascade, more bonds bredkuz=0-2578-0.0003. Each datum represents the average of
than would have broken without the interaction mediated by"(t:F) over ten different realizations for the same time and the
the cohesive bonds. Thus the cooperative effect resulting%gne value ofiF (difference between the applied force and the
from the cohesive bonds produces a cascade that lowers a point force for each of the realizations

sharpens the threshold, i.e., strengthening the cohesive bonds . .
both decreases the removal force at which cleaning occurgass 1s removed. In all cases, there is a short preremoval

and decreases the range of forces required to progress fropr?”c’d (weakly force dependenwhere l:_)onds are breaking
infinitesimal to complete layer removal. but no mass is removed. Then, mass is removed at a force-

In reality, the “cohesive” forces may be even more sig- dependent rate up to a limiting fractional valug,(F)

nificant than the “adhesive” forces. The “thickness param- — Mt~ M(F,)/ My beyond which no more mass is re-
eter” T is the ratio of these two forceg@lso of the two m_oved or bonds broken_. The transition from C(_)ntm_uous to
breaking stressgsso that in Eqs(1)—(3) varying T will vary discontinuous behaw.orll_s most qlearly shown in this forqe
the relative effect and importance of the adhesive and coh lependence of the_ limiting fractional mass rer_noval._Thls
sive forcegand strengths Therefore, the natural variables in '@yer-removal functionf ,(F) (threshold function in earlier
our problem are(i) the applied removal forc&; (i) the  Papers, €.g., Ref24]) is shown in Fig. 4 forT=1.5. This
thickness parametd, (iii ) the number of time stepéy) the thrt_ashold function is best char{:\cterlzed by the midpoint lo-
system size, i.e., the number of blocks; as well(@sthe ~ cation where half of the mass is removéd,,, and by the
distributions of stiffnesses and strengths. To reduce the conff@imum slopex=(df,/dF)ma (slope at the inflection
plexity of the results, we will assume that the applied re-Peint, which occurs near the midpoint _
moval forceF is constant and uniform, but the model is not _ 1hus far, all of the data presented are for systems with
limited to this simplification. In all of our simulations, we ?4 000 blocks thﬁt are 320 blocks long and 200 blocks
have chosen a uniform distribution of stiffnesses. Each of the@round the filter.” We have performed numerous simula-
spring constants was chosen randomly from a flat distributions for systems with sizes from 875 to %40’ blocks.
tion. However, relying on the spring analogy for the filter Figure 5 shows the values fét,, and x = (dfy/dF) max for
cake, we assume that thicker bonds between granules in the

filter cake will be both stiffer and stronger since they can be f (F) [
mimicked by more springs connecting the granules; for this

reason, each strength was strongly correlated with the stiff- 08 7
ness, in that each strength was chosen randomly from a i
Gaussian distribution, which was sharply peaked about the 06 -
value for that spring constant. Using a more sharply peaked L
distribution of stiffnesses and strengths would only serve to 04l -

further sharpen this threshold, narrowing the range of re-
moval forces over which the failure occurs; this would par-
tially mask the effect we are investigating4].

PR T S T T T S T B S SR B
0.245  0.25 0.255 0.26 0.265 0.27 0.275 0.28 F

Ill. DIVERGENCE IN THE RESPONSE OF MASS
REMOVAL TO APPLIED FORCE FIG. 4. Layer-removal function vs applied force for thickness
. ) T=1.5 fractional mass removefd,(F)=M(o,F)/M,, vs applied
Figure 3 shows the mass(F,t) (i.e., number of blocks  force F, whereM ,=64k. The open circles give the= results

removed as a function of applied forée and timet for  fom Fig. 3. The+ symbols give results from individual realiza-
thicknessT=1.5, where the cohesive forces are one and ajons from the runs used to determifg,, for each realization; in
half times as large as the adhesive forces for several valuesis figure, these data were shifted horizontally so that the midpoint
of the removal force. For large enough forces, all of the massorce for each realization was at 0.2578, which is the average value
(here,m,=64k) will be removed; while for small forces, no of the midpoint force.
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FIG. 5. The response of the layer removal to applied force, i.e.,
x=(df,/dF)ax (X, right vertical axi$ and the value of the force FIG. 6. Log-log plot of x(T)=(df,/dF)max Vs {(Tc/T)—1}.
required for removal of one-half of the mass, iy, (open circles, The solid line shows the power-law fit to the d§E. (4)].
left vertical axig plotted vs thickness for a variety of system sizes
from 875 blocks(the smallest symbols4k, 16k, and lastly 64  value of the strength ratio seems optimistic given all the
(the largest symbo)sThe solid lines show the fits discussed in the possible sources for error; we believe that a more conserva-
text. tive value is a more reliable estimate of the real uncertainty,

e, Te=2.19313.

a variety of thicknesses as well as a variety of system sizes; Figure 7 illustrates how well the data féy,(F) are char-
the standard errors that are smaller than the plot symbols atgterized by these fits tp=(d f,,/dF) naxandF 1, in Fig. 6.
not shown. The solid lines show the data fits discussed ban Fig. 7, these fits are used in an attempt to collapse the data
low. These data suggest a second-to first-order transition aty the fractional layer-removal function froffi=0.5 up to
thickness between 20T<25. The data for x  T=2.0 for the two largest system sizes. All of the fractional
= (dfn/dF)maxin this figure show that any divergence must |ayer-removal functions have a form similar to tfie=1.5
occur forT>2. Data from 64 systems forT=2.5 show &  case in Fig. 4. The fit t& 1/, [38] shifts the midpoints of the
discontinuous layer-removal function with 94.8% removal afjayer-removal functions horizontally so that all occur at zero
threshold and 0.006% removal for a force 0.001 belowyariaple; the fit to the maximum slope, E@), spreads the
threshold; this determines an upper boundl'ef2.5 on the  yange of the horizontal variable so that all the near-midpoint
location of the transition. slopes in Fig. 7 have the value 1 in terms of the new variable.

Because of fluctuations near the transition, finite-size efThe success of this collapse supports our focusing upon the
fects cause the data to become very noisy and essentialfyarametrization of the threshold function using midpoint and
uninterpretable near the transition; however, the data seeg)ope. This success also argues that the threshold function
interpretable and, therefore, hopefully, relialii¢ up to T can be described by a single universal function, where all of

~0.9 for the 875-block system§i) up toT~1.2 forthe &  the thickness dependence only serves to scale the applied
systems(iii) up toT~ 1.3 for the 1& systems, andv) upto  force variable.
T~2 for the 64k systems. All of the results presented are
from simulations for these ranges where the data are only O W T R AR
moderately noisy and seem accessible to reliable interpreta- m i . 1
tion. Furthermore, the results presented have a negligible 08 - 5
size dependence in the above ranges; however, above the ] gf ]
transition, there is evidence of the usual decrease in strength 06 - ; .
with increasing system siZd ]. i ;‘- ]
While the data fory=(df,,/dF).x and f,(F) are con- 04
sistent with a transition of some sort forI'<2.5, the data i ]
for F,, are unaffected by this transition, decreasing 02 - .
smoothly through the transition; a simple polynomial fit to . ]
the data for 4, is shown in Fig. §38]. The apparent diver- o_: e T A ‘0‘5- —
gence iny=(df,,/dF)nax is Well represented by a power- ' L@ [F-F (M]
law fit as shown in Figs. 5 and 6, b

T —y FIG. 7. The fits in Fig. Hi.e., x(T) andF5(T)] are used to
y=(df /dF) =A<—c— 1) (4) collapse data fof ,(F) for both 64 (large symbolsand 1& (small
m max T ' symbol$ data for thicknesse$=0.5, 1, 1.15, 1.2, 1.25, 1.3, 1.5,
and 1.7. This shows how successfully the two fits collapse the
where A=26.4+1.0, y=0.85+0.03, andT;=2.10+0.02,  threshold functiorf (F) to a single scaling function of the variable
with an R=0.993, which indicates that the transition occursy(T) [F—F(T)], which shifts the midpoint and adjusts the
at T.~2.1. The standard error in the fitting of the critical slope.
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IV. CHARACTERIZING THE CLEANING PATTERNS

gthu

The effect that increased cohesive strength has upon thig 490
cleaning patterns is illustrated by Fig. 2. Increasing the_:I i .
strength of the cohesive forces both decreases the number ¢3 I A
sites at which failure initiates and increases the eventuats
spread of the failure, until ai =2.5 the failure initiates at
one site and spreads throughout the array.

From these patterns, it also seems clear that the regions ¢ 100
failure are compact with a rough boundary. In an earlier i
paper[25] we found that the area was indeed compact and 0 22 ‘ e . 03
that the fractal dimension of the length of the perimeter en- 01 ! (T/T) -1
closing the cleaned regime wés,=1.30=0.05 for T=0.5 ¢
and 1.0, using a variety of system sizes. Fractal analyses of FIG. 8. Log-log plot of the correlation lengttx, solid line—
the perimeter for the simulations under consideration heréeft-hand vertical axisand the number density of initiation sites

are consistent with this value of the fractal dimension for all(solid circles, dashed line—right-hand vertical axis {(Tc/T)
thicknesses up to the transition. — 1} for both 64 and 1& block systems. The lines show the power

law fits, Egs.(5) and(6).

"Corr:
s320|q puesnoyy Jad
s211s Yymodb jJo saquinN

We have defined a quantity similar to correlation length in

an attempt to qugntlfy the qbserv@be F|g 2 decrease in equally flawed alternative, may be the best estimate of the
the number of sites at which failure initiates and the Ob'correlation length
served increase in the range of the spread of failure as the The results for the number of initiation sites and average

thickness parameter is increased to its value at the transitiop ser size are given in Fig. 8. The number of initiation sites

This “correlation” length is defined as the root-mean-square ; :
. . L X n(T) goes to zero, with a near-linear dependefstepe 1 on
(rmg) radius of independently initiating clusters, which are (D g P

'the log-log plo}, as the strength of the cohesive forces ap-
in turn, defined using the following rule. In determining g-log plok g v P

: . . ) gproach their critical value,
whether a new failure regime was correlated with previou
failure, a somewhat arbitrary cutoff distance of @.%as c A
employed, wherer is the lattice spacing, i.e., the distance n(T)~B(?—1) : )
between two adjacent blocks. At any given time step in the
quasistatic process, if localized failure occurs in a regimgyhere B=2.6+0.2 and A =0.92+0.07, with anR=0.99.
that is further than 28from any sites in an existing cluster, The power-law fit to the divergence in the square of the
this is interpreted as a new initiation site starting a new clusgorrelation length closely matches the divergence in the re-

cluster, this new failure belongs to that existing cluster. Thq g

distance of 2.8 was chosen because several instances were

observed where a block this close to a large cluster was 5 o Te “2v

removed; and the removal of such a block clearly was cor- ¢=efl 71 - ®)
related to the large cluster. More distant correlated removals

were not observed. wheree?=122+6 and 2=0.99+0.04, with anR=0.99. In

The number of these independent clusters is the numbehese fits, we assumi,=2.1.
of failure initiation sites, which we observed to decrease with  Of course, the nonrigorous definition of correlation length
increasing thickness: see Fig. 2. To estimate the size of thig a concern. However, as stated above, for the stronger co-
cluster, the rms radius of each cluster is then determinediesive forces, we expect that this correlation length will
these rms radii are then averaged over all the clusters in theverestimate the number of initiation sites and underestimate
realization and then over all realizations. the correlation length. Therefore, if this definition errs, it errs

Clearly, these definitions are not perfect: if failure occurshy makingn(T) larger than it should be angf smaller than
in a region near to, but further than 2:3rom, a region of jt should be, so that, if anything(T) might go to zero faster
previous failure, the new failure will be treated as a newand £2 might diverge faster than shown in Fig. 8. This only
failure initiation site even though it may be correlated with strengthens the quantitative evidence for a divergent correla-
the earlier, nearby failure. Therefore, for larger cohesivajon length. These long-range correlations at and above the
forces, the number of initiation sites for thicker systems mayransition are just the long-range interactions in standard
be overestimated, since failure more distant than 2.3 latticg|astic systems, which validate the use of mean-field theory

spacings may be correlated to earlier failure. Also, foror fiber-bundle models for studying standard fracture
smaller cohesive forces, the number of initiation sites may b§14,18:|_

underestimated, since two regions of failure closer than 2.3

Iatt!ce_ spacings may be unco_rrelateq. In any case, this pre- \, 5 \VERGENCE OF THE CHARACTERISTIC TIME

scription provides a quantitative estimate of the number of AT THE CRITICAL POINT

independent initiation sites and the subsequent size of the

clusters that grow from these initiation sites. Lacking a rig- Not surprisingly, the onset of the instability that we have

orous procedure for determining correlation lengths one  been studying is associated with a divergence in the time
has in thermodynamic phase transitions, this, or someequired for the process. Fortunately, it is simpler to develop
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above this minimum value. However, in an earlier paper, we
found that quantitative comparison with depinning transi-
tions was problematic, perhaps because of the cohesive
forces[25].

For strong enough cohesive forces, the response is discon-
tinuous, in that there is no dynamical response infinitesimally
below a threshold value of the applied force, while infinitesi-
mally above this threshold value a significant fraction of the
layer is removed. This is similar to the behavior of fractures
in a material under tensile stress, in that at a threshold value
of the stress a macrocrack occurs, which will spread from

- one side of the sample to the other at this constant value of
001 o1 YT/ the stress. Because these elastic forces are so long (tege
¢ stress field will decrease as\t/from the edge of the crack
FIG. 9. The characteristic tim&(T) vs[(T./T—1)], Eq. (10); [1]) fracturing can be studied using mean-field theory, which
the straight line shows a power-law fit to the data, &o. is known to be valid if the interactions are long range, and
which is equivalent to the more traditional fiber-bundle
a reliable definition of characteristic time than it was a defi-model [14—-18§. Our model provides an opportunity for
nition for the correlation length. We choose to define a timestudying the onset of this long-range, elastic interaction at
associated with the midrange of the threshold functmg., the transition.
dF=0 in Fig. 3, because this midrange seems to be so We have presented evidence that a transition from con-
robust, in that size dependen¢e5], also Figs. 5 and)7and  tinuous to discontinuous layer removal occurs at a critical
even variations between different realizati¢@5] are unim-  value of the ratio of cohesive to adhesive forces. This ratio is
portant here. At a removal force equalRg,,, where half of  approximately 2.1. Although such quantitative details may
the mass will eventually be removed, we define the charamot be correctly predicted for an infinite system because of
teristic timed to be that time at which one quarter of the total the notoriously subtle size dependence of material failure
mass is removed, i.e., the midpoint mass for this applied1,12,25, the evidence supporting the qualitative behavior
force, m(Fy,0)=3m(F,,%) (e.g.,, m=16k and #=t near the transition is convincing for finite systerfikis tran-
~27 fordF=0 in Fig. 3. At this timet= 6, m(F;,,t) is  sition occurs when the strength of the two-patrticle forces is
changing the most rapidly, so that there will be less error irenhanced by increasing the thickness parameter to a critical
determining this time than there would be for a time wherevalue at which the qualitative nature of the failure changes
the mass were varying slowly. Figure 9 shows the graph ofrhis approach to a critical value of the thickness appears to
this characteristic time plotted versQ6T./T)—1], where be associated with a power-law divergence (0f the re-
again, we use the critical value of cohesive forces from ousponse of layer removal to changes in the applied fdjice,
fit of x=(df,,/dF) . in Figs. 5 and 6;T.,=2.1. The diver- a rather crudely defined correlation length, &id a char-
gence in this characteristic time is well represented by thecteristic time for the removal. This behavior is extremely

100 |-

time scale ©

power law reminiscent of the thermodynamic behavior near second-
A order critical points, whera transition occurs when the ef-

0=A E_ 1) @) fect of two-particle forces (energy/kT) is enhanced by a tem-
0T ' perature reduction to a critical temperature at which the

system begins to phase separdthis approach to the critical
where A;=12.83t0.35 and A=0.88£0.03, with an R temperature is also associated with power-law divergences in
=0.998. Again a value of the exponent similar to that for the(j) the response of the order parameter to ordering fieigl,
force response of the failure in E4) and to that for the the response of volum¥ to pressureP, i.e., dV/dP near

correlation length in Eq(6) is obtained. vapor-liquid transitions; the response of magnetizatibio
magnetic fieldH, i.e.,dM/dH for ferromagnetic transitions;
VI. CONCLUSIONS etc), (ii) the correlation length, an@ii) the relaxation time

[39-41. We have allowed the apparent similarity between

lE our lsimpledmogelhof the remgval of an.adf;esive lay.er’the dynamical critical point of our model and the thermody-
we have located and characterized a transition from continlsamics of critical points to influence our definitions of the

ous to disco_n_tinuous dependence_ of the dynz_imical respon?)%wer laws, Eqs(4), (6), and (7).
upon the driving force. In the regime of continuous depen-
dence of the dynamical response, the behavior is not unlike
the behavior for depinning transitions or sandpile models,
where the system has no response below a minimum value of
the driving force(depinning threshold and where the re- We gratefully acknowledge the support of the U.S. De-
sponse increases uniformly from zero as the force increasgmrtment of Energy, Office of Fossil Energy.
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