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Volume changes in binary alloy ordering: A binary classical density functional theory approach

David L. Olmsted
The Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02254

~Received 8 June 1998!

The chemical ordering transition in a binary alloy is examined using classical density functional theory for
a binary mixture. The ordered lattice is assumed to be obtained from the disordered lattice by a volume change
only, as inL12 ordering from a face centered cubic chemically disordered crystal. By using the simplest
possible approach to the density functional calculation, a very tractable expansion is obtained which consists of
the same terms as the lattice gas formalism, where the lattice is implicitly taken as fixed, plus additional
interaction terms and an additional entropy term. This additional entropy term represents a lowest order
approximation to the vibrational entropy change.
@S1063-651X~98!02812-8#

PACS number~s!: 64.60.Cn, 61.43.2j
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I. INTRODUCTION

Chemical ordering transitions in alloys have been stud
by a variety of methods, including a lattice gas analog
classical density functional theory@1–4#. Since lattice
changes also occur on ordering, it would be valuable to
able to include them along with chemical changes in a si
lar approach. One approach would involve a set of variab
including a global elastic strain tensor along with chemi
occupation variables@5#. A question that arises in such a
approach is the appropriate form for the ideal~noninteract-
ing! free energy. It has been shown that the occupation v
ables alone can be treated as a complete system, and th
ideal free energy is the ideal mixing entropy. The occupat
variables, plus a global strain tensor, are not a complete
tem, however. One consistent set of variables is the pos
and momentum variables for a binary mixture. The appro
taken here in developing a lattice gas plus strain tensor
mulation of ordering is to look to the classical density fun
tional theory of the binary mixture, and simplify it to th
lattice. Since the part of the strain tensor that most dire
affects the entropy is the volume, the other terms will
ignored here.

Several forms of classical density functional theory ha
been used to study the freezing of binary liquids. Since
concern here is the ‘‘entropy’’ terms, the simplest form
the theory will be used. Here, instead of looking at the fre
ing of a liquid, the free energies of two solid structures@the
disordered, and the~partially! ordered# are compared. A
similar approach was used by Sengupta, Krishnamurthy,
Ramakrishnan to study the fcc-bcc interface@6#, and a form
of density functional theory was used to study the order
of hard sphere mixtures@7#.

II. CLASSICAL DFT FOR MULTIPLE SPECIES

Classical density functional theory~DFT! of mixtures was
used to study the freezing of binary hard sphere a
Lennard-Jones fluids@8–13#. Consider a system with a fixe
volumeV, andm species of classical particles.~The primary
interest herein ism52.! The partition function is computed
in the grand canonical ensemble at fixed values ofV, the
PRE 581063-651X/98/58~6!/7040~7!/$15.00
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temperature T, and the chemical potentialsma , a
51, . . . ,m.

Classical DFT guarantees the existence of a functionaV
of the average densitiesra(rW) which is minimized by the
equilibrium average densities, and which evaluated at
equilibrium densities is equal to the grand potential. Fo
noninteracting system this can be computed explicitly and
@9#

V ideal@$ra%#5b21(
a

E
V
drW ra~rW !@ ln„la

3ra~rW !…2bma21#,

~1!

whereb51/(kBT), andla is the de Broglie thermal wave
length of speciesa. Note that Eq.~1! is simply the sum over
the species of the ideal free energy of each species.

Let b21VF@$ra%#[V@$ra%#2V ideal@$ra%# and expand
F about some particular uniform~liquid! state, with densities
$ra0%. Truncating at second order@14# in the difference in
densities,dra , and lettingNa[*VdrW ra(rW), one obtains as
the expansion of the mixed functional for the grand potent

bV@$ra%#5VF@$ra0%#1(
a

E
V
drW ra~rW !@ ln„la

3ra~rW !…21#

2(
a

bmaNa1(
a

E
V
drWCa

~1!
„ra~rW !2ra0…

1
1

2 (
ab

E
V
drW1 drW2Cab

~2!~rW1 ,rW2!„ra~rW1!2ra0…

3„rb~rW2!2rb0)1O~dra
3 !. ~2!

Multiplying out the products, and collecting constant a
linear terms, this can be rewritten as:

bV'(
a

E
V
drW ra~rW !ln ra~rW !1V f01(

a
DaNa

1 1
2 (

ab
E

V
drW1 drW2Cab

~2!~rW1 ,rW2!ra~rW1!rb~rW2!, ~3!
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where

f 05F@$ra0%#2(
a

Ca
~1!ra0

1 1
2 (

ab
ra0rb0E

V
drW2 Cab

~2!~0W ,rW2!, ~4!

Da52bma1 ln~la
3 !211Ca

~1!2(
b

rb0E
V
drW2 Cab

~2!~0W ,rW2!.

~5!

By assuming that the uniform fluid at a particular total de
sity and set of concentrations is a local minimum ofV, Da
could be eliminated in favor of the liquid densities$ra0%.
However, here the task is to compare trial ordered so
with the disordered solid at temperatures well below
melting point.Da will therefore by retained for now, and
later eliminated using the disordered solid as the refere
state.

The constantf 0 drops out of the difference in grand po
tential between two states, and so is irrelevant to determin
the transition state and temperature. It can be determine
terms of the pressure of the reference disordered state.

Cab
(2)(rW1 ,rW2) is symmetric inab, and depends only on

urW22rW1u. ~Note that for fixed $ma% these liquid direct-
correlation functions are needed as a function of tempera
in a range including the ordering temperature. In many s
tems this would involve extrapolation beyond reasona
temperatures for the liquid, and so this computation wo
not be feasible as written. The purpose here, however,
more emphasis on understanding the appropriate form o
expansion for the solid, than on a computation using ac
liquid data. Given the appropriate form of the expans
stated in terms of the occupation variables and strain ten
other sources for the parameters are likely to be more s
able to actual numerical work.!

III. DENSITY ANSATZ FOR DISORDERED
AND ORDERED SOLID

Consider a fixed volumeV. A solid is described in terms
of a set of real-space lattice vectors$RW i%, with N sites in the
volume V. Making the simplifying assumption that there
exactly one atom per site,N5(aNa . In generalV depends
on $RW i%, and an assumption needs to be made as to w
possible lattices are being considered. To keep the situa
as simple as possible, assume that both the disordered
and the trial states for the ordered solid have the same la
structure, so that$RW i% depends only onN. ~Up to an arbitrary
choice of origin for the lattice.! So eitherN, or the lattice
constant, or the average total density can be considere
one parameter, and there is one constraint on the ve
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$Na%. Think of r[N/V as the parameter, butN will be
written for rV whenever convenient.

As in prior work on the freezing of hard-sphere mixtur
@8–13#, assume that the density of each species at a sit
given by an isotropic Gaussian distribution centered at
site. ~In their work on the fcc-bcc interface, the authors
Ref. @6# used a more general form of ‘‘anisotropic Gaussi
distributions’’ and found that there was significant anis
ropy in the bcc density, but very little in the fcc density.! For
simplicity assume that this is cut off at the Wigner-Seitz c
about the lattice point.~And very quickly the further assump
tion will be made that the Gaussian distributions are shar
peaked enough that the integral over the cell is equal to
integral over all space. Thus the assumption is essent
that the Gaussian distributions are sharply enough pea
that there is no overlap between the distributions at differ
sites.! Referring to the cell atRW i asUi , then, inUi ,

ra~rW !5la iexp$2ga i urW2RW i u2%. ~6!

Here, for a binary alloy,N and $lAi%, $gAi%, and $gBi% ( i
51 . . .N) parametrize the density ansatz, while$lBi% is
then fixed by the assumption of one atom per cell. For
disordered solid,la i and ga i are independent ofi, so the
parameters areNd , lAd , gAd , andgBd .

Define

ca i[E
Ui

drW la iexp$2ga i urW2RW i u2%. ~7!

At this point the limit ga i→0, la i→ra0 gives the uni-
form binary liquid. However, the states to be considered
those withga i large enough that*Ui

can be approximated by

*. For large enoughga i ,

ca i'la i S p

ga i
D 3/2

. ~8!

The assumption of one atom per cell then takes the fo
(aca i51.

IV. RESULTS AND DISCUSSION

The computation ofV from Eq. ~3! for the trial states
described by the density ansatz proceeds as follows: Ins
ing the density ansatz in the first term of Eq.~3! gives

(
a

(
i

H ca iXlnS ca i

~p/ga i !
3/2D23/2CJ ~9!

The last term depends not only onCab
(2)(rW1 ,rW2) at the lattice

points, but also near the lattice points. Assuming t
Cab

(2)(rW1 ,rW2) changes slowly enough over the length sc
(1/ga i)

1/2 that it can be expanded to second order, the re
is
1

2 (
ab

(
i j

ca icb j H Cab i j
~2! ~p!1

1

4 S 1

ga i
1

1

gb j
D“ rW

2U
rW5RW i j ~r!

Cab
~2!~rW !J , ~10!
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Cab i j
~2! ~r![Cab

~2!
„RW i j ~r!…, ~11!

RW i j ~r![RW j~r!2RW i~r!. ~12!

Thus

bV'(
a

(
i

H ca i lnS ca i

~p/ga i !
3/2D J 1V f0

1(
a

S Da2
3

2DNa1
1

2 (
ab

(
i j

ca icb jCab i j
~2! ~r!

1
1

2 (
ab

(
i j

ca icb j S 1

4D S 1

ga i
1

1

gb j
DFab i j ~r!, ~13!

where

Fab i j [“ rW
2urW5RW i j ~r!Cab

~2!~rW !. ~14!

The equilibrium value ofga i in this approximation is

ga i5
1
6 (

b
(

j
cb j Fab i j ~r!. ~15!

Upon substituting Eq.~15! into Eq. ~13!, the final term can-
cels with the3

2 in the third term. This substantially simplifie
the algebra, so all of the expressions forV and DV below
assume prior minimization with respect toga i , and when
ga i appears it is a shorthand for the right hand side of
~15!.

For a binary alloy,cBi can be eliminated. It will prove
helpful to emphasize the relationship between eliminat
cAi or cBi by using the more symmetricalmi[cAi2

1
2. Thus

mi ranges from21
2 to 1

2. Then, for a binary alloy,

bV'(
i 51

N H S 1

2
1mi D lnS 1

2 1mi

~p/gAi!
3/2D

1S 1

2
2mi D lnS 1

2 2mi

~p/gBi!
3/2D J 1V f01N„D21G2~r!…

1Nmave„D11G1~r!…1
1

2 (
i 51

N

(
j

mimjCi j
~2!~r!,

~16!

where

mave[
1

N (
i 51

N

mi , ~17!
.

g

Ci j
~2!~r![CAAi j

~2! ~r!1CBBi j
~2! ~r!22CABi j

~2! ~r!, ~18!

G1[
1

2 (
j

CAAi j
~2! ~r!2CBBi j

~2! ~r!, ~19!

G2[
1

8 (
j

CAAi j
~2! ~r!1CBBi j

~2! ~r!12CABi j
~2! ~r!, ~20!

D2[
1

2
~DA1DB!, ~21!

D1[~DA2DB!, ~22!

and additionally let

G3[(
j

Ci j
~2!~r!5(

j
CAAi j

~2! ~r!1CBBi j
~2! ~r!22CABi j

~2! ~r!.

~23!

Now consider a disordered state, specified by a conc
tration m and an overall densityr. At at given temperature
this state will be in equilibrium for a pair of chemical pote
tials mA and mB . ~Now buried in D1 and D2 .! For this
disordered state, the mixed functional for the grand poten
per unit volume is

bV

V
'rH S 1

2
1mD lnS 1

2 1m

~p/gAd!
3/2D

1S 1

2
2mD lnS 1

2 2m

~p/gBd!
3/2D J

1 f 01r„D21G2~r!…

1rm„D11G1~r!…1r
1

2
m2G3~r!,

~24!

gad~m,r!5
1

6 (
b

cb(
j

Fab i j ~r!.

These can be minimized with respect tor andm to obtain the
equilibrium density and concentration at a particularmA and
mB , or vice versa.

Taking the disordered state (md ,rd! as the reference
~equilibrium! state, and minimizing Eq.~24! to eliminate the
chemical potentials, gives
2D15G1~rd!1mdG3~rd!1 lnS 1
2 1md

~p/gAd!
3/2D 2 lnS 1

2 2md

~p/gBd!
3/2D 1

3

2 S 1

2
1mdD ] ln gAd

]m U
md ,rd

1
3

2 S 1

2
2mdD ] ln gBd

]m U
md ,rd

,

~25!
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2D25G2~rd!1rd

dG2

dr U
rd

1mdrd

dG1

dr U
rd

2
1

2
md

2G3~rd!1
1

2
md

2rd

dG3

dr U
rd

1
1

2
lnS 1

2 1md

~p/gAd!
3/2D 1

1

2
lnS 1

2 2md

~p/gBd!
3/2D

2
3

2 S 1

2
1mdDmd

] ln gAd

]m U
md ,rd

2
3

2 S 1

2
2mdDmd

] ln gBd

]m U
md ,rd

1
3

2 S 1

2
1mdD rd

] ln gAd

]r U
md ,rd

1
3

2 S 1

2
2mdD rd

] ln gBd

]r U
md ,rd

, ~26!

bV

V U
md ,rd

5 f 02rd
2dG2

dr U
rd

2mdrd
2dG1

dr U
rd

2
1

2
md

2rd
2dG3

dr U
rd

2
3

2 S 1

2
1mdD rd

2] ln gAd

]r U
md ,rd

2
3

2 S 1

2
2mdD rd

2] ln gBd

]r U
md ,rd

,

~27!
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where the formula forD1 has been used in computingD2 .
For studying the ordering transition, this is the desir

result for the disordered state. However, it is interesting
take a detour and ask what this says about the disord
state.

One question to ask is the following: ‘‘How does the de
sity vary with concentration at constant pressure?’’ The pr
sure~for an equilibrium state! is given by2p5V/V. Thus

2bp5 f 02rd
2dG2

dr U
rd

2mdrd
2dG1

dr U
rd

2
1

2
md

2rd
2dG3

dr U
rd

2
3

2 S 1

2
1mdD rd

2] ln gAd

]r U
md ,rd

2
3

2 S 1

2
2mdD rd

2] ln gBd

]r U
md ,rd

, ~28!

and switching back fromm to c for a moment, this is

bp52 f 01
1

2
r2H cA

2 dGAA

dr
1cB

2 dGBB

dr
12cAcB

dGAB

dr J
1

3

2
cAr2

] ln gAd

]r
1

3

2
cBr2

] ln gBd

]r
. ~29!

Gab[(
j

Cab i j
~2! ~r!. ~30!

For a givenp, m, and T, this equation implicitly gives the
equilibrium density of the disordered solid, assuming it e
ists.

Some insight into this equation can be gained by imag
ing thatGab is dominated by nearest-neighbor contribution
One then expects that for a single species the equilibr
density is given by a density near the minimum ofGAA .
~That is, the nearest-neighbor distance in the solid is appr
mately equal to the distance at which the liquid’s direct c
relation function has its main peak.! If the two species are
significantly different in size, it is plausible to assume th
the terms involvingGab in Eq. ~29! are more important than
d
o
ed

-
s-

-

-
.
m

i-
-

t

those involvinggad . Suppose the latter are small. At th
pressure wherebp1 f 050, the density corresponding to th
pressure is given by

05cA
2 dGAA

dr
1cB

2 dGBB

dr
12cAcB

dGAB

dr
. ~31!

Further simplifying by assuming CAB
(2)(rW)5„CAA

(2)(rW)
1CBB

(2)(rW)…/2, this reduces to

05cA

dGAA

dr
1~12cA!

dGBB

dr
. ~32!

Considering nearest-neighbor contributions only, and
suming that bothCAA

(2)(rW) and CBB
(2)(rW) can be expanded a

quadratics about their minima over the relevant region,

GAA~r nn!5KA1 1
2 kA~r nn2r A!2,

GBB~r nn!5KB1 1
2 kB~r nn2r B!2, ~33!

wherer nn is the nearest-neighbor distance corresponding
given density, then Eq.~33! gives

r nn5
cAkA

cAkA1~12cA!kB
r A1

~12cA!kB

cAkA1~12cA!kB
r B .

~34!

If kA5kB , this makesr nn linear in concentration.
Returning to the analysis of the ordering transition, t

next step is to compute the difference inV between a trial
state and an equilibrium disordered state. At the transit
both the reference disordered state and the~partially! ordered
state at the transition will be global minima ofV, and the
difference inV will be zero. Hopefully the approximation o
V is good enough, and the range of trial states provided
the density ansatz is generous enough, that the solution
vided will approximate the actual transition. Only trial stat
with ga i , given by the last line of Eq.~16!, need to be
considered. The trial states are therefore considered
function of r and $mi%. md , rd , gAd , andgBd refer to the
equilibrium states for the given chemical potentials and te
perature. Combining Eqs.~16! and ~25!–~27!,
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DbV'(
i 51

N H S 1

2
1mi D lnS 1

2 1mi

1
2 1md

D 1S 1

2
2mi D lnS 1

2 2mi

1
2 2md

D J 1
3

2 (
i 51

N H S 1

2
1mi D lnS gAi

gAd
D1S 1

2
2mi D lnS gBi

gBd
D J

2
3

2
~N2Nd!H S 1

2
1mdD rd

] ln gAd

]r U
md ,rd

1S 1

2
2mdD rd

] ln gBd

]r U
md ,rd

J
2

3

2
N~mave2md!H S 1

2
1mdD ] ln gAd

]m U
md ,rd

1S 1

2
2mdD ] ln gBd

]m U
md ,rd

J 1N„G2~r!2G2~rd!…2~N2Nd!rd

dG2

dr U
rd

1Nmave„G1~r!2G1~rd!…2~N2Nd!mdrd

dG1

dr U
rd

1
1

2 (
i 51

N

(
j

~mi2md!~mj2md!Ci j
~2!~r!

1NS mave2
1

2
mdDmd„G3~r!2G3~rd!…2

1

2
~N2Nd!md

2rd

dG3

dr U
rd

. ~35!
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It should be emphasized thatga i in Eq. ~35! is not an inde-
pendent parameter, but is given by Eq.~15!. The first term is
the ideal mixing entropy for a pure Ising-like model. It is th
same term that appears in the lattice gas formalism. M
interesting is the second term~corrected by the next two
terms, which cancel its linear parts! which also derives from
the ideal part of the free energy. (gad /p)23/2 has units of
volume, and represents the approximate volume over wh
the atom is likely to be. Writing this term as

DbV'...2(
i

H cAilnS gAi
23/2

gAd
23/2D 1cBi lnS gBi

23/2

gBd
23/2D J 1¯ ,

~36!

it can be thought of as representing the difference in an
tropy term based on the average volume available to
atom to wander in. The assumption of Gaussian distributi
approximates each atom as an independent oscillator f
this point of view. We can therefore consider this express
as a lowest nonzero order approximation to the vibratio
entropy difference. Note that this ‘‘entropy’’ term, whic
does not appear in the lattice gas formalism, does not dire
depend on the density. Rather, it depends ong, which is the
variable describing the probability distribution for an ato
about its site, in our very simple density ansatz. This ma
sense. In the lattice gas model there is just an occupa
variable at a site, with no idea of a fluctuation of an ato
position about a site. The nonoverlapping Gaussian distr
tions we have adopted correspond to attaching an atom
each site with an independent harmonic spring.~Where the
spring constant depends on both the overall density, and
state of chemical order.! In this picture it is not surprising
that the entropy can be represented in terms of the mix
entropy plus an entropy term based purely on the effec
volume an atom occupies about its site. Thus this term r
resents a lowest-order estimate of the vibrational entr
change on ordering. Even in this simple approximation, ho
ever, this term depends on both the overall density and
state of chemical order, as seen below.
re

h

n-
e
s
m
n
l

tly

s
on

u-
to

he

g
e
p-
y
-
e

The remaining terms can be rewritten as

DbV'¯1
1

2 (
i 51

N

(
j

~mi2md!~mj2md!Ci j
~2!~r!

1N~mave2md!„G** ~r!2G** ~rd!…

1
1

2
N„G* ~r!2G* ~rd!…2

1

2
~N2Nd!rd

]G*
]r U

rd

,

~37!

where

G* ~r![2G2~r!12mdG1~r!1md
2G3~r!

5cAd
2 GAA~r!12cAdcBdGAB~r!1cBd

2 GBB~r!,

G** ~r![G1~r!1mdG3~r!

5cAdGAA~r!1~cBd2cAd!GAB2cBdGBB~r!.

~38!

The first term is the second order term that appears in
lattice gas formulation, andC(2) are available for many sys
tems from experiment or first principles calculations. No
that it is most conveniently written in terms of the dire
correlation function at the trial lattice constant. The last te
is O„(r2rd)2

… @the O(r2rd) portions of the two subterms
cancel on expandingG* (r) aboutrd#, and can be estimate
from the bulk modulus of the reference state. The mid
term is O„(mave2md)(r2rd)…, and can be estimated from
the concentration dependence of the density of the di
dered alloy.

Equation ~35! is the primary result. It is expressed i
terms of the desired variablesr and $mi%. Except for the
‘‘vibrational entropy’’ terms the coefficients can be es
mated using available information. It is used to predict t
transition from the disordered to the ordered state in
same way as the lattice gas analog of classical density fu
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tional theory is. Given$rd ,md%, the disordered state alway
minimizes the free energy, by construction. As the tempe
ture is lowered, there may be another minimum of the f
energy. The highest temperature where there is an ord
state which minimizes the free energy, and for which the f
energy difference is zero, is the predicted transition@15#. If
the ordered state at the transition differs from the disorde
state by a finite amount the transition is predicted to be fi
order. For a second order transition the ordered state wil
equal to the disordered state at the transition, but can
determined by the fact that there will be ordered states
ferent from the disordered states that minimize the free
ergy, and have free energies lower than the disordered s
for any temperature strictly less than the transition tempe
ture.

One difficulty exists. The vibrational entropy term is st
expressed in terms of the liquid partial direct correlati
functions. These are unlikely to be available and suitable
many systems. It would be even more appropriate to use
partial correlation functions of the solid, but these are a
unlikely to be available.

What isg like in this theory? From Eq.~15!, we have

gAi5
1

6 (
j

$cj“ rW
2urW5RW i j ~r!CAA

~2!~rW !

1~12cj !“ rW
2urW5RW i j ~r!CAB

~2!~rW !%. ~39!

This talks about the curvature of the liquid partial dire
correlation functions. Note that

“ rW
2urW5RW i j ~r!Cab

~2!~rW !5Cab
~2!9„uRW i j ~r!u…

1
2

uRW i j ~r!u
Cab

~2!8„uRW i j ~r!u…. ~40!

At constant density this approximation is linear in concent
tion for a disordered state. The density dependence wil
complicated, however. Considering nearest neighbors o
we expect to be near the minimum ofCab i j

(2) (r), subject to
the competition between three different terms, and the c
tributions of the further neighbors, etc. Over a small ran
the curvature might have a simple form, but it eventua
must go to zero in each direction. Because of the sum o
the neighbor shells,ga i depends on the state of chemic
order as well.

In what limit does this reduce to the lattice gas expansi
For large bulk modulus the density change will be sm
However even for fixed density, the dependence ofga i on
-
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the ordering will appear. Thus to regain the lattice gas f
mula, an additional assumption thatga i5gad as well asr
5rd must be made.

V. CONCLUSIONS

The above computation demonstrates how a truncated
nary density functional expansion has a form like the ter
appearing in the equivalent lattice gas expansion, plus a
tional terms. These additional terms are the expected ‘‘in
action’’ terms from the added density variable, and an ad
tional ideal gas entropy term involving ln(g). This
computation is easily extended, under the same assumpt
to a global strain tensor variable in place of the density va
able. The results are the same, except that a particular te
rial form for the ‘‘interaction’’ terms involving the traceles
portion of the strain tensor is chosen from the possible for
becauseC(2) depends on distance only and has no angu
part.~This will not be the case if the expansion is extended
C(3).!

In order to use this formalism in situations where the l
uid correlation functions are unavailable, some assump
will need to be made in regard to the ln(g) terms. One way to
proceed is to ignore Eq.~15! and make anad hocassumption
for theg’s. In a ‘‘purely harmonic’’ approximation we could
assumeg to be a constant, independent of density, conc
tration, and order. In this case it drops out of Eq.~35! en-
tirely. A slightly more ambitious assumption would be
assume that for the ‘‘volume’’ of the distribution scales
the volume per atom. In this case the density dependenc
the ln(g) term is numerically very small compared to th
other terms, so that in numerical solutions it would be ne
ligible.

This application of this formalism, including a gener
global elastic strain tensor rather than just the density
considered here, to nickel-rich nickel-vanadium alloys is
progress, under the assumption that the ln(g) terms are small
@5,14#. Work is also planned to apply the formalism to th
simpler case of a volume change only in Cu3Au, where es-
timates of the change in ln(g) can be made from embedde
atom simulations.
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