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Fragmentation of fluids by molecular dynamics
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Fragmentation of fluids is obtained by adiabatic expansions of the volume of systems of Lennard-Jones
particles by molecular dynamics simulations. Nontrivial fragmentation is only observed for expansions for
which the systems enter the liquid-gas area of the phase diagram. The fragment distribution is established at an
early time of the expansions and it is exponential. The expansion regime of fragmentation is demonstrated to
depend on the dimension of the system. For a three-dimensional system one only obtains a nontrivial frag-
mentation for expansion rates for which the late time viscous phase separation growth is suppressed.
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I. INTRODUCTION logical terms. In a laboratory experiment one will, e.g.,
move a piston(in one direction in a cylinder and the fluid

The interest in fragmentation of fluids by expansionswill respond to this expansion and if the piston is moved
arises from many disciplines in physics and chemistry. Thesufficiently slowly and with a constant velocity, the system
fragmentation is determined by the distribution of fragmentsacts as an elastic medium and sets up a linear velocity pro-
P(N.) containingN mass units. If1] it is demonstrated file, with a particle mean velocity at the piston that is equal
that the distribution of galaxies measured by their luminos+to its velocity and correspondingly a mean velocity at the
ity, as a measure of the “big bang” fragmentation of matter,bottom of the cylinder that is zero. If1] this steady state
seems to be exponential. This result has, however, later beaelocity profile is also set up @t=0 in accordance with the
questioned by the authors 2], who suggest that galaxies expansion of the volume, by changing all the velocities in-
should follow a log-normal distribution, as many other frag- stantaneously once at the start of the expansion from there
ment distributions, obtained in material science. Also invalues,v;(0), to
nuclear physics models for fragmentation of fluids play an .
important role[3]. The present article deals with molecular V;(0+)=v;(0)+ 5r,(0), 2
dynamics(MD) simulations of a fluid that undergoes a pro-
cess of fragmentation. The fragmentation is ensured by awherer;(0) is the position of theth particle att=0. This
adiabatic expansion of the volume occupied by the fluidvelocity profile ensures a uniform strain &0 and it is
whereby the system breaks up into fragments. The computdested(see Sec. Il that the system in a closed, but expand-
tional setup is described ifil], and is given in the next ing volume and with no adjustment of the velocitiestat
section. This technique is, however, only one of several com=0, quickly equilibrates to this expansion setup for small
putational techniques by which one can obtain a fragmentastrain rates. Calculations show furthermore that this velocity
tion. Another procedure applied both computer experimenprofile is maintained during the expansion and the setup of
tally [4] as well as in real experiments, is to obtain athe velocity profile thus avoids all initial transients. Finally
fragmentation in a drop of the fluid, e.g., by a local heatingthe periodical boundaries can be taken into account by en-
of the system or by releasing the pressure instantaneously, 8uring that a particle that leaves the box in one direction

a real experiment by an explosion. enters the box from the other side and with a changed veloc-
ity accordingly to the expansion velocity of the volume, e.g.,
II. ADIABATIC EXPANSIONS OF A FLUID if the particle leaves the box &t, in the ath direction with

a positive velocityp ,(t), it enters the box at ita coordinate
The MD simulations of adiabatic expansions are perequal to zero with a reduced velocity equal to
formed by expanding the volume with a constant velocity. A
system ofN particles in a box with volum¥&, and periodical v (1) =0, () =L (t) (3)
boundaries in all directions are equilibrated to a start tem-
perature,Ty. Then the system is expanded from time;,0,  andvisa versaThe last equation ensures a uniformly expan-
with a constant velocityl_o%y, by expanding the volume in Sion in anopen system.(It was, however, also tested that
all directions by reflecting the particles at the boundaries works equally)well
The setup ensures an adiabatic and uniform expansion of the
L (t)=L,(0)(1+ nt), (1)  open subsystem with a constant expansion velotigy;, in
all directions.

whereL ,(t) is theath box length{in the present simulations  One can immediately predict the physics of the system for
the volumes were cubic in three dimensions and quadratlc Ifhe two limit values of the strain rate. For a b|g expansion

two dimensions, i.e.Lo=La(O)=V(1)/D]; 7 is the expansion velocity and if the particle velocities are not rescaled by Eq.
velocity per initial unit length(Hubble constant in cosmo- (2) at the start of the expansion, at the initial temperaiiye
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and densityp,, the particles near the piston cannot diffuselations to determine this critical expansion rate exactly, one
fast enough and the expansion tends to an expansion intoveill expect that this happens for rates bigger than or of the
vacuum. In the case where the linéarear) velocity profile  order of the speed of an adiabatic sound wave. In the present
is set up at the start of the expansion the system must b&ystem for values bigger than or of the order

completely fragmentated into its mass units for big strain )

rates, and on the other hand both kinds of expansions corre- n~~[dp'(0)/dp(0)]s )
spond to reversible adiabatic expansions for very small strain ) ) _ ) )
rates, so in this case the systems’ “fragmentation” is giventh® adiabatic expansion means that increases monotoni-
by the systems’ equilibrium structure and all the thermody-cally with the constant velocity.o7. At a later time, how-
namic expressions derived for an equilibrium system can bever, the speed of the expansiper unit lengthis

applied provided we have an expression for the systems state )

variables(e.g., temperature and pressurBut in between 1 dL(t)  #

these two extremes there might be an interval of strain rates Fex_La(t) dt 1+ 7t ®

for which a fluid is fragmentated in a nontrivial manner.

In order to determine changes in structure and thermodywhich goes to zero asgoes to infinity. The speed of a sound
namics of the system during the expansion we need expregave goes to its ideal gas value. So one can see that an
sion for the energy, temperature, and pressure during theyentual fragmentation of a fluid, created at0 by a super-
expansion. The potential energy per particlgy, is easily  sonic expansion, is not necessarily permanent, since the
obtained from the instant positions of the particles at ttme speed of sound, although getting smaller as the density di-
as usual, and the local velocitieg (t), are determined as in minishes, remains finite during the expansion, whereas the
[1], by subtracting the velocity component due to the expanspeed of the expansion per unit length tends to zero. In other

sion words, a fragmentation, introduced at an early time during
the expansion can be removed at a later ti@dl expan-
v () =vi(t) = 7ri(1) L,(0) 4) sions end at late time in gas points in the phase space and
: : BT () thus all fragments will evaporate; but this process is Jl6\v

in three dimensions compared to, e.g., the time it takes to
from which the “intrinsic” temperaturd’’(t) in the expand- expand from a condensed liquid state to a gas state and thus
ing system is calculated. The intrinsic presspfét) is ob-  an established fragmentation can exist for a long time.
tained from the intrinsic temperature and the virial of the The fragmentation of matter is usually characterized by
forces at timet, and the thermodynamic energy per particlethe distribution P(N,) of fragments containingNy mass
u’(t), from T'(t) andup.(t), all by applying standard sta- units. The fragmentation was obtained in Réf| by calcu-
tistical mechanical formulas. This means that one has a medating the cluster distributio®(N) at a certain “late” time
sure of when the strain rate is so small that the expansiowhere the mean density was sufficiently low to be able to
represents a thermodynamical, reversible path of expansiatistinguish between free particles and particles bounded to
of the system: Not only must the intrinsic velocitiggt) be  other particles in a cluster. This method, however, has an
Maxwell distributed, but the particle distribution must also element of arbitrariness since one has to specify a certain
be correct as well as the partition between the two distribuparticle distancer, for which a particle belongs to a given
tions. This is only ensured if the path of expansion goesluster, i.e., if the particle is closer thap to another particle

through equilibrium points, i.e., these two articles are within the same cluster contaiiNpg
) ) particles. Another criterion for pattern in the particle distri-
p'(t)=p(p(t),T'(1)), (5 bution, often used in investigation of, e.g., phase growth, is

, _ o _ the structure function$(q), for small wave numbeq. This
wherep(p(t),T'(t)) is the equilibrium pressure in a system ,nction has no element of arbitrariness and can be used at
of particles without any expansion and taken at the temperaany time during the expansion. B&r(q) gives only a

ture T=T'(t) and at the densiti\/V=p(t). According 0 oarse-grained information of the actual distribut¢Ny).
thermodynamics this criterion of a reversible expansion can e expansion goes through the equilibrium state of the

equally well be determined as rates of expansion sufficiently;iq ot a sufficiently low expansion rate, and thus a fragment

small to ensure that of N must explore the phase diagram, i.e., if the tempera-
, , ture T'(t) drops belowT, for mean densitiep(t), which
u’(t)=u(p(t), T'(1)). 6) corresp(o)nds t% that the system is in the ?én)sity interval,
. C . . ,Pq] Of the corresponding liquid and gas, one will have a
For strain rates; bigger thgn a certain .vaIL_(eiepend[ng on E:@m%ggtition betweelfn) fragn%er?tation ar?d phase separation.
the actual instant state pojrthe expansion is still adiabatic, The domain growth of fluid is rather complicaté] with
but irreversible in a thermodynamiq sense. Still one can Io'several growth regimes with different growth laws. The first
calize a certain barrier of the value gf which is critical for  regime into which the expanded liquid system enters is for
the expansion: When the initial speed of expansion per uni;,(»[)wpI where (smal) vapor drops are created. Spinodal
length », which introduces local density gradients, exceedslecomposition and growth are observed for densjiieg
the speed by which local density inhomogeneities are refthe critical density. Spinodal growth of domains is charac-
moved, then the system cannot adapt to the expansion, amerized by different regimes, with different morphologies and
density gradients are maintained. Although we cannogrowth speed. Not much, however, is known about the spin-
strictly use equilibrium thermodynamic expressions and reedal phase separation of liquid and gas, whereas there have
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been many theoretical as well as experiment investigationsz2.50. The number of particles must be “rather big” not
including computer experimental investigations of the spin-only for ensuring good statistics, but also in order to ensure
odal decomposition in binary liquid mixtur¢g]. Basically, that, e.g., viscous growth can be present during the expan-
however, the growth and the growth regimes for these twaion. (In [8] the viscous regime for phase growth in a binary
systems should be the same, governed by the same cons8B mixture was observed for growth of domain sizes over a
vation laws, which lead to algebraic growth of the domainsdecade of time and using 343 000 LJ-like 3D particles, but

with (mean diametersR(t): for a gas-liquid system the regime might appear at an earlier
. time and for smaller domain sizes due to the smaller viscos-
R(t)eet", (9 ity in the gas-liquid systerfE].) The truncation of the poten-

tial is also an important detail since the location of the criti-
gal temperatureT. is very sensitive to this cutaway of
'attractions behind;. For example, the value df, for a 2D

LJ system changes from,=0.515 toT.=0.459 by a cut
(and shify of the potential forr ;=2.500 [9] and the poten-
tial used in[1] is for a cut ofr .= 1.740- whereby the critical
temperature is further lowered; a fact that highly influences
the interpretation of the observed results[i] as will be

where n depends on the dimension of the space and th
functional form of, and terms in the equation for the growth
i.e., the growth depends only indirectly of the particle poten
tial by the location of a growth regiméand eventually the
existence of a growth regimeFor viscous growth in 3D, the
growth exponenh=1 andn is smaller than 1 for all other
domain growths in 3D as well as in 2D. If we can use the

established result of spinodal growth in binary mixtures forshown at the end of this section. The gas-liquid phase dia-

the Ii_quid-vapor sepgration as well, th_en We can immediatel)@rams for a truncated and shifted Lennard-Jones particles are
pr_ed|ct some behavior for fragmentatlon of ﬂu'ds. IN COMPE-5ained in9] (2D) and[10] (3D). The MD (algorithm, etc)
It::/t\;on ;’]V'th pha;e 9“%‘]”‘“ bly sEmodaI detchomp?smon In tthteis performed as described [ii1], with the additional remark

0 phase regime. The only phase grow at can resis at the time incremerth used in the integration algorithm

homogeneous gxpar_15|on W_'th constant expansmn_ Veloc'%ust be taken sufficiently small to integrate accurately for
Lo# of volume sizes is the viscous growth and only in a 3Dhjgh strain rates. In the preceding all data in the article are

space. Th?s foIIow; immediately from.comparing the Spee‘biven in length units ofo, energy units ofe, and time in
of expansionl’e, with the speed of spinodal growthg, of  its of \/m/e, wheres ande are the potential parameters

domains, both taken per unit length. The speed of expansiop the Lennard-Jones potential andis the mass of the par-
per unit length is given by Eq(8), and the speed of an jgjes.

algebraic domain growth of domains with mean diameter

R(t) i The 3D results are presented first. The system was started
is

with a givens from an equilibrium point of state afg, Vo),
1 dR(t) n from' which thg system was left to its'elf, as dgscriped. in the
gE%T:?. (10 previous section. T_hus, the_ expansion can in principle be
performed for two different situations. One where the expan-
0§ion is started from a point of state that corresponds to the
system never entering into the region of coexistiaguilib-
rium) liquid and gas phases during the expansion, and one
where the systems mean densijiyt), crosses this interval.
To<lg (11)  The results of expansions for which the system does not
enter the two-phase part of the phase diagram are first inves-
but sooner or later the expansion, which asymptotically goe§gated.
as The investigation of fragmentation is performed for the
adiabatic expansion given by Eq4)—(3), as original used
by [1] and later used by several others. The crucial compu-
tational setup is Eq.2) in which one imposes a linear veloc-
ity profile at the start of the expansion. It has, however, never
will win over all kinds of growth, simply by bringing the been demonstrated that a liquid in a closed volume acts as a
system outside all growth regimes and finally outside theviscoelastic medium and quickly equilibrates to a linear ve-
density interval of coexisting phases. But the viscous growthocity distribution when moving the upper wallpiston in a
in 3D differs from all other growth mechanisms by thét, cylinden with a constant velocity. Furthermore, one could
this growth is present it will always exceed the speed of thdear that although the fluid does in fact behave as a elastic
expansion. This growth, however, is exactly the observednedium, the fragmentation could be affected be the initial
spinodal growth at late times in 3[8], and so this simple nonlinear expansion, which most take place from the top of
consideration suggests that there might be a fundamental dithe container. In order to investigate the impact of €j.on
ference between the fragmentation of fluids in 2D and 3D. the expansion and fragmentation we perform some expan-
sions at different starting state points and for the system ex-
Ill. MOLECULAR DYNAMICS SIMULATIONS panded by Eq91)—(3) and compared them with expansions

OF THE ADIABATIC EXPANSION OF A ELUID by moving the upper walls in a closed container with a con-
stant velocity. The closed system mimics the expansion of a

The systems in 2D as well as in 3D all consist df fluid in a closed volumene by moving a piston. The system
=40 000 Lennard-JondtJ) particles with a potential inter- was, however, expanded in all three directions and the sys-
action truncated(and shiftedd for particle distancesr,  tem was surrounded by images so the “piston” attracts the

We consider a nontrivial expansion, i.e., with the presence
phase separation during tiearly time of the expansion.
There is a separation growth for

1
Fexg ?, (12)
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FIG. 1. Local densitieg(x) (in units of o) and velocities (x) . FIG. 2. _Potentlal energy per particlg, (in _unlts of .el.kB) ob-
) - R . tained during the expansions from the particle positions and for
(in units of the start velocitiek, %), at the end of the expansion, as different strain rates and as a function of the overall denity

a function of the positiox in the volume(in units of the length of . ~ P - e P
the box. (The mean values are the averages over all three direcin'ts ofo): (1) 7=0.2;(2) =0.05;(3) #=0.005;(4) #=0.005.

tions) The lower curves show the density distributions. The dashecsl)’ .(2)’ anQ(4) are for a closed system_wnhc_;u_t_an |n|tla_l Veloc!ty
T ) . o profile. (3) is for an open system and with a initial velocity profile
line is for a strain rate ofy=0.05 and the dash-dotted line is for

! given by Eq.(2).
7n=0.1. Also shown with a straight line is the overall mean density

p=0.2. The points show the relative local velocity together with ayelocity 7=0.005) Figure 2 gives the potential energy
straight line for a linear velocity profile(+) is for »=0.1 and  y_ (1) as a function of expansion time for several expansion
(%) is for =0.005. velocities starting from Tg,p0) =(5,0.65), together with

) . ) Upot) in an open system and with an initial velocity profile.
fluid att=0 by forces identical to the forces across a planéas can pe seen from the figure the time evolutions for the

in the uniform fluid at the start of the expansion. . :
: : T ...open and closed system agree e+ 0.005. Forp=0.05 the
Figure 1 gives the velocity distributions and the density . X R

e . velocity profile at the end of the expansion is linear, but the
d|str|but|%ns across the contame(rj a(; t? © endh of the eXpan(iensit;/ iFs) no longer uniform as Waz the case when starting
sions. The system was expanded from the state poir} ; : .
_ . A, . rom the more compressed fluid, and the potential energy is

gtrgtép O;t gF?fOﬁgfg}nwzlr:t]u(r:(gcr)rrezp%r:)(?)sleto Zs!quilj? dpglf?t Of ifferent from the energy obtained from the slower expan-
~900K) Thegs sterr? was expanded to agvolume with th sion. The fragment distributions for the open and closed sys-
' y P %ems, respectively, and obtained from the particle positions

g;es?gmdﬁgz'%p fagt.i.e?ij:I?int()ai\rs\?;gc];tr;rgrctgfe ggr]\l:ir?/vittueaat the end of th_e expansions, show no significant differencgs.
X ) o . The conclusion drawn from the two sets of expansions is
uniform density, for velocities of the walls up to7  that if the system is expanded sufficiently rapidly the par-
=0.05, and the velocity profile was established during thgjcles cannot diffuse rapidly enough toward the moving wall
early time of the expansion. For small expansion velocitiesyt the beginning of the expansion and the expansion contin-
we observe, as expected, big fluctuations from the linear proses as an expansion into a vacuum. We have not investigated
file. For expansion velocities bigger thagzn=0.05 we still  and determined the fragment distribution for this case of ex-
observe a linear velocity profile; but the density distributionpansions. The “piston” velocity barrier for which the vis-
is no longer uniform; the viscoelastic medium can no longercoelastic fluid cannot respond and where the expansion con-
respond sufficiently fast to the expansion and the expansiotinues as an expansion into a vacuum is significantly below
tends to an expansion into a vacuum. the sound velocity. Futhermore it is also below the speed by
If the expansion is started aT §,po) =(5,0.65), at a less which a single particle in a uniform fluid diffus¢$5]. Mov-
compressed fluid and at at a lower temperature we obseniag a piston requires a coordinated acceleration and diffusion
the same behavior, but only for smaller strain valu@he of particles that apparently lower this barrier significantly.
two starting state points are chosen so that the system ends@n the other hand, we notice that for a given expansion
the same point of state at,=0.2 for a small expansion velocity it is possible to choose a sufficiently compressed
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FIG. 3. Intrinsic pressurp’ (in units of o %) as a function of
the densityp(t) (in units of ¢°) during the adiabatic expansion flui
from p(0)=0.65 top(t) =0.20. The inset shows' in details in the
expansion(density interval[0.38;0.31. The various curves are for
different expansions rates: (1) =20, (2)»=10, (3) n=5, (4)
7=0.5,(5) =0.2; (6)-(8) =0.05; 0.01 and 0.005, respectively.

FIG. 4. DistributionP(N) of “clusters” of N particles in a

d at the densityp=0.2. The curve with the full line and uncer-
tainty intervals gives the distribution in a fluid at equilibriury (
=0) where the uncertainty intervals are obtained from ten indepen-
dent equilibrium configurations. The five other curves are(for
7=20, (2) =10, (3) 7=5, (4) =1, and(5) 7=0.005.

fluid (point of stat¢ at the start of the expansion for which
the linear profile is set up during the early time of the expan-distribution was not sensitive to the valuergj). Also shown
sion. in the figure is the corresponding “fragment distribution” in
The rest of the expansions are performed for an opeman equilibrium system atT(p)=(1.3,0.2) and the uncer-
system given by Eqg1)—(3). The first set of expansions is tainty intervals are from ten independent equilibrium distri-
from the point of stateTy,pg) =(5,0.65) for which the sys- butions. As can be seen from the figure the distributions
tem expands tops=0.2 without entering the two-phase nicely confirm the prediction. Only for supersonic initial ex-
liquid-gas area. At that density all the intrinsic temperaturegansion rates does the fluid fragment, and in very small frag-
T’ are higher or of the order 1.@lepending ony). (The  Mments, whereas the system maintains its equilibrium struc-
critical temperature isT,=1.085). The intrinsic pressures ture(and intrinsic pressuyefor smaller strain rates. But Fig.
during the expansion for various strengths of strain rates ar also shows that the measure of fragment distribution used,
shown in Fig. 3. The pressures are obtained as functions df(Nc), at the present point of state is misleading, since it
expansion times, but compared at equal densjti@}. As indicates that a diluted equilibrium fluid should consist of
can be seen from the figure the different functions accumufragments. It is of course not the case. The distribution,
late into two groups; one that accumulates for small strairP(Ngy), only expresses the open fluid structure of a fluid at
rates, and another that accumulates into a limit curve for highnoderate density. The fragment distributions obtained for
strain rates. This behavior is in agreement with the predictiohe corresponding expansions, but in a closed volumen pre-
given in the previous section. The square root of the initiaise€nted at the beginning of this sectisee Figs. 1 and)2
slope of the curve for the slow isentropic expansions is 7agree nicely with the corresponding distributions for the
and according to the considerations in the previous sectioRPen system, as expected.
one will expect that the system is only “fragmentated” for  In the second set of experiments the 3D system was ex-
strain rates above, or of the order of, the initial sound velocPanded from at a point of stateT, po) =(1,0.65) and with
ity, whereas the system should be able to adapt the expansi@ninitial velocity profile(2), from which it enters into the two
of the space for rates below this valu€&or expansions in Phase region immediately after the expansion and the expan-
closed systems these supersonic and uniform expansions &@n was continued until a mean density ©F0.025< pg .
not possible. At that time, and for a strain rate of=0.2 the temperature
Figure 4 confirms this result. It shows tliRN.) distri-  was decreased to 0.60, which, however, is above the triple
butions forp=0.2 obtained as described ji] and in the point temperature for the system so the fragments consist of
previous section{with ry =1.3, the functional form of the liquid droplets. The expansions were obtained for strain rates
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FIG. 5. Potential energy per particlg (in units of e/kg) ob- FIG. 6. The structure functios(q) for q less thanw. The

tained during the expansions from the particle positions and fofunctions are obtained from positions at various times during the
different strain ratestl) »=0.001,(2) =0.01,(3) »=0.1,(4) »  expansion withy=0.2. The lower curve is the(§) for the starting
=0.2,(5) '7,: 1: (6) '7,:10 (dot9, and(7) '7]:20. The inset shows positions afT=1.2 andp=0.65 and the six succeeding curves are
Upo(t) at the start of the expansion fp(t) €[0.65,0.63. obtained during the expansion at the densitigs(t)
=0.38, 0.24, 0.16, 0.11, 0.05, and 0.025, respectively.
in the intervaléye[o.001,2q, and the calculations confirm
the prediction that the system fragmented completely fobe compressed to a much higher density than0.65 at the
very fast expansions. For very slow expansions, however, thetart of the expansion in order that the fluid can establish the
system separates into a two-phase system of one liquid phapeofile before entering the two phase area. The dynamics of
and one gas phase; but in between these two trivial limit§ragmentation can be investigated by obtaining the structure
there is a big interval of strain rates for which the fluid wasfunction, S(q), during the expansion. Figure 6 shoB&)
fragmented. A series of observations demonstrate this facfor various timegmean densitigsduring the expansion and
Figure 5 shows the potential energy.(p(t)) during the for a strain rate ofp=0.2. The structure function fay val-
expansions and the inset gives the variations at the beginninges smaller thanr gives a coarse-grained indication of the
of the expansions. The potential energies fluctuate v  dynamics of fragmentation and the distribution effrag-
pansion times for small strain rates as in an equilibrium ments. As can be seen from the figure the fragmentation
system, but their mean values agree and indicate that theertainly appears at an early time of the expansion, as one
system is expanded thermodynamically in a reversible manyould expect. One can also see from the location of the
ner. The potential energies also agree for different but verynaximum of the peak, which has not shifted very much to-
fast expansions and over almost the whole density regiorward smallerq values during late time of the expansion, that
but in between these limits there is a big interval of strainthe mean size of the fragments only increases a little during
rates for which the system ended in widely different potentiakhe last part of the expansion. One would expect that the
energies. This is due to differences in the fragmentationcreated clusters grow, at least for sizes bigger than the criti-
From the inset it can be seen that the variationsji(p(t))  cal droplet size for droplets in the nucleation region, but
at very early times, and for the intermediate strain valges from S(q) [and the first moment 08(q)] it was estimated
=0.2 and 0.1, exhibit a looplike form, which indicates thatthat the growth of the clusters was suppressed by the expan-
the onset of fragmentation starts at very early times as als®ion. This fact is, however, much more clearly seen from the
found by[3] (for a 2D system fragment distributionP(N), obtained during the late stage
The strain ratep=0.2 was chosen for special investiga- Of the expansion. At the diluted densitiep=<0.05 and
tion since it is in between the two extreme values of expan9-029 the clusters are found to be well separafed the
sion rate, and with a fragment distribution with a maximumdistributions do not depend on the choicergf, which was
cluster of the order a few hundred particles, which ensure§€t to 1.9). Figure 7 gives the distribution of fragments for
the best statistics. For an expansion in a closed system ang=0.2. The full line and uncertainty intervals are the mean
without setting up the linear velocity profile, the system mustof ten independent expansions fraig, pg configurations to
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0 50 100 150 200 qunq, the two F)ther 2D projections are smllar. Th_e particle distri
Number of particles in the cluster bution is obtained for a very slow expansion ratezs£0.001 and

o ) ) ) the figure shows the distribution at the mean dengsity0.05 at the
FIG. 7. Cluster distributions in a 3D fluid. The full line and {jme where the liquid stops percolating the 3D space.

uncertainty intervals is for the fluid expanded wi=0.2 to a

mean density op=0.025 and the uncertainties are obtained fromhs axnanded system necessarily must cross this density zone
10 expansions with differerequilibrium) start configurations. The during the expansion one wili priori expect the same to
bimodal distribution is shown by dots and the dashed curve is th?lappen in this system. For example, for sufficiently small
distribution of one(representativeof the ten expansions, but taken strain rates, one will expect the Syster,n to break up into sub-
at the intermediate densify=0.05. The inset shows the distribu- phases of g’as and liquid, which both percolate the volume in
tions up to cluster size 30, and the two cur%dashed-d_otted line all directions (“plummer”s nightmare’). With this fact in
also shown in the inseF are the distributions obtained fgpr=b and mind it is possible to be more precise ;'zlbout the statement on
the gas distribution for;=0.001. when the expansion brought the system outside the region of
viscous growth: It happens when the system of the liquid,
the mean density=0.025 and it gives the accumulated clus- which percolates the volume in all three directions, breaks
ter distribution. The biggest cluster observed in the ten exyp. To test this hypothesis, the system was expanded with a
pansions consists of 377 particles; and_ the_Iogarithmic plo{[/ery small strain rate of=0.001 and one observed exactly
demo_nstrates th_at a bl_moda_l e_xponentlal distributidots the behavior described above. Figures 8 and 9 show the pro-
describes the distribution within the accuracy of the datﬁections of the positions at the time where they just no longer

over several decades Bf(N). ; . A
. . L L percolate the voluméFig. 8 and the particle distribution at
Also shown in the figuréddashed lingis the distribution the end of the expansion ai=0.025 (Fig. 9, where the

at the density)=0.05 of one(representativeof the ten sys- system has ended in one big liquid drop of 29 272 particles

tems e>.<panded, from which it is. clearly seen that the distrisyrrounded by 10 728 gas particles with a gas distribution
bﬁt'on ISh hot clhsn%gd _abt late tln:jes.hT(ijel_lns%et, t‘)’f’h'Ch alsQhown in the inset of Fig. 7. Since it has not been the aim of
shows the gaslike distributiofdot-dashed lingfor big ex- o yrasent investigation to determine spinodal phase growth

p%ns[on :jates, derr&onst(stesr,] h%WeV.gf' _that ;he b||r|ngdalld|ﬁi a quenched liquid-gas system the expansions at small
tribution does not describe the distribution of small dropletgy»in vates have only been used to estimate the limit strain

perfectly. ) for that a fragmentation is maintained. The limit value of
The droplets get bigger for smaller strain rates than strain which gives a fragmentation is the strain rates for
=O_.2, and the domain structure of the fluid, for a strain rateyhich the fluid, by passing the spinodal growth regime dur-
of »~0.01, looks like the structures obtained by spinodaling the expansion, does not percolate the volume.
decompositions of binary mixtures where both phases extend Finally a system of 40 000 LJ particles, but in 2D, was
through the whole volume. As pointed out in the previousexpanded and in the first set of expansions through one-
section, if in 3D one gets to a structure during the expansiophase fluid points in the phase diagram down to a density of
that contains viscous growth, then this growth will remain inp=0.2 and temperatur€=0.55 above the critical tempera-
the system until the system is brought outside this growtture [9], T,=0.459 for the corresponding equilibrium sys-
domain. Furthermore, the domains percolate the volume fotrem. The “cluster distribution” at the end of the expansion
spinodal decompositions in binary mixturespat p.,. Since  for a density ofp=0.2 is given in Fig. 10. As can be seen
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Thus the distribution functioR(N) gives a misleading pic-
ture of the structure in moderate dense fluidpat0.2 both

in 2D as well as in 30(Fig. 4). The 2D result differs, how-
ever, from the corresponding 3D result, shown in Fig. 4, in
that the nonequilibrium structures converge more slowly to-
ward the equilibrium distribution as the expansion rate goes
to zero. The “fragmentations,” shown in Fig. 10, measured
by their difference from the equilibrium distribution are,
however, not stable but disappdalowly) as the expansions
are continued.

The potential in[1] was, as mentioned above cut rat
=1.74(but not truncated12]) so the phase diagram referred
to in[1] is irrelevant and the phase diagram for the potential
used in[1] is not known. In order to estimate the importance
of the different cut we calculated the potential energy per
particle in the fluid stateT,p)=(0.60,0.65), used later.

The potential energy is

1 [
upotzzfo drg(r)rpupy(r), (13

FIG. 9. Projection of the particle distributiorx;(,z) for the Whereg(r) is the radial distribution function, and this is the
same system as shown in Fig. 8; but at the density0.025. relevant quantity to consider, when cutting away potential
energy. In the present computation the potential is cut. at
from the figure the distributions are bimodal, as observed ir=2.50 and shifted byu ,(r¢). In [1] the potential is spline
[1]. But so is the equilibrium “cluster distribution” in a 2D fitted to go to zero in the intervale[1.24,1.74 whereby a
system at the same temperature and density, and from tH@rticle almost only interacts with its five to six nearest
figure one can see that the bimodal distribution, also obneighbors, but with a full LJ potential. The potential energy
tained by[1], is isomorphic with the equilibrium structure. for a LJ system without any cut and af,p)=(0.60,0.65)
was calculated to bap,=—1.947 and the potential energy
T for a truncated ;= 2.5) and shifted potential was 1.797
and it is this reduction of the binding energy that lowers the
critical temperature by about 10%. The spline fitted potential
used in[1] gives a potential energy,,=—1.619; at that
point of state and from the figure caption to Fig. 311 one
can see that their temperature @t 0.175 isT=0.39 and
their expansionsannotbe within the two-phase area. This is
the reason for the ramified “clusters” obtained[it], which
in fact is isomorphic with the(supercritical equilibrium
. structure in the 2D fluid.

The 2D system was finally expanded through liquid-gas
points of state in order to investigate the hypothesis that the
fragmentation at an adiabatic expansion differs in 2D and
3D. The system was started af,p)=(0.60,0.65) and it
entered the two-phase region shortly after the expansion,
which was continued until a densigy=0.026~p,. Figure
11 gives the particle distribution for a very slow expansion

rate of »=0.001, and it demonstrates that the spinodal
‘ . . growth[13,14] has not been able to compete with the expan-
\61)‘12) 2(3) ‘(‘h) .\\"‘(5)-. sion to the same degree as in 3D. For faster expansion rates
T e e (than7=0.001) the system ends in stable, exponentially dis-

‘ i tributed fragmentated states, but with smaller fragments than

1 . I S for a corresponding 3D expansion.
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FIG. 10. Cumulative distribution dP(N) for a 2D LJ system V. CONCLUSION

at p=0.2. With the full line is the mean of the distribution obtained ~ Computer simulations of expansions of fluids can be per-
from five different equilibrium distributions at the same temperatureformed in many ways. If the system is expanded with a con-
and density. The other distributions are &y »=0.2,(2) =0.1,  stant velocity(well below the speed of soupndrom a com-

(3) =0.05,(4) =0.025,(5) 7=0.01, and(6) =0.005. pressed state, then the fluid acts quickly as a viscoelastic



712 S. TOXVAERD PRE 58

The adiabatic expansion is associated with a strong de-
crease in temperature and the fragmentation competes with
phase growth, including spinodal phase growth, if the system
enters into the liquid gas area of the phase diagram. A three-
dimensional system differs significantly from a correspond-
ing two-dimensional system in several ways. In 3D the two
phases can percolate the volume in all directions at the same
time (“plummer’s nightmare’) whereas a phase percolation
in 2D is a frontier and obstacle for the other phase. Further-
more the spinodal phase growth has a smaller exponent for
the algebraic growth speed in 2D than in 3D, where the
viscous growth is the only growth that can compete with the
expansion. This growth is, however, the observed spinodal
growth in 3D at late timg8], and the very slow expansions
in 2D and 3D confirm this differendg-igs. 8, 9, and 1)1 For
a slow expansion the system separates into a big drop of
liquid surrounded by its gas; whereas there is an interval of
bigger expansion rates for which the system is fragmentated
when leaving the two-phase area. The fragment sizes are
exponentiallydistributed.

The fragmentation by a uniform expansion of(2D)
Lennard-Jones fluid was [i] compared with the luminosity
of galaxies as a measure of the big bang fragmentation of
matter. According td1] this is also exponentially distrib-
uted; but later this result was questioned since if matter in the
Universe is fractally distributed one should in fact expect an
medium and sets up a linear velocity profile in the containemalgebraic distributiorj16] rather than an exponential distri-
and the fluid expands uniformly. This kind of uniform ex- bution. The fragments in the present LJ system, without long
pansion is investigated by molecular dynamics simulationstange gravitational forces, are exponentially distributed and
The computer experiments demonstrate that the equilibriurdifferent from the droplet distribution for growth outside the
phase behavior plays a crucial role for a stable fragmentatiospinodal percolating regimgl7]. The mean of ten expan-
of the fluid. The fragmentation at state points above the twosions, which gives the uncertainty of the distribution, clearly
phase regior(Fig. 4), is only obtained for very fast expan- shows an exponential distribution over several dec#Bigs
sion rates and disappedstowly) as the expansions are con- 7); but it is of course a question whether there exists that
tinued. This is explained by the fact that a constantkind of universality between fragmentation of obstacles with
expansion rate of the sizes implies that the speed of the exvidely different forces. Perhaps one important result from
pansion per unit length goes to zero whereas the capability ahe present investigation might be helpful in this context: one
removing a density inhomogeneity is given by the soundobserves that the distribution of fragments is established at
velocity, which remains finite. Thus a fragmentation that isan rather early times during the expansion, as demonstrated
obtained at an early time of the expansion, e.g., by an explan Fig. 7, and thus the distribution of matter in the Universe
sion, disappears at a later time. should be independent of the age of the galaxies.

FIG. 11. Particle distribution in a 2D system afl,p)
=(0.3,0.026) after a very slow expansion ratesef 0.001.
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