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Generalization of the persistent random walk to dimensions greater than 1

Marián Boguñá, Josep M. Porra`, and Jaume Masoliver
Departament de Fı´sica Fonamental, Universitat de Barcelona, Diagonal, 647, Barcelona 08028, Spain

~Received 16 July 1998!

We propose a generalization of the persistent random walk for dimensions greater than 1. Based on a cubic
lattice, the model is suitable for an arbitrary dimensiond. We study the continuum limit and obtain the
equation satisfied by the probability density function for the position of the random walker. An exact solution
is obtained for the projected motion along an axis. This solution, which is written in terms of the free-space
solution of the one-dimensional telegrapher’s equation, may open a new way to address the problem of light
propagation through thin slabs.@S1063-651X~98!00312-2#

PACS number~s!: 05.40.1j, 05.60.1w, 66.90.1r
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I. INTRODUCTION

The persistent random walk~PRW!, first introduced by
Fürth @1# and shortly after by Taylor@2#, is probably the
earliest and simplest generalization of the ordinary rand
walk that incorporates some form of momentum in addit
to random motion. The persistent random walk differs fro
the ordinary random walk in that the probabilistic quant
used at each step is the probability of continually moving
a given direction rather than the probability of moving in
given direction regardless of the direction of the preced
step. In this way the PRW introduces some form of mom
tum, i.e., persistence, into the purely random motion. T
remarkable feature of the model is one of the reasons
the PRW has been recently applied to describe scattering
diffusion in disordered media@3#.

For one-dimensional lattices and in the continuum or d
fusive limit the probability density function for the displac
ment at timet, p(x,t), satisfies the telegrapher’s equatio
~TE! @4#:

]2p

]t2
12l

]p

]t
5v2

]2p

]x2
. ~1!

As is well known, Eq.~1! has solutions with a finite velocity
of propagation given byv @6#. This fact has justified the
extensive use of TE as a generalization of the mesosc
diffusion equations in fields such as heat propagation@5# and
light dispersion in turbid media@6,7#. However, none of the
generalizations explored in two and three dimensions of p
sistent random walks obeys the TE in the continuum lim
@8–11#.

On the other hand, and besides the recent work of Go
et al. @10# on two-dimensional walks, there have been, to o
knowledge, very few attempts to generalize the PRW to
mensions higher than 1 in spite of its potential for model
transport in disordered media. One of the reasons for the
of such a generalization is the nonexistence of a unique g
eralization of the PRW to dimensions greater than 1 si
several kinds of lattices~cubic, hexagonal, etc.! can be used
for the extension. Our main goal in this paper is to propos
generalization of the PRW to higher dimensions assumin
PRE 581063-651X/98/58~6!/6992~7!/$15.00
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cubic lattice, and to obtain the governing equations for
probability density function of the process in the continuu
limit.

Unfortunately, in the continuum limit and for dimension
greater than 1, the probability density function of the proc
does not obey a higher-dimensional telegrapher’s equat
Nevertheless, in the context of transport in disordered me
the partial differential equation describing particle concent
tion ~i.e., the probability density function! can suggest new
approximations for the transport equation of more realis
models. This is the case, for example, of light propagation
turbid media where such an approach becomes extrem
useful, especially when photons propagate in constrained
ometries such as thin slabs where the Gaussian approx
tion becomes quite imprecise@12#. In addition, the telegra-
pher’s equation has been shown not to furnish better res
than the diffusion approximation in two and three dime
sions@13#.

As we have mentioned, in the one-dimensional case
equation satisfied byp(x,t) is the telegrapher’s equation. I
two dimensions, the model considered herein was parti
analyzed by Godoyet al. @10# but the equation for the prob
ability density function,p(r,t), of the process was not ob
tained. Another goal of this paper is to study the projec
motion, along a given direction, of the higher-dimension
PRW. This projected motion is relevant in the study of lig
propagation in turbid media. Indeed, when persistent rand
walks are used as models for light propagation through sla
the basic information is contained in the motion project
along the coordinate orthogonal to the faces of the slab@14#.
We thus obtain the equation that governs the evolution of
projected motion and write its solution in terms of the fre
space solution of the one-dimensional telegrapher’s equa

The paper is organized as follows. In Sec. II we set
general analysis for the PRW in a cubic lattice of dimens
d. In Sec. III we obtain the continuum limit and find th
governing equation for the probability density function of t
resulting process. Section IV is devoted to the projected m
tion on a given coordinate and we obtain an exact expres
of the density. Conclusions are drawn in Sec. V.

II. GENERAL ANALYSIS

We consider a random walk in a cubic lattice of arbitra
dimensiond. The distance between nearest lattice points il.
6992 © 1998 The American Physical Society
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Jumps to another lattice point occur after a time intervalt.
At each point, the random walker can take 2d different di-
rections. Among all possible events, we are only intereste
three of them:~a! The ‘‘forward scattering,’’ where the ran
dom walker moves in the same direction as the previ
jump, ~b! the ‘‘backward scattering,’’ where the walker re
verses its previous direction, and~c! the scattering in the
2(d21) remaining directions. Let us denote bya, b, andg
the probabilities of events~a!, ~b!, and ~c!, respectively. As
absorption will not be considered here, the scattering pr
abilities satisfy the normalization condition

a1b12~d21!g51. ~2!
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This kind of random walk is termed ‘‘persistent’’ because
introduces a persistent probabilitya and generalizes the one
dimensional PRW to arbitrary dimensions@3#.

Let us now set the general equations of this model.
define a set of auxiliary probabilitiesPn

(6k)( i 1 , . . . ,i d), k
51, . . . ,d, where Pn

(1k)( i 1 , . . . ,i d) is the probability that
the walker reaches the lattice point (i 1 , . . . ,i d) at stepn
moving along direction1k. A similar definition applies to
Pn

(2k)( i 1 , . . . ,i d). Following an analogous reasoning
that of the one-dimensional PRW@3#, we can see tha
Pn

(6k)( i 1 , . . . ,i d) obeys the following set of recursive equ
tions:
Pn11
~1k!~ i 1 , . . . ,i d!5aPn

~1k!~ i 1 , . . . ,i k21, . . . ,i d!1bPn
~2k!~ i 1 , . . . ,i k21, . . . ,i d!1g(

j Þk
@Pn

~1 j !~ i 1 , . . . ,i k21, . . . ,i d!

1Pn
~2 j !~ i 1 , . . . ,i k21, . . . ,i d!#, ~3!

Pn11
~2k!~ i 1 , . . . ,i d!5bPn

~1k!~ i 1 , . . . ,i k11, . . . ,i d!1aPn
~2k!~ i 1 , . . . ,i k11, . . . ,i d!1g(

j Þk
@Pn

~1 j !~ i 1 , . . . ,i k11, . . . ,i d!

1Pn
~2 j !~ i 1 , . . . ,i k11, . . . ,i d!#. ~4!
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Let us briefly explain how these equations can be obtain
Considerk51 and the origin located at (0, . . . ,0). Suppose
the random walker has reached the origin at stepn11 mov-
ing along direction11. Then, it necessarily was at the lattic
point (21,0, . . . ,0) atstepn. The probability that the ran
dom walker jumps from this point to the origin depends
the arrival direction to the point (21,0, . . . ,0).Each direc-
tion ~and there are 2d directions! contributes to the tota
probability Pn11

(11)(0, . . . ,0) with a different weight. Indeed
the termaPn

(11)(21,0, . . . ,0)gives the probability that the
random walker arrives at (21,0, . . . ,0)along direction11
and keeps going on the same direction. The probability
the random walker reverses its arrival direction after rea
ing (21,0, . . . ,0) is bPn

(21)(21,0, . . . ,0). The rest
of the 2(d21) directions contributes with the term
gPn

(6k)(21,0, . . . ,0),with kÞ1. Equations~3! and ~4! are
easily obtained after generalizing this reasoning to arbitr
points (i 1 , . . . ,i d) and directions6k. These equations com
pletely characterize our extension of the PRW and they a
convenient starting point for numerical analysis when no f
ther analytical treatment can be made.

III. THE CONTINUUM LIMIT

We now proceed to the continuum limit. In this situatio
the length of each step,l, and the time interval betwee
jumps, t, both go to zero in such a way that the rando
walker moves at finite velocityv,

v5 lim
l ,t→0

l

t
. ~5!
d.
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-
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a
-

As in the case of the one-dimensional PRW@3,4#, we also
have to scale the scattering probabilities in the form

a512lt, b5ct, g5at/2, ~6!

wheret is the interval between jumps andl is a parameter
whose units are@T21#. Let us now see what the physica
meaning is of the parameters appearing in Eq.~6!. We first
observe that, as a direct consequence of the scaling~6!, the
occurrence of collision events is governed by the Pois
law. Indeed, in the discrete case the probability that the r
dom walker jumpsk times in the same direction isak.
Therefore, in the continuum limit the probability that th
particle keeps moving in the same direction for a timet
>kt is

C~ t !5 lim
t→0

ak5 lim
t→0

~12lt! t/t5e2lt. ~7!

We thus see the physical meaning of the parameterl defined
in Eq. ~6!, since it represents the mean frequency at wh
the random walker changes its direction, that is,l is the
mean number of scattering events per unit time, or equ
lently l21 is the mean time between collision events. As
consequence, sinceb is the probability of reversing direc
tion, we see from Eq.~6! that c/l is the conditional prob-
ability of reversing the direction of motion. Analogous
a/(2l) is the probability that there is a turn to an orthogon
direction. Finally, the normalization condition requires tha

c1~d21!a5l.

We also note that the angle between directions of mot
before and after a collision is necessarily a multiple ofp/2
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~recall that the discrete model has been built on a cubic
tice!. Therefore, the only possible velocities of the rando
walker are the 2d values6v îk (k51, . . . ,d), where îk is
the unit vector in thexk coordinate direction. Figure 1 show
a realization of the model in three dimensions.

In order to get the diffusive limit of Eqs.~3! and ~4!, we
define t5nt and xk5 i kl , k51, . . . ,d, and let l→0 andt
→0 with the condition thatv defined by Eq.~5! is constant.
In this limit, probabilitiesPn

(6)( i 1 , . . . ,i d) become

Pn11
~6k!~ i 1 , . . . ,i j , . . . ,i d!

→p~6k!~r,t !1t
]p~6k!~r,t !

]t
1O~t2!,

Pn
~6k!~ i 1 , . . . ,i j61, . . . ,i d!

→p~6k!~r,t !6 l
]p~6k!~r,t !

]xj
1O~ l 2!, ~8!

wherep(6k)(r,t)dr is the joint probability density function
for the positionr5(x1 , . . . ,xd) and the velocity of the ran
dom walker at timet. All the information about the continu
ous model is contained in the following set of equations:

]p~1k!~r,t !

]t
52v

]p~1k!~r,t !

]xk
2lp~1k!~r,t !1cp~2k!~r,t !

1
1

2
a(

j Þk
@p~1 j !~r,t !1p~2 j !~r,t !#,

]p~2k!~r,t !

]t
5v

]p~2k!~r,t !

]xk
2lp~2k!~r,t !1cp~1k!~r,t !

1
1

2
a(

j Þk
@p~1 j !~r,t !1p~2 j !~r,t !#, ~9!

which are the result of applying the continuum limit~8! to
the general recursive equations~3! and ~4!.

In many applications the most interesting quantity is
probability densityp(r,t) for the position independent of th
velocity, that is,

FIG. 1. A realization of the continuum model in three dime
sions described in the paper. Note that the random walker m
along direcctions that are parallel to the axes.
t-

e

p~r,t !5 (
k51

d

@p~1k!~r,t !1p~2k!~r,t !#. ~10!

For d51, we already explained thatp(x,t) evolves accord-
ing to a TE, Eq.~1!. We now present the partial differentia
equation describing the evolution of this density whend
>2. We show in Appendix A that this equation reads

@] t~] t1b!d~] t1ad!d212~] t1b!d21

3~] t1ad!d22~] t1a!v2¹22Fd#p~r,t !

50, ~11!

where¹2 is the Laplacian of the spatial coordinates,b5l
1c, and Fd is an operator including all spatial partial de
rivatives of fourth order or greater. Ford52 andd53, the
operatorFd has the following expressions:

F252v4]x2y2
4 , ~12!

F35v6]x2y2z2
6

2v4~] t1b!~] t12a!~]x2y2
4

1]x2z2
4

1]y2z2
4

!.
~13!

We have thus obtained the 2d order partial differential
equation that satisfies the probability density function of
persistent random walk in higher dimensions. This equat
does not show spherical symmetry because of the veloc
allowed by the model. Nevertheless, using the so-ca
‘‘dominant balance technique’’@18# one can easily see tha
the behavior of the probability density function at long time
and for positionsr sufficiently far away from the moving
boundary, is given by the lowest-order partial derivativ
This ‘‘central limit approximation’’ transforms Eq.~11! into
the diffusion equation

] tp~r,t !5D¹2p~r,t !, ~14!

where the diffusion constantD is

D5
v2

bd
. ~15!

Note that the diffusion constant is in agreement with t
result that follows from transport theoryD5v l t /d, where
l t5v/b is the transport mean free path@15#.

IV. THE PROJECTED MOTION

Let us now study the projected motion of the PRW on
given axis. The probability density function of this motion
given by

p~x,t !5E
2`

`

•••E
2`

`

p~r,t !dx2•••dxd .

This marginal density obeys a simpler equation than Eq.~11!
mainly because the integration ofFdp(r,t) over the coordi-
natesx2•••xd is zero. We show in Appendix B that th
equation forp(x,t) reads

] t~] t1b!~] t1ad!p~x,t !5v2~] t1a!]x2
2 p~x,t !. ~16!

es
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This equation is a third-order hyperbolic partial different
equation with finite velocity of propagationv. The reduction
in the order from 2d for Eq. ~11! to 3 for Eq.~16! is due to
the fact that the projected motion is coupled to the mot
along any other direction by a first-order equation~see Ap-
pendix B!. Equation~16! may provide a better approximatio
to transport problems than the diffusion equation, especi
in thin slabs where the effect of taking into account the sp
of propagation is crucial@16#. Note that Eq.~16! possesses a
richer structure than the telegrapher’s equation. Moreo
we have been able to derive Eq.~16! from a microscopic
model ~we recall that any attempt to derive TE from a m
croscopic model of transport fails in higher dimension!.
Nevertheless, Eq.~16! shares with TE at least two importan
features:~i! a finite velocity of propagation, and~ii ! a similar
asymptotic behavior of the moments~see below!. An equa-
tion similar to Eq.~16! was used several years ago in t
context of heat propagation in rigid solids@17#.

It is possible to exactly solve Eq.~16! in the Fourier-
Laplace space for the isotropic initial conditions

p~1k!~r,t !5p~2k!~r,t !5
1

2d
d~r!, ~17!

which provide the three initial conditions required for sol
ing Eq. ~16!,

p~x,t50!5d~x!,

]p~x,t !

]t U
t50

50, ~18!

]2p~x,t !

]t2 U
t50

5
v2

d
d9~x!.

In Appendix C we show how to derive these conditions fro
Eq. ~17!. It is possible to solve Eq.~16! in the Fourier-
Laplace space. To this end we define the joint transform

p̂~v,s![E
2`

` E
0

`

e2ste2 ivxp~x,t !dx dt.

Then the transformation of Eq.~16! and the use of Eq.~18!
lead to the solution

p̂~v,s!5
~s1ad!~s1b!1v2v2~121/d!

s~s1ad!~s1b!1v2v2~s1a!
. ~19!

We observe that this case is equivalent to a three-s
continuous-time random walk where the particle is mov
to the right~or left! with velocity v (2v) or is at rest, which
corresponds to the motion in an orthogonal direction. T
transition matrix of this three-state walk is@3#

p~ i→ j !5S 0 c/l ~d21!a/l

c/l 0 ~d21!a/l

a/~2l! a/~2l! 12a/l
D , ~20!
l

n

ly
d

r,

te

e

where i 51 corresponds to the state with velocity1v, i
52 with velocity 2v, and i 53 to the state without dis-
placement along thex direction.

Let us now study the momentsmn(t), n51,2,3, . . . , of
the distributionp(x,t). In terms of the characteristic func
tion, p̃(v,t), the moments are given bymn(t)
5 i n]vp̂(v,t)uv50 . Due to the isotropic initial conditions
Eq. ~18!, all odd moments vanish,m2n21(t)50. Then it fol-
lows from Eq.~19! that the Laplace transform ofm2n(t) is
given by

m̂2n~s!5
~2n!!

d s F s1a

~s1da!G
n21F v2

s~s1b!G
n

. ~21!

The leading behavior for smalls is

m̂2n~s!;
v2n~2n!!

bndn
s212n ~s→0!

and the leading behavior for larges is

m̂2n~s!;
v2n~2n!!

d
s2122n ~s→`!.

Then, by the Tauberian theorems@3,18#, we get the
asymptotic behaviors

m2n~ t !;
~2n!!

n! S v2

bd
t D n

~ t→`! ~22!

and

m2n~ t !;
v2n

d
t2n ~ t→0!. ~23!

Note that the moments ast→` are identical to those o
ordinary diffusion withD5v2/bd in agreement with the re
sult of the preceding section, which means thatp(x,t) be-
haves in this limit as

p~x,t !;
1

A4pDt
exp@2x2/4Dt# ~ t→`!. ~24!

On the other hand, whent→0, the motion behaves as if i
were deterministic. In fact, taking into account the isotrop
initial conditions, we can easily show that the densityp(x,t)
has the following expansion at short times:

p~x,t !;
1

2d
d~x2vt !1

1

2d
d~x1vt !1

d21

d
d~x! ~ t→0!,

~25!

which immediately leads to the result~23! for the moments.
Therefore, the behavior of moments is similar to that of t
solution of the telegrapher’s equation. Indeed, we see fr
Eqs.~22! and ~23! that if t→`, we have ordinary diffusion
~where, for instance, the second moment goes ast), while if
t→0 the behavior is deterministic~where the second mo
ment goes ast2).

We have not been able to invert Eq.~19! in general. How-
ever, the solution in real space can be written for the tw
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dimensional cased52 and when the backscattering pro
ability vanishes,c50. In effect, now a5b5l, and the
expression forp̂(v,s) reads

p̂~v,s!5
1

2~s1l!
1

1

2
p̂te~v,s!1

1

2~s1l!
p̂te~v,s!,

~26!

where

p̂te~v,s![
s12l

s~s12l!1v2v2
~27!

is the Fourier-Laplace transform of the free-space solution
the one-dimensional telegrapher’s equation for isotropic
tial conditions. Indeed, the Fourier-Laplace transform of E
~1! along with the isotropic initial conditionspte(x,0)
5d(x) and] tpte(x,0)50 leads to Eq.~27! @6,19#. Therefore,
we see from Eq.~26! that the sought-after expression read

p~x,t !5
1

2
e2ltd~x!1

1

2
pte~x,t !1

l

2
e2ltE

0

t

eltpte~x,t!dt,

~28!

wherepte(x,t) is @4,19#

pte~x,t !5
e2lt

2v
d~ t2uxu/v !1

le2lt

2v
Q~ t2uxu/v !

3H I 0~lAt22x2/v2!

1
t

At22x2/v2
I 1~lAt22x2/v2!J , ~29!

where I n(z) are modified Bessel functions. Surprisingl
pte(x,t) is also the solution of a three-state random w
with transition matrix~20! when the initial conditions have
an equal probability of moving to the left or to the right, an
zero probability to be at rest. This fact clarifies the origin
solution ~28!. Indeed, the initial conditions for that solutio
were 1/2 probability to be at rest and 1/4 to move in eithex
direction. Thed term in p(x,t) accounts for the probability
that the random walker keeps moving along they axis for all
period t. The second term is the contribution of rando
walkers that are not at rest initially, according to the int
pretation forpte(x,t) given above. Finally, particles at re
at t50 that begin to move at some time between (0,t) can be
considered as a source of particles that evolve aspte(x,t).
The third term is therefore the convolution of the sour
function (le2lt) with pte(x,t).

In Fig. 2, we plot the solution for different times~without
d terms!. When t is less thanl21, the d-function terms
account for most ofp(x,t). As time grows, the contribution
of these terms decays exponentially and the solution c
verges to the Gaussian distribution, Eq.~24!.

V. CONCLUSIONS

The generalization of the persistent random walk to
mensions higher than 1 does not evolve according to a t
f
i-
.

f

-

n-

-
le-

grapher’s equation as it does in one dimension. We h
explicitly obtained the 2d order partial differential equation
governing the evolution of the probability density functio
Therefore, higher-dimensional persistent random walks
cubic lattices cannot be considered as microscopic mode
derive TE in dimensions greater than 1.

Moreover, even the motion projected along an axis,
sides being one-dimensional, does not evolve according
TE. We have found that the probability density of the pr
jection obeys a third-order partial differential equation. T
order of the equation is completely consistent with the f
that the projected motion is equivalent to a three-state r
dom walk.

The evolution equation for the projected motion may
very useful when considered as an approximation to the
transport equation for models of light propagation beca
Eq. ~16! may overcome the problems of the diffusive a
proximation when light propagates through thin slabs. In t
sense we have shown that the evolution equation for
projected motion correctly links the expected short-time
havior~deterministic! with the long-time behavior~diffusive!
of these models.
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APPENDIX A: DERIVATION OF EQ. „11…

Let us define the following functions:

Uk~r,t ![p~1k!~r,t !1p~2k!~r,t !,
~A1!

Vk~r,t ![p~1k!~r,t !2p~2k!~r,t !,

for k51, . . . ,d. The probability density of the position be
comes

FIG. 2. Probability density functionp(x,t) for the motion pro-
jected along thex direction at different times as a function of th
position x. Solid line: 2xt51; dashed line: 2gt55; dot-dashed
line: 2gt510.
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p~r,t !5 (
k51

d

Uk~r,t !, ~A2!

and the set of Eqs.~9! reads

]Uk~r,t !

]t
52v

]Vk~r,t !

]xk
2adUk~r,t !1ap~r,t !,

]Vk~r,t !

]t
52v

]Uk~r,t !

]xk
2bVk~r,t !, ~A3!

whereb5l1c. If we define the operator

Dr[] t1r,

wherer is a constant, then the equation forUk(r,t) becomes

Db@ap~r,t !2DadUk~r,t !#52v2
]2Uk~r,t !

]xk
2

, k51, . . . ,d.

~A4!

For d51, this equation coincides with the telegraphe
equation because, in this case,a50 andU1(x,t)5p(x,t).
For d>2, the definition of the operator

Sk[DbDad2v2]xk

2

further simplifies Eq.~A4! into

SkUk~r,t !5aDbp~r,t !. ~A5!

Finally, applying) i 51
d Si to both sides of Eq.~A2! and using

Eq. ~A5!, we obtain the equation forp(r,t),

)
i 51

d

Si p~r,t !5aDb(
k51

d

)
iÞk
Si p~r,t !. ~A6!

The expansion of the product) i 51
d Si in powers ofDbDad

leads to Eq.~11!.

APPENDIX B: DERIVATION OF EQ. „16…

The integration of the system~A3! over the coordinates
x2•••xd yields

]Uk~x,t !

]t
52adUk~x,t !1ap~x,t !, ~B1!

]Vk~x,t !

]t
52bVk~x,t !,

for k52, . . . ,d and

]U1~x,t !

]t
52v

]V1~x,t !

]x
2adU1~x,t !1ap~x,t !,

~B2!
]V1~x,t !

]t
52v

]U1~x,t !

]x
2bV1~x,t !,
wherex1 was denoted byx andUk(x,t) andVk(x,t) corre-
spond to the functionsUk(r,t) and Vk(r,t) integrated over
the coordinatesx2•••xd . The first equation of system~B1!
implies that the quantity

q~x,t ![(
k52

d

Uk~x,t !

satisfies the first-order equation

]q~x,t !

]t
52adq~x,t !1a~d21!@U1~x,t !1q~x,t !#.

~B3!

This equation along with system~B2! leads to a third-order
partial differential equation for

p~x,t !5U1~x,t !1q~x,t !.

Indeed, from Eqs.~B1! and ~B2! we get

] tDbp~x,t !5v2]x
2U1~x,t ! ~B4!

and

DadU1~x,t !5Dap~x,t !. ~B5!

Finally, the combination of Eqs.~B4! and ~B5! immediately
leads to Eq.~16!.

APPENDIX C: INITIAL CONDITIONS

The integration of the isotropic initial conditions~17! over
the coordinatesx2•••xd gives the initial conditions for the
marginal probability

p~1k!~x,t !5p~2k!~x,t !5
1

2d
d~x!.

The first initial condition follows directly from them,

p~x,t50!5 (
k51

d

@p~1k!~x,t50!1p~2k!~x,t50!#5d~x!.

Taking into account thatVk(x,t50)50, we see from Eq.
~A3! that

]Uk~x,t !

]t U
t50

52ad
1

d
d~x!1ad~x!50, ~C1!

and therefore the second initial condition reads

]p~x,t !

]t U
t50

50. ~C2!

After taking the derivative with respect to time in the equ
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tion for Uk(r,t) of system~A3! and using the equation fo
Vk(r,t) in the same system, we get

]2Uk~r,t !

]t2
5v2

]2Uk~r,t !

]xk
2

1bv
]Vk~r,t !

]xk
2adUk~r,t !

1ap~r,t !.
ty

alk

m

The sum over allk and the integration over coordinate
x2•••xd of this equation gives the third initial condition

]2p~x,t !

]t2 U
t50

5
v2

d
d9~x!.
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