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Evolutionary prisoner’s dilemma game on a square lattice
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A simplified prisoner’s game is studied on a square lattice when the players interacting with their neighbors
can follow two strategies: to cooperat€)( or to defect D) unconditionally. The players updated in random
sequence have a chance to adopt one of the neighboring strategies with a probability depending on the payoff
difference. Using Monte Carlo simulations and dynamical cluster techniques, we study the dewsity
cooperators in the stationary state. This system exhibits a continuous transition between the two absorbing
states when varying the value of temptation to defect. In the limits0 and 1 we have observed critical
transitions belonging to the universality class of directed percolai®h063-651X98)00303-1

PACS numbg(s): 02.50.Le, 05.50+q, 05.40:+j, 64.60.Ht

[. INTRODUCTION In addition to the homogeneous system with players fol-
lowing the TFT algorithm, the state where all the players
The evolutionary prisoner’s dilemma games were intro-choose to defect has proved to be stationary too; more pre-
duced by Axelrod 1] to study the emergence of cooperation cisely, spare cooperators will be suppressed due to the evo-
rather than exploitation among selfish individuals. Since thdutionary rule in the largeN limit. More precisely, only a
pioneering work of Axelrod this approach has become asufficiently large portion of mutual cooperators can survive
fruitful tool in the area of political and behavior sciences,among defectors. The emergence of uniform cooperation be-
biology and economicg2-4). comes easier when, combining the evolutionary game with
In the prisoner’s dilemm#&PD) game each of two players spatial effects, the players interact much more with their
has to decide simultaneously whether it wishes to cooperateeighbors than with those who are far away, as it is typical in
with the other or to defect. The rewards dependent on theireal populations. The spatial effects promote the survival of
choices are expressed b2 payoff matrices in agreement cooperators even if we do not use any kind of elaborate
with the four possibilities. Assuming a symmetric game thestrategies such as the TFT.
players get rewardR (P) if both choose to cooperatgle- Recently, Nowak and Maj55] have introduced a spatial
fect). In the remaining two cases the defector’'s and cooperaevolutionary PD game. In this model individuals located on a
tor's payoff areT (temptation to defegtand S (sucker’'s lattice play with their neighbors and with themselves. The
payoff), respectively. The elements of the payoff matrix sat-strategical complexities and memories of past encounters are
isfy the following conditionsT>R>P>S and R>T+S. neglected by considering only two simple kinds of individu-
In this game the mutual cooperation leads to the highest totalls: those who cooperat€} and those who defec)) un-
(average payoff. The highest individual payoffl{) can only  conditionally. The evolutionary rule was also simplified by
be reached against the other player decreasing the averagsing discrete time steps. Between two rounds individuals
payoff. These features makes the PD game interesting in thedopt the strategy that has received the highest payoff among
mentioned areas. its neighbors including themselves. This deterministic model
In earlier studiesN contestants played an iterated round-is equivalent to a two-state cellular automaton where the next
robin prisoner's dilemma game. The population of contesstate at a given lattice point is determined by the states on the
tants, which apply different algorithms to choose betweersurrounding points. The outcome depends on the initial con-
defection and cooperation in the knowledge of previous defiguration and the rescaled payoff matrix described by a
cisions, was modified according to a Darwinian selectionsingle parameteb characterizing the measure of temptation
rule round by round. For example, eliminating the worstto defect(see the matrix in Sec.)ll This model with and
player, the best one will have an offspring inheriting thewithout self-interaction was investigated on different lattice
parent’s strategy. In a different interpretation, the worststructuregsquare, triangle, and cuBicThe most exhaustive
player adopts the best algorithm. Computer tournamentgnalysis is performed on a square lattice taking into account
(simulations were performed to study how the population of the interactions with the first and second neighbors and self-
contestants varies with tinfé]. Evidently, the finalstation-  interaction. Nowak and May observed a rich variety of spa-
ary) state depends on the initial population. The simulationgial and temporal dynamics dependent on the valuke. ¢for
have clarified the emergence of mutual cooperation amongxample, the cooperators can invade the world of defectors
all the players under some conditions. In these tournamentdong straight borderlines, while defectors gain along irregu-
the winner, the so-called tit for t4ffFT) algorithm, has a lar boundaries for a given interval df. Furthermore, the
crucial role. This very simple algorithm cooperates in theabove rules conserve the symmetries of the initial state for
first round and later it reciprocates the partner's previousidequate boundary conditions. Due to the discrete nature of
decision. It forces the players to cooperate mutually andotal payoff, sharp steps appear when varyting
maintains this state against defectors. Introducing stochastic evolutionary rules between two
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rounds, Nowaket al. [6] have extended the above model. are updated. Notice that the decision is not affected by the
Although the stochasticity simplifies the dynamics, it doesvariation of total payoff involving the change in the sur-
not change the basic observations that cooperators and dexundings. Starting from a random initial state, the above
fectors can coexist. The randomness destroys the straightocess is repeated many times.
borderlines as well as other symmetries that appear in the ForK=0 the playerX adoptsY’s strategy ifEy>Ex. In
deterministic model. this case the randomness is represented by the selection of
Hubermann and Glandé&] have studied a similar model the playersX andY. The finite value oK characterizes the
using continuous-time simulations where players are choserange of payoff difference within which the irrational deci-
randomly and immediately updated. Their results supporsion can typically appear. At present, our analysis is con-
that the above conclusions are not affected by whether wetrained to noise levelK <1.
use continuous or discrete time in the stochastic ¢ake Monte Carlo(MC) simulations are performed by varying
_In the present work we study a PD game with a slightlythe value ofb for fixed K values. We have determined the
different continuous-time evolution on a square lattice. In tthensityC of Cooperators using periodic boundary conditions.
modified model the players need less intelligence to decidghe system size was varied frobw 200 to 1000; the large
whether or not they adopt one of the neighboring strategiessizes are required to suppress the statistical error in the criti-
Using systematic Monte Carlo simulations and generalizegg| regions ¢—0 or 1).
mean-field techniques, we calculate the density of coopera- The above models are also investigated by the generalized
tors as a function ob for different noise levels. It will be  mean-field technique that proved to be very efficient for
shown that the transitions from the aCtiV.e StGIGEXiStence Studying dynamica| systems such as the one-dimensional sto-
of defectors and cooperatote the absorbing one@ll D or  chastic cellular automatg8—10] and driven lattice gases
all C) exhibit universal behavior. [11-13. In fact, the introduction of the above evolutionary
rule is motivated by the demand to make the model more
Il MODEL convenient for this method. In the present case we have

The players located on a square lattice can follow only2dapted the two-dimensional method to determine the prob-
two simple strategiesC (always cooperajeand D (always ability of the configurations appearing on two-, four-, five-
defec). Due to this simplification this system can be handled@nd six-point cluster§13]. It is expected that the larger the
with the Ising formalism and we can use the sophisticatedluster we use the more accurate the prediction given by this
techniques developed in nonequilibrium statistical physicstéchnique. At the level of a six-point approximation, taking
Each player plays a PD game with itself and with its neigh-the conS|stency. conditions and symmetrle_s into account, we
bors. The total payoff of a certain player is the sum over allfave to determine 20 parameters by solving a set of equa-
interactions. The elements of payoff matrix can be rescale§fons of motion for the configuration probabilities in the sta-
because the evolutionary rule depends on the payoff diffefionary state. Details of this calculation are given in previous
ences between the players. Accepting the idea suggested BgPerd12,13.
Nowak and May[5], we chooseR=1, P=S=0, andT=b.

Thus the payoff to playeA againstB is given by the matrix: ll. RESULTS

For both models the=0 (all D) and 1(all C) states are
A\B C D independent of time because the evolutionary rule cannot
C ] 0 create a new strategy that can spread out under advantageous
conditions. The uniform cooperatioc€1) is a stable state
D b 0 if b does not exceed a threshold valyg that is larger than
1. This means that any constellation of defectors will be
. . . _fefeated ifo<<b¢;. In the same way the=0 state remains
Two systems will be considered subsequently. In the fIrSgtable forb>b.,. Henceforth we will concentrate on those

case only the first neighbors are taken into account. Thistates that the cooperators and defector can coexist in, that is
means that the total payoff of a defector surrounded by co- P ' '

operators is B, while the cooperator's payoff is 5 in the Whlgir;st?tci/vzb;%szider the model with first-neighbor interac-
same surroundings. In the second case the neighborhood i{](_)ns Figure 1 shows the dependence of thegdens' of
cludes the first and second neighbors. Thus the payoffs of thCOO éra?ors in the coe 'stenge region For0.1. As Itr{d
defector and cooperator ard &nd 9 in the sea of coopera- P ! XISten glor = AS Indl
tors. cated,c decreases monotonical with increasibguntil the

. . second thresholb.,, where the cooperators vanish.
The randomly chosen play&trevises its strategy accord- €2, ; :
ing to the following rules. This player selects one of its. The resu[ts of both the MC S|mulgt|ons and.the gener_al-
neighborsY with equal probability. Given the total payoffs ized mean-field method refer to steplike behavior becoming

: more and more striking if we decrease the valu&ofThe
Eyx and Ey) from the previous round, playet adopts the .
Swei(ghbor’sY)strategy Wit% the probabilityp ’ P sharp steps appear at the break poiy., b=4/3, 3/2)
described by Nowak and Ma}s]. Inside the coexistence

1 region the mean-field results of four-, five-, and six-point

W= T+exd —(Ey—Ex/K]’ 1) approximatipns agree s_atisfgctorily with thg simulations

while the pair approximation yields a marked difference. The

where Ey is the neighbor’'s payoff an& characterizes the best agreement is found for the five-point approximations
noise introduced to permit irrational choices. For successfuldashed ling

strategy adoptation the new state as well as the new payoffs A typical snapshot on the steady-state distribution of co-

whereb>1.
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FIG. 1. Density of cooperators as a function of temptation to
defect forK=0.1. The MC data are plotted by squares, the results
of generalized mean-field technique for different cluster sizes are F|G, 3. Cooperatorgwhite boxe$ form colonies in the sea of

lines.

scattered colonies in the background of defectors, as illus-

operators and defectors is illustrated in Fig. 2lfer 1.4 and  trated in Fig. 3. In general, any compact colony formation
T=0.1. This snapshot, as well as the subsequent ones, iswould be preferable for cooperators; however, the defectors
100X 100 portion of the full 40& 400 lattice. In this case the make them rare.
pair (two-poinf) approximation gives a satisfactory descrip-  Visualizing the time-dependent configuration, one can ob-
tion of the short-range correlations. serve how the colonies try to spread out. Their center, size,

Notice furthermore that the mean-field predictions are notind shape change continuously and a separated colony can
adequate whea tends to either 0 or 1. Namely, the four- and disappear without a trace. Two colonies can unite, providing
six-point approximations predict a continuadlisear transi-  a better opportunity for their survival, or conversely, a
tion, the five-point approximation indicates a first-order one,colony can divide into twdgor more parts. Similar phenom-
and the simulations suggest a power law behavior#0. A ena can be observed in a wide range of dynamical processes
similar situation has already been observed for a onedescribed by the directed percolatitdP) [14], the Reggeon
dimensional stochastic cellular automatti0]. The men- field theory[15], the surface reactiofl6], and Schigl mod-
tioned deviations are not surprising because the mean-fielels [17] as well as the branching and annihilating random
approximations are not capable of handling the critical tranwalks [18]. Grassbergef19] and Janssef20] conjectured
sitions exhibiting enhanced fluctuations and long-range corthat all one-component models with a single absorbing state
relations. belong to the universality class of directed percolation. Ex-

In the limit c— 0 the cooperators can survive if they form ceptions can appear if the dynamics conserves some symme-
tries (e.g., parity of offsprings

Our MC data(shown in Fig. ) refer to a power-law be-
havior, that is,

c(bep—b)” 2

if b—b¢,. The best fit is obtained fdp.,=1.8472(1) and
B=0.53), which is consistent with the critical exponent
(B8~0.58) of the two-dimensional directed percolati@i].
Contrary to the above pattern, defectors form small iso-
lated “gangs,” as demonstrated in Fig. 4 for a typical sta-
tionary state if :-c<<1. A single defector surrounded by
cooperators has the highest paydffness in this system.
Sooner or later this defector will have a neighboring off-
spring, which reduces its payoff immediate(ifhis process
can be considered as a retaliation executed by the TFT algo-
rithm if more elaborate strategies are permittdél.b<4/3
then one of the defectors will be defeated within a short time.
The iteration of this process yields randomly walking gangs.
Two colliding gangs can unite into one. Due to the possibil-
FIG. 2. Distribution of cooperator@vhite boxe$ and defectors ity of irrational choices a single gang can divide into two or
(black boxeg for b=1.4 andT=0.1 (c=0.515). can disappear. The gangs can be considered as branching and
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taking the second neighbor interactions into accounk at0.02.

FIG. 4. Typical snapshot for high concentration of cooperatorsResults are indicated as in Fig. 1.
(white boxe$ for b=1.222 andT=0.1. The small “gangs” of de- _ o o o
fectors(black boxeswalk randomly. ever, the nonlinear contributions are negligible in the vicinity

of b.; and we expect the power-law behavior to appear
annihilating random walkers whose critical behavior belongsclearly. In order to check this statement we have repeated the
to the DP universality class too. same analyses at higher noise level. -

In the deterministic model introduced by Nowak and May ~ The results obtained fdf =0.5 are summarized in Fig. 5.
[5] isolated gangs with fixed positions can occur if AS expected, the MC data show a power-law behavior for
1<b<4/3. The density of gang&vhose size alternates cy- Pothlimitsc—0 and 1. A detailed numerical analysis results
clically if 5/4<b<4/3) depends on the initial state. In con- IN be;=1.2687, 8=0.62(5) if c—0 andb.,=1.66442),
trast to this feature, the homogeneous cooperation cai=0.59(3) ifc—0. TheseB values agree satisfactorily with
emerge in the stochastic models even for1 as a conse- the Corresponding eXponent of the DP Universality class. No-
quence of the random walk and annihilation. In addition, thetice, furthermore, thab., andb., depend orK. The deter-
random walk causes the steady-state density to be indepefination of aK-b phase diagram indicating the active and
dent of the initial state. absorbing states goes beyond the purpose of the present

Despite the mentioned expectation, the MC data in Fig. work. Instead of it we have studied the model involving
do not show any power-law behavior in the linit-1. This ~ second-neighbor interactions.
discrepancy can be resolved by reminding the reader that the The generalization of our techniques to investigate the
critical behavior is controlled by a simple function of the density of cooperators in the second model is straightfor-
diffusion constant and the rates of branching and annihilaward. The results of these calculatioisee Fig. §refer to a
tion. In the present case these parameters are Strong]y nohehaVior similar to those of the preViOUS version. There are
(bey andbg,) are definitely smaller than those of the previ-
ous model. Furthermore, the convergence of the results of
the generalized mean-field approximation is slow. This fact
indicates that the short-range correlations become more rel-
evant if we take the second-neighbor interactions into ac-
count.

The steps of the continuougb) function (for b=28/7,

716, 6/5, and 5/4) become sharper when decreasing the value
of K. For high noise levels the function becomes smooth and
exhibits a power-law behavior with exponents close to the
DP value at both ends of the active region. Inside the active
phase the difference between the mean-field results and MC
simulations decreases with increasiig

10 [
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0.0 IV. CONCLUSIONS

1.2 L4 L6 18 We have studied the evolution of cooperation among

players who can follow only two simple strategieS énd
FIG. 5. Density of cooperators sfor K=0.5 as suggested by D) and are placed on a square lattice. The individual re-

MC simulations(squares and generalized mean-field approxima- ceives payoffs from interactions with each of its neighbors

tions whose level is indicated as in Fig. 1. and itself in a PD confrontation. An evolutionary rule is in-
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troduced by slightly modifying the model suggested by[6,23]. In the present stochastic model the second threshold
Nowak et al. [6]. Namely, a randomly chosen player is to value ofb is decreased by the randomness, namely, we have
adopt one of its neighboring strategies with a probabilityfound b.,< 1.4 for K=0.02, 0.1, and 0.5.

dependent on the payoff difference. Two versions of the The generalized mean-field approximations have clarified
model have been investigated. In the first case the neighbothe importance of short-range correlations for both versions
hood is limited to the first neighbors. In the second case Wt the stochastic evolutionary PD game inside the coexist-
have increased the number of neighbors by taking into conance region. Unfortunately, this technique is not applicable

sideration the second neighbors too. . in the critical regions ¢—0 and 1) where long-range corre-
existence of two absorbing states<(1 if b<b.; andc=0 In these critical regions the MC simulations indicated

if b>b.,). It is remarkable that the homogeneous cooperaglearly a power-law behavior, namelge(b.,—b)? and
tion proved to be stable against the temptation to defect foi—coc(b—bcl)ﬁ at sufficiently high noise levels. The values
1<b< bc% due to the randomness anq pqssibility of irratio- of B deduced from the MC data agree well with the DP
nal choice. We have found significantly different exponent for both versions. These findings corroborate the
(K-dependentthreshold values in the models we are inter-copjecture according to which the transitions in all one-
ested in. It is expected that, tends to 1 if we increase the component models to an absorbing state belong to the DP
number of neighbors. _universality class in the absence of conserved symmetries.
For a high density of defectors the cooperators formingrhe curiosity of the present model is that here we have two
compact blocks can spreaddf<b.,. Comparing the present gifferent (nonsymmetri absorbing states whose stability re-
models with the corresponding deterministic versidiiswe  gions are separated by the active phase. For low valuls of
can state that the active region is reduced by the stochastighe appearance of a power-law behavior agdiristdistorted
ity. For example, in the deterministic version of our secondby the strongly nonlineab dependence of the diffusion and

model a competition between tHe and D invasion pro-  gpnjhilation. Due to the robustness of the DP universality
cesses can be observed if 8/6<<2 because the cooperators c|ass, similar critical behavior is expected for many other

invade along straight lines, while the defectors win alongyersions of stochastic evolutionary rules.
irregular boundaries. In this parameter range Mukherpl.
[22] have observed that the cooperation is eliminated when

introducing _stoch_astlc element_s. Thls is not surprising _be- ACKNOWLEDGMENT
cause theC invasion along straight lines is not permitted in
the stochastic models. At lower value bf however, the This work was supported by the Hungarian National Re-

spatial effects can facilitate the survival of cooperatorssearch Fund under Grant No. T-16734.
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