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State transformations of colliding optical solitons and possible application to computation
in bulk media
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Using explicit, bright-soliton solutions for the coupled Manakov system recently described by Radhakrish-
nan, Lakshmanan, and Hietarinta, we show that collisions of these solitons can be completely described by
explicit linear fractional transformations of a complex-valued polarization state. We design sequences of
solitons operating on other sequences of solitons that effect logic operations, including comteallgdtes.

Both data and logic operators have the self-restoring and reusability features of digital logic circuits. This
suggests a method for implementing computation in a bulk nonlinear medium without interconnecting discrete
components[S1063-651X98)15711-2

PACS numbeps): 42.65.Tg, 42.81.Dp, 89.80h

[. INTRODUCTION effects a pure rotation of the complex state for all operands,
that by concatenating such operators a pure rotation operator
Radhakrishnaret al. [1] have recently given an explicit can be achieved, that certain sequences of such operators
bright two-soliton solution for the Manakov system that is map the unit circle to itself, and so on.
more general than any previous, and derived explicit Finally, we discuss the application of these ideas to imple-
asymptotic results for collisions in the anomalous dispersiorinenting all-optical digital computation without employing
region. Those results are remarkable because they show lar§BYsically discrete components. Such a computing machine

energy switching between components in an integrable vedvould be based on the propagation and collision of solitons,

tor system. Surprisingly, as we show in this paper, the pag:md could use conservative logic operatigb$ since the

rameters controlling this switching exhibit nontrivial infor- CO"'S'an we _cor_15|der preserve the total energy and number
mation transformations [2], contradicting an earlier of solitons. Finding a sufficiently powerful set of operators

conjecture that this was not possible in integrable system'.%.lnd reusable particles in this regime would open the way for

[3]. Furthermore, these transformations can be used to im ||r_1tegrated computation in_homogeneous nonlinear optical
' : ;" ; ) . . Pedia [6,7], quite a different scheme from using soliton-
ment logic operations in a self-restoring digital domain, sug

‘draggi te$8 discret ts to build -
gesting exciting possibilities for all-soliton digital informa- ragging gateg8] as discrete components to build a com

tion processing in nonlinear optical media without radiative
losses.

In this paper we use the explicit two-soliton solutions in
[1] to show that in the coupled Manakov system:

(i) An appropriately defined polarization stqtf that is a A. The Manakov system and its solutions
single complex number can be used to characterize a soliton
in collisions. Thus, two degrees of freedom per soliton suf-
fice to describe state transformations in collisions, instead o
the six degrees of freedom in a complete description of 3
Manakov soliton.

II. INFORMATIONAL STATE IN THE MANAKOV
SYSTEM

We review the integrable one-dimensional Manakov sys-
m[9-11] and its analytical solutions frofrl]. The system
onsists of two coupled nonlinear Sctiager (NLS) equa-
ions,

(i) The transformations of this state caused by collisions i1+ Qs+ 2(]01|2+102/2 1 =0,
are given by explicit linear fractional transformations of the (1)
extended complex plane. These transformations depend on 102+ Qoxxt 2(]01|2+]05/2) g2=0,

the total energies and velocities of the solitgtiee complex
k parametelﬁ which are invariant in collisions, but which Whereql: ql(xlt) and g,= Q2(X,t) are the Comp|ex amp"-
can be used to tailor desired transformations. tudes of two interacting componenis,is a positive param-

In order to make use of the basic state transformations, Wegter, andk andt are normalized space and time. Note that our
will derive some of their features and limitations. View a yariablesx andt are interchanged with those [if], in order
particle in statep; as an operatofl, that transforms the o represent the propagation variable, the one associated with
state of any other particle by colliding with it. Then we the first-order derivative in the Manakov equation tbiyT his
show, among other things, that every such operator has ia consistent with Manakov’s original papg®], Eqg. (3).]
simply determined inverse, that the only fixed points of suchThe system admits single-soliton solutions consisting of two
an operator arep, and its inverse, that no such operator components,
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Ch:% e_(Rlz)H”'SECV( 77R+; , o k1 space ‘pl | k2
q2=§ e‘(R’z)“’"secV( Rt ; , 2) time
where
n=Kk(x+ikt), (3) 0, k2 - k1

2 2
R:'U‘(|a| +187) (4) FIG. 1. A general two-soliton collision in the Manakov system.
k+k* ' The complex numberg,, p,, p,, and pg indicate the variable

soliton statesk; andk, indicate the constant soliton parameters.

anda, B, andk are arbitrary complex parameters. Subscripts

R andl on » andk indicate real and imaginary parts. Note tually, all that follows also holds if both solitons are traveling

thatkg# 0. in the same direction, provided they collide. That is, we need

To study the effects of collisions on soliton states in thisonly assume thalt, <y, .

system, we consider the analytical two-soliton solution given To determine the state changes undergone by the colliding

in [1]. By taking limits of this solution a$— *o andx— solitons, we take the limitg8— = andt— =< in the two-

+oo, we find asymptotic formulas for the widely separatedsoliton expression frorfil]. These limits depend on the signs

solitons before and after a collision. In Sec. Il B we deter-of k;g andk,r; there are four cases, each of which yields

mine the effects of collisions on solitons by comparing theseasymptotic formulas for both components of each soliton

formulas with Eq.(2). before and after the collision. We then find each soliton’s
state by computing the quotient of the soliton’s two compo-

B. State in the Manakov system nents. Wherk;3>0 andk,g>0, we obtain

The three complex numbets B, andk (with six degrees [(1—0)/p¥+pilpL+0p1!pt
of freedom in Eq. (2) characterize bright solitons in the p2= +(11_ l) L+ 1 i 1, (7
Manakov system. Sinck is unchanged by collisions, two 9pe 9)p17T Py
degrees of freedom can be removed immediately from alhere
informational state characterization. We note that Manakov
[9] removed an additional degree of freedom by normalizing ky+k*
the pqlarization vector determined lyand 8 by the to_tal g(kq, k)= ﬁ (8)
magnitude &>+ B%)*2. However, we show that the single 27Ky
complex-valued polarization staje= «/8, with only two .
degrees of freedorf¥], suffices to characterize two-soliton By a symmetry argument, we obtain
collisions when the constanksof both solitons are given. N * *
: . ) 1-h*)/pf + +h
We use the tupledk) to refer to a soliton with variable _U Vpttpclpithpu /ol (9)
PR * * * '
statep and constant parametkr h*p;+(1=h*)p + Lp{
(i) p=0q1(x,t)/gs(x,t)=a/B: a complex number, con- where
stant between collisions.
(i) k=kgr+ik,: a complex number, withkg+0. Ko+ k5
h(k1,k2)—m- (10

Throughout this paper we use the complex plane extended to
include the point at infinity. Note that the state changes given by Egsand(9) [and

Consider a two-soliton collision, and Ik andk, repre- by Egs.(5) and(6)] depend on the constarits andk,. We
sent the constant soliton parameters. pgtand p denote  often omit these from expressions, as in E(®. and (6).
the respective soliton states before impact. Suppose the cahtowever, when we need to specify the valuekpfandk,
lision transformsp, into pg, andp, into p, (see Fig. L In explicitly, we write
the rest of this paper we always associatendp, with the
right-moving particle, andk, and p, with the left-moving Tpl‘kl(pL,k2)=p2. (11
particle. To specify these state transformations, we write

For the remaining three cases of signkgf andk,g, we

T,,(pL)=p2, (5)  used similar methods to find six additional state-change ex-
pressions:
T, (p1)=pr- (6) (a) Case 2k;zr<0, k,g>0,
. . . —1)p;—1lpYlpL+ T
The soliton velocities are determined ky andk,, , and are pzz[(g )p1~Vpilpi+9palpi , (12

therefore constant. With our conventioms; <0<k,,. Ac- 9pL+(9—-1)/pI —py
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TABLE |. State-change factors fdry and T, transformations. The columns fd’roykl and Teek, list the
factors by whichp, is multiplied to getog, and the columns foTQk2 andTm,k2 list the factors by whiclp,

is multiplied to getp,.

S|gn Of klR Slgn Of kZR TO,kl -l—o’k2 Tx'kl T:x:,kz
+ + 1-g 1—h* 1/(1—g) 1/(1-h*)
- + 1/(1—g) 1/(1—h) 1-g 1—h
+ — 1/(1—g*) 1/(1—h*) 1—g* 1—h*
- - 1-g* 1-h 1/(1-g*) 1/(1—h)

:[(h_l)PL_llpf]Pl"' hp, /pf

PR hpy+(h—1)/pf —p, 3
(b) Case 3k;g>0, kyr<O
:[(9*_1)1)1_1/PI]PL+9*P1/P’1c (14
P g (e it
:[(h*_1)PL_1/P’L<]Pl+h*PL/Pf (15
PR p (W =D)ipf —py
(c) Case 4k;,g<0, kog<O
_[(A=g")/pT +p1loL 9" palpl 16
P2 g*pL+(1—9%)ps+ Lp] ,
[(1=h)/p{ +pL]p1+hp /ol
PR™ - - (17

hpy+(1—h)p_+1lpf

pressions. Also, note thath+# 0, sincek,r,ko,r# 0, and that

g andh cannot be pure real numbers. It can also be verified
that all four cases collapse to the first if we simply lisgy|
and|k,g| in Egs.(7)—(10), although that does not seem to be
obvious at the start.

In each of the four cases mentioned above, the soliton
states after collision are completely determined by the soli-
ton states before collision, which shows that our definition of
state is complete. Thie parameter of a soliton remains con-
stant, but is in general different for different solitons.

A special class of state transformations

The class of transformations given By, and T,
wherek=k;, (right-moving or k, (left-moving), will be use-
ful later. They specify state changes caused by collisions
with solitons whose entire energy is contained in only one
component, and are functions kf andk,. Table | shows
the state-change factors due to these transformations. It is not
hard to verify from this table that

It is a matter of algebra to verify that these can be ob-

tained from Eqgs(7) and(9) by using the following relations:

To, kyptiky, (PL KarTiK2))
=T o1 —kypriky (PL KorTiKZ),  (18)
Ty kontiky (P1 K1RT K1)

=T 1% kop-iky (P1—Kir—iKy). (19

Relation(18) states that when the sign kfg is changed in
Eg. (7), we must also replacp; with —1/p} in the same

Tokegrik, ™ Teo, —kgtik;» (21

which is a special case of the state-change relations de-
scribed earlier.

Ill. PROPERTIES OF THE COLLISION STATE
TRANSFORMATION

For concreteness we will restrict attention in this section
to the case g, kor>0, and the transformation, E{/), of
the left-moving particle in statg, to the left-moving particle
in statep,. All the results hold for other signs &f g andk,g

equation in order to obtain the correct formula for the stateand the other collisions with appropriate changes in the par-
change. The particle- 1/p} has a special significance—it ticle names and the parameter that plays the rolg &¥hen

acts as inverse operator pq (see Sec. I). The same rela-

the signs ofk;g andk,g are an issue we will mention that

tion can also be used to obtain the proper state-change foexplicitly.

mula when the sign ok,g is changed in Eq(9). Relation

A state transformation can be viewed either as a mapping

(19) can be used to obtain the state-change expressions whép_ (p) from the complex plane to the complex, plane,

the sign ofk,g is changed in Eq(7), or when the sign ok,
is changed in Eq(9). Taken together, relatiori¢8) and(19)

imply
Ty, kyp+iky (PL KorT1K7))

=T, —kyp-iky (PL —Kar—1Kz);  (20)

that is, when the signs of bottyz andk,g are switched in

either Eq.(7) or Eq.(9), we must also conjugate andk, in

or in general as a mapping from the complex plane to itself,
depending on the context. The state transformation is in fact
alinear fractional transformatior(LFT) (or bilinear or Mo-

bius) of the form

apL+b

P2

where the coefficients are functions of the right-moving par-

the equations in order to obtain the correct state-change eficle in statep,,
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a=(1-g)/p7 +p1,
b=gpi/p7 .
Cc=g,

d=(1—g)p1+lp7.

The choice ofa, b, ¢, andd is not unique, since we can
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Proof. The fixed-point conditionTpl(pL)sz using Eq.

(22) leads to a quadratic equation, sinrce g#0. There are
therefore at most two fixed points. The stated fixed points are
always distinct and it is easy to verify that they satisfy Eq.
(22) by direct substitution. H

The following property is expected from the fact that the
two components of the Manakov system are incoherently
coupled.

Property 5 (rotational invariance of collisionslf p, and

multiply numerator and denominator by an arbitrary nonzergo are both rotated by, thenp, andpr, are also.
number, but we will use these throughout this paper. The Proof. Easily verified in the transformation Eqér) et

limiting versions of Eq. (220 then
=[1/(1-9)]p andTo(p)=(1-9)p.

When there is no danger of confusion we will refer to

give T.(p)

seq H
Property 6 (absence of pure rotations or scalarEhere
is no (single-collision operator of the form

particles and their states interchangeably; so, for example,

we can speak of “transforming the partigle .” By Eq. (6),
the collision above also results in the transformafrgrL‘(pl)

of p, caused by collision wittp, , and each result we give

T, (p)=¢€"pL (24)

for any angleé, or

about the properties of the transformations of left-moving

particles has its symmetrical counterpart about transforma-

tions of right-moving particles.

T, (p)=Kpp (29

It is usually assumed that an LFT must have a nonzerdor any realK. In particular, there is no single-collision iden-

determinantad—bc, which ensures that it is nonconstant.
This is always true for our class of LFT's and a straightfor-
ward calculation shows:

Property 1 (determinant)The LFT Eq.(22) has determi-
nant

(1-9)(p1+1/p})?, (23

which cannot vanish sincg# 1.

Property 2 (inverse)Every operatorT,, has a unique

inverseT ., whereo=—1/p] andg is the same fop, and
its inverse.

Proof. Replacingp, by —1/p7 in the expressions above
for a, b, ¢, andd above results in-d, b, ¢, and —a, which
are the coefficients in the inverse of E@2). Uniqueness
follows because the set of all LFT's forms a grouf

We refer to a particle followed by its inverse- 1/p* as
aninverse pair It follows from the next result that collision

tity operator.

Proof. First consider the possibility of pure rotations. The
case =0 corresponds to the identity operator, for which
every point is a fixed point, contradicting property 4. When
6+ 0, the fixed points of a pure rotation are 0 andso any
pure rotation must be d, or T,,. Since everyT,, is the
inverse of aTg, it suffices to consider the case ofTg,
which has the operatdry(p. )=(1—9)p. . We can write

Kor—Kig—i
O otk 29
where we normalize by setting
A:k2|_kl|=_1.

This normalization is allowed because the differencéis
represents the difference in envelope velocities, and so must

with an inverse pair leaves any sequence of particles urbe nonzero if there is to be a collision. The magnitude of 1
changed. This property will be especially useful in designing—g in Eq. (26) cannot be 1 unless eithdnr=0 or kg

logic operators since data encoded as inverse particle paiesQ, which is not allowed. For the possibility of a scalar
leaves operators unchanged, and the logic operators caultiplication, we can again restrict attentionTg's and Eq.
therefore be used for subsequent logic operations on neype), by the same reasoning as above. The right-hand side of

data.

Property 3 (preservation of inverse pairdj.an inverse
pair collides with any particle, the two resulting particles
also form an inverse pair.

Proof. Replacingd/ dt by —d/dt in the original Manakov
system Eqg. (1)] shows that if the system is run backwards in

time, the same collision rules apply if solutions are replaced
by their conjugates. Thus if an inverse pair leaves a particle
o invariant, the conjugates of the collision products of the
inverse pair do also, and hence the collision products mus

themselves be an inverse paifll
Property 4 (fixed points)every operatofT oy has exactly

two distinct fixed pointsp, and —1/p} . It follows that a

particle is transparent to itself and the particle corresponding

to its inverse operator, and to no other particles.

that equation cannot be real unldsg=0. H

The composition of any number of LFT’s can be written
as an LFTw=L(2), and if it has exactly two distinct fixed
pointsz, andz,, it can be written in the implicit form

W_Zl

Z_Zl
K ——

(27)

wW—2, z—z,

|{] the single-collision case this becomes:
Property 7 (implicit form).The single-collision transfor-
mationTpl(pL) can be written in the implicit form

P27 P1

p2+1lpt

PL™ P1
pLt+1lpT’

(28)
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whereK=(1—g) is called the “invariant” of the LFT. By
symmetry, the inverse transformation is the same ex€apt
replaced by K.

The next result is standafd2].

Property 8 (invariant circles)The fixed points of a LFT
with two distinct fixed points determine two orthogonal
families of circles in thew plane: (1) C;, which are the
circles that pass through the fixed points; &8HC,, which
are the circles determined by the condition that the distances
to the fixed points have a constant ratio, tiecles of Apol-
lonius These are images, respectively, of points through the FIG. 2. Numerical simulation of a phase-switchirgT proces-
origin and concentric circles about the origin in thelane.  sor implemented in the Manakov system. These graphs display the
The circlesC; are mapped onto themselves as a set, andolor-coded phase gf for solitons that encode data and operators
similarly for the circlesC,. For each circle inC; to be for two cases. In the initial conditioniop of graphy the two
mapped onto itself, we require that invariaht=1—g be right-moving (datg solitons are an inverse pair that can represent
real, which is not possible for a single collisiofThe map- TRUE in the left graph, and FALSE in the right graph. In each
ping in this case is calledyperbolic) For each circle i, to ~ 9raph, these solitons collide with the four left-movitgperatoy
be mapped onto itself, we require tHit| =1, which is also solitons, resultl_ng in a soliton pair representlng a FALSE and
not possible in the single collision cag&he mapping in this TRUE. respectively. The operator solitons emerge unchanged.
case is calleetlliptic.) These graphs were obtained by numerical simulation of Bowith

One consequence of this last result is that if we can desigff ~ L
a sequence of particles with a real or modulus-1 invatgnt
and arrange for the unit circle to bedj or C,, then the net
effect of collisions with these particles will be to map the
unit circle to itself. That is, the modulus-1 property of par-
ticles will be preserved on collision with these “operator” A. An i operator
sequences, and we will effectively have a state variable with A Simp|e nontrivial operator is pure rotation Wz, or

one degree of freedom in the “processed” particles. multiplication byi. This changes linearly polarized solitons
Property 9 (invariant of multiple collision)Consider a to circularly polarized solitons, and vice versa. A numerical

composite collision with a set of particles, each of which iSsearch yielded the useful transformatidese Table)l
either a givenp or its inverse, and each having a possibly

different invariant<; . The fixed points are the same as those TPL(pl) =To1-i(p,1+i)=1-h*(1+i,1-1i)
of p (p and —1/p*) and the invariant iﬂ'[(Kjﬂ), where we
useK;"* for the p's andK;* for the inverses.

Proof. The fact that the fixed points are thosefs an
immediate consequence of property 4. We need to consider
only the two cases of collision with two copiesfand with
p and its inverse; the general result then follows by inductionTpL(pl):Tmys_i(p,1+ i)=
on the number of collisions. The invariant for a transforma-
tion with fixed pointsp and — 1/p* can be writter{13]

kY

especially the question of the extent to which arithmetic and
possibly general computation can be encoded in this system.

1 )
‘E e—(v-r/4)|p’ (30)

—v2e3i,,
(31

1—h*(1+i,5-1)

which, when composed, result in the transformation

K=" (29
a+clp*’ U(p,1+i)=ip. (32

using the coefficienta andc in Eq. (22). The result for these  (Here we think of the data as right-moving and the operator

two cases follows by straightforward algebrdll as left-moving) Note that then*'s in Egs.(30) and(31) are
The impossibility of finding any single particle that can gifferent, corresponding as they do to differéts. We refer

act as a pure rotation operathat is, that effects a pure to U as ani operator. Its effect is achieved by first colliding

rotation on the state of any other partickuggests looking 3 soliton (p,1+i) with (0,1—i), and then colliding the result
for multiple collisions that do have that effect. We do so inyjth («,5—i), which yields {p,1+i).

the next section, where we exhibit pure rotation operators
realized by composite particles composedligk andT..'s.
This is achieved by carefully designing the particlega-
rameters. Composing twoi operators results in the-1 operator,
which with appropriate encoding of information can be used
as a logicalNOT processor. Figure 2 showsneT processor
with reusable data and operator solitons. The two right-
We conclude with some examples that illustrate the demoving particles represent data and are an inverse pair, and
sign of sequences of particles that effect certain transformahus leave the operator unchanged; the left-moving sequence
tions that have potential application to embedded logic. Fucomprises the four components of thd operator. This fig-
ture work will explore the limits of this approach, and ure was obtained by direct numerical simulation of the

B. NOT processors

IV. PARTICLE DESIGN



FIG. 3. Numerical simulation of an energy-switchingT pro-

cessor implemented in the Manakov system. These graphs displ
the magnitude of one component, for the same two cases as in t|

previous figure. In this gate the right-movifdgata particles are the
inverse pair with states,0 (left) or 0 (right) and the first com-
ponent is shown. As before, the left-movirigperatoy particles
emerge unchanged, but here have initial and final states
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the operator particles are all the same and themselves have a
state on the unit circle. Let the operator particles have state
p=e'?. Then by Eq.28) the transformation fronz to w is

w—e'? z—e?
W+e'0: 7+e0° (33
and, therefore, iz=e'¢ andw=¢'?,
-0
Yy=0+2 arctarE K tan ¢2 ) . (34

Thus, if we restrict all “data” particles to the unit circle,
llision (“operator”) particles of this type will preserve that
operty.

For an example, consider the composition of eight identi-
cal operator particles witk,=1—1i, colliding with a particle
having k;=1+i. The resulting invariant is, using-1h*
=22~ ™4 from Eq. (30), K=(2 Y% "48=1/16. We
can also mix copies of an operator particle and its inverse
and use property 9 to get a wider variety of invariant values.

Manakov system, with an initial state that contains the ap-

propriate data and processor solitons.
We may treat this\OT processor as a controlleT (or

V. DISCUSSION

The line of inquiry followed in this paper suggests that it

XOR) by observing that the operator sqlitons can be selecte[;hay be possible to perform useful computation in bulk me-
so that both the data and operator solitons are unaffected Rya by using colliding solitons alone, and leads to many open
collisions with one another. ThisoT processor switches the questions, which we are now studying. First it would be

phase of theright-moving +1) data particles, using the en- yseful to obtain a complete mathematical characterization of

ergy partition of thgleft-moving 0 and») operator particles.
A kind of dual NOT gate exists, with the same compodite

the state LFT's obtainable by composing either a finite
number—or an infinite number—of the special ones induced

= —1, which switches the energy of data particles using onlyby collisions in the Manakov system. Second, we should like

the phase of the operator particléSee Fig. 3.In particular,
if we use the samé&'s as in the phase-switchingoT gate,
code data as 0 and, and use a sequence of fatil operator
particles, the effect is to switch 0 to and« to 0; that is, to

to know whether the complex-valued polarization state used
here for the Manakov system is also useful in other vector
soliton systems, especially those that are near-integrable and
support spatial solitong2,14—33. Finally, we need to study

switch all the energy from one component of the data parthe computational power of this and related systems from the

ticles to the other. This can be checked easily by setting
=—1 andp;=1 in the implicit form, Eq.(28), using prop-
erty 9 for this composite collision.

C. Particles that map the unit circle to itself

By property 8 any composit@nultiparticle operator with
an invariantK that is real will map the unit circle to itself if

point of view of implementing logic of some generality; in
particular, which, if any, such systems, in-1 or 2+1 di-
mensions, integrable or nonintegrable, are Turing equivalent
and therefore universal.
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