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We present a generalized relativistic Lagrangian which yields the effect of heaj #imd nonequilibrium
stressr in the energy-momentum tensor of an extended reversible fluid exhibiting thermal inertia. The actual
momentum of heatthermal momentum related to the entropy fljdallows to be many orders of magnitude
larger tharg/c? (cis the light speexbut it is consistent with Grad’s kinetic theofin Principles of the Theory
of Gasesedited by S. Flugge, Handblu der Physik Vol. 1ZSpringer, Berlin, 1958 and with experiments in
heat conduction. On the other hand, the net momentum of heat regiafsin agreement with the standard
relativistic result, this net momentum being the result of incomplete compensation of the actual thermal
momentum and the momentum associated with self-diffusion of particles. The classical densities of mass and
entropy,p andp,, cease to be natural variables of energy derSity the sense of Callefirhermodynamics
and an Introduction to Thermostatisti¢#/iley, New York, 1988] whenever inertial effects prevail. This fact
necessitates the use of what may be called the thermal pot&ntjah new quantity replacing the classical
temperaturd. Changes in thermodynamic formalism are related to the replaceme@ryof ~. The admission
of a freely varied four-flux of entropy in an extended Hamilton principle implies all nonequilibrium corrections
(g and 7) to the energy-momentum tensor, making it possible to investigate the effect of nonequilibrium
phenomena on the properties of associated gravitational f{8d963-651X98)01912-4

PACS numbd(s): 05.70.Ln, 47.27.Te, 44.10i

I. INTRODUCTION: AIMS AND SCOPE magnitude larger tham/c?; they are of the orden/c3,
wherecy is close to the thermal spe&gdT/m for the particle
Thermal inertia is a gradual Change of the heat flux Undebf massm. In view of unpredictabimy of these |arge mo-
a rapid change of the temperature gradient. It manifests itsefhenta and related nonequilibrium corrections to the internal
in both nonrelativistic and relativistic cases. The purpose oknergy by the(described abovequasiclassical extension of
this work is to develop a relativistic theory of thermal inertia the (relativistio adiabatic fluid theory, it is shown that a
based on an appropriate Lagrangiarwhich needs to be hypothesis of a “thermal mass,” associating a part of the
determined. To begin with we consider the Simplest pOSSibl@bserved rest mass with the entropy rather than with par-
extension of the standard relativistic Lagrangian of the adiatidesl furnishes a Simp|e “nonclassical extension” Capab|e
batic fluid, which is the negative rest energy denfify This  of predicting these large momenta and the related energy
L is made applicable to nonadiabatic fluids by distinguishingterms. The principal property of this extension is that it pre-
between the absolute velocity of the transferred entrapy serves finite thermal inertia in nonrelativistic limit. We pur-
=Js/ps (where pg is the entropy density ands the total  sue here the simplest model with the constant amount of
entropy fluy and the hydrodynamic velocity=J/p (where  thermal mass per unit entrofithe coefficientd adjusted so
J is the mass flux ang is the total fluid density Allowing  that it fits Grad’s kinetic data in their broad plateau regime,
for an unconstrained entropy flow, with the diffusive compo-where §=m/3kg) that allows us to handle the kinetic effects
nentjs, in the corresponding Hamilton principle ouryields  with reasonable accuracy. The inclusion 6fdoes not
the energy-momentum tensor which contains the heat flughange the chemical potential but requires a redefinition
q=Tjs, associated with the momentum densitic?, and  of the usual statistical temperature according to the simple
the nonequilibrium stress=qq/(Tpc?). The obtained formulaT =T+ Ou. Yet, this inclusion adds to the modi-
theory is what we call a “quasiclassical extension” of the fied temperature the relativistic compon@et, analogous to
theory of relativistic adiabatic fluid. The resulting and re- the c> component of the relativistic chemical potentjad .
sidual nature of the momentum densific? (disappearing in  The relativistic intensitiesT* =T~ + 6c? and u* = u+ c?
the frame of the relativistic energy and at the limit:«) is  obey the Planck-Einstein equations for the relativistic trans-
a distinctive feature of the transfer process considered. Afformation of T [1].
energy results are valid, however, such a theory can predict The nonclassical extension shows that the actual momen-
thermal inertia solely as a relativistic effe@ecs. 111\ tum density (the thermal momentum densifyassociated
In Secs. V-VII, reference is made to the problem of ther-with the entropy fluxjs, equals, in factT ~jo(1/c®+ 1/c§),
mal inertia, implied by kinetic theories of Grad’s type which where T~ is the redefined statistical temperature angd
predict momentum densities of heat to be of many orders of (T~/6)*2 For the unchanged definition of heat=Tjs,
the netmomentum of heat remairggc?, in agreement with
the well-established result, the net momentum being the re-
*FAX: 011-48-22-8251440. sult of compensation of the thermal momentum and the mo-
Electronic address: sieniutycz@ichip.pw.edu.pl mentum associated with the self-diffusion of bare particles.
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The partial momenta, thermal and material, are then interebserver at rest in this frame, the flux of the particles appears
preted as internal momenta of extended thermodynamicso be zero and a heat flux is the flow of the energy relative to
The analysis explains terms lik@/c2 in some formulas for the particle stream. Another scheme, which we do not use
internal momenta and their squares in the internal energhere, is based on the energy frafi@ndau and Lifschitz’s
function. On the other hand, the analysis shows that thesisame[6,7]). In that frame the flux of the energy appears to
thermal momenta are still compatible with the standard resyanish to an observer and the heat flux appears as a drift of
energy, momentum density, enthalpy, and pressure; yet inthe particles.

provement is achieved for the components of the energy- In the framework of Eckart’s theory of heat flq®], ther-
momentum tensor. Using the extended model in the contexnal inertia is possible only as a relativistic phenomenon.
of Ray’s [2] variational principle, a nonequilibrium energy- However, Israel’'s nonstationary thedy—10], which takes
momentum tensor is obtained in general relativity. This teninto account the second order terms in the entropy four-flux,
sor takes into account heat and nonequilibrium stress anig sufficient to solve the paradox of infinite propagation
allows one to investigate their influence on properties of respeeds of thermal signals. Israel's theory involves the
sulting gravitational fields. Our results are consistent with theenergy-momentum tensd®'® as the quantity generalizing
recent findings obtained in the so-called generic formalismmass in both a covariant form of the Gibbs equation and a

for nonequilibrium dynamic§3]. generalized Gibbs-Duhem formula containing the four-
velocity [9]. It follows that the corrections to the classical

Il. STANDARD DESCRIPTION entropy and entropy flux must be of, at least, second order in

OF RELATIVISTIC FLUIDS dissipative fluxes to make the theory compatible with stan-

o _ o dard thermodynamics in the quasistatic limit. However, that
The basic ingredients of the standard relativistic theory Oftheory' while general and yielding a more correct qualitative

a one-component fluid are the symmetric energy-momenturgescription than the previous theories, offers only a rather
tensorG'¥, the particle four-fluxJ', and the entropy flu formal view of thermal inertia.

(i,k=1,...,4). Thecentral problem of thermodynamics is  |n Sec. V of this work another way is chosen to interpret
how to interrelate these primary variables. The quant®¥s  and then investigate the effects of thermal inertia. It is based
andJ' are conserved, i.e., on our earlier recognition of the importance of the free en-
. , tropy flow (independent of the flow of the particleqn
G=0, J,=0. @ opy fow (ndep particle

Hamilton’s principle of nonrelativistic systenj41,17. Us-

ing this principle we test a hypothesis that a part of the ob-
servedrest mass of the fluid is of purely thermal origin, in
the sense that it is associated with the entropy rather than

The entropy four-fluxS obeys the second law constraint: the
positive entropy productios', i=0. From Eg.(1) one ob-

tains with the particles. While this hypothesis does not change the
UkGi!‘:O 2 background rest energg=Mc?, we are able to show that
! the large kinetic terms of Grad’s theory and extended irre-
as the energy balance, and versible thermodynamic&IT, [13]) can be quite easily ob-
tained. The resulting theory, which is certainly in the spirit of
hkiGi,:(: 0 3 extended thermodynamics, is easily applied to RE3]son-

struction of the energy-momentum tensor in general relativ-
as the momentum balan¢é]. The signature convention is ity G'%, showing not only that the general formu# can be
(+++-). U' is the particle frame four-velocity ant'® derived in a direct way but also that definitions of hgand
=g'*+ ¢ 2U'UX is the projection tensor, the operator which and stressr can be furnished irG*. These results are of
projects onto the 3-space orthogonal to an arbitrary timelikealue, since the contemporary relativistic thermodynamics
vectorU'. If we are interested in dissipative effects in a heatsets the structure of Ed4) only, on the basis of general
conducting viscous fluid, we can define the energy-covariance principles, but without any information regarding
momentum tensor the nature ofj and 7 terms in this equation.

G =c ¥ EU'U +gUR+qU) + 7* + PRk, (4) lll. TRANSFORMATION
OF THERMODYNAMIC INTENSITIES

whereP is the pressurey' is the heat flux densityg; /c” is IN A CLASSICAL CASE

the related momentum density, antf is the total viscous
stress.E?=nmPc2+n%%% is the total density of the rest  The problem of relativistic transformation of thermody-
energy,n® is the number densitye®’ is the internal energy namic intensities, such &b and u, will play a role in our

per particle @ =e/n). The zero superscript pertains to the analysis, hence a brief introduction is appropriate. Exact rela-
rest frame. We use also the rest densities of ma%s tivistic transformations of thermodynamic parameters were
=n°mP and internal energy®e®=n%"’. Heat is understood determined by Planck and Einstdih] soon after the estab-
here as the energy flow relative to particle stream. The quarlishment of relativity theory. In their work, the temperature

tities g' and 7% satisfy T and the amount of hea®® in the proper frame moving
) _ with the velocityv with respect to a laboratory are connected
q'Uj=U;7*=0. (5)  with the quantitiesT and Q in the laboratory frame by the

. L noncovariant transformations
Equations2)—(5) refer to Eckart'd 5] relativistic thermody-

namic theory where use is made of the particle frame. To an T=T°\/(l—v2/cz), Q=Q°\/(l—v2/cz), (6)
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i.e., moving bodies appear cooler. However, in 1963 Ott's w*=—(dLldp),=(dE%ap°)(ap° ap)
[14] work appeared implying that the true transformations o
have the form = ul V1-v/c?=(u®+c?)V1-v?/c2. (10)

T=T9 /—(1_\,2/02), Q=QY /—(1_\,2/02)_ ) The asterisk is used to indicate relativistic quantities. On the
other hand, when the kinetic potentials expressed in terms

|9f fluxes (or—in the relativistic case—momentum densities
and pertinent differentiations are made, Ott’s result is ob-
tained. While the theory cannot answer the question of which
T's are closer to the indications of a thermometer, it identi-
Sfies the Planck-Einsteii’s as those measures of the fre-
quency of thermal agitation which furnish the canonical for-
malism of thermomechanics based on the Legendre

transformation and thermohydrodynamic potentials, and also

the position that th? temperature has a most natural I’neanmr%cognizes Ott'’s as different but specific differential mea-
when assigned to its value in the proper fraftib,16. We
sures of the energy.

have omitted here a comprehensive discussion of the abun- Equations(8)—(10) can be easily generalized to nonequi-

dant literature referring the reader to several revi¢h&— librium situations. When the process is(versible non-

19]. A summarizing remark is appropriate, however, Somee uilibrium process, different transfer velocitieg and u
authors conclude that equilibrium statistical mechanics canr—nqust be intrgduced ,into the kinetic potentlal E §(8) We
not provide an unambiguous answer to the transformation P 9. (9).

formulas of thermodynamic quantities and, therefore, alhay note th_at_ the effect pf th_e entropy velocity vanishes in
i . - : the nonrelativistic approximation df,

three kinds of transformations are acceptdB@. In view of

our results here and some earlier ofizk,22 we accept the

classical formulag6) as the most appropriate for re\F/)ersibIe L=—E%ps\1-ug/c?, py1-uZc?)

processes in the energy representation, which is of interest to =1 02— pc?— pelps.p). (11)

us. Staruszkiewicz'g23] work solves exactly the problem of 2 s

the transformation o in the energy representation, leading The nonequilibrium intensities follow immediately as
towards acceptance of E(f).

These quantities are time components of the related fou
vectors. (For example, the temperature four-vectdt
=TO%'/c.) This controversy divided the researchers into
three groups, each applying different transformation law
[Egs. (6), (7) or T=TP]. All researchers agree that the en-
tropy is a relativistic invariant, so that the equal®g S°
should hold in any case. The assumpfioaT° follows from

In the framework of the variational formalism developed T=—(dL/o = (IEY 30°) (9% 9
here and in our previous worKl1,17 the solution to the (OL19ppu, w=t ps)(dpslaps)
problem is straightforward. Both kinds of temperatures are =70 \/ﬁg,cz (12)

eligible to appear in the dynamical formulas, but only the
Planck-Einstein “cold” intensitied ~ anduw ™~ are the ingre- 0 0
dients of thethermodynamic transformaﬁon formalist‘?lat == (0L19p) p, g 0= (B Ip3) (9pSl op)
involves, in the nonequilibrium case, the velocities or fluxes 0 o

as additional variableqs. The temperatilirenust be the nega- = Hy NI uEs (13
tive partial derivative of the kinetic potential densltywith
respect to the entropy densipy at the constant transfer ve-
locities, u and ug, or the partial derivative of the energy
density E with respect topg, at the constant momenta. We
shall show here that this requirement leads to the Planc
Einstein temperatures.

Let us compute the cold intensities corresponding to th
classical equilibrium and nonequilibrium theories. The rela
tivistic kinetic potential is the negative of the rest energy
density. The latter is usually written as the s&{p2,p°) of
the thermalinterna) energy density e and the relativistic
rest energy densitp’c?=n°m°2. Working with the total
quantityEO(pS,pO) leads to a transparent picture. Expressing

In this (“quasiclassical’) case the entropy of the continuum
is exclusively associated with the internal part of the energy
E®. In other words, in the formula for the rest energy
E%(p2,p°) =p°c?+p°e°, the only term containing the en-
tropy is thep®e® term. This causes identical temperatufes
@nd T*, meaning that the temperature, as opposed to the
_chemical potential, has no relativistic component. Therefore
any inertia acquired by the entropy can be linked only with a
small internal energy term, and is practically negligible. This
is seen explicitly below when the corresponding thermal mo-
mentum is computed.

rest densities in terms of the laboratory frame densities yields IV. PARTIAL MOMENTA OF CLASSICAL
NONEQUILIBRIUM THERMODYNAMICS
L=—E%psV1-Vv?c?, py1-v%c?). (8) The method developed earligr2] allows us to compute

partial momenta for an arbitrary kinetic potentiglso rela-
The negative partial derivative df with respect tops at  tivistic L's can be applied as well. The final expressions of
constantv is our equations will contain low-velocity approximations. The
thermal momentum densi§L/du; is

T=—(dL/dps),=(IEY9p2)(ap dps) =TO\1—V?/c?. o oo
(9 ps:(aL/aus)p,ps,u:_(aE 13pg)(dpgldu)

Similarly, for the chemical potential, =¢ *Tgus/ V1 ug/c®=TJg/c?. (14)
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This quantity vanishes in the nonrelativistic limit and, in this flow has been said. In this regard the problem lies with the
sense, one can say that the entropy of classical thermodyteat momentum itself: no thermal inertia can be predicted in
namics is inertialess or weightless. We stress that this is n@ nonrelativistic limit. In other words, the improvement pro-
the case of any extended thermodynamics, where the quarided by “quasiclassical” Lagrangians is insufficient to cor-

tity ps is much larger than that predicted by E44) and
does not vanish for an infinite [24]. In Eq. (14) the tem-
peratureT® equalsdE® dp2=9p°e% dp?, the classical tem-

rectly describe thermal inertia. This situation calls for further
research; we shall see that equations can be obtained, which
contains thec-free kinetic terms. They will appear in an ex-

perature of the resting medium, and the relativistic mass terrfended thermodynamics description when a part of the back-
present inE° has no effect oT°. On the other hand, it is the ground energyp®c? is the energy associated with the en-
relativistic term that strongly influences the chemical poteniropy.

tial. Therefore the relativistic chemical potential must be dis-

tinguished from the nonrelativistic one. The rest frame
chemical potential of the relativistic theory is two compo-

nent: u% =dE% 9p°=c?+ u°. Thanks to the very large®
the momentum density of the matter predominates,

p=(aL/ou), .=~ (9E% 9p2) (9p2l du)
=c 2(c?+ u®) pul V1 —u?/ =3+ udlc?.

The sum ofp andps is the total momentum density [12],

(19

of Us u
s\1—u¥c? 1-u¥c?

[=ps+p=c*T%

p°u

+(1+C_2h0) m

=Cc °Tj+(1+c 2h)J. (16)
When the heat fluxg=Tj, is introduced,
I'=c 2q+(1+c 2h)J. (17)

V. A HYPOTHESIS OF THERMAL MASS
AND EXTENDED THERMODYNAMICS

The kinetic potential, whose Legendre transform 5
depends on the assumption on how the observed inertia is
divided between the thermal and substantial degrees of free-
dom, represented by the entropy and mass. Any classical
thermodynamics is consistent with the assumption that the
contribution of the entropy to the rest mass dengityis
zero; which means that the entropy or heat flows are inertia-
less in the nonrelativistic limit. This is an assumption which
leads to the known paradoxes in the Fourier heat transfer
theory and quantitative disagreement with implications of the
kinetic theory.The hypothesis of a thermal massbased on
the assumption that part of the observed rest mass of a mac-
roscopic body is of purely thermal origin, meaning that it
should be attributed to entropy rather than to parti¢is.
Assumption of a finiteg, which is the amount of the “ther-
mal mass” per unit of the entropy, leads to an extended
thermodynamics in which a part of the observed inertia is
linked with the entropy flux. In view of differences in values
of # implied by various model§24] we assume here a con-

Summing up, the simplest “quasiclassical” extension of theStanté in the plateau regime of Grad's model; ttéss well
standard theory of adiabatic fluid, which allows thermal de-approximated by the ratio3kg . The finiteness of elimi-
grees of freedom, implies that the momentum density of hedtates the paradox of infinite propagation speed and leads to
is g/c2. In the nonrelativistic approximation the total mo- kinetic terms in the nonequilibrium energy formula which

mentum density is the mass flodv Our distinguishing the

are of the same order of magnitude as those found from the

paths of the matter and the entropy leads to the prediction dionequilibrium statistical mechani¢Srad’s 1958 moment

the heat in the forng=Tpg(us—u)=Tjs, and the resulting
momentum of this heaty/c?, follows consistently. The ef-
fect of accompanying viscosity is=qq/(Tpc?), a new re-
sult.

analysis[25,26). In fact, Grad’'s theory as well as experi-
ments in heat conduction show that a reasonable inertia
should be attributed to the entropy four-flék= (ps,Js) and

the heat fluxq=Tjs. The associated thermal momentym

: : 2
It can also be shown that the relativistic energy!S then many orders of magnitude larger thgfe” of Eq.

E=ps-us+p-u—L simplifies into the well-known equilib-
rium result whenu=ug [2,7]. The energyE in the nonrela-
tivistic approximation ¢—«) is the sum of the kinetic, in-

ternal, and rest energies in agreement with the standa

theory of equilibrium fluid[2]. The low-velocityL takes a
familiar form of the kinetic potential of perfect fluid,

L=—p%*+p°(p° p2)
—(pV1—u?cA)[c?+e(psy1—ui/c?, p\1—u?/c?)]
=3p(1+hic?)u®~pc®—pe(ps.p)
1
3

=3pu®—pC®=—pe(ps,p). (18)

(14), yet theresultingmomentum in the resting fluid frame
(J=0) is still g/c2.
Consequently, a Lagrangidn is stated below which is

feased on the split of the background relativistic engrty’

into the “bare matter” partp%c2 and the “thermal part”
p26c?, such that the their sum remains equap?a?. SuchL
preserves, of course, the same observed rest depSity
=pS+ 6p2 and the total rest energyc? but admits that the
inertial responsibilities are shared by the mass and the en-
tropy in a balanced way. It is interestifg7] that any con-
stant choice o#) does not influence the value of the pressure
P derived fromL. Since the pressure is the extremum value
of a field Lagrangiani11,24], the result proves that there is
no preference fo¥=0 from the standpoint of action-based

While all energy results are valid, and the improvement incriteria. Nonetheless, the magnitudeédiffects the tempera-
comparison with the adiabatic fluid theory is significant, it ture definition and the limiting classical dynamics of the fluid
would be hard to say that the last word in the theory of heasystem.
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The difference between the classical and extended dedelds the desired connection between the relativistic inten-
scription may be seen as a consequence of the choice sfties
variables more appropriate than the classical. The traditional

kinetic  potential L(p,ps,U,Us) is replaced by py =y (=ul+cd), (22
L(pm,ps:Um,Us), Where the latter is obtained from the same oo o o o )
rest energyE® but expressed in terms of the densitigsand T, =T +06u,~ (T +06u"+6c%). (23)

ps rather than the traditional densities. In the rest frame the — . R
kinetic potentials in the old and new variables are equal i e.Ihe canonical intensities represent then the usual relativistic
L(po,pg): L(p%,pg). However, theL changes its form chemical potential and its thermal analog, which we call the

when passing to the laboratory frame; whereas in the tradit-hermal potential (Throughout our previous work27,2§

tional vatiables , po the L takes the neatty waditional  ZPARER SEE AR | S BEE LS O
form (18), in the variables §,,,, ps), it takes a different form glectedn I ,
terparts the nonrelativistic intensities are defined as

__po 72 72
L=—E%psy1—uZ/c? pmy1—ui/c?) L= 0 (=0, (24)
= —p%?+p%(p°,pd)

=—(0pd+ppc+e(pd.pm)]

T O0=7.%-0c® (=T+0u). (25)

Comparison of Eqs22) and(24) shows thafu %= u°, i.e.,

= —(Ops\1—UZ/c?+ py/1—ui/c?) the rest frame nonrelativistic canonical chemical potential
, , coincides with the classical one, whereBs®=T%+ 90,
X[c2+e(psy/1—UZ/C?, pmy1—Uz/C?)] i.e., the nonrelativistic thermal potential differs from the

1 5 1 2 5 classical T due to the contribution of the nonrelativistic
=20psUst 2 pmUn— (Opst pm)C = (Opst pm)€(ps.Pm)-  chemical potential. We stress tHags. (22)-(25) set the rest-
(199  frame inputs T? and u~° to their transformations into T
and u~ of moving systemdn moving framesu andu™ are
Let us compare Eq918) and (19), in which the last lines not equal[See Eqs(30), (33), and(34) below for transfor-
describe the limiting nonrelativistic approximations. The mations of T~ and x~ in moving systemg.Note that the
transformation of the internal energy is neglected in @8) classical densitiep and pg cease to be the natural variables
as it yields extremely small corrections ltoand its deriva-  of the energy densitf in the sense of Callef29] whenever
tives. The inertialess property of the “nonrelativistic” en- the inertial effects are important.
tropy was seen in the quasiclassical Etg). On the other However, not all thermodynamic properties change. The
hand, the choice of a finité in Eq. (19) changes the form of replacement of the rest temperatdre by the rest thermal
the kinetic energy, or switches the responsibility of carryingpotential T~ leaves the densities of the internal energy and
a part of the inertial effect from mass to entropy. Clearly, thethe total mass unchanged; hence the specific internal energy
limiting nonrelativistic kinetic potentials of Eq$18) and is an invariant. Moreover, the replacement B by T~°
(19 arenotequivalent. The nonrelativistic in the new vari-  does not change the pressiie
ables ps,pn) has the kinetic energy larger tharevaluated
for the corresponding conventional variables o). P70=T70P5_0+ MfOP(r)n—Pe_o
Let us consider the differential of the relativistic internal -0 0y 0, 0,0 N
energy density in terms of the “canonical intensities” =T+ 0u ) ps+ pu(p"— Ops) — pe

(ps,pm)- In the rest frame =Tp2+,u°p°—p2= po. (26)
o 9B o JE° Of course, whend=0, T~°, and T® are identical. As the
dE'=—75 dp;+ —5 dpp, . ;
dps IPm simple calculation shows,

=T, %dpS+ ., dppy h™0= (T %+ %) p°=[(TO+ 0u®) pg+ uppl/ p°

=T, %dpd+ p; °d(p°— 6p2) = (T%2+ %)/ p%=h?, 27)

= (T, %= 0, *)dpd+ p, °dp®. (200 the considered transformation does not change the specific

enthalpyh®.

In the first line of this equation “canonical intensities” are  The pressur® is a scalar in all the theories. The density
defined as quantities in which the minus superscript stresseg the internal energy in the laboratory frame,=T ps
their relation to the “cold” Planck-Einstein temperatures. + ,p —P, is an invariant accurately up to tiee 2 terms. If
The asterisks stress the relativistic origin of both intensitiesk, gc? equalsm®c?, then the coefficiené equalsm® kg, and
The third line describes transformation to the classical varithe quantityT+ 6c? is the sum of the usual statistical tem-
ables, the mass densipyand the entropy densitys. Com-  peratureT and the(quantum, relativistic de Broglie tem-
parison of Eq.(20) with the classical Gibbs equatidoper-  perature of a particle[" = m°c?/kg . In our theory the partial
ating with pJ and p°) derivative of the rest energy densiB with respect to the
rest entropy density? equalsT% =T+ T°, In the de Bro-
dE°=Todpd+ us dp®=Todpd+ (u0+c)dp® (21)  glie theory[30] the statistical effects are ignored and the
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derivative in question equalE’’; in the classical thermody- The pressureP preserves its scalar property even in a
namics this derivative is, of cours&’. The absence of the nonequilibrium situation

usual statistical componef? in the de Broglie theory, iden-

. . 0 . . . . . . _ _ _ _ _ _

tifying T r with an_lntr|n5|c temperature o_f a m_|cro-opjec_t, P =T pg+p py+Ps-Us +pm-Upn—E~

made difficulty which has prevented a wider dissemination

of his idea. Our relativistic approach incorporates the de Bro- = (T+ 0u— 0u2/2) ps+ (s —UZ/2) pm+ OpuZ+ pru?,
glie microscopic thermodynamics and preserves the standard ) )
statistical meaning of the usual temperature. The Planck- —(pet Opsus/2+ prun/2)

Einstein formula for the relativistic temperature transforma- —Tout Ot _
tion, Eq. (6), pertains in our theory to the suffi® =T PsTVHPsT HPm™ Pe
+TP°, in the de Broglie theory td@° only, and in the clas- =Tps+t up—pe=P, (32
sical relativistic theory tar°.

Our thermodynamics can now be applied to systems ifyhere £q(90) of our previous work27] was used to link
motion. For this purpose we use the Lagrandia® with a  \\ih p.
finite inertial coefficientd, the measure of the thermal mass IntensitiesT~ and w~ with tilde over their symbols in-

per unit of the entropy, and the canonical variables, the deng qe an effect of the external field; our previous wpt2]

sities of entropy and bare mags, andpp,. The nonequilib-  gqyq 5ich effective quantities to be useful. For example, in
rium intensities of the moving system follow immediately as 5 Newtonian gravitational field, motions of the matter and

entropy with the velocities,, andug induce the transforma-

Ty == (3L1aps) .y, = (FE13p)(9p Ipo) tions

=T, %J1-uZ/c?=[ 6c?+ (9p°e® 9p2) 11— uZi/c?

T, (ug)=(T°+ u+ O+ 6c?) 1 —uZ/c?
=[0C2+T70] ll_USZ/CZ, (28) * s

=T+ gu'— gu2/2+ 0y+ 6c?, (33
and
-~ — O+ _|__ 2 _ 2 2
thy == (L1 3pm)y_ u, u, = (FE Ip) (3pa Ipm) o (U) = (74 gt VLUl
= 10— uZ/2+ g+ 2, (34)

=u O1-u2/c?=[c?+(dp°%% 3p%) 11— u2/c?
=[c2+ 1 911 — u2/c2, 29 where their second lines generalize Eg1). The transfor-
] wl m 29 mations(33) and(34) can be used to generalize the kinetic

where the asterisk refers to the relativistic quantities containPotentialL, Eq. (19), to cases with scalar external fields. The
ing the contribution of the rest mass. We stress that it is thgeneralized. is the Legendre transform of the static pressure

relativistic canonical intensities, not their truncated nonrela-

tivistic counterparts, that obey the Planck-Einstein formula —L(ps,pm.Us,Um)

for the relativistic temperature transformation. Equations

(28) and (29 constitute the Einstein-Planck formulas for P - _ -
relativistic canonical intensities when the thermal inertia is =— T+t ——u, —P(T, &, ,Us,Upm)
described by the inertial coefficiert These intensities do ITh1 Thes

not coincide with the classical ones becauselitis differ- - B

entiated with respect to the special densitigsand p,,. At =psT4 (Ps,PmUs,Um) + pmfty (Ps,Pm,Us,Um)
disequilibrium our intensities incorporate two different ve-

locities of the entropy and matter, contained in the transfor- —P(ps,pm,Us,Um)

mations

=T+ (u+ ¥+ (pmt Op)

T, =T.2(1-uZcAHY2  py=p; (1-ui/cH)2 P pU/2— Op ol

(30)
~ 2 2 2
Equation (30) is a shorthand expression of Eqg8) and =pet plyHCY) = prlin/2= OpsUs/2. (39
(29). The low-velocity transformation rule for the canonical
quantities is the-independent transformation The transformation theory of ~ and n.~ is also useful
when the matter tensdg'® is determined(Sec. IX and a
T =T°- 6u§/2= TO+ oul— 0u§/2, M*=M*0—u§/2, transition is made to express its components in terms of the

(31 traditional quantities. An example in our earlier wdik8]
shows that the components of the energy fuxdetermined
which applies forT ~° and .~ ° obeying Eqs(24) and(25).  for a multicomponent counterpart of nonrelativistic Eq.
When =0, the velocityu,, approaches the hydrodynamic (19), can be brought to the traditional form which contains
velocity u, T=T°, and only chemical potential transforms; all standard terms characterizing real fluids, with the heat
w=pu—u?/2. This result is well known in the theory of flux, diffusion fluxes, and the work of the nonequilibrium
hydrodynamic fluctuationg31]. stress per unit timd]l- u.
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VI. PARTIAL MOMENTA Thus the extended low-velocity expression forcoincides
OF EXTENDED THERMODYNAMICS with that obtained from Eq17) in the previous case of the
ipertialess entropy, i.e., the classical and the extended mod-

In classical thermodynamics both the entropy and the he Is correspond with the same densitytofal momentun.

behave like weightless continua, whereas in the extende et, the extended model shows that2q is merely there-

approachegGrad'’s theory, extended irreversible thermody- _ T .
namics, de Broglie thermodynamics, and the thermal masssultmg or net momentum of heat. The“q is residual, the

theory analyzed hejg¢hey have an inertia. For any model of \r;sgrl; f])f—Ig'cﬁgqlzl:;iit(i:cc))rTF(SsljtzaggnEg(gi’jg)pmV\;ﬂiéﬂea;r:lzrrfs
a sufficiently small constart and the standard linear model o L s e :
of heat conduction, the heat pulse propagates in our theo q.(l_?) or (40). In the I|m_|t of an infinitec the compensation
with thermal speeds not exceedin®/ ¢)*?, in the classical f all internal momenta is complete.

relativistic hydrodynamics with the spee#, and in the clas- ar(agl tg%%tgﬁtru;agi’sfggz dsr\:;\t/f\:st:]r;ate;ot:oa f”:'rt:z;?; can
sical nonrelativistic hydrodynamics with infinite speed. AP Py

clarification of this issue will be given in Sec. VIII; here we be considerable. In the nonrelativistic rest frande-0) this

. . omentum equals simplgq/T, whereq is the heat flux. As
?r:rc?décl) evaluate the momentum properties of the EXtendeghown by the fourth line of Eq40), the low-velocity heat

With the kinetic potentia{19) the thermal momentum and ?‘lljf g)nizrj;?s?% asv\t/?tﬁ ?nt?(;?l}nlgtrtigsgrdﬁirlg ttggg)lgrlgtlzrraeme
- S .
the momentum of the bare matter are This holds because — A~ =T -0 g O0=TO=T, as the
effect of differencegu?/2— guZ/2 is negligible, and the or-
dinary T transforms as a scalar at low velocities. Thus the
—(0+C 2T % pu./1—U2/c2= 0+ T J./c?, relativistic thgrmal momentum for the diffusive transfer of
( JpsUs s s s the entropy in the resting framel€0) equalsp®=(c, >
(36)  +c )T j=(T /T)qglc3, whereco=(T /6)Y2 The ex-
pression contains the ratib /T, the result of applying of

Ps=(ALIdUg), . u =~ (IE%dpd)(3p3l ug)

Pm= (LI Um), o u = —(9E%9p%) (9p2/ dup) the old definitiong=Tjs to a new situation where the defi-
nition g~ =T js would be not less relevant. With such a
=(1+¢c 2 O pmUm/V1—Ua/c?=J+ u ™ I /C?. redefinition of heat the thermal momentum satisfies a mne-

37) monic formula

O (24 a~2\T-i —(~~ 21 ~—2\q—
=(Ccy,°t+Cc )T js=(cy°+C . 41
The total momentum densitly or the sum ofp,, andp, can Ps=(Cy IT1s=(C ) “D

be written as As p? nearly compensates the diffusional momentum of mat-

ter, the resulting relativistic effect is always as smalb&s’.
Us u But this practical compensation does not exclude large com-
1- ui/c2 1—u?/c? petitive currents and the role of their momenta. In any genu-
ine extended thermodynamics the entropy flux carries a finite
Um u momentum in the nonrelativistic limit, as in E¢41), and
1—uﬁ1/(;2 1—u?/c? this momentum cannot be ignored. Since the total momen-
0 tum densityI" is constant, the large thermal momentum
+(14c2h0) p-u (39) causes the compensating self-diffusion momentum of mass
1—u?/c? to preserve a definite mass flux
The quantityp, is the (spatial componeptdensity of the
We introduce into Eq(38) the heat fluxq=T% =ps (us  following relativistic four-vector of thermal momentum:
—u) and the diffusion flux of bare mags=pn,(u,—Uu), a

I'=pstpm=(6+ C_ZT_O)PS(

+(1+02M°)P§<

— - - 2
sort of self-diffusion flux. The fluxes satisfy the standard P=(6+c 2T~ %) Sus/V1-ug/c?,
equality resulting from the definition of the hydrodynamic
velocity Pé=(6+c 2T 9 S J1-uZ/c?, (42)
Bt j=0. (39) Whose absolute value Py =[(PH2-P21¥2 is (0

+¢7?T 9SE=¢S. Similarly for the momentum of the

For small transfer velocities Eq&8) and(39) yield in terms bare mass the following relations hold:

of the fluxes Pm=(1+¢ 21" O)M U/ 1 - U2/c2,
T=pe+ J
PsT Pm Pg:(l—l—C_Z,u_O)Mm/ 1—Uﬁ1/02, (43

=(0+C ?T )je+(1+C %u )jmt(1+c2h7)J
e o o and|Py|=(1+c¢c ?u %)M ,c?=M,c2. Thus the total four-
=C¢ (T —0u )jst(1+c “h7)J momentum of an equilibrium volume isP|=(6S+M,
-2L—-0 2__ 2 0 H
~c 2Ti.+(1+c 2h +c *h™"M)c=M(c~+h"), whereM is the total rest mass
¢ Mst(1+eh)d of the fluid andh~° is the modified specific enthalpy. Since
=c 2q+(1+c ?h)J. (40)  h7%=nO, the final result is the same as in the classical case
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when §=0. Consequently, the classical res{it|=M/c? Equation(48) generalizes the standard relativistic energy
+h9) still holds as exact. The surpliéh® to the rest energy  (49) for a finite 6. Equation(50) shows that for the same total
Mc? is due to the thermal agitation of molecules. This con-entropy and mass the extended energies are higher than the
forms to the standard theory which explains that the encorresponding energies of the local-equilibrium description
thalpy, rather than the internal energy, plays the role of thé11-13. Thus the nonequilibrium model increases the val-
time component of the energy-momentum vector when theies ofE above its equilibrium value. It is just this increase of
system in motion is not a free systdit9,23. the mechanical part dE which causes the largém com-
parison to classicaimomenta of extended thermodynamics.

VIl. ENERGY AND ENTROPY RELATIONS
VIIl. HEAT TRANSFER

In accord with the definition of the barycentric velocity, WITH EINITE PROPAGATION SPEED

we apply the relations
We can now easily explain the large thermal momenta of

pU=pmUmt OpsUs, (44) Grad’s theory[25]. We pursue the lowr case as sufficient
for practice in the frame of the present formalism. Using Egs.
pP=pmt Ops, (45)  (44) and(45) in the form of the constrainjs+j,,=0 in the

. ) ) last line of Eq.(50) yields
to link the two representations in the laboratory frame. For

}Qe extended model the density of the total endggyot E°) L=2pu?+316%(0 Yp t+p1)j2—pc?—pe
_1 2,1 -1 2 2
=3pUF 30y (PmT pst) psb(Us—U)“—pC“—pe.
E=ps- Us+ Prm- Un— L=C"2(6c%+ T~ 0) pu/ 1 —uZ/c? 5
te2(c24 40 2) 1272 _ _ _
¢ (et u Dpmii/ V1 Un/C Equation(51) may be transformed further, with conventional
+E%(ps/1—U2/c?, p/1—UZ/c?). (46)  variablesps, p, Us, andu,
We transform this result to the rest densities, to compare it L= E W2 } ppst (U= U)2— pc2— pe
with the standard relativistic energy of a local-equilibrium 2F 2p—ps0 3 P P

fluid [2,7]. We obtain

1 2 1 2 2
=5 pu + > pOs(1— 0s)vs,,— pc—pe, (52

E=(c™ 2T %+ 0)pu?/(1—u?/c?)

-2, -0 0,2 212

(e T+ ) ppU/ (1= U/ %) wherevg = Us— U, is the relative velocity. This shows that,
4 0p0c2+ pO 2+ T 0904 1, 0,0 _p. 4 as long a¥ is flnlte, the'partlal moment@L/&us, AL/ Vg,

Ps& T Pm PsTH Pm “7) etc., appearing in various representations of extended dy-
namics may be many orders of magnitude larger than the
residual(standard, relativisticmomentum of heag/c?. [The
latter is actually ignored ih of Eq. (52) due to its approxi-

where the second line represents the rest enEPgyA rear-
rangement yields

E=pd(T %+ 6c)/(1—u?/c?)+ p°(u~ O+ c?)/(1—u3/c?) mate, I.owu_, fqrm.] These partial momenta do not vanish at
the limit of infinite c as does the momentugic?. Thus they
-P. (48) can fit the inertia of Grad’s solution of the Boltzmann equa-

tion or the experimental data of thermal conductivities by a
Equations(47) and (48) describe the nonequilibrium energy pertinent choice of the coefficiet[25,11,24.
density of the extended fluid. At local equilibrium,=u,, For example, in the variablas andvs,,, the momentum
=u. In this case Eq(48) simplifies to the well-known for-  density 9L/ dvg,=p6s(1— 6S)vsy, and, since (& 6S)vgn
mula for the relativistic energy of a local equilibrium fluid, equals ug—u=q/Tps, this density is q/cf,, where ¢,
=(T/6)Y2. Hence, sinceds are roughlym/3kg [24], ¢, is
close to the thermal speed. For Grad's model the density
dLlovg is a suitable quantity; it equalpgs?ve=gsq/T

E=(E°+Pc 2u?)/(1—-u?/c?) (49

[2,7]. In the low-velocity approximation, but still at disequi-

ibrium =q/c5, whereve=us—u andcy=(T/gs)? cf. Eq.(53) in
' Ref.[11]. This explains the origin of the momentum densi-
E=0p2c2/(1—u?/c?) ties like g/c in formulas for partial momenta and their
squares in the nonequilibrium internal energy. Note that the
+p2102/(1—U?n/CZ)+T7pS+ m pm—P coefficientsc, and cq need not describe the propagation
. P ) ) speeds of hedfor the latter see below; they may be close to
=3 0psUs+ 3 pmli+ (Opst pm)[(C“+e(ps, OpsT pm) ], ¢y andcgy), although they still are convenient measures of

(50)  inertial effects. Due to their speedlike nature, various internal
momenta can be presented in simple forms.
where a transition can be made from variakjesand p,,, to The diffusive entropy flu§s=ps(us—u) is a basic vari-
express the energy as the function of the traditional variableable in our earlier work on nonrelativistic thermal inertia
ps andp. [11]; the corresponding is given by Eq.(41) therein. How-
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ever, another inertial coefficieng, is used there, derived whereg is the state function in E453). The last expression
from Grad’s[25] model, which is a functiom(p,s) rather in Eq. (55 was introduced to make possible a comparison
than the constam used here. Grad's moment solution leadsbetween the present model, based on the coeffideand

to evaluation of6 in terms ofg as[24] the model of our earlier workl1], derived from the constant
ideal gas coefficieng. The present model is an alternative to
pspY gs the g-based model; they overlap in the range of state-
0(p.ps)= (53

independentd and g. Equation(55) defines the relaxation
time for heat flux,7q=«g/(pT), and the propagation speed

For a constang the 6 in Eq. (53) depends solely on the ratio ©f the thermal wavee,= (x/pc,7q) *=(T/c,9)”. In terms
s=p./p. This @ does have a flat maximum with respecsto  ©f ¢ in the plateau regime,

Thus Eq.(53) approximates well a constadin the region of 1 ———
ps and p surrounding the region of maximur, wheres Co=\TIC,g(0)] 1=Tsg, 6 (1 6s).  (56)
=s*=(ps/p)* =g Y?=(5/2)"%g/m. In this sense the

present constar- description is consistent with Grad's For an ideal gasg=(§)(m/kg)? and c,=5/2kg/m. With
model and the related thermal conductivity data. For an idedhese data Eq.56) yields COZ(KBT_/m)“Z._ A discussion of
gas the corresponding maximum value @f=(%)gt2 the two models and of the variability @fis available[24].
11 . o These models are more exact than the traditional Fourier
=(10)"“m/kg, i.e., 0 equals about {) m/kg. This is the model(implying c,— ) in the sense that the infinite propa-

maxir’nal value of the inertial coefficient obtained from  yation speeds of the thermal disturbances are avoided. Yet
Grad’'s model. In this respect, it should be stressed th ey incorporate Fourier's thermal conductivities.

Grad's model and the related relaxation time approximation
produce data of thermal conductivity in quite good agree-
ment with experiments. Thus our description ugeand 6
actually confirmed by many experiments in heat conduction
(see also the end of the AppengiBut, this being the case, We shall determine the matter tensor for a general rela-
the role of # in Egs.(19), (48), and(50) is substantial. The tivistic fluid with thermal inertia. The Lagrangian density of
related thermal momenta understood in a broad sense as péte special theory

tial derivatives ofL with respect to absolute or relative ve-

p2+gp§ - 1+gs*

IX. EXTENSION OF RAY’S ANALYSIS
BY INCLUDING EFFECT OF HEAT

locities, dL/dug or dL/dvgy, etc., can vary over orders of L=—E%psy1—uZ/c? pmy1—Uu3/c?) (19)
magnitude, and are by no means readily negligible quanti-
ties. can be put in a manifestly invariant form by introducing the

In the entropy representation, the kinetic energy surplugour-velocity vectorsUy and U, and the corresponding
manifests itself as a flux-dependent or “kinetic” entropy. fluxes, each obeying the same formulas as the four-vector of
The dissipated entropy in the rest frame is obtained under thieydrodynamic velocity and the related mass flux
usual assumption that the conservation laws for energy and

momentum are the same for both the reversible process and i wd u c
for an irreversible process with the entropy sousge With U'=(U%U%)= e ol
Eq. (39) this entropy source can be expressed in terms of the
ordinary temperature gradient and the entropy flux, UiUi=U- U— U4U4= — ¢2 (57)
—To=j, I(6Vs) +VT> +jm,(’9(vm) -‘rV,u) wherei=1, ... 4 anda=1,...,3, sothat any four-flux
at at vector can be written as
d0(Vs— Vi) 0 0
=jg'| ——=—+VT], (54) N . p-u p-C
at J,3%)=(pu,pc)= :
( (puip J1—-u?/c? J1-u?/c?
wherevs=us—u andv,=Uu,— U are the relative velocities. =(p°U*, poU4) = (p°U). (58)

Thus the gradient of the ordinary temperature persists as the

driving force of heat transfer, and the inertial term appearsrnese equations allow for an immediate inclusion of thermal
with ¢ as the inertial coefficient. For practical purposes thenertia to general relativistic fluids. Our approach nicely ex-
differencevs— vy, should be expressed in terms of the heatiends the elegant variational formalism, formulated by Ray
flux q=Tjs=Tps(us—u). From the definition oliin terms  for perfect or adiabatic fluidg2]. Instead of searching for an
of the us and up, the differenceus—u equals (s—Um)(1  extremum of an actior using the four variableép,u) Ray
—0s) where s=p¢/p is the specific entropy. Hencq yses the five variablesp?,U’) and the general relativistic
=Tps(Us—Up)(1=6s) or,  Vs—Vp=Us—Un=[Tps(1  extension(59) of the constraint of Eq(57) linking the four-
—6s)]"*q and Eq.(54) implies the heat conduction in the velocity components. The introduction of the metric tensor
Cattaneo form contained in Eq.59) is a step towards general relativity.
Using such an approach, Ray achieves a variational treat-
_ _K[i( 69 )+VT] _ _K[ﬁ (% VT ment of standard perfect fluids and gravitational fields by
q ot \ Tpg(1—6s) at\Tp incorporating into the field Lagrangiah constraints on mass
(55  conservation, specific entropy and fluid-particle identity.
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The perfect fluid description is in terms of the rest dengfty Ym=(2¢%)"1p% (c?+ u70). (66)
and the hydrodynamic four-velocity of matter, obeying
J;J'=—pO?, or the four-velocity constraint Thus the multipliers of four-velocities are additive compo-
Kok o nents of the relativistic enthalpy density of the fluid. We
gikU U +c“=0, (59 recall that it is the total fluid enthalpgnot the total energy

which is the component of the four-vector at local equilib-
rium [23]. With our multipliers, Einstein’s equations are con-
tained in the extremum conditions of the action with respect
to the components of the metric tensor

which pertains to the case of gravitational fields with the
metric g'X. The signature convention i6+++—). It is
equivalent to the transformation of any rest dengifyof a
scalar quantityK from its rest frame to an arbitrary labora-
tory frame which moves with the four-velocity*. IA IA IA

Our extension of Ray’s field Lagrangian allows free en- E_<t?9‘ ) (&g- )
tropy flow, free bare mass flow, and the finite thermal inertia 1k thor ik.r.s
0‘. Consequently, fp_r a ol?e-comp;onent_ fluid we_have tWOFor the Lagrangiani60) these equations are obtained in the
different four-velocities,Us and Uy,, which describe, re- o o1 torm
spectively, transport of the entropy and of the bare matter.
The Ricci tensor is defined bRy =R},. Inclusion of the Ek=(8mk'Ic*)GK, (68)
entropic degrees of freedom yields the Lagrangian density .

whereE'¥ is Einstein’s tensor of the gravitational field. The

=0. (67)

,SI

C3 enerqy- h @5'? i h
B N N DY 0. 0+\.2 gy-momentum tensor or the matter ten is the
A= 1611’ (—=9)""R—c™ (=) (ps+ pp)C source of this field. In the present theory, the matter tensor
0, 0 0o " K G'* is affected by the heat flow, thermal inertia, and the
+pe(psipm) 1+ (—9) " “ys(gikUsUgt %) nonequilibrium stress. Here it is obtained in the form
+ (= 9) " ym(giU U+ €2) + (= 9) Y75(p2UY) Gk =c2p0(Ac2+ T~ ULUX+c2p0(c2+ YU UK
+(_g)llz(ﬁm(P?nUim);i+(_g)1/2>\sxs,iuis +gik[—(0pg+p%)cz—pg+pg( QCZ—I—T*O)
+(=9) YA XmiUn. (60) +pQ(c?+ 0], (69)

where «' is the gravitational constant, and the semicolonyhere the conditiong65) and (66) for the Lagrangian mul-

tional field; for our purposes its implicit form is sufficient.

The present\ =c™ 'A% (A° is an original Lagrangian cor- G*=c"2p2(0c+ T O ULUK+c2p2(c2+ O Ul UK
responding to the variablet=x* used in the action integral. "
As the calculations are similar to those made for the origi- +g9"P. (70)

nal model, we only briefly outline the derivation of the en- __ . . . .
y y This equation takes into account effects of heat and nonequi-

rgy tensoiG'¥, stressing the new result the free,, . . .
gn%?/opy flgw a,ng ri?jrrigg tﬁ e ?ead?e?utong:;Zegrig?naleput?-&f'b”um stress(the total viscous stress in the case of a purely
dissipative fluid through the relative four-velocities of the

lications[2] for further details and generalizations for spin- entropy and bare matter with respect to the hydrodynamic

ning fluids[32,33. . . )
The energy-momentum tensor is obtained in a direct Wa)l;our-velocny. It allows one to investigate the effect of the

b Vaning the acton based on E160 wih respect tothe =S40 Phenamena o he solln of Einstens eaue
components of the metric tensgy . Variations with respect ' P property

0 gy, pg' p%, Uis, Ul ve, vms & m yield a set of equa- mass(or relativistic energywithout the statistical termfur-

tions of motion. When the extremum conditions with respectnISheS the definition of the hydrodynamic velocity,

to the densities 0p°UL+ pQUL —pOUI=0. (71
niUg=—c 1 (6c?+T79), (61 This is equivalent to Eqg44) and (45) which are the clas-
i 1.2, —o sical equations describing the additivity of laboratory-frame
piUp=—c 7 (c+tu "), (62 densities and fluxes for any fixed point in the space-time.
Now it is easy to prove that E¢70) can be cast into the
traditional form of Eq.(4). An equivalent form of Eq(4)
(63  uses the projection tensbt*=g'*+c2U'UK,

and those with respect to the velocity components

Ys0ikUs=p27 k= NeXs k.,

A Gk = ¢ 2[(p0c2+ p%e) U UK+ g UK+ g Ui + 7K+ Phik,
YsOikUm=Pmd k= AmXmk» (64) (72)

are combined with the veIocity constraints fdg and Um, Whereqi is the four-vector of heat expressed as
we obtain _ _ _ _
. . A'=p3(6c*+ T U+ pp(c®+u™ U —p°(c?+hOU',
¥s=(26%) p(6c2+T70), (65) (73)
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and 7¥ is the four-tensor of nonequilibrium stresses ex-flow (thermal mass flowin the fluid frame.

pressed as The virtue of the approach based on the Lagrangian of a
superconducting fluid is that it does not truncate terms in the
matter tensor; in fact, the obtained energy flux contains both
the heat fluxg and the nonequilibrium flux of momentum,

(In the standard model of adiabatic fluid these terms are ab-
Herevi=U.—U' is the relative four-velocity. Note that the sent) Thus general conservation laws are produced, appli-
heat flux is defined as the difference between the actual ergableevenfor dissipative fluids. Yet, as shown by the equa-
ergy flux and the energy flux of a corresponding perfections of motion obtained from our Lagrangian, the
fluid. Equation(72) is known[5,8] but expression§73) and  superconducting model does not admit any dissipative
(74) are new. Note that the relativistic heat flux in terms of mechanisms for fluxes. Indeed, the assumed zero entropy
the traditional temperaturd® equals q‘=T°p2(U'S—U‘) production admits that the fluxes can only be related to
=T%%L, as in our earlier nonrelativistic definition of heat purely reversible effects, such as “ballistic” nondissipative

S . .
understood as the effect of entropy flow in the fluid frameheat transfer or purely elastic transport of momentum. This

M =c 2 pA( 02+ T Ovwh+ph(c?+u Ovpor]

Epgﬁvisvé-i- pomvimvkm. (74

[12]. Indeed, reversibility is typical of all classical action-type approaches.
_ o o0 _ The problem of how to further modify Lagrangians in order
q'=T %3Us+u U, —h™%p°U! to achieve equations of motion with dissipative terms and

0.0 i 0.0 /14 i still preserve the same conservation lawsatter tensoris
=T ps(Us=UD)+p Tpm(Up=UY) unsolved to date. Nonetheless, some results obtained in Ref.
—(T=0_p, =0y Orryi 111y —TO00/ ()i _1]iy—TO;i [12] show that additive interaction Lagrangians might bring
(T O ")ps(Us—UN=Tps(Us—UD=T1:s. us closer to solving the problem. In the meantime, one must
(75  content himself by improving the conservation laws and the
matter tensor, both derived from extended reversible models,
such as our Eq60). This is, in fact, the only improvement
necessary to properly describe gravitational metrics in gen-
Bral relativity, where the relativistic tensor of matters the

We stress that expressio&3) and(74) may be regarded as
macroscopic definitions of the heat flux and nonequilibrium
stress tensor. Such definitions should be distinguished fro

phenqmenological equatjons which link fluxes with corre- nique source of the gravitational fie[df. Einstein’s Eq.
spondmg thermodynamlc. forces. The phenpmenologlc 68)]. In other words, it is inessential whether the origins of
equations cannot be obtamed_from our reversible Lagrang(he heat fluxg and of the nonequilibrium stressin G are

ian, which works at the theoretical limit ofasuperconductor.reversible or not. This statement should remove a common
Yet, unlike adiabatic fluid models, superconductor mOdelsmisunderstanding concerning the role of dissipative effects

preserve bqth heat and nonequilibrium stress_, which 'S.tth the relativistic theory of gravitation. The effect of dissipa-
substantial improvement. The phenomenological equations oo gravitational fields is here shown to bedirect at

of dissipative fluids can be found from Israel’s relativistic most as apossiblephenomenon causing definite flow,

zxtet_nswg oLOnsageris formahémk_izvolvmg_ ti1e fnt_rt (i)]psi].pro'and 7, which could otherwise be attributed to some reversible
uction[8]. An example is our Eq(54), consistent wi IS causes. This is similar to effects of electric currents which

formalism. : T . i« cause magnetic fields regardless of whether they are revers-
_ For a special case whas=U,=U’, the entries of5 ible (caused by the motion of the condugtor irreversible
simplify to the form (caused by the conductivity electrons
ik ~=2 0721 WOy il 1Ko ik The search for complete equations of evolutiasth both
= +h +g*P 7 . - . . N
Gi=c e JUUTHgTP, (76) reversible and irreversible terpngs recently quite intense.
which describes an adiabatic relativistic fluid. Grmela[34] has abandoned the idea of a single generalizing

It is worth realizing that we havelerived not just as- L and proposed a powerful two-bracket approach, in which
sumed, relativistic definitions of heat and nonequilibriumthe reversible terms are represented by the Poissonian
stress, Eqs(73) and(74), from the extended Hamilton prin- bracket, and the irreversible terms by the so-called “dissipa-
ciple allowing thermal degrees of freedom, represented madive bracket.” An approach of this sort was applied in the
roscopically by the four-flux of the entropy. With these defi- 1994 book by Beris and Edward85] to many complex
nitions, the energy-momentum tensor has the general form dhermodynamic systenfghose with internal structure, rheo-
Eq. (72). By furnishing these macroscopic definitions in the logical fluids, liquid crystals, etg. where most of the results
context of thermal inertia, the variational principle adds anwere derived by using a Hamiltonian as a sole generator. The

important ingredient to the classical formulgs and (72) idea of the tWO_—_braCket description was further generalized
by Grmela and @inger to the so-called generic forp36]

which uses two generators, the enefyand the entropys.
In the evolution equations, the functional derivativeskof
This work has shown that flows of matter and inertialand S are, respectively, multiplied by some antisymmetric
entropy have similar effect on the matter tensor, and that thand symmetric matricegach satisfying a certain degeneracy
split of the total mass into the thermal mass and bare massondition). Again, the power of the method was shown in
does not change observable effects at thermal equilibriunmany application$37], including relativistic systemg3]. It
Otherwise, nonequilibrium descriptions are benefited by thevould seem from these results that reversible terms should
concept of the thermal mass, where both the heat famd  be represented by an antisymmetric Poissonian bracket
the nonequilibrium stress emerge as effects of the entropy whereas reversible ones should be represented by a symmet-

X. DISCUSSION AND FINAL REMARKS
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ric dissipative bracket. However, working in the context of ear dependence of stationary heat flux on the temperature
the Onsager-like variational formulations, where a dissipagradientAT rather than on its arbitrary powerAT)", is

tive Lagrangiarl, applies, Sieniutycg38,39 has shown the well confirmed by experimentg42]. Thermal waves were
(antisymmetri¢ Hamiltonian and Poisson-bracket structure predicted in liquid’He by Peshkoy43]; the related experi-

for purely dissipative thermal fields with heat transfer andments are described by Pellddd]. Thermal inertia can be
reaction-diffusion processes. The effect of the disequilibriumppserved when the frequency of external oscillations is com-
persisting in variational solution89] was exposed in & re- paraple to the reciprocal of the thermal relaxation timén

cent work[40] which treats lumped nonequilibrium systems orms of this relaxation time, the thermal conductivity of
which r_elax to equmpnum, SUbJe.Ct to the conservation Ia_‘Wquids is k=Tp7/g, whereg is the inertial coefficient dis-
constraints; the obtained dynamics was again Hamiltonian

; ; ; D ._cussed in the text. For an ideal ggds equal to 2n2/5k§ in
Moreover, an information-theoretic variational formulation i L
has recently been found for the minimum refative Kull- agreement with the thermal conductivity data and the relax-

back entropy, still again showing the Hamiltonian Structureation approximation to the solution of Boltzmann'’s equation.
Data are available showing that such approximation fre-

of the irreversible evolution and leading to the Fokker- i : L
Planck equatioi41]. All these results prove that the physi- guently yields very good estimates of thermal conductivities

cal effects regarded as thermodynamically “irreversible” [45]- The numerical values of the coefficieitused in this -
can certainly be described in terms of Hamiltonian or La-work are evaluated on the basis of the thermal conductivity
grangian formalisms and associated Poissonian brackets. @gta or from Grad’s solutiof25], as explained in Ref$11,
the other hand, the results of the present paper show thdd]. In other words, our choice of the coefficiefits consis-
fluxes usually regarded as “irreversible,” such as the heatent with the experimental data of thermal conductivities in
flux g and the nonequilibrium stressdo naturally follow fluids, Sec. VIII.
from Hamilton’s stationary action, in which the entropy flow  As regards thermal inertia in other media, the reader is
is a varied extra variable. Thus the main difficulty in achiev-referred to pure dielectric crystals at IoW>5 K), where heat
ing a unifying Hamiltonian (Poissonian formulation is  pulses can propagate “ballistically” as longitudinal and
caused by a composition of irreversible and reversible effectgansverse excitations. The fully developed second-sound
rather than by each of these effects taken separately. pulse, predicted theoretically by Krumhansl| and co-workers
Certainly, more experimental data are needed to achieveig a number of papers, see, for exampié], has been ob-
quantitative conclusion on the role of thermal inertia in noN-geryed in experiments with solitHe and solid®He [47].
stationary fast-variable processes. Our theory should contriqe|ium crystals are highly anharmonic and hence nontypical.
ute well to organize systematic experiments in this area.  Therefore it is of interest that approach to the second-sound
propagation and the short temperature pulses were detected
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the quantum mechanical form of the Boltzmann equation.
. The thermal and electrical relaxation times are not equal al-
APPENDIX: EXPERIMENTS CONFIRMING though they are estimated to be at the same order of magni-
WAVE NATURE OF HEAT tude, 10 * sec, for the common monovalent metf&0].
Here we make reference to the literature which stresseBor the relation of these evaluations to experiments, see
experimental works confirming the wave nature of heat. Lin-Ref. [51].
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