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Anomalous roughening of wood fractured surfaces
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Scaling properties of wood fractured surfaces are obtained from samples of three different sizes. Two
different woods are studied: Norway spruce and Maritime pine. Fracture surfaces are shown to display an
anomalous dynamic scaling of the crack roughness. This anomalous scaling behavior involves the existence of
two different and independent roughness exponents. We determine the local roughness exppnerie
0.87 for spruce and 0.88 for pine. These results are consistent with the conjecture of a universal local roughness
exponent. The global roughness exponent is different for both wdee$,60 for spruce and=1.35 for pine.

We argue that the global roughness expongigt a good index for material characterization.
[S1063-651%98)00512-1

PACS numbgs): 62.20.Mk, 46.30.Nz, 05.468-j, 61.43—j

I. INTRODUCTION where the bracketé- - -); denote an average over the win-
dow positionj. The roughnesw/(l,t) is expected to scale in
Since the pioneering work of Refl], it has been firmly the case of anomalous scaling[24]
established that the topography of fracture surfaces exhibits
remarkable scaling properties. A fracture surfa¢e,y) is
statistically invariant under an anisotropic scaling transfor-
mation:
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where the exponeng, =({— {,c)/Z is an anomalous time
(X,Y,2)—=(AX,\y,\2), (1) exponent. This anomalous dynamic scaling involves two dif-
ferent and independent roughness exponents: the local
roughness exponerdt,., which describes the scaling when
ceramics[5,6], metallic alloys[6—8], and aluminum alloys °"¢ considers windows smaller than the system size, and the
[9,10)), both fragile and ductile, have shown that the rough—gIObaI exponent for scaling qulvmg the system sifed].
The local roughness exponefy. is actually within reach of

ness exponent is found between 0.7 and 0(8ee Ref[11] th thod " dqf , ¢ | The dl
for a recent review The robustness of the results seems to € methods currently used for experiment analyses. 1he gio-

support the idea suggested in REi0] that £~0.8 might be bal exponent is more difficult to extract from a classical
a universal value of the roughness exponent, i.e., indeper59ughneSS measurement. Both exponents have to be taken

dent of the material properties. This conjecture implies tha{"'t® ?C(t:r?um fofr a co?plet%_desct:rlptéorjgof g:e scalmlg tpehav—
the fracture toughness is not correlated to the roughness e or of the surface. According to Ed@3), the correlation

ponent {. However, the morphology of fracture surfaces en_gthf(t)~t”z corresponds to achar_acteri_stic length below
seems to be affectéd by material properties which the surface appears as self-affine with the local expo-

It was suggested by Bouchaed al. [12] that models of nent{io;.
front lines propagating through randomly distributed impuri- 1In2 Izr?(fj. [1£1]’()%|(9)b?elsaggti\l/oe(|:al r:g\tllgllisns rr?é(gsogreegsll'he
ties[13—15 might be relevant to understand the morphologyl_tt'r tdglo\c/v_ ' ’rf rng d ny,m hanically isotr i.m i
of the fracture surfacg46,17. The development of the frac- a 'el study azpe ormed on a ec_al cha y 1sotropic ma
ture roughness was described as a Family-Vicsek scalin?irla (granitg. However, many materials have anisotropic

[18,3]. However, in a very recent experimental stydg), it echanical p.roperties. like wpod, re_inforced _concrete, and
has been found that the surface of a brittle fracture in 4NOSt composite materials. Anisotropic properties result gen-

granite block exhibited anomalous dynamic scaling proper-era"y from structural reinforcements along specific direc-

ties akin to what occurs in some models of nonequilibriumtions' It is of great interest to understand how fractures in
kinetic roughening20—24 such materials are influenced by the anisotropic texture.

The anomalous scaling is defined as follows. The devel- In this study, we determine th.e complete scaling behavior
opment of the fluctuations of the heighfx,t) with time is of t_he fracture roughness regultmg frc_;m stable crack propa-
characterized by the root mean squai@, ) at timet over a gation in wood samples of different sizes. For two different

window sizel along thex axis (perpendicular to the propa- woods(Maritime pine and Norway spru;;e/_ve_ show that the
gation directio local fluctuations of crack surfaces exhibit anomalous dy-

namic scaling properties. The global roughness exponent is
1. 1. 2\ 12 different for both woods. Local roughness exponents are

w(l,t)= I_E h(x; ,t)%— l—E h(x; ,t) ., (2 identical for both woods, and support the conjecture of a
=1 =1 j universal local roughness exponent for brittle fracture sur-

where( is theroughness exponeriExperimental results ob-
tained on various materialsteels[1], glass[2], rocks[3,4],
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scales which might appear as cutoffs for scale invariances.
Most tetragonal tracheid cells in pine and spruce are about
25 um wide. During loading cell walls break revealing U-
shaped profiles with rugged edges because of the rectangular
shape of the tracheid section. Thickness of cell walls varies
from 2 to 10 um. This facies of fracture surface is charac-
teristic of a local brittle fracture process.

Topographies of the crack surfaces were recorded with a

00 240 430 0 1). The step of sampling in thedirection is adjusted to the

105 280 560 direction of crack propagation

L|1125 30 60 | ¢ mechanical profiler along regular grids. Grid axes are along
a| 60 160 320 X Initial notch L thex direction which is parallel to the initial notch, and along
g 13172550 1‘3’8 26%0 v they direction which is the crack propagation directigfig.
b1l

d

minimum cell widthAx=25 um, and to the cell length in
they direction,Ay=2.5 mm. Profiles along the axis were
FIG. 1. Modified tapered double cantilever be@RDCB) speci-  sampled with 2050 points for specimens of witlts 60 mm,
men subjected to mode | crack propagation. The crack plane 8030 points for specimens of widthb=30 mm, and 360
perpendicular to the tensile axis which corresponds to the radialpoints for specimens of width=11.25 mm. For each map,
longitudinal plane of woodthe longitudinal direction being the the first profile fy=0) is sampled in the immediate vicinity
direction of crack propagatignDimensions are given in mm. of the initial straight notch, and has a zero roughness. As the
distancey to the notch increases, the roughness develops up
faces. The main consequence of this anomalous scaling & 3 mm. The vertical resolution is estimated from the height
that the magnitude of the surface fluctuations over regions idifferences between two successive sampling along the same
not just a function of the region size but also of the systenline. Its magnitude is about 3xm. Horizontal resolutions
size. along thex andy axes are about 5um. In the case of pine
The paper is organized as follows. In Sec. Il, we describean additional specimen size was testee: 22.50 mm with
experimental setups for crack propagation and fracture suiB00 points, but only profiles far from the notch have been
face measurement. Section Ill is devoted to the anomalougcorded. Table | lists parameters of the studied samples.
dynamic scaling behavior. In Sec. IV, we study the rough-
ness magnitude as function of the system size. Finally, we
discuss implications for fracture process in Sec. V. . ANOMALOUS DYNAMIC SCALING

As mentioned above, fractures of all specimens were ob-
tained at a constant crack speed. Subsequently, we assumed a
Wood is a natural material which displays a structurallinear relationship between theposition of the profiles and
anisotropy resulting from the presence of running cells in théhe crack propagation time Height profiles are considered
radial direction. Two commercially wood species have beerds descriptions of the advancing crack frék,t). A com-
tested: Maritime pine(Pinus pinaster Ajt and Norway plete spatiotemporal evolution of the crack front can thus be
spruce (Picea abies ). Pine specimens have an averageproduced from roughness maps.
oven dry specific weightd) of 560 kg/n¥, and growth rings In Fig. 2, we present the development of the roughness
are approximately 4 mm wide. Typical values for sprucew(l,t) versus timet on a log-log plot for different window
specimens arep) =390 kg/n?, and growth rings of 2—5 sizesl in the case of a spruce specimest-1) which is 60
mm wide. Moisture content of all specimens was measurethm wide. The upper line is a fit of the roughness growth for
between 11% and 13%. the largest window sizd €13.975 mm. The slope of this fit
Crack surfaces are obtained from a modified taperegrovides an estimate of the ratio of the global roughness
double cantilever beam specimens. A fracture was initiate@xponent and the dynamical exponeftiz~0.26. The fit is
from a straight notch machined with a band s@hickness 2  computed for times between tintg;, and timet,,,,. Before
mm), and prolonged a few millimeters with a razor bladetime t,, the crack speed is not constant. After titgg,, the
(thickness 0.2 mm Fracture is obtained through uniaxial roughness has saturated because of the reach of the system
tension with a constant opening raf€ig. 1). The tapered size.
shape of the specimens allows us to obtain a mode | stable The lower line is a fit of the roughness measured for a
crack growth(see Ref[25] for detailg which induces a con- small window size (=0.175 mm. It appears thatwv(l,t)
stant crack speed. The crack speed was around 0.6 mmificreases like a power law as a function of the crack propa-
(from 0.3 mm/s for small specimens to 1 mm/s for largegation timet even for small window sizes. The slope of the
specimeng Crack surfaces were generated along an averagié is 0.14, significantly larger than zero, and gives an esti-
radial-longitudinal plane by aligning the growth rings per- mate of theB, exponent. This unconventional dependence
pendicular to the straight notch. In order to obtain an evolu-on time is an illustration of the anomalous scaling, and dif-
tion of the amplitude of the roughness as a function of thders from the Family-Vicsek scaling, where the roughness is
system size, three geometrically similar specimens of suffiexpected to be time independent for small window sizes.
ciently different sizes have been fractured. We used samples These two regimes are in good agreement with the
of sizelL equal to 11.25, 30, and 60 m(aee Fig. 1 anomalous scaling proposed in E). A similar behavior
Anatomical characteristics of wood introduce typical has been observed for all specimens.

Il. EXPERIMENT
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TABLE |. Description of analyzed specimens. Local roughness exponents are calculated using the root mean square method, the
max-min difference method, the power spectrum, and the averaged wavelet coefficient analysis. Values in brackets are corrected from errors
due to measurement and analysis biases.

Specimen L No. of  Root mean Power Wavelet Cmax
Species label (mm)  profiles square spectrum max-min analysis 14 z (mm)
spruce s60-1 60 49 0.840.95 0.89(0.86 0.89(0.90 1.00(0.96 1.60 5.90 3.90
s60-2 60 49 0.810.89 0.85(0.82 0.89(0.90 0.91(0.87 1.55 2.40 4.30
s60-3 60 43 0.840.95 0.95(0.93 0.87(0.87 0.99(0.95 1.60 5.60 not sat.
s30-1 30 48 0.780.89 0.83(0.80 0.83(0.79 0.92(0.87) 1.55 3.50 4.10
s30—2 30 47 0.79(0.89 0.84(0.8) 0.82(0.79 0.89(0.89 1.60 2.00 4.20
s11-1 11.25 22 0.730.80 0.84(0.8H 0.83(0.89 0.91(0.89 1.55 2.50 1.35
sl1-2 11.25 25 0.770.8H 0.84(0.8H 0.83(0.89 0.98(0.9) 1.60 2.60 1.45
s11-3 11.25 26 0.790.89 0.88(0.939 0.84(0.85 0.95(0.88 1.55 2.60 1.40
spruce 0.880.05 0.86-0.06 0.85-0.07 0.89-0.09 1.6G-0.10
pine p60-1 60 45 0.840.95 0.91(0.89 0.90(0.93 0.97(0.93 1.30 1.90 7.30
p60-2 60 46 0.810.889 0.86(0.83 0.88(0.889 0.90(0.89 1.35 2.30 not sat.
p30-1 30 21 0.840.95 0.87(0.85 0.88(0.889 0.99(0.95 1.35 2.20 3.85
p30-2 30 30 0.800.87 0.81(0.79 0.87(0.87) 0.99(0.95 1.30 4.30 not sat.
p30-3 30 31 0.850.95 0.83(0.80 0.90(0.95 0.97(0.93 1.40 2.60 3.80
p30-4 30 31 0.830.92 0.88(0.88 0.89(0.90 1.01(0.96 1.35 3.90 not sat.
pl11-1 11.25 26 0.7%0.83 0.86(0.88 0.83(0.83 1.03(0.96 1.35 3.20 1.40
pl1-2 11.25 27 0.7%0.83 0.86(0.89 0.83(0.83 0.98(0.9) 1.40 1.80 1.80
pl1-3 11.25 28 0.7%0.83 0.82(0.79 0.84(0.849 0.97(0.90 1.30 2.30 not sat.
pine p22-1 22.50 0.810.89 0.84(0.83 0.85(0.83 0.99(0.99 3.00
p22-2 22.50 0.810.89 0.86(0.89) 0.85(0.83 0.94(0.88 2.70
pine 0.89-0.05 0.84-0.07 0.870.05 0.92-0.08 1.35-0.10
A. Local roughness exponent method, and the averaged wavelet coefficient mef{iyd

The local roughness exponetii,. is determined using Local roughness exponendg,. were determined on profiles

four methods: the root mean square and max-min differenciocated far from the notch, i.e., at long times. Results on

variable bandwidth method§3,28], the power spectrum specimens60-1 are used as illustrations. Complete results
Y for all specimens are provided in Table I.

In the root mean square method, the roughness/er a
window | is expected from Eq(2) to scale at long enough
time as

w(l,t3 %)~ dioc, (4)

From Fig. 3, the local roughness exponenfis=0.84 in the
case of specimes60-1.

The max-min method consists of the computation of
hma{r), which is defined as the difference between the maxi-
mum and the minimum heights within this window, aver-
aged over all possible originsof the window[26]: h,,(r)
=<Max{h(r ’)}x<r’<x+r_ Min{h(r ’)}x<r’<x+r>x- For a
self-affine profile h,., is expected to scale as

0.01 -
1 t 10 t 100 Rima(T) ~ I icc, (5)

min t sat

FIG. 2. Roughnesérms) w(l,t) vs time for a spruce specimen wherer is the width of the window along th& axis. For

60 mm wide(s60-] calculated over windowsof size ranging from ~ SPecimens60-1, we measured a local roughness exponent
1=0.175 to 13.975 mm with a size stég=0.100 mm. The con-  {ioc=0.89.

tinuous line(a) corresponds to the fit of the roughness betwegn The third method is a calculation of the power spectrum,
and t;.,, W(l,t)~t3, for a small window sizd =0.175 mm.j, i.e., the Fourier transform of the autocorrelation function
=0.14 is obtained. The continuous lile) is the fit of data for a  (h(x+Ax)h(x)). The power spectrum scales, for a self-
large window sizé =13.975 mm. Its slope 0.26 correspondg ta. affine profile, ag26]



7002 MOREL, SCHMITTBUHL, L()PEZ, AND VALENTIN PRE 58

lowing, we show that this deviation is due to measurement
and analysis biases, and can be corrected.

The reliability of the determination of self-affine expo-
nents has already been studig¥,2§. It has been shown
that several artifacts may introduce systematic errors for the
estimation of the local roughness exponent. Two types of
biases have to be distinghished: those which happen during
the geometric measurement of the object, and those which
are relative to the method of signal analysis.

In our study, profiles are recorded with a needle moving
along crack surfaces. For a similar type of measurement
[4,28], it has been shown that the shape and volume of the
20 ] , , , needle can induce a geometric filter. When the tip of the

-1.5 -0.5 05 1.5 needle is a half-sphere, the needle follows hills more cor-

log,, | rectly than sharp holes. Subsequently the exactness of the
measured height is a function of the surroundings. It has
been found that an increase of the radius of the needle tip
induces an increase of the measured roughness exp@eent
Ref. [28] for more details

In the case of biases relative to the analysis methods, it
has been found that the accuracy of the different methods is
sensitive to two parameters: the size of the systeamber
of recorded pointsand the roughness exponent. In our study,
wherek is the wave factor. In Fig. 4, we show a log-log plot the system size strongly evolves from small to large speci-
of S(k) versusk for specimens60-1. S(k) decays with a mens: 360 to 2050 points. In Re28], tests on synthetic
power lawk~*"®which is consistent with;,.=0.89. profiles generated with a self-affine exponent between 0.8

The last method used in this study is the averaged wavelgind 0.9 show that the three methods underestimate the self-
coefficient method27]. This method consists of the average affine exponent. The underestimation is larger when the sys-
of the wavelet transform of the profile over the translationtem size decreases. The root mean square method is the most
factorb. The averaged wavelet coefficiaM h](a) scales as sensitive to this size effect.

It is likely that both biases exist in this study. In order to

log,, w(l,t>>I")

FIG. 3. Roughnesems) w(l) vs| for the profile at the saturated
timet> & ., (specimers60-1). The straight line corresponds to the
power laww(l)~ e, and gives a determination of the local rough-
ness exponenf,,.=0.84.

(k) ~ k™ (2ot D), ®)

W[h](a)~at?* e, (7)  evaluate simultanously the influence of both flaws on local
roughness exponents, synthetic profiles are simulated, fil-
wherea is the scale factor. tered, and analyzed. Self-affine profiles are simulated nu-

The estimates of the local roughness exponents obtainederically with aVoss constructiofi29] for four values of the
with these four methods for all specimens are given in Tableelf-affine exponent: 0.80, 0.85, 0.90, and 0.95. For each
I. As shown in Table I, the values of the local roughnessexponent, 100 independent profiles are generated. The hori-
exponent,. calculated by the root mean square method, theontal step between two consecutive points &,
max-min method, and the power spectrum method decrease6.25 um corresponding to the lower cutoff, i.e., the mean
with the system sizé. Only values obtained from the wave- thickness of cell walls. Magnification of self-affine profiles
let analysis seem independent of the system size. In the foborresponds to that measured on experimental profiles. The

filter is an under sampling with a sphere of radiBs

5.0 . . . . =25 um (i.e., the size of the experimental need&very
four steps §=4S5=25 um). The stefs corresponds to the
40 t experimental stepAx. Output exponents are obtained with
the four method$rms, max-min, power spectrum, and wave-
= 30l let analysi$ and are given in Table Il for different system
= sizes. From Table Il, the corrected values of the experimental
‘;\'\' 20| {1oc are estimated, and given in brackets in Table I. Average
X of the corrected values aof,. obtained from the different
] methods gives the local roughness exponents:0®Bd7 for
c% 1oy spruce and 0.880.07 for pine. Results are consistent with
fs) those obtained for brittle materials, wheljig.~0.85[6,4,11]
0.0 and support the conjecture of a universal local roughness
exponent.
mary T o5 o5 v Our results are different from those obtained by Bngo
log,, k et al. [30], who studied the roughness of brittle fractures for

different woods. The authors found a local roughness expo-

FIG. 4. Power spectrum at time, in the case 0660-1 speci- hent{;,.=0.68 which is characteristic of a two-dimensional
men. The straight line has a slop€.78 which is consistent with a fracture. Several reasons might explain this difference. First,
power lawk~(?40c*1) and a local roughness expongiyj,=0.89. the direction of propagation crack was perpendicular to fi-
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TABLE Il. Tests of root mean square, power spectrum, max-min difference , and wavelet analyses on undersampled and filtered synthetic
self-affine profiles which model profiler recordifigee text for details Four system sizes, in terms of number of points are considered. The
accuracy of the exponents presented in this table is around 8%.

System size 256 pts 512 pts 1024 pts 2048 pts

self-afine exponent 0.80 085 090 095 080 085 090 095 080 085 090 095 080 0.85 0.90 0.95

rms 0.72 077 080 082 074 078 081 083 075 079 082 084 075 079 082 0.84
power spectrum 082 084 087 089 082 085 088 090 083 087 089 091 083 0.88 093 0.96
max-min 081 084 086 089 083 085 088 090 084 086 089 090 084 086 089 0.91

wavelet analysis 087 092 097 102 087 091 09 100 085 090 094 099 084 0.89 094 0.99

bers, while in our setup the propagation is parallel to fibers. Data collapses of all maps are presented in Figs. 5 and 6,

Second, the moisture content of tested specimens was arouadd are in good agreement with a scaling function like Eqg.

4%, which is significantly lower than that measured in our(8). For both wood species, the global roughness exponent

study (12%). A low moisture content induces microcracking and dynamical exponent are reported in Table I. As shown in

in the radial-longitudinal and tangential-longitudinal planesTable I, global roughness exponeitare independent of the

of wood due to drying shrinkage. This mechanism of micro-system size. Average values afe1.60+0.10 for spruce

cracking does not appear in mode | fracture. Microcracksaand {=1.35+0.10 for pine.

induce preferential paths for the macrocrack which modify

the scaling properties of fracture surfaces. Third, the experi- v, IMPLICATIONS OF ANOMALOUS SCALING

mental procedure was strongly different in the study of

Engly et al. since fracture propagation was unstable, con- According to Eq.(3), the roughness is expected to satu-

trary to the stable propagation in the present work. rate only at times>L? i.e., when the correlation length
£(t)~tY2 has reached the boundary length,eL. In this

regime the roughness magnitude scales with the system size
B. Global roughness and dynamical exponents

As discussed above, the existence of an expopBgrt0
(see Fig. 2indicates that an anomalous roughening is taking
place. To obtain an accurate description of the anomalous
scaling, we follow Refs[19,24], and define the scaling func-
tion g(u) asg(l/t¥3=w(l,t)/1¢. From Eq.(3), g(u) is ex-
pected to scale like

log, [ w(l,t/° ]

uf({fgloc) |f u<l
u ¢ if u>1.

g(u)~ (8)

The scaling functiorg is computed by data collapses from
each profile of a complete crack mége., the set of profiles
that describe a single fractyrdn Figs. 5 and 6 we present
the data collapses af(u) for all the maps obtained for the
three specimen sized €60, 30, and 11.25 mjmof both
spruce and pine.

Figure 5a) is considered a good example of these data
collapses. The quality of the collapse is used for a determi-
nation of the dynamical exponentThe global exponent is
obtained from the fit of the scaling function. The time evo-
lution of the height fluctuations at small scales is shown by
the nonconstant behavior fax<1. This regime is fitted by a -20
power lawg(u)=u~ %78 Using our previous estimate of the
local roughness exponeti,.=0.84, we obtain the magni-

tude of the global roughness expongrt 1.60. In the par- o system sizes. Pandts, (b), and(c) display the data collapses
ticular case of sample60-1 showr_1 in Fig. &), the best  of 560.1, 530-1, ands11-1 specimens which have, respectively,
collapse is observed for the dynamical exporenb.9. Note  sjzes| =60, 30, and 11.25 mm. The nonconstant behavier,

that estimates of the exponenfg.=0.84, {=1.60, andz  nonzero slopeat small values of/t'Z displays the dependence on
=5.90 are very consistent with fits obtained from Fig. 2:time of the roughness magnitude. Scalings are in good agreement
B, =0.13 and{/z=0.27 for this sample. with the scaling functiodEq. (8)].

log, o[ w(l,H/" ]

log, L w(l,t/I° ]

—1I.0 11z 0i0 1.0
log, o 11'*)

FIG. 5. Data collapses for spruce specimens data in three differ-
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FIG. 7. Maximum self-affine correlation lengtl§s.., vs the sys-
tem sizeL for spruce(circle) and pine(square specimens. Both
spruce and pine show a linear relationskdashed ling between
&max @and L. The determination ot,,,, in the case of spruce and
large system size is underestimated owing to the brief duration of
the roughness map. The saturation transition was not clearly observ-
able for this sample.

woods. We have obtainefi=1.60+0.10 for spruce and

FIG. 6. Data collapses for pine specimens of three different=1 35+0.10 for pine. The local roughness exponepj

system sizes. Panel{g), (b), and(c) display the data collapses of
p60-1, p30-2, andpll-2 specimens having, respectively, sites
=60, 30, and 11.25 mm.

shows a deviation according to the system size. However, we
argue that this deviation is due to a biased estimate resulting
from two independent effects: the number of sampled points
and the local filtering resulting from the needle shape during

for any window length even much smaller than the systéMpe roughness measurement. Errors due to these biases have

sizelL:

w(l,t>L2%)~bioc| £~ €loc, 9

We checked the linear relationship betwegp,, and the
system sizd. by measuringt,,.x. From the evolution of the
roughnessv(l,t) with time (see Fig. 2, the saturation time
tsatiS €stimated. The correlation lenggh.y is obtained using
the relationgmaxoctigt. Values ofé,,y for the different maps
are reported in Table I. In Fig. .. iS plotted versus for

both woods. A linear relationship betweép,, and the sys-

to be considered, and the corrected values of the local rough-
ness exponents are 080.07 for spruce and 0.880.07 for

pine. These results support the conjecture of a universal local
roughness exponent for brittle materials. Moreover, we have
shown that there exists a linear relationship between the sys-
tem size and the maximum correlation lendth,,. This re-
lation induces a system size dependence in the roughness
magnitude at saturation.

-0.80

-0.80

tem sizel exists except in the case of spruce for the largest
sample size, where the saturation regime is not clearly
reached.

In Fig. 8, the ratiog{w(l,t> £Z,.)I1%c), is plotted versus.
for profiles at timeg = (£,50” for pine specimens. A power
law L ¢lc, with exponents determined previousiy= 1.35
and {,.=0.80, is very consistent with data. It confirms the
increase of the roughness magnitude with the systemlLsize
even for windows smaller than the system size. In Fig. 8,
(W(I < Emanot)/(180cg £ 4c) ) versusL is also plottedfilled
symbolg, which is expected to be constant.
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V. CONCLUSIONS

In this study we have shown that fracture surfaces of an [, g, size effect on the amplitude of the roughness over pro-

anisotropic material like wood display an anomalous dy-fiies at saturation, i.e., at times= & ., for pine specimens. Upper
namic scaling of the crack roughness. From different specisymbols correspond V(1 < Epax t)/1%0), Vs L: Circles correspond
men sizes, we have studied the size effects on roughnegsthe specimen of =60 mm, squares th=30 mm, diamonds to
exponents. It appears that the global roughness exponentis=22.5 mm, and triangles th=11.25 mm. Filled symbols are
independent of the system size and different for both studiedbtained for(w(l < &ya, /(1508 boc) ), vs L.
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Our results can be compared with a recent experiment irack interfaces that could incorporate anomalous kinetic
granite[19] in which the exponentg,,.=0.79 and{=1.2  roughening in a simple way.
were obtained. We suggest that the global roughness expo-
nent, Whic_h seems to_be dependent on _m_aterial, may be a ACKNOWLEDGMENTS
good candidate as an index for characterizing material prop-
erties. Conversely, the local roughness exponent does not S.M. wishes to thank E. Bouchaud for very fruitful dis-
seem to change for different materials, and mightibver-  cussions and encouragement. J.M.L. also thanks M. A. Rod-
sal. To our knowledge, the existing models of cracks areriguez for a careful reading of the manuscript, and the Euro-
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