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Volume changes in binary alloy ordering: A binary classical density functional theory approach
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The chemical ordering transition in a binary alloy is examined using classical density functional theory for
a binary mixture. The ordered lattice is assumed to be obtained from the disordered lattice by a volume change
only, as inL1, ordering from a face centered cubic chemically disordered crystal. By using the simplest
possible approach to the density functional calculation, a very tractable expansion is obtained which consists of
the same terms as the lattice gas formalism, where the lattice is implicitly taken as fixed, plus additional
interaction terms and an additional entropy term. This additional entropy term represents a lowest order
approximation to the vibrational entropy change.
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[. INTRODUCTION temperature T, and the chemical potentialsu,, «
=1,...m.

Chemical ordering transitions in alloys have been studied Classical DFT guarantees the existence of a functiéhal
by a variety of methods, including a lattice gas analog ofof the average densitigs,() which is minimized by the
classical density functional theoryl1—4]. Since lattice equilibrium average densities, and which evaluated at the
changes also occur on ordering, it would be valuable to bequilibrium densities is equal to the grand potential. For a
able to include them along with chemical changes in a siminoninteracting system this can be computed explicitly and is
lar approach. One approach would involve a set of variablef9]
including a global elastic strain tensor along with chemical
occupation variableg5]. A question that arises in such an . . s .
approach is the appropriate form for the idéabninteract-  Qideal {Pa}]1=8 > fvdr Po(NINNp (1)~ Bre—1],
ing) free energy. It has been shown that the occupation vari- “ (1)
ables alone can be treated as a complete system, and that the
ideal free energy is the ideal mixing entropy. The occupatiotherelB: 1/(kgT), andx,

variables, plus a global s.train tensor, are not a'complete ,S,y?éngth of species. Note that Eq(1) is simply the sum over
tem, however. One consistent set of variables is the positiof, species of the ideal free energy of each species.

and momentum variables for a binary mixture. The approach Let B~ V[ — _
: . : . Pa ]_Q[ Pa ] Q; [ Pa ] and expand
taken here in developing a lattice gas plus strain tensor forg, 410t some éart}i}:ular lj{nifc})r(lliqulicg)as;{tatg, with densities

mulation of ordering is to look to the classical density func-{pao}_ Truncating at second ordét4] in the difference in
tional theory of the binary mixture, and simplify it to the densitiesdp,,, and lettingN,= [ dF p,(F), one obtains as

lattice. Since the part of the strain tensor that most d|_rectl3{he expansion of the mixed functional for the grand potential:
affects the entropy is the volume, the other terms will be

ignored here.
Several forms of classical density functional theory haveﬂﬂ[{pa}]=v¢[{pao}]+2 dr pa(r)[m()\ipa(r))_l]
been used to study the freezing of binary liquids. Since the a JV
concern here is the “entropy” terms, the simplest form of
the theory will be used. Here, instead of looking at the freez- — > Bu N+ f dFCY(po(F) = pao)
ing of a liquid, the free energies of two solid structufdee a a JV
disordered, and thépartially) ordered are compared. A 1
similar approach was used by Sengupta, Krishnamurthy, and = f dFy di,Cl(T1.72) (pal(T1) — Pao)
Ramakrishnan to study the fcc-bec interfdéé and a form 2% Jv L 2Tap T ! °
of density functional theory was used to study the ordering . 3
of hard sphere mixtures]. X(pp(F2) = ppo) T O(Sp,). @

is the de Broglie thermal wave-

Multiplying out the products, and collecting constant and
Il. CLASSICAL DFT FOR MULTIPLE SPECIES linear terms, this can be rewritten as:

Classical density functional theoffpFT) of mixtures was
used to study the freezing of binary hard sphere and ’BQQZ J'dfp (NHIn p (F)+Vfo+2 DN
Lennard-Jones fluidg—13]. Consider a system with a fixed = Jv ¢ “ s
volumeV, andm species of classical particle§he primary
interest herein isn=2.) The partition function is computed +1 f di. di,.CA(F, F 7 7 3
in the grand canonical ensemble at fixed values/pfthe zazﬁ v 12 wp(11:72)Pa(T)pp(M2). (3
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where {N,}. Think of p=N/V as the parameter, but will be
written for pV whenever convenient.
fo=P[{paot]— > CPp 0 As in prior work on the freezing of hard-sphere mixtures
a [8—13], assume that the density of each species at a site is
given by an isotropic Gaussian distribution centered at the
+1> Paop,gof df, C(jﬁ)(@'rz), (4)  site.(In their work on the fcc-bce interface, the authors of
ap v Ref.[6] used a more general form of “anisotropic Gaussian
distributions” and found that there was significant anisot-
_ 3 1 A2 R - ropy in the bcc density, but very little in the fcc densitifor
Do==Bua I ~1+C~ % p,;ofvdrz CB(0.r2). simplicity assume that this is cut off at the Wigner-Seitz cell
(5) about the lattice pointAnd very quickly the further assump-
tion will be made that the Gaussian distributions are sharply
By assuming that the uniform fluid at a particular total den-peaked enough that the integral over the cell is equal to the
sity and set of concentrations is a local minimum(bfD,  integral over all space. Thus the assumption is essentially
could be eliminated in favor of the liquid densiti¢s,o}.  that the Gaussian distributions are sharply enough peaked
However, here the task is to compare trial ordered solidshat there is no overlap between the distributions at different
with the disordered solid at temperatures well below thesites) Referring to the cell aR, asU;, then, inU;
melting point. D, will therefore by retained for now, and ! v T
later eliminated using the disordered solid as the reference Po(F) =N gi€XP{ — i F— §i|2}, (6)
state.
The constant, drops out of the difference in grand po- Here, for a binary alloyN and {\ai}, {7ai}, and{ygi} (i
tential between two states, and so is irrelevant to determining- 1 - - -N) parametrize the density ansatz, whileg} is
the transition state and temperature. It can be determined %en fixed by the assumption of one atom per cell. For the
terms of the pressure of the reference disordered state. ~ disordered solid,; and y,; are independent of, so the
C)(r,,F,) is symmetric inaB, and depends only on Parameters ardly, Aag, Yaq, andysq-.
[F,—74]. (Note that for fixed{u,} these liquid direct- Define
correlation functions are needed as a function of temperature R
in a range including the ordering temperature. In many sys- CaiEJ dF N iexp— vailF—Ril?}. (7
tems this would involve extrapolation beyond reasonable Vi
temperatures for the liquid, and so this computation would ¢ this point the limit y,;—0, A y— p.o gives the uni-
not be feasible as written. The purpose here, however, pugg m pinary liquid. However, the states to be considered are

more emphasis on understanding the appropriate form of thg, ¢ withy,; large enough thaf, can be approximated by
expansion for the solid, than on a computation using actua “ '
. For large enoughy,; ,

liquid data. Given the appropriate form of the expansio
stated in terms of the occupation variables and strain tensor,

other sources for the parameters are likely to be more suit- Cm“hu(
able to actual numerical work.

®

T ) 3/2
Y ai

The assumption of one atom per cell then takes the form
Ill. DENSITY ANSATZ FOR DISORDERED 3 .Cai=1.

AND ORDERED SOLID
IV. RESULTS AND DISCUSSION

Consider a fixed volum¥. A solid is described in terms . )
The computation of) from Eq. (3) for the trial states

of a set of real-space lattice vectdi®;}, with N sites in the q ibed by the densi d follows: |
volume V. Making the simplifying assumption that there is . escribed by the density ansatz proceeds as follows: Insert-

exactly one atom per sit=3_N.,, . In generall) depends ing the density ansatz in the first term of E§) gives

on {R}, and an assumption needs to be made as to what Cyi

possible lattices are being considered. To keep the situation % EI {Cai(ln(m> _3/2)] ©

as simple as possible, assume that both the disordered solid “

and the trial states for the ordered solid have the same lattiCEhe last term depends not only @fg(rlfz) at the lattice
structure, so thaftR;} depends only oi\. (Up to an arbitrary ~ points, but also near the lattice points. Assuming that
choice of origin for the latticeé.So eitherN, or the lattice Cffg(r*l,r*z) changes slowly enough over the length scale
constant, or the average total density can be considered &s/y,;)Y? that it can be expanded to second order, the result
one parameter, and there is one constraint on the vectis

IS ,(C<2>,_(p)+3(i+i)vg
2 44 4 TRl Tabl A\ vai  vgl "

c@n}, (10
R af
r= Rij(p)

where
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Claiy (P)=CHRij(p)). (11) Cl2(p)=Ci2(p)+C&y(p)—2CH(p), (18

Rij(p)=Rj(p)—Ri(p). (12)

N| -

2 AA|] §32I%|J(p) (19)

al

1
Vo =g 2 Ciaj(p)+C3i(p)+2C{(p).  (20)

3 1
Da_ E) Na+ 2 E 2 Calcﬁj aﬁlj(p)

a ij 1
B DZEE (DA+DB)! (21)
+1 > C,iC (1)(—1 +—1 )F (p), (13
— ai B] — - - aB” l
2 o8 4)\ Vai Y Bi D,;=(D,—Dp), (22

where
and additionally let

—v?2 -
Fapij=Vili=r;

CU2(r). (14)
9352 ci<,-2><p>=$ CYaij(p) + Cai(p) —2C3ii(p).
(23

The equilibrium value ofy,; in this approximation is

Yei =520 20 Cgj Fupij(p)- (15 Now consider a disordered state, specified by a concen-
po tration m and an overall densityp. At at given temperature,
Upon substltutlng Eq(15) into Eq.(13), the final term can- this state will be in equilibrium for a pair of chemical poten-
cels with the in the third term. This substantially simplifies tials ua and ug. (Now buried inD; and D,.) For this
the algebra, so all of the expressions fdrand AQ below disordered state, the mixed functional for the grand potential
assume prior minimization with respect tg,,, and when Per unit volume is
Y. appears it is a shorthand for the right hand side of Eq.

(15). B8O 1 24+m
For a binary alloy,cg; can be eliminated. It will prove RV §+m In (a2
helpful to emphasize the relationship between eliminating Y Ad
Caj O Cg; by using the more symmetricalj=c,;— 3. Thus 1 1_m
m; ranges from—3 to 3. Then, for a binary alloy, I il m) inl —2 32) }
2 (7! yga)
N 1
2 tm +fo+p(D2+Ga(p))
I3Q~Z[ Eeri)m P ot pD2+bo(p
i=1 (7l yai) 1
1 1 m +pm(Dyt+Gi(p))+p 5 m?Gs(p),
2
+|=—m;|In +Vfy+N(D,+G
5 |) (alya) 0T N(D2+Ga(p)) (24)

N _E )
+NmydD1+Gi(p))+ ;2 2 miiji(jz)(p), Yad(M.p) = 6 % Cﬁ; Faﬂlj(P)-

(16)  These can be minimized with respectptandm to obtain the
equilibrium density and concentration at a particylarand

where ug, OF Vice versa.
N Taking the disordered statem{,py) as the reference
Mo = E E m 17) (equilibrium) state, and minimizing Eq24) to eliminate the
MENEZ chemical potentials, gives

D1=G1(pa) +MyGs(pg) +! il ) |(—r5_m" A e Ll +3<1 )ﬂlnvsd
- = m n - S __m |
l e o ( )3 (W/YBd) i 212 ’ Jm My .pPq 212 d am My .Pq
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dg, dg, ) 1, dG 1 [ z+mg | 1 Z—mg
—-D,= +pg——— + — = + = — += + =
D2=Ga(pg) +py a |, Mapag, 72 MgFa(pa) + 5 Mapg dr|, 2 In (™t 2 In (nlya ™
d
3 1+ dIn Yad 3/1 dIn YBd
2127 M M5 2~ Ma)Ma—5m
my,p my,p
3/1 dlIn Yad 3/1 dlIn YBd
+§(§+md)Pd ) 2127 Ma)Pa—5, , (26)
My Py My Pg
IBQ 2dg2 zdgl 1 2 2dg3 3 (1 m ) dlIn YAd 3 (l m ) 2(7 In YBd
N =lo=Paq - dPdy | dPd “ 515 d | Pd 5|57 Md|Pqg )
mg g dp oy dp 2 dp 2\2 ap Mg g 2 ap Mg g
(27)
|
where the formula foD; has been used in computiny, . those involvingy,q. Suppose the latter are small. At the

For studying the ordering transition, this is the desiredpressure wher@p+ f;=0, the density corresponding to this
result for the disordered state. However, it is interesting tqressure is given by
take a detour and ask what this says about the disordered
state.

One question to ask is the following: “How does the den-
sity vary with concentration at constant pressure?” The pres-
sure(for an equilibrium stateis given by —p=Q/V. Thus Further simplifying by assuming c@(ﬁ):(cﬂ(ﬁ)

C&(r))/2, this reduces to

dGan ngB dgAB

Bp=1 ,dG, " ,dG; 1 ,d3G3
PP Yo Pag | T MdPag, | T o ded dGan dGgg
Plog P log g 0=ca =5 * AL(1—cy) 28 3 (32)
3/1 ,0 1N Yaq
~5 |31t Ma|pd ap Considering nearest-neighbor contributions only, and as-
Ma Pa suming that bothC{2)(f) and CZ)(F) can be expanded as
3/1 L0 In ygg guadratics about their minima over the relevant region,
_E(E_md)pd p : (28) . ,
Mg .Pg Gan(r ) =Kat zKa(ran=ra)%,
and switching back fronm to ¢ for a moment, this is Gea(ra) =Kg+ 3Kg(rmn—rg)?, (33
1 dgAA , dGgp dGag wherer ., is the nearest-neighbor distance corresponding to a
Bp=—Tfot 3 p? A dp g —— dp —— T2CxCp dp given density, then Eq33) gives
3 dIn yaq 3 d1n ygq Caka (1—ca)ks
=~ Ccap? ——— + = Cgp? M on= rat
+2 Cap ap * 2 Cep p (29 " cakat(1-cakg A Cakat(1-cCakp
(34)
ngE C(fﬁij(P)- (30) If ka=Kkg, this makes , linear in concentration.

Returning to the analysis of the ordering transition, the
next step is to compute the difference (hbetween a trial
For a givenp, m, and T, this equation implicitly gives the state and an equilibrium disordered state. At the transition,
equilibrium density of the disordered solid, assuming it ex-both the reference disordered state andtzetially) ordered
ists. state at the transition will be global minima 6, and the

Some insight into this equation can be gained by imagindifference in() will be zero. Hopefully the approximation of
ing thatgG,, 5 is dominated by nearest-neighbor contributions.() is good enough, and the range of trial states provided by
One then expects that for a single species the equilibriurthe density ansatz is generous enough, that the solution pro-
density is given by a density near the minimum @&f, . vided will approximate the actual transition. Only trial states
(That is, the nearest-neighbor distance in the solid is approxiwith y,;, given by the last line of Eq(16), need to be
mately equal to the distance at which the liquid’s direct cor-considered. The trial states are therefore considered as a
relation function has its main peakf the two species are function of p and{m;}. my, pg, vad, andygq refer to the
significantly different in size, it is plausible to assume thatequilibrium states for the given chemical potentials and tem-
the terms involvingg, z in Eq. (29) are more important than perature. Combining Eq$16) and (25)—(27),



7044 DAVID L. OLMSTED PRE 58

N 1 1 N
7 tm 1 3—m 3 1 1
ABQ~D, —+mi)ln ’ L)+ —ml>ln — += > ((—eri)In(YA') ( - ,)I (E)}
=1 T4my) \2 I -my 231 (12 Yad \2 YBd
3 1 (9 |n ’}/Ad 1 (9 |n ’)/Bd
—E(N—Nd)[ 5+ M4 Py o 5~ Mg |pg p
My :Pg Mg .Pg

1 Jd |n YAd 1 Jd |n YBd dgz

3 N(mMaye— md)[ >+t Mg|— >~ M| =0 +N(QZ(P)_gz(Pd))_(N_Nd)PdE
Mg P My +Pd P

dg,| 1O
FNMadG1(p) = Gulpa)=(N=NoMapagy | +5 2, 2 (M=mg)(m—mg)Cif’(p)
1 1 , dGs
+N| Maye— 5 My mMy(G3(p) — Ga(pa))— 5 (N= Nd)mdpdg (39
Pd
|
It should be emphasized that,; in Eq. (35) is not an inde- The remaining terms can be rewritten as
pendent parameter, but is given by E4j5). The first term is
the ideal mixing entropy for a pure Ising-like model. It is the
same term that appears in the lattice gas formalism. More ABQ~---+ = E E (m;—mg)(m; —mg)C{?(p)
interesting is the second terfeorrected by the next two
terms, which cancel its linear partshich also derives from . _ *k _ k%
the ideal part of the free energyy(q/m) %2 has units of N(Mave™Ma) (G (p) =G (pa))
volume, and represents the approximate volume over which 1 . . 1 aG*
the atom is likely to be. Writing this term as +5 NG (p) =G (pa))— 5 (N_Nd)PdW ,
Pd
—3/2 —3/2 (37)
ABO~..— S {eain| 220 | +cap In| 22 |+
i "\ Yad "\ vga ’ where
(36)
G* (p)=2G5(p) +2MyGi(p) + MGs(p)

it can be thought of as representing the difference in an en- =CA4Gan(p) +2CadCraGAR(P) + C54Taa(p),
tropy term based on the average volume available to the
atom to wander in. The assumption of Gaussian distributions N
approximates each atom as an independent oscillator from g** (p)=G1(p) + MyGs(p)
this point of view. We can therefore consider this expression =Cad0aa(p) + (Cog— Cad)Gap— Caalra(p)-
as a lowest nonzero order approximation to the vibrational
entropy difference. Note that this “entropy” term, which (38)

does not appear in the lattice gas formalism, does not directly

depend on the density. Rather, it dependsypwhich is the  The first term is the second order term that appears in the
variable describing the probability distribution for an atom lattice gas formulation, an6(® are available for many sys-
about its site, in our very simple density ansatz. This maketems from experiment or first principles calculations. Note
sense. In the lattice gas model there is just an occupatiotiat it is most conveniently written in terms of the direct
variable at a site, with no idea of a fluctuation of an atomcorrelation function at the trial lattice constant. The last term
position about a site. The nonoverlapping Gaussian distribus O((p—pq)?) [the O(p—pq) portions of the two subterms
tions we have adopted correspond to attaching an atom teancel on expanding* (p) aboutpy], and can be estimated
each site with an independent harmonic spri(shere the from the bulk modulus of the reference state. The middle
spring constant depends on both the overall density, and therm is O((m,,.—my)(p—pg)), and can be estimated from
state of chemical orderln this picture it is not surprising the concentration dependence of the density of the disor-
that the entropy can be represented in terms of the mixinglered alloy.

entropy plus an entropy term based purely on the effective Equation (35) is the primary result. It is expressed in
volume an atom occupies about its site. Thus this term reprerms of the desired variablgs and {m;}. Except for the
resents a lowest-order estimate of the vibrational entropyvibrational entropy” terms the coefficients can be esti-
change on ordering. Even in this simple approximation, howmated using available information. It is used to predict the
ever, this term depends on both the overall density and th&ansition from the disordered to the ordered state in the
state of chemical order, as seen below. same way as the lattice gas analog of classical density func-
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tional theory is. Giver{p4,my}, the disordered state always the ordering will appear. Thus to regain the lattice gas for-

minimizes the free energy, by construction. As the temperamula, an additional assumption thaf,; = y,.q as well asp

ture is lowered, there may be another minimum of the free= pg must be made.

energy. The highest temperature where there is an ordered

state which minimizes the free energy, and for which the free V. CONCLUSIONS

energy difference is zero, is the predicted transifibg]. If The above computation demonstrates how a truncated bi-

the ordered state at the transition differs from the disorderegary density functional expansion has a form like the terms

state by a finite amount the transition is prEdiCtEd to be ﬁrShppearing in the equiva|ent lattice gas expansion, p|us addi-

order. For a second order transition the ordered state will bgonal terms. These additional terms are the expected “inter-

equal to the disordered state at the transition, but can bgction” terms from the added density variable, and an addi-

determined by the fact that there will be ordered states diftional ideal gas entropy term involving kX This

ferent from the disordered states that minimize the free eneomputation is easily extended, under the same assumptions,

ergy, and have free energies lower than the disordered stat@, a global strain tensor variable in place of the density vari-

for any temperature strictly less than the transition temperaable. The results are the same, except that a particular tenso-

ture. rial form for the “interaction” terms involving the traceless
One difficulty exists. The vibrational entropy term is still portion of the strain tensor is chosen from the possible forms,

expressed in terms of the liquid partial direct correlationbecauseC® depends on distance only and has no angular

functions. These are unlikely to be available and suitable fopart.(This will not be the case if the expansion is extended to

many systems. It would be even more appropriate to use thg(®) )

partial correlation functions of the solid, but these are also |n order to use this formalism in situations where the lig-

unlikely to be available. uid correlation functions are unavailable, some assumption
What is y like in this theory? From Eq(15), we have will need to be made in regard to the §)terms. One way to
1 proceed is to ignore E15) and make amad hocassumption
Y=g 2 {CJV?|F:§”(,J)C(A2&(F) for the y's. In a “purely harmonic” approximation we could

assumey to be a constant, independent of density, concen-
P 2) o tration, and order. In this case it drops out of E85) en-
+(1=¢) VElr=r,(»Car(M}- (B9 tirely. A slightly more ambitious assumption would be to
) o ) ) assume that for the “volume” of the distribution scales as
This tal.ks abouf[ the curvature of the liquid partial directhe yolume per atom. In this case the density dependence of
correlation functions. Note that the In(y) term is numerically very small compared to the
. 2 P other terms, so that in numerical solutions it would be neg-
Vili=r; (0 Cap(N=Cag"(Rij(p)]) ligible.
This application of this formalism, including a general
2 2N 2 global elastic strain tensor rather than just the density as
+ B C(alz (|Rii(p)|)' (40) considered here, to nickel-rich nickel-vanadium alloys is in
IRij(p)] progress, under the assumption that the)in¢rms are small
At constant density this approximation is linear in concentral5,14- Work is also planned to apply the formalism to the
tion for a disordered state. The density dependence will b§iMPler case of a volume change only ing8u, where es-
complicated, however. Considering nearest neighbors onlyimates of the change in Ipf can be made from embedded
we expect to be near the minimum 6f2); (p), subject to ~ &1OM simulations.
the competition between three different terms, and the con-
tributions of the further neighbors, etc. Over a small range
the curvature might have a simple form, but it eventually F. Pinksi and B. Chakraborty proposed the question par-
must go to zero in each direction. Because of the sum ovetfally answered here, suggested this approach, and brought
the neighbor shellsy,; depends on the state of chemical up helpful discussions. B. Chakraborty was also kind enough
order as well. to read the manuscript thoroughly. Helpful discussions with
In what limit does this reduce to the lattice gas expansion®™. Krishnamurthy are also gratefully acknowledged. This
For large bulk modulus the density change will be small.work was supported in part by the National Science Founda-
However even for fixed density, the dependenceygfon  tion under Grant No. DMR-9520923.
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