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Generalization of the persistent random walk to dimensions greater than 1
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We propose a generalization of the persistent random walk for dimensions greater than 1. Based on a cubic
lattice, the model is suitable for an arbitrary dimensmnWe study the continuum limit and obtain the
equation satisfied by the probability density function for the position of the random walker. An exact solution
is obtained for the projected motion along an axis. This solution, which is written in terms of the free-space
solution of the one-dimensional telegrapher’s equation, may open a new way to address the problem of light
propagation through thin slabsS1063-651X98)00312-2

PACS numbsd(s): 05.40:+j, 05.60+w, 66.90:+r

[. INTRODUCTION cubic lattice, and to obtain the governing equations for the
probability density function of the process in the continuum
The persistent random wal®RW), first introduced by  limit.
Firth [1] and shortly after by Taylof2], is probably the Unfortunately, in the continuum limit and for dimensions
earliest and simplest generalization of the ordinary randongreater than 1, the probability density function of the process
walk that incorporates some form of momentum in additiondos not obey a higher-dimensional telegrapher's equation.
to random motion. The persistent random walk differs fromNevertheless, in the context of transport in disordered media,
the ordinary random walk in that the probabilistic quantitythe parual dn‘ferentlal_ equation descntyng particle concentra-
used at each step is the probability of continually moving intion (.., the probability density functiorcan suggest new
a given direction rather than the probability of moving in a @PProximations for the transport equation of more realistic
given direction regardless of the direction of the precedingnodels. This is the case, for example, of light propagation in
step. In this way the PRW introduces some form of momeniurbid media where such an approach becomes extremely
tum, i.e., persistence, into the purely random motion. Thi¢/Seful, especially when photons propagate in constrained ge-
remarkable feature of the model is one of the reasons wh§metries such as thin slabs where the Gaussian approxima-
the PRW has been recently applied to describe scattering adi@n becomes quite imprecigé2]. In addition, the telegra-
diffusion in disordered medi8]. pher's equation has been shown not to furnish better results
For one-dimensional lattices and in the continuum or dif-than the diffusion approximation in two and three dimen-

fusive limit the probability density function for the displace- Sions[13].

ment at timet, p(x,t), satisfies the telegrapher's equation ~AS We have mentioned, in the one-dimensional case the
(TE) [4]: equation satisfied bp(x,t) is the telegrapher’s equation. In

two dimensions, the model considered herein was partially
analyzed by Godoyt al.[10] but the equation for the prob-
p ability density function,p(r,t), of the process was not ob-
— +2N—-=v’—. (1)  tained. Another goal of this paper is to study the projected
motion, along a given direction, of the higher-dimensional
PRW. This projected motion is relevant in the study of light
y propagation in turbid media. Indeed, when persistent random
walks are used as models for light propagation through slabs,
Fge basic information is contained in the motion projected
along the coordinate orthogonal to the faces of the ldh
We thus obtain the equation that governs the evolution of the
[projected motion and write its solution in terms of the free-
space solution of the one-dimensional telegrapher’s equation.
The paper is organized as follows. In Sec. Il we set the
eneral analysis for the PRW in a cubic lattice of dimension
. In Sec. lll we obtain the continuum limit and find the

As is well known, Eq(1) has solutions with a finite velocit
of propagation given by [6]. This fact has justified the
extensive use of TE as a generalization of the mesoscop
diffusion equations in fields such as heat propagdtidrand
light dispersion in turbid medif6,7]. However, none of the
generalizations explored in two and three dimensions of pe
sistent random walks obeys the TE in the continuum limit
[8-11].

On the other hand, and besides the recent work of Godolg

et al.[10] on two-dimensional walks, there have been, to ou : ; o . .
knowledge, very few attempts to generalize the PRW to digoverning equation for Fhe prqbablllty density funct.|on of the
mensions higher than 1 in spite of its potential for modelingr_esmtIng Process. Se_ctlon Vis devoteq to the projected mo-
transport in disordered media. One of the reasons for the lacion On a given coordlna_\te and we obta|_n an exact expression
of such a generalization is the nonexistence of a unique ger?l the density. Conclusions are drawn in Sec. V.
eralization of the PRW to dimensions greater than 1 since
several kinds of lattice&cubic, hexagonal, etccan be used
for the extension. Our main goal in this paper is to propose a We consider a random walk in a cubic lattice of arbitrary

generalization of the PRW to higher dimensions assuming dimensiond. The distance between nearest lattice points is
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Jumps to another lattice point occur after a time interval This kind of random walk is termed “persistent” because it
At each point, the random walker can takd different di- introduces a persistent probabilidyand generalizes the one-
rections. Among all possible events, we are only interested igimensional PRW to arbitrary dimensiof&j.

three of themf(a) The “forward scattering,” where the ran- et us now set the general equations of this model. We
QOm walker moves in the same d,lyrectlon as the previougefine a set of auxiliary probabilitieB" (i, ... ig), k
jump, (b) the “backward scattering,” where the walker re- _; g whereP{"¥(iy, ... iy is the probability that
verses Its previous .dlre(.:tlon, ar(d) the scattering in the the walker reaches the lattice point (... ,4) at stepn
2(d—1) remaining directions. Let us denote by 8, andy . L L I .
the probabilities of event&), (b), and (), respectively. As moving along direction+ k. A similar definition applies to

absorption will not be considered here, the scattering probE)n (i, .. da). l_:ollovv_mg an analogous reasoning to
abilities satisfy the normalization condition that of the one-dimensional PRWB], we can see that

P(K(i,, ... iq) obeys the following set of recursive equa-
a+pB+2(d—1)y=1. 2 tions:
J
PG, i =aPU O, =1, i)+ BP R, . ,ik—1,...,id)+yj§k[|><n+“(il, i)
POy, e, ] 3
PURGL, i) =BP iy, it i)+ aP U, ,ik+1,...,id)+yj;k[|:<n+“(i1, it )
POy, it )] 4

Let us briefly explain how these equations can be obtainedAs in the case of the one-dimensional PR®/4], we also
Considerk=1 and the origin located at (0. .,0). Suppose have to scale the scattering probabilities in the form
the random walker has reached the origin at stefl mov-

ing along direction+ 1. Then, it necessarily was at the lattice a=1-N71, B=cr, y=arl2, (6)
point (—1,0, ...,0) atstepn. The probability that the ran-
dom walker jumps from this point to the origin depends on
the arrival direction to the point<1,0, ... ,0).Each direc-
tion (and there are @ directions contributes to the total
probability P{$2(0, . . . ,0) with a different weight. Indeed,

where 7 is the interval between jumps andis a parameter
whose units ar¢ T~1]. Let us now see what the physical
meaning is of the parameters appearing in €&g. We first
observe that, as a direct consequence of the scéhinghe

M . - occurrence of collision events is governed by the Poisson
the termaPﬁ (- 10 - - 0)gives the probapmty_that the law. Indeed, in the discrete case the probability that the ran-
random walker arrives at{1,0, . .. ,0)along direction+1 dom walker jumpsk times in the same direction ig*.

and keeps going on the same direction. The probability thafherefore, in the continuum limit the probability that the

the random walker reverses its arrival direction after reaChbarticle keeps moving in the same direction for a titne

ing (=10,...,0) is BP{Y(-10,...,0. Therest _ "¢
of the 2(d—1) directions contributes with the terms

yP=R(=1,0,...,0),with k# 1. Equations(3) and (4) are V(t)=limak=lim(1—\7)V =g M. @)
easily obtained after generalizing this reasoning to arbitrary 7—0 7—0
points (4, ... ,ig) and directionstk. These equations com-

pletely characterize our extension of the PRW and they are W€ thus see the physical meaning of the parametigfined
convenient starting point for numerical analysis when no furin EQ. (6), since it represents the mean frequency at which
ther analytical treatment can be made. the random walker changes its direction, thatNsjs the
mean number of scattering events per unit time, or equiva-
lently A~ is the mean time between collision events. As a
Ill. THE CONTINUUM LIMIT consequence, sincg is the probability of reversing direc-
tion, we see from Eq(6) that c/\ is the conditional prob-
ability of reversing the direction of motion. Analogously
al/(2\) is the probability that there is a turn to an orthogonal
direction. Finally, the normalization condition requires that

We now proceed to the continuum limit. In this situation
the length of each steg, and the time interval between
jumps, 7, both go to zero in such a way that the random
walker moves at finite velocity,

ct+(d—1)a=A\.
v= lim l_ (5)  We also note that the angle between directions of motion
l,r—07 before and after a collision is necessarily a multiplend®
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FIG. 1. A realization of the continuum model in three dimen-
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d
p(r,t>=k21[p<*k><r,t>+p<*k><r,t>]. (10)

Ford=1, we already explained that(x,t) evolves accord-
ing to a TE, Eq.1). We now present the partial differential
equation describing the evolution of this density when
=2. We show in Appendix A that this equation reads

[9,(d;+b)d(g,+ad)d t—(9,+b)d"1
X (d;+ad)¥2(9+a)p?V2—dy]p(r,t)
=0, (11

whereV? is the Laplacian of the spatial coordinatéss A

sions described in the paper. Note that the random walker moves ¢, and®, is an operator including all spatial partial de-

along direcctions that are parallel to the axes.

rivatives of fourth order or greater. Fdr=2 andd=3, the
operatord® 4 has the following expressions:

(recall that the discrete model has been built on a cubic lat-

tice). Therefore, the only possible velocities of the random

walker are the @ values+vi, (k=1,...d), wherei, is
the unit vector in the, coordinate direction. Figure 1 shows
a realization of the model in three dimensions.

In order to get the diffusive limit of Eqg3) and(4), we
definet=n7 andx,=i,l, k=1,... d, and letl—0 and r
—0 with the condition that defined by Eq(5) is constant.
In this limit, probabilitiesP{*)(i,, ... i) become

SR PR |
ap=R(r t
p=r(r,t) N

—p =R+ o

o(7?),

ik . .
PR, L.

=1, g

apTR(r t
Pt )+

—pER(r,t) = o
J

o(?, ®

where p*R¥(r,t)dr is the joint probability density function
for the positionr=(x,, . .. Xg) and the velocity of the ran-
dom walker at timd. All the information about the continu-
ous model is contained in the following set of equations:

apR(r,Y)

ap (1, t)
a Y

&Xk

=Ap (D +ep (Y

1 ) )
+=aY, [p(r,n+pirb],
2 {7k

ap oY apTR(r
U

- 2o R(r ) +ep
m % ApT(r)+ep ()

+%a2 [P V() +p(r,)], 9)
7k

which are the result of applying the continuum ling® to
the general recursive equatio(® and(4).

®,=—v*d’ (12)

x2y21
d3=v Gaszyzzz— v (d+0) (9 + 2a—)(@:zyz+ ﬁizzz‘f' (7;4,222)-
(13

We have thus obtained thed2order partial differential
equation that satisfies the probability density function of the
persistent random walk in higher dimensions. This equation
does not show spherical symmetry because of the velocities
allowed by the model. Nevertheless, using the so-called
“dominant balance technique['18] one can easily see that
the behavior of the probability density function at long times,
and for positionsr sufficiently far away from the moving
boundary, is given by the lowest-order partial derivatives.
This “central limit approximation” transforms Ed11) into
the diffusion equation

ap(r,t)=DV?p(r,1), (14)
where the diffusion constam is
D= v? 1

Note that the diffusion constant is in agreement with the
result that follows from transport theo®=vl,/d, where
l,=v/b is the transport mean free pdth5].

IV. THE PROJECTED MOTION

Let us now study the projected motion of the PRW on a
given axis. The probability density function of this motion is
given by

p(x,t)=£;---f:p(r,t)dxz-ndxd.

This marginal density obeys a simpler equation than(Eg).
mainly because the integration ®;p(r,t) over the coordi-
natesx,- - -Xq is zero. We show in Appendix B that the

In many applications the most interesting quantity is theeguation forp(x,t) reads

probability densityp(r,t) for the position independent of the
velocity, that is,

a0+ b)(d+ad)p(x,t) =v2(d+a)dp(x,t). (16)
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This equation is a third-order hyperbolic partial differential wherei=1 corresponds to the state with velocityv, i
equation with finite velocity of propagatian The reduction =2 with velocity —v, andi=3 to the state without dis-
in the order from 2 for Eq. (11) to 3 for Eq.(16) is due to  placement along the direction.

the fact that the projected motion is coupled to the motion Let us now study the moments,(t), n=1,2,3..., of
along any other direction by a first-order equatisee Ap- the distributionp(x,t). In terms of the characteristic func-
pendix B. Equation(16) may provide a better approximation tjon, p(w,t), the moments are given bym,(t)
to transport problems than the diffysio_n equation, eSpeCia”Linﬁwf)(w,t)|w=0. Due to the isotropic initial conditions,
in thin slabs where the effect of taking into account the spee%q. (18), all odd moments vanisim,,,_;(t)=0. Then it fol-

of propagation is crucidll6]. Note that Eq(16) possesses a .
richer structure than the telegrapher’'s equation. MoreoverIOWS from Eq.(19) that the Laplace transform hzq(t) is

we have been able to derive E@.6) from a microscopic given by
model (we recall that any attempt to derive TE from a mi- R (2n)![ s+a

croscopic model of transport fails in higher dimensijons Mo, (S)= ds [(s+da)
Nevertheless, Eq16) shares with TE at least two important

featuresii) a finite velocity of propagation, an@) a similar 14 leading behavior for smadlis
asymptotic behavior of the momentsee below. An equa-

n-1 2

v
s(s+b)

n

@

tion similar to Eq.(16) was used several years ago in the A v2n(2n)!
context of heat propagation in rigid solifi&7]. Mon(S)~ Ts‘l‘” (s—0)
It is possible to exactly solve Eq16) in the Fourier- b"d

Laplace space for the isotropic initial conditions . . .
P P P and the leading behavior for largds

1 2n
(+k) _ (=K _ - v"(2n)t
p (rvt) p (rrt) 2d 5(r)1 (17) mZn(S)NTS 1-2n (S_)oc)
which provide the three initial conditions required for solv- Then, by the Tauberian theoreni8,18, we get the
ing Eqg. (16), asymptotic behaviors
p(x,t=0)=3(x), (2n)!{v? \"
Man(t)~—— pqgt] (=) (22
ap(x,t)
P =0, (18 and
ot
t=0
UZn 5
—~ n
2p(x.t) )2 my,(t) d t (t—0). (23
5 =Fa”(x).
at t=0 Note that the moments as—«~ are identical to those of

ordinary diffusion withD=v?/bd in agreement with the re-
In Appendix C we show how to derive these conditions fromsult of the preceding section, which means théx,t) be-
Eq. (17). It is possible to solve Eq(16) in the Fourier- haves in this limit as
Laplace space. To this end we define the joint transform

1
R © © ) p(xit),\,
p(w,S)Ef J e S'e”'“Xp(x,t)dx dt V4mDt
—oJ0

On the other hand, wheh—0, the motion behaves as if it
Then the transformation of Eq16) and the use of Eq(18) were deterministic. In fact, taking into account the isotropic
lead to the solution initial conditions, we can easily show that the dengifx,t)
has the following expansion at short times:

exg —x?/4Dt] (t—®). (24

. (stad)(st+b)+v’w’(1-1/d) 1 1 d—1
P9 srad(sib)total(sra) . ) POGD~ 550X —ut)+ 5o d(xFut) + ——8(x)  (t-0),
(25)

We observe that this case is equivalent to a three-state _
continuous-time random walk where the particle is movingwhich immediately leads to the res(#3) for the moments.
to the right(or left) with velocityv (—uv) oris at rest, which ~ Therefore, the behavior of moments is similar to that of the

corresponds to the motion in an orthogonal direction. Thesolution of the telegrapher’s equation. Indeed, we see from

transition matrix of this three-state walk[i8] Egs.(22) and(23) that if t—c, we have ordinary diffusion
(where, for instance, the second moment goefy ashile if
0 c/\ (d—1)a/\ t—0 the behavior is deterministiGvhere the second mo-

o ment goes as?).
p(i—j)=| c/r 0 (d=Da/x |, (20 We have not been able to invert E49) in general. How-
al(2\) al(2n) 1—al\ ever, the solution in real space can be written for the two-



6996 BOGUT\IA, PORRA AND MASOLIVER PRE 58

dimensional casel=2 and when the backscattering prob- '
ability vanishes,c=0. In effect, nowa=b=\, and the

expression fop(w,s) reads 0.2

“ 1 1 . 1 “
p(w,S)=m+§ Dte(w,5)+m Pre( @,S),
(26)

vp(x,t)I2\

where 0.1} /

/AT N
s+2\ 4 \

27 7 N

P w,S)=——"-"—""—"—"
Prel s(s+2\) +v2w? v

is the Fourier-Laplace transform of the free-space solution of el )
the one-dimensional telegrapher’s equation for isotropic ini- 11 0 11
tial conditions. Indeed, the Fourier-Laplace transform of Eq. 2hxtv

(1) along with the isotropic initial conditiong..(X,0)

= 8(x) andd;p;e(x,0)=0 leads to Eq(27) [6,19]. Therefore,
we see from Eq(26) that the sought-after expression reads

FIG. 2. Probability density functiop(x,t) for the motion pro-
jected along the direction at different times as a function of the
position x. Solid line: Xt=1; dashed line: 2t=5; dot-dashed
1 1 N ¢ line: 2yt=10.
p(x,t)==e MS(X)+ = pre(X,t) + —e‘“f e pre(X, 7)d T,

2 2 2 0 grapher’'s equation as it does in one dimension. We have
(28)  explicitly obtained the @ order partial differential equation

governing the evolution of the probability density function.
Therefore, higher-dimensional persistent random walks in
e~ M e M cubic lattices cannot be considered as microscopic models to

Pre(X,t) = 2—5(t—|x|/v)+ > O(t—|x|/v) derive TE in dimensions greater than 1.

v v Moreover, even the motion projected along an axis, be-
sides being one-dimensional, does not evolve according to a

% |0()\\/{_ﬁxﬁ2) TE. We have found that the probability density of the pro-

jection obeys a third-order partial differential equation. The

order of the equation is completely consistent with the fact
+ t L ONWE—x209) b, (29) that the projected motion is equivalent to a three-state ran-

22— %22 dom walk.

The evolution equation for the projected motion may be
where | ,(z) are modified Bessel functions. Surprisingly, very useful when considered as an approximation to the full
pie(X,7) is also the solution of a three-state random walktransport equation for models of light propagation because
with transition matrix(20) when the initial conditions have Eq. (16) may overcome the problems of the diffusive ap-
an equal probability of moving to the left or to the right, and proximation when light propagates through thin slabs. In this
zero probability to be at rest. This fact clarifies the origin ofsense we have shown that the evolution equation for the
solution (28). Indeed, the initial conditions for that solution projected motion correctly links the expected short-time be-
were 1/2 probability to be at rest and 1/4 to move in either havior (deterministi¢ with the long-time behaviofdiffusive)
direction. Thes term in p(x,t) accounts for the probability of these models.
that the random walker keeps moving along yteis for all
period t. The second term is the contribution of random ACKNOWLEDGMENTS
walkers that are not at rest initially, according to the inter- .
pretation forp,s(x,7) given above. Finally, particles at rest ~ This work has been supported in part by Direcci@en-
att=0 that begin to move at some time betweert)0an be eral de Investigacio Cientfica y Tecnica under Contract No.
considered as a source of particles that evolvga&,7). ~ PB96-0188, and by Societat Catalana dsida (Institut
The third term is therefore the convolution of the sourcedEstudis Catalans
function (\e ™) with p;e(X, 7).

In Fig. 2, we plot the solution for different timdwithout APPENDIX A: DERIVATION OF EQ. (11)

8 termg. Whent is less than\ %, the &-function terms i ) .
account for most op(x,t). As time grows, the contribution L€t us define the following functions:
of these terms decays exponentially and the solution con-

wherep(x,t) is [4,19]

=p(+k (=Kk)
verges to the Gaussian distribution, E24). Uk(r,)=p""9(r,) +p = (r,1), a1
Al
V. CONCLUSIONS Vi(r,)=p (r, ) —pH(r,),
The generalization of the persistent random walk to di-for k=1, ... d. The probability density of the position be-

mensions higher than 1 does not evolve according to a telesomes
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d
p(r,H)= 2, Uy(r,t),
k=1

(A2)
and the set of Eqg9) reads
AU, (r,t) AV(1,1)
Fram % —adU(r,t)+ap(r,t),
IV (r,t AU (r,t
dn A, (A3)

at X
whereb=\+c. If we define the operator
D,=di+p,
wherep is a constant, then the equation fog(r,t) becomes

L, PUi(r,1)

Dylap(r,t) = DagU(r 1) ]= —v 2
X2

. k=1,...d.
(A4)

For d=1, this equation coincides with the telegrapher’s

equation because, in this cases 0 andU(x,t)=p(x,t).
For d=2, the definition of the operator

SkEDbDad_ 026’2

Xk
further simplifies Eq(A4) into

SU(r,t)y=aDyp(r,t). (A5)
Finally, applyingIl?_,S; to both sides of Eq(A2) and using
Eqg. (A5), we obtain the equation fqu(r,t),

d d
II spr.y=ap, >, I Sp(r.t). (A6)
i=1 k=1 i#k

The expansion of the produét’_,S; in powers of D,D,4
leads to Eq(11).
APPENDIX B: DERIVATION OF EQ. (16)

The integration of the systeifA3) over the coordinates
Xy - - Xq Yields

AU(x,1)
— ——=—adu(x,n+ap(x), (B1)
IV (X,t)
ot __ka(Xlt)!
fork=2,...d and
U1 (x,1) V1 (x,t)
T = U —adui(x.h)+ap(x.t),
(B2)

aV1(x,t) B aU(x,1)
a Y o

—bV;(x,t),
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wherex; was denoted byx andU,(x,t) andV(x,t) corre-
spond to the functions)(r,t) and V,(r,t) integrated over
the coordinatex,- - -X4. The first equation of systertB1)

implies that the quantity

d
axt =2, Ur(xt)
k=2
satisfies the first-order equation

dq(x,t)
at

=—adq(x,t)+a(d—1)[U(x,t)+ag(x,1)].
(B3)

This equation along with systefB2) leads to a third-order
partial differential equation for

p(x,t)=U(x,t) +q(x,t).

Indeed, from Eqgs(B1) and (B2) we get

aDpp(x,t)=0202U(X,1) (B4)

and

DagU1(X,t)=Dap(x,1). (B5)

Finally, the combination of Eq$B4) and (B5) immediately
leads to Eq(16).

APPENDIX C: INITIAL CONDITIONS

The integration of the isotropic initial conditiori$7) over
the coordinatex,- - - X4 gives the initial conditions for the
marginal probability

1
(+k) =p(=k = —
PR =P KD = 558000,

The first initial condition follows directly from them,

d
p(x,t=0)= kZl [pF(x,t=0)+p " W(x,t=0)]= 8(x).

Taking into account thaV,(x,t=0)=0, we see from Eq.
(A3) that

ouU k(X,t) 1
_ =—ad=d(x)+ad(x)=0, (Cy
ot =0 d
and therefore the second initial condition reads
ap(x,t
Px.t =0. (C2
ot =0

After taking the derivative with respect to time in the equa-
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tion for U,(r,t) of system(A3) and using the equation for The sum over allk and the integration over coordinates
V,(r,t) in the same system, we get X5- - - X4 Of this equation gives the third initial condition

U (r,t PPU(r,t AV, (r,t
k( ):2 k( )+bv k(r,t)

v —adU(r,t)
a2 oxe Xy 9p(x,t) v?
’ i
- =E5’ (X)
+ap(r,t). dt t=0
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