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Conservation laws in higher-order nonlinear Schralinger equations
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Conservation laws of the nonlinear Sctiimmger equation are studied in the presence of higher-order optical
effects including the third-order dispersion and the self-steepening. In a context of group theory, we derive
general expressions for infinitely many conserved currents and charges of a coupled higher-order nonlinear
Schralinger equation. The first few currents and associated charges are also presented explicitly. Due to the
higher-order effects, the conservation laws of the nonlinear 8atger equation are violated in general. The
differences between the types of the conserved currents for the Hirota and the Sasa-Satsuma equations imply
that the higher-order terms determine the inherent types of conserved quantities for each integrable case of the
higher-order nonlinear Schdinger equation.
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In the ultrafast optical signal system, higher-order effectscial cases of coupling constants. The CHONSESs described in
such as the third-order dispersion, the self-steepening, arld0] and[11,12 are the limited extensions of the Hirdta3]
the self-frequency shift become important if the pulses arénd the Sasa-Satsurfied] equations, respectively. Recently,
shorter thariT,<100 fs[1]. When compared with the group by making use of the matrix potent_lal mtroducec_[lrs], we
velocity dispersion, the third-order dispersion is normallyh@ve proposed a general extension of the Hirota and the
negligible but produces significant effects of asymmetrical>258-Satsuma equations and clarified their relationshégs
temporal broadening for the ultrashort pul§2sS]. The self- in association with the formalism of Hermitian symmetric
steepening effect, which is accompanied by an optical shocﬁpac‘,eil?]' . . .
at the trailing edge, also leads to the asymmetrical spectral 't i Well known that nonlinear equations which can be
behavior of the pulseB4]. The self-frequency shift due to Ntegrated by the method of inverse scattering transform pos-
Raman gain stimulated to the long wavelength componentS€SS an infinite number of conserved quantities. For example,
costing the short wavelength components causes an increj}'-e_ NSE has an infinite number of conserved charges in ad-
ing redshift to the propagating pulsé6]. These three types dition to thg ones corresponding to the energy and the
are in general the dominant higher-order effects to be conlnensity-weighted mean frequency. However, the effect of
sidered for the propagation of femtosecond pulses in a mondl® higher-order and the cross-coupling terms on the conser-
mode optical fiber. For a higher rate transmission of pulses/ation laws has not been considered up to now. In this paper,
the wavelength division multiplexinfi7] also can be taken Utilizing the properties of the Hermitian symmetric space, we
into account. In this case, the use of optical pulses with mul'ake a systematic study of the conservation laws in the pres-
tiple field components to accommodate degrees of freedofi"c€ ©f the h;]gher-order ]:amd ;he cross-coupling terms. r\]Ne
in distinct polarizations and/or frequencies requires the confi'St indicate tl at, e>f<c§pt or the ﬁnergz conservation, 0:{ ﬁr
sideration of nonlinear cross-couplings between differenfonservation laws of the NSE such as the conservation of the
modes of pulses. intensity-weighted mean frequency do not hold any more

For the description of the multimode transmission, extendue to the higher-order effects, unless the higher-order terms

sions of the nonlinear Schulnger equatioiNSE) to include &€ Of a unique type. In the case of the integrable CHONSE,
cross-coupling terms are required. The simplest ¢asetor W€ derive general expressions of an infinite number of con-
NSE) in terms of two field components was first proposedserved currents and charges from 'gh_e Lax pair form_ulat|on.
and integrated by the method of inverse scattering transfordi’®M the general expressions, explicit forms of the first few
[8]. A systematic generalization of the NSE was made Onh;;onserved currents and the associated charges of the Hirota
for the cross phase modulation terms using the structure &nd the Sasa-Satsuma equations are calculated in a consistent
symmetric spacef®] where the vector NSE is a special case Way of reduction. We then explain Fhe correlations of con-
As mentioned above, the simultaneous inclusion of both th&€rvation laws between the two integrable cases of the
higher-order and the cross-coupling effects leads to the studjigher-order extension of the NSE. _

on a coupled higher-order nonlinear Safirger equation In order to illustrate the issue, we first consider the NSE

(CHONSB which is not in general integrable except for Sloe_including the higher-order terms. In a monomode optical fi-
ber, the propagation of an ultrashort pulse is governed by the

higher-order NSE 18]
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whered=d/dz and 9=l 3z are derivatives in retarded time integrability does not always imply the same types of con-
coordinates £=x,z=t—x/v), and ¢ is the slowly varying S?r:\’ed. ;:hargt()als in the ?rﬁ]serg:e ofSh|tgher-order tfrms. ﬁn—
envelope function. The real coefficienis (i=1,2,3,4) in other integrable case ol the sasa-satsuma equation, where

: : : . = —27y5=6, in consequence does not haye andQ; in
the first four terms on the right hand side of Ef) specify Y4 V5 . : 3
in sequence the effects of the group velocity dispersion, thgq'@ as the conserved Chafges- This result IS rather remark-
self-phase modulation, the third-order dispersion, and th b_Ie. in view of the fact that mtegrqb_le equations possess an
self-steepening. With appropriate scalings of space, time’,nflnlte number of conserved quantities. We will show, .ho.vv_-
and field variables, one can readily normalize Eig.so that ever, that the Sasa-Satsuma equation also possesses infinitely
y1=1, yp=2 73:’1 which we assume from now on. The many conserved charges of different types other than the

o 3. ) : . ones of the Hirota equation.
remaining coefficientys in the last term is complex in gen- ) .
eral. The real and the imaginary parts pf are due to the In the case where we include both the higher-order and

effect of the frequency-dependent radius of fiber mode an&he cross-coupling nonlinear effects, the propaggting system
the effect of thg self-?‘/requpency shift by stimulated Raman's governed by a CHONSE. Without understanding physical

: . : settings, it would be meaningless to write down any general
Egitfé::nogrhreisia?gg\rlgg))l/éIi;{fISZVzeg Tgvmitrg?;tg];s;?fs\,/]eo?quaexpression of the CHONSE. However, as explicitly derived
y4= —27:=6 (Sasa Satsama c§s{d4] The physical con in [16], there exists a group theoretic specification which

4= 5= - . -

ditions to observe the femtosecond soliton based on the me dmits a systematic classification of integrable cases of the

. X . "HONSE. In the following, we consider the group theoretic
surable gpr;'gz'iufr'rt]’evf/itﬂa;?]maerﬁt[fjfgis%r;‘:sitgﬁ Iggztg‘ge generalization of the NSE and define the CHONSE in asso-

ciation with a Hermitian symmetric space. By solving the

discussed with analytical solutions. Experimentally, the adias; . . ; : )
linear Lax equations iteratively, we derive an infinite number

batic compression and the redshift of the ultrashort pulses
due to the delayed nonlinear response and the higher-ord aFteCroS;sr\\//\?g b?iuerfrlenrtesvizrv]\?tﬁgzregf?rfitifoor: ct)?(;;gﬁ:nsgnf-or
dispersion have been demonstraf@®]. Also some other metric s,aces[9 1% and the oeneralization of the NéE
models with similar types of the higher-order terms in Eg. P - 9 )

[16,26 according to the Hermitian symmetric spaces.

(1) are proposedi23,24] with explicit soliton solutions. A symmetric space is a coset spaBéK for Lie groups

In the absense of higher-order termgs; € v4= y5=0), . . )
Eqg. (1) possesses an infinite number of conserved charge%’DK w.h.ose :’assouateq Lie aIgebrgsandK, with the de-
compositiong=k® m satisfy the commutation relations

among which the first three charge®s] are

o [k,k]Ck, [m,m]Ck, [k,m]Cm. 4
Q= Pt
o A Hermitian symmetric space is the symmetric sp&&
o equipped with a complex structure. One can always find an
Q.= f i(g* dyp—ay™ ¢)dt, (2)  elementT in the Cartan subalgebra giwhose adjoint action
* defines a complex structure and also the subalgkbsa a
kernel, i.e,.k={Veg: [T,V]=0}. That is, the adjoint ac-
Qs= fw (ay* a— || dt, tion J=adT=[T,*] is a linear mapJ:m—m that satisfies
—o the complex structure condition)?=—1, or [T,[T,M]]
=—M for M em. Then, we define a CHONSE as

where Q, represents conserved energy, &@d the mean
frequency weighted by the intensity of optical pulses. In the
conventional NSE where the time and the space coordinates
are interchanged);,Q,, andQs, respectively, correspond - ] ]
to conserved mass, momentum, and energy. If we includ@hereE andE=[T,E] are extended field variables belong-
higher-order termsQ; are not necessarily conserved but sub-iNg to m. (We restrict to symmetric spaceslll =SU(m
ject to the relations +n)/[SUM)SUMN)U(1)], CI=SpM)/U(n), and DI
=SO(2n)/U(n) only so that the expression of CHONSE
EQl:o, becomes simplified16].) The arbitrary constan& may be
normalized to 1 by an appropriate scaling but we keep it in
— . o . . order to exemplify the higher-order effects. Also the cross-
9Q2=2i(y4+ vs) L;ﬁ' Y2y ay—ay*dydt,  (3)  coupling effects between different modes of polarizations or
frequencies are accommodated in the matrix forr afhich
. w0 is determined by each Hermitian symmetric space. For ex-
r7Q3=(374+2'y5—6)j | ) 2oy* dypdt. ample, in the case whef@/K = SU(N+1)/U(N), the matri-
m cesk andT are represented as

JE=3’E—2E%E+ a(dPE+ B,E2IE+ B,dEE?), (5)

The calculations indicate that the char@g which corre- 0
sponds to energy is conserved for all valuesygf s while B ("
Q, and Q5 are conserved provideg,+ vs=0 and 3y, -y7 0 0
+2vy5=6, respectively. Note thaD, and Q5 are conserved E= .

simultaneously only for the specific valug= — y5;=6 that ’ .

is precisely the Hirota case. It is interesting to observe that “Yy 0 -~ 0
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The adjoint action of the elemeiftin the Cartan subalgebra

[

5 o - 0 together with the complex structure condition, if applied to

. the decomposition, lead to a couple of general identities for

0 ! 0 anyMi,Myem;

T= 2 , (6) - . .
. [T,M1M2]2M1M2+M1M2:0, MlMZZMle.
11
i
o .- 0 - These identities are useful for many calculations, for ex-

ample, in deriving conserved currents or in verifying that the
CHONSE in Eq.(5) is equivalent to the compatibility con-
dition of the Lax pair in Eq(8).

Having presented necessary ingredients, we are now
I ready to derive infinitely many conserved currents and
charges of the integrable CHONSE by solving the associated
linear equations in Eq8). In order to make use of the alge-
braic properties of Hermitian symmetric spaces, we make a
change of the variabl& in Eq. (8) by

and the CHONSE becomes a higher-order vector NSE,

N N
2 |¢,-|2>¢4—a ﬁl(jEl 2

glﬁk: | |: ﬂzlﬂk‘f' 2

+ B2 . k=12,...N. (7

N
JZl w,*awj) Y— P

This equation is an obvious generalization of EB. to the d=Wexp{[Az+(\2—ar?)Z]T}, (12)
multicomponent case. In a more general point of view, as . ) o

can be seen from Eq7) the CHONSE does not include which results in the change qf the mgltlphcatlve t_eTni' to
some other physically interesting equations, for example, thi® commutative terniT,®] in the linear equations. The
four-wave mixing. (A group theoretic treatment of the- §d10|nt act|o_n[T,<I>], allows the splitting of the linear equa-
wave equation is also possible using reductive homogeneodi@ns for @ into theK and theM components as explained
space. See, for example, RES].) Anyway it is easy to see Pelow. Let us first assume that the linear equations can be
that Eq.(7) with N=1 and 8,=8,=—3 is precisely the Solved iteratively in terms of

Hirota equation, which implies that the equation is an ex- ©

plicit N-coupled extension in itself. Rema_rkably, another D(z,Z0\)= 2 i[(DE(ZE)Jrq)r’\]A(ZE)], (13)
coupled form of the Sasa-Satsuma equation also results from n=0 \"

the same CHONSE in Ed5) through the consistent reduc-

tion [16]. where®y and®y, denote the decomposition of a coefficient

As mentioned above, Eq5) is integrable if B8;=p8, ®" satisfying the properties in Eq10). Then, thenth-order
=—3 because in such a case the CHONSE admits a Lagquation 6=0) separates into thi€ and theM components
pair. That is, Eq(5) with 8,= B8,= — 3 arises from the com- as

patibility condition (L,,L;]=0) of the associated linear
equations, o dDR+EDY =0, (14

LP=[d+E+\T]¥ =0, 9Py +EDR+[T 0 =0, (15

LW =[3+U%+U%+\(UL+UL)+\2(UZ+T) (8 while the g part of the linear equation becomes

— e\ T]W =0, APR+ULDL+US DN +ULDR T I+ UL B+ U2 D2
which holds for all values of the spectral parameterThe =0, (16)

entitiesU', andU', in L; are given b —
k aNEm I =, are given by DR +UDY + UG DR+ ULDR 4+ UL o 1+ U2 0p 2

U&Z—ETE—a[E,z?E], U&=6E+a((92E—2E3), +[T,<D',3A+2]—a[T,¢>r,\1A+3]=O. (17)
9)
Ut=aEE, UYL=E—adE, UZ=-aE. In addition, there are equations arising from the positive

powers of\, which can be given by Eq§14)—(17) provided

Here, the subscript andM signify that they belong to the thatn=—1,—2,—3 and®y~°=®{;=°=0 are defined. These

subalgebr and the remaining complememt, respectively. ~equations can be solved recursively fby, @y (n=0)

It is crucial that the Lax pair given in Eq8) covers the starting from a consistent set of initial conditions;

suggested typegl0-12 in a generalized formulation. The _

algebraic decomposition can also be extended to a more gen- d%=0, ®=-il, &}=-iE. (18

eral case including the matrix solutioh=v +W¥,, with

the properties thafT,¥]=0, [T,¥y]em, and the fol- Note that Eq.(15) can be solved for®y " by using

lowing multiplication properties: the complex structure condition, that is,®f,"*

=—[T,[T, &N ]=[T,000]+EDL. Therefore d! is

[T WRPR]I=[T, Y4 ¥y]=0, [T, ¥i¥ylem. (10)  obtained algebraically provided? and®”, are determined.
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a direct integration of Eq14) but overdetermined due to the S= +Tr P{—i(E/*E+JEIE-E’E)

Contrary to®},"*, the other solutionb}"* is calculated by
JTrp (CDK)
additional equation in Eq(16). Hence, in order foiby

general to be integrable, the compatibility condition that —ia(EJPE+[4°E,dE]—6E30E)},
[9,0]®k =0 should be required for the solutidp which is (29
inherited from Eq. (8) generating the corresponding _ rhld2 Ll dml)3
CHONSE. In this case the compatibility condition gives rise Sg=— d(Tr P{i[ @kPF— 3(Pi0)°]})
to infinitely many conserved currents labeled by integer +7Tr P{i(E/*E—E%E)},
such thataJ +3Jg=0;
Ji=—oDy=ED}, 19  Si=a(TrP{i[®rDZ—3(DK)%]}), + Tr P{i(EGPE— JESPE
=90 = — (JE+ ad?E— 3aE3) ®f, — «EFD, —4E%9E) —ia(EJ*E+ d°EF°E + 9E9°E — 8ESH’E
—(E— adB)[T,0d%]. (20 +25°EE®+ E29EJE — JEEIEE+ JEE?GE
In order to derive the local currents explicitly, we solve the —5EJEEJE+4E°E)}. (26)

recurrence relations in Eq&l4)—(17) with the initial condi-

tions as in Eq.(18). The first few conserved currents are The derivations show that the nonlocal terms appear as total
listed below: derivative terms thus they are conserved separately. Drop-
1 - ping the nonlocal terms and integrating over the time coor-

Jk=—IEE, dinate, we obtain an infinite number of global charges which

- ) ) - - - (21) are conserved in space, i.gQ”=0 where
Jx=—Ii[E,0E]+ia([9°E,E]+ JEJE—3EE)

= +oo
forn=1 and =" as. @)
R=—igbidL+iEJE, -

2=+ig0idL—i(E?E+IEIE—EE)—ia(EIE For the case o66/K=SU(N+1)/U(N) as mentioned in Eq.
(6), we work out explicitly and obtain the conserved charges
+[0°E,dE]+ JEE3— 2E9EE?— E?9EE—4E%0E), for the Hirota case
(22)
=—i(0PLDi+ DD —i 9D DLDE) N
+i(E4E—E%E), Qﬁ=f_ dtkzl Wi e (29
B ab1ldmh2 L w28 oI dmlsnly o 3 2
Jg=i(dP P+ DDy —i10P P Py)+iI(EI’E—JEIE
k=HIPRPi KK KPiPi) Il forn=1 and
+ JEE®— 2EJEE2— E29EE— 2E3JE) —i a(EJ*E
N
2F 2F | 2 E83F _EE32F _E22FF_ 2E 2 +ee .
+9°Ed°E+ JEJI°E—5S5E°9E—E“9“EE—3EJ“EE Qa:J: dtg [ A= Wt ), (29)

+ 9?EE3— 20EJEE?— JEEJEE— 29EE29E

—3EJEJEE—5EJEEJE —3E20EIE+4E°E) (23 4o [N N 2
_ Q= f dt[ > awﬁawk—( > Ui wk) } (30
for n=2 andn=3, respectively. Note that curreni§ and - k=1 k=1
Jg for n=2 contain nonlocal term&y' with m<n. Fortu-
nately, these nonlocal terms can be separated from the cofor n=2 andn= 3, respectively. Conserved charges for other
servation law if we consider a scalar expression of the coneases of integrable CHONSE can be similarly obtained from
served current by taking an appropriate trace as follows: the specification oE and T as classified if16].
As noted in Eq.(3), the types of charge®, and Q5 are
Sk=Tr(PJ}), Sk=Tr(PJ). (24 not conserved in the Sasa-Satsuma case. Nevertheless, the
Sasa-Satsuma equation equivalently possesses infinitely
The parameteP is any matrix entity which commutes with many conserved charges of different types as well. These
matrices®y’, or we may choos®=c|+c,T for arbitrary  seemingly contradicting characteristics can be explained by
constant; andc,. For instance, we have for=2,3 the fact that the Sasa-Satsuma equation arises from the dis-
creteZ, reduction of the S(B)/U(2) CHONSE combined
with a point transformatioh16]. In this case, matricels and

, .
= +Tr P(iEJE), T can be denoted as

i
J|Tr P(E@W
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=1, one can readily confirm that the currér}@: 39y* i

i
> 0 0 —6(* )%= i(y* ap— ay* ) is conserved only ify,+ ys
0 /A ] =3 and 3y,+2ys=12. Solving the equations results i
E=| —¢* 0 O = 0 - I 0 = —2y5=6 that definitely leads to the Sasa-Satsuma case, to
’ 2 ) be compared with Eq(3) for the Hirota case. Finally, we
—¢ 0 0 i point out that the present formalism can be extended to other
0O 0 - 3 physically interesting cases, such as to the case where the

self-steepening effect is dominant, or to the case of dark
solitons which requires an appropriate renormalization of the

Since the charg®" in Eq. (27) is invariant under the point Cconserved chargd@7]. , .
transformation, we can also calculate the first few conserved 10 Summarize, using the properties of Hermitian symmet-
charges of the Sasa-Satsuma equation using the expressi{fgsusrﬁsgii‘é"ﬁer%‘;g;?%?{#}‘;fgg?&(‘)—ga; 23‘&;&??&%? a
i:rgalzs;[sztirggir:qlljr;tlizgﬁ(grlg The resulting charges of rjved general expressions of an infinite number of conserva-
tion laws. Remarkably, the conserved currents and charges
for both the Hirota and the Sasa-Satsuma equations are cal-
1 +°°d " culated from the general expressions, accompanying the re-
Qs= . W, duction procedure. We have shown that, except for the Hi-
rota case, the current conservations of the nonlinear
5 Schralinger equation are in general broken by the higher-
Qs=0, (32 order effects. The types of conserved currents and charges
for the Sasa-Satsuma case are different from the types for the
. Hirota case except for the energy conserved irrespective of
Q%zf dt[39¢™ dp—6(p* )?—i(* dp— ag* ) ]. all the higher-order effects. These differences may leave
- scope for more physical explanations and applications in the
further study of higher-order effects including numerical
analysis.

(31

If the charges in Eq(32) are compared with those of the
Hirota type in Eq.(2) [or equivalently Eqs(28)—(30) for
N=1], we note that the charge for=1, which corresponds J. K. is supported by the Ministry of Information and
to energy, is the same but other charges are of differenCommunication of Korea. Q. H. P. and H. J. S. are supported
types. Remarkably, in E432) the charge fon=2 turns out in part by the program of Basic Science Research, Ministry
to be trivial while the charge fon=3 is a new type that is of Education under Grant No. BSRI-97-2442, and by the
seemingly a combination of charges for=2,3 in Eq.(2). Korea Science and Engineering Foundation under Grant
From Eq. (1) with normalized coefficientsy;= y,/2=y, Nos. CTP/SNU and 97-07-02-02-01-3.
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