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Three-wave gap solitons in waveguides with quadratic nonlinearity
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A model of the second-harmonic-generating (x (2)) optical medium with a Bragg grating is considered. Two
components of the fundamental harmonic~FH! are assumed to be resonantly coupled through the Bragg
reflection, while the second harmonic~SH! propagates parallel to the grating, hence its dispersion~diffraction!
must be explicitly taken into consideration. It is demonstrated that the system can easily generate stable
three-wave gap solitons of two different types~free-tail and tail-locked ones! that are identified analytically
according to the structure of their tails. The stationary fundamental solitons are sought for analytically, by
means of the variational approximation, and numerically. The results produced by the two approaches are in
fairly reasonable agreement. The existence boundaries of the soliton are found in an exact form. The stability
of the solitons is determined by direct partial differential equation simulations. A threshold value of an
effective FH-SH mismatch parameter is found, the soliton being stable above the threshold and unstable below
it. The stability threshold strongly depends on the soliton’s wave-number shiftk and very weakly on the SH
diffraction coefficient. Stationary two-soliton bound states are found, too, and it is demonstrated numerically
that they are stable if the mismatch exceeds another threshold, which is close to that for the fundamental
soliton. At k,0, the stability thresholds do not exist, asall the fundamental and two-solitons are stable. With
the increase of the mismatch, the two-solitons disappear, developing a singularity at another, very high,
threshold. The existence of the stable two-solitons is a drastic difference of the present model from the earlier
investigatedx (2) systems. It is argued that both the fundamental solitons and two-solitons can be experimen-
tally observed in currently available optical materials with the quadratic nonlinearity.
@S1063-651X~98!09811-0#
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I. INTRODUCTION

The idea of using the large nonlinear phase shift gen
ated by cascaded quadratic effects in the second-harmo
generation~SHG! systems to balance dispersion or diffra
tion so as to produce localized solitary waves~or simply
solitons, in a mathematically nonrigorous sense! was pro-
posed long ago@1# A soliton due to a nonlinear parametr
interaction of a more general type, viz., the three-wave re
nant interaction~3WRI!, is also possible in the presence
the quadratic nonlinearity. It differs from the simplest tw
wave interaction in that there are two physically differe
fundamental-harmonic~FH! components, corresponding t
different polarizations. The two orthogonally polarized F
waves generate a single second-harmonic~SH! field through
the so-called type-II phase matching@2#, the SH field being
down-converted to both components of the FH field. In si
ations where the dispersion and diffraction can be neglec
a number of investigations have been carried out on
topic @3#. Note that the 3WRI model with group-velocit
differences between the waves butwithoutdiffraction or dis-
persion is exactly integrable by means of the inverse sca
ing transform@4# ~moreover, this model is integrable, too,
the multidimensional case!.
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Theoretical studies of the 3WRI in the presence of
diffraction or dispersion have commenced recently@5–7#. In
@6# particular exact soliton solutions were found; in@7# a
general two-parameter family of solitons was constructed
means of both the variational approximation~VA ! and direct
numerical methods and domains of stable and unstable
tons were identified. Further results concerning the stab
of the solitons supported by the 3WRI can be found in@8,9#.
In @9# it was pointed out that the 3WRI may give rise to
multistability of the soliton solutions in a limited range o
parameters.

In the present work the aim is to study three-wavegap
solitons in x (2) media equipped with a resonant gratin
which gives rise to a strong effective dispersion or diffra
tion ~the grating is resonant if its spacing is commensura
with the wavelength, leading to the resonant Bragg reflect
of light!. This advantage offered by the grating is very im
portant because, having a strong dispersion/diffraction, i
much easier to achieve the FH-SH phase matching, whic
the fundamental condition necessary for the use of thex (2)

nonlinearity. Theoretical results for the four-wave gap so
tons in the temporal domain, supported by SHG in combi
tion with the Bragg gratings, can be found in@10#. In the
present work we consider a waveguiding structure that c
ries the grating in the form of a system of parallel sco
along the propagation directionZ, which will give rise to
three-wavespatial solitons: The grating will couple two FH
wavesE1,2 to each other through the resonant Bragg scat
ing and to the SH waveE3 through the nonlinearity. The two
6708 © 1998 The American Physical Society
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FH waves are chosen so that their carrier wave vectors h
equal lengths, making opposite angles with theZ axis ~i.e.,
with the scores that form the grating!, while the SH wave
vector is parallel toZ ~Fig. 1!. The mathematical model o
this system includes transverse-walkoff terms in the eq
tions for the two FH components, whose effect is definit
much stronger than that of the intrinsic diffraction. That
why the diffraction terms may be dropped in the FH equ
tions @7#. However, the diffraction must be kept in the S
equation~along with the phase-mismatch term!, as this har-
monic does not interact with the grating parallel to its wa
vector.

A similar model was a starting point in the work@11#, but
a crucial difference is that a very large phase mismatch
tween the SH and FHs was assumed to allow one to el
nate the SH component, transforming the system into
massive Thirring model~MTM ! @12#, which is exactly inte-
grable by means of the inverse scattering transform@13# @an
optical fiber with the Bragg grating andcubic ~Kerr! nonlin-
earity is described by a well-known nonintegrable gener
zation of the MTM @14##. Since all the soliton solutions o
the integrable MTM are stable, the solitons considered
@11# are also always stable. In the present work we do
assume that the phase mismatch is especially large and
the SH component in the model explicitly. Obviously, t
case of a smaller mismatch is more physically interesti
We will demonstrate that stable three-wave soliton soluti
do exist at a large mismatch and they continue to exist as
phase mismatch is decreased. However, we find athreshold
value of the mismatch, below which the soliton solution
lose their stability~though they do not disappear!. An insta-
bility threshold in terms of the mismatch parameter is a
known for the usualx (2) solitons@7,8,15#; however, the prin-
cipal difference is that the usual solitons arestable in the
fully matched case, while our solitons may be both sta
and unstable in this case, depending on other parameters~the
wave-number shift and an effective SH diffraction para
eter!, i.e., the location of the instability threshold is differe
in the present model. We also investigated the effect
changing the SH diffraction~dispersion! coefficient, finding
that it has less effect on the threshold than the wave num
shift and the wave-vector mismatch.

Finally, we will consider two-soliton bound-state sol
tions ~or simply two-solitons!, finding that they have thei
own stability threshold~which is higher than but close to th
one for the fundamental solitons!. The fact that two-solitons

FIG. 1. Configuration of the wave vectorsk1 , k2 , andk3 of the
two components of the fundamental harmonic and of the sec
harmonic. The scores that form the spatial grating are parallel to
z axis.
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in our model can be stable is quite nontrivial as, in the us
x (2) models, all the higher-order solitons are subject to
instability @16,17#.

The rest of the paper is organized as follows. In Sec.
detailed formulation of the model is given. In Sec. III w
consider the linearized version of the model, with the aim
investigate a possible structure of the soliton’s tails. Thou
the analysis of the linearized system is very simple, it yie
fairly useful information about a parametric region in whic
the solitons may exist and allows us to identify two differe
possible types of the solitons, which we callfree-tail and
tail-lockedsolitons. Actually, the tails of the solitons of th
latter type cannot be described by the fully linearized syste
instead, the relevant system issemilinear, in which only the
FH equation is linearized. In Sec. IV we briefly descri
analytical and numerical techniques to be used for the st
of both the stationary shape of the solitons and their stab
in the full nonlinear system. The analytical approach is ba
on the VA, its peculiarity being that one should devise
tractable ansatz for the complex FH soliton’s component
Sec. V the results concerning the existence and stability
the fundamental solitons are displayed and in Sec. VI sim
results are displayed for the two-solitons. The results
tained in the work are summarized in Sec. VII.

II. MODEL

We consider the resonant nonlinear interaction of two
waves with identical frequenciesv and Z components of
their carrier wave vectorsk1 and k2 . The x (2) nonlinearity
generates the third wave with wave numberk3 at the fre-
quency 2v. The case of interest isDk!k3 , whereDk[k1
1k22k3 is the wave-vector mismatch. We assume that
FH wave vectors make small angles6r with theZ direction
and have the same length, so thatk15k2[k; see Fig. 1.
Assuming the amplitudesE1 , E2 , andE3 of the interacting
harmonics to be slowly varying in comparison to the carr
waves and employing known asymptotic techniques@18#,
one can derive the following system of the amplitude eq
tions:

2ik
]E1

]Z
12ikr

]E1

]X
1lE21xE3E2* e2 iDkZ50,

2ik
]E2

]Z
22ikr

]E2

]X
1lE11xE3E1* e2 iDkZ50, ~1!

2ik3

]E3

]Z
1

]2E3

]X2
1x̃E1E2eiDkZ50,

where x[(4pv2/kc2)x (2)(v;2v,2v) and x̃
[(8pv2/k3c2)x (2)(2v;v,v), l being the coupling con-
stant induced by the Bragg scattering. We can then res

Eq. ~1! by setting E1[lv1 /Axx̃, E2[lv2 /Axx̃, E3
[(l/x)v3exp(iDkZ), Z[2kz/l, and X[2rkx/l. Addition-
ally, using the fact thatk3 /k'2 and defining the effective
mismatch q[4kDk/l and the diffraction parameterD
[l/4r2k2, we arrive at the system in the normalized form

d
e
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i
]v1

]z
1 i

]v1

]x
1v21v3v2* 50,

i
]v2

]z
2 i

]v2

]x
1v11v3v1* 50, ~2!

2i
]v3

]z
2qv31D

]2v3

]x2
1v1v250.

Using obvious symmetry properties of the system~2!, we
can confine ourselves to the caseD.0 without the loss of
generality.

We are interested in stationary solutions to Eqs.~2!, in the
form v15eikzu1(x), v25eikzu2(x), and v35e2ikzu3(x),
wherek is a common wave-number shift of the harmonic
Thus we obtain from Eqs.~2! a system

2ku11 iu181u21u3u2* 50,

2ku22 iu281u11u3u1* 50, ~3!

2~4k1q!u31Du391u1u250,

the prime standing ford/dx. We can impose a natural redu
tion u152u2* [u on the amplitudesu1 and u2 , which is
compatible with Eqs.~2!. Substituting this into Eqs.~3!, we
finally obtain the equations for the complex functionu(x)
and realu3(x),

2ku1 iu82u3u2u* 50, ~4a!

2~4k1q!u31Du392uuu250. ~4b!

This is the simplest version of the model to produce
three-wave solitons in thex (2) media.

III. LINEARIZED AND SEMILINEARIZED SYSTEMS

First of all, it is useful to analyze the linearized version
the system~4!. Obviously, the linearized equations get d
coupled. Looking for a solution to them in the form

u;exp~2muxu!, u3;exp~2m3uxu!, ~5!

corresponding to an exponentially decaying tail of the s
ton, it is straightforward to find

m2512k2, m3
25D21~4k1q!. ~6!

A necessary condition for the existence of the soliton ism2

.0, i.e., according to Eq.~6!, uku,1. This restriction on the
allowed values of the propagation constant implies that
are dealing withgap solitons, which is typical for all the
model involving the Bragg scattering@14#. Another neces-
sary condition 4k1q.0 is imposed by demandingm3

2.0
~recall that we set, by definition,D.0). However, the ex-
pression~6! for m3

2 makes sense only ifm3<2m or, in an
explicit form,

q<q0~k![4D~12k2!24k; ~7!
.

e

f

-

e

otherwise the quadratic term in Eq.~4b! is dominating over
the linear ones atuxu→`.

Thus we arrive at the conclusion that thex2 solitons may
be of two different types, within the framework of the sam
model. In the region~7!, supplemented by the necessary co
dition uku,1, the tails of both the FH and SH components
the soliton are governed by the decoupled linearized eq
tions and have the form given by Eqs.~5! and ~6!, in which
case the solitons can be naturally calledfree-tail ones. How-
ever, in the opposite case, the equation for the SH com
nent@Eq. ~4b!# cannotbe linearized, hence the soliton’s tai
are determined, in this case, by asemilinearsystem

2ku1 iu82u* 50, 2~4k1q!u31Du395uuu2. ~8!

A general solution to Eqs.~8! describing the soliton’s tails is
obvious@cf. Eqs.~5! and ~6!#: If k,0,

u5A expS i

2
sin21~A12k2! D exp~2A12k2uxu!, ~9!

u35A2@4D~12k2!2~4k1q!#21exp~22A12k2uxu!,
~10!

A being an arbitrary real constant and, in the casek.0,u
→ iu* . Of course, the solution~9! for the FH tail is exactly
the same as in the case of the free-tail soliton; however,
solution~10! for the SH tail is very different, being locked t
the FH tail, so that the solitons of this type may be calledtail
locked. Note that the boundary between the free-tail and t
locked solitonsq5q0(k) @see Eq.~7!# may also be defined
as the point of theexact matchingbetween FH and SH, fol-
lowing the analogy with the usualx (2) models.

IV. ANALYTICAL AND NUMERICAL TECHNIQUES FOR
THE ANALYSIS OF THE NONLINEAR SYSTEM

To find soliton solutions to the full nonlinear equation
~4!, analytical and numerical methods were employed.
analytical one is based on the VA and then the numer
finite-difference method uses the approximate solutions
nished by the VA as the first guess. Such a two-step
proach has proved to be very efficient in a number of ot
problems, e.g., searching for solitons in the model of tunn
coupled parallelx (2) waveguides@19#. However, there is a
different technical feature in the present problem: Thus
the VA was usually applied to find real solutions, while he
we are seeking essentiallycomplexones~an exception is the
work in @20#, in which the VA was elaborated for solitons i
the generalized MTM introduced in@14# to describe an op-
tical fiber with the Bragg grating and cubic nonlinearity!.
This difference is not simply formal: The necessity to a
commodate a complex wave form makes a correspond
ansatz~the trial soliton’s form! much more involved and in
many cases a straightforward extension of the usual
leads to messy equations of no practical value. Howe
below we will develop an analytical approximation that w
produce very reasonable results for the present model.

To apply the VA we need the Lagrangian for Eqs.~4!,
L5*2`

1`L dx, with the density



t (

PRE 58 6711THREE-WAVE GAP SOLITONS IN WAVEGUIDES WITH . . .
FIG. 2. Typical example of the comparison between the numerical~solid curves! and variational~dashed curves! fundamental-soliton
solutions for the real (ur) and imaginary (ui) parts of the fundamental-harmonic component and the real second-harmonic componenu3).
The values of the parameters arek50.3,D50.5, andq560.
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1

2
~q14k!u3

21
i

2
@u8u* 2~u* !8u#

2
1

2
D~u38!22uuu2u32

1

2
@u21~u* !2#. ~11!

Then we adopt the following complex ansatz for the so
tions sought:

u5A sech~mx!1 iB sinh~mx!sech2~mx!,
~12!

u35A3sech~mx!,

where the soliton’s amplitudesA, A3 , andB and the inverse
width m are free parameters to be found by means of the V
Insertion of Eqs.~12! into Eq. ~11! and integration generat
an effective Lagrangian L. We then follow the variationa
formalism to derive the VA equations]L/]A50,]L/]B
50,]L/]A350, and ]L/]m50. The resulting algebraic
equations are

4m21~11k!A1
4

3
B1pm21AA350,

4

3
m21~12k!B2

4

3
A2

p

4
m21A3B50,

2m21~q24k!A32
2

3
DmA32

p

8
m21B22

p

2
m21A250,

~13!
-

.

2m22F22~11k!A21
2

3
~12k!B21~q24k!A3

2

2
p

2
A2A32

p

8
A3B2G2

1

3
DA3

250.

This set of algebraic equations was solved numerica
Other details of the procedure are straightforward. After th
the stationary-soliton solutions to Eqs.~4! were obtained by
means of a direct finite-difference numerical scheme@21#.
The results produced by these methods are displayed
commented upon below.

V. STATIONARY FUNDAMENTAL-SOLITON
SOLUTIONS: EXISTENCE AND STABILITY

A comparison of the stationary fundamental-soliton so
tions obtained, in a typical case, by means of the analyt
and numerical methods is presented in Fig. 2~a relatively
large value of the normalized mismatch,q560, is selected
for this figure; however, this corresponds to a point ju
within the region of stable fundamental solitons; see Fig
below!. It is seen that the agreement is acceptable, espec
in view of the fairly simple form of the ansatz~12!.

In Fig. 3 we present a numerically obtainedfamily of the
fundamental-soliton solutions to Eqs.~4!, in the form of
three-dimensional plots showing the dependence of the b
characteristics of the fundamental soliton, viz., the amp
tudes of its two componentsu and u3 and width of theu
component vs the mismatchq and wave-number shiftk, the
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FIG. 3. Family of fundamental-soliton solutions:~a! The FH (u) amplitude,~b! the SH (u3) amplitude, and~c! the FH width are plotted
vs the wave-number shiftk and phase mismatchq, while the SH diffraction parameter is fixed atD50.5. The plot for the SH width is
similar to ~c!. The line consisting of crosses shows the existence boundary 4k1q50 for the tail-free solitons.
.
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e
de
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se,

FH
e at

sing
diffraction coefficientD being fixed at a realistic value 0.5
The width of theu3 component is not displayed, as it turn
out to be quite close to~more accurately, slightly smalle
than! the u component’s width@note that the ansatz~12!
adopted above as the basis of the VA assumed both com
nents to have identically equal widths#. Here the standard
definition of the full width at half maximum is applied to th
absolute values of the complex fields and the amplitu
refer to their peak values. A general trend seen in these p
o-

s
ts

is that the amplitudes of the soliton’s components increa
whereas their widths decrease, with the increase ofq andk.
Another clearly seen and quite natural feature is that the
and SH amplitudes are on the same order of magnitud
small values of the mismatchq, while at largeq the FH
amplitude is much larger. In Figs. 3~a! and 3~b! we also
indicate the soliton existence limit as implied by Eq.~6!, i.e.,
4k1q.0 ~shown by the crosses on the base plane!. It can be
seen that the trend of decreasing amplitudes and increa
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FIG. 3 ~Continued!.
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widths accelerates rapidly as this soliton existence limi
approached. A similar trend is observed as another existe
limit k521 is approached, although no curves beyondk
520.5 were drawn because in this region the numer
scheme converges too slowly, which makes it difficult
accumulate enough data for drawing the continuous cur
However, anoppositetrend is seen as yet another solito
existence limit k51 is approached: The amplitudes a
widths keep on increasing and decreasing, respectiv
which is quite surprising because from Eq.~6! one would
expect that the width should diverge at both limitsk561.
This unexpected trend does not reverse up to the valuk
50.99. At k51, the amplitude remains finite; however, th
soliton becomes delocalized with a small finite-amplitude
oscillatory tail.~Such delocalized soliton solutions were pr
viously discussed in detail in@22#.! This in turn is in accord
with Eq. ~6!, which can also be alternatively interpreted
that the exponentially decaying soliton tail is changed t
nonvanishing oscillatory cw. No solutions can be nume
cally found fork.1. However, since a delocalized soliton
not really a soliton and also, as it is shown below, in t
same limit the solitons become strongly unstable, the inv
tigation was not carried out further beyondk.1. It is rel-
evant to stress that the parametric domain in which the th
wave gap solitons may exist in the present model appea
be completely filled by the soliton solutions. This is a dras
difference from the four-wave model of thex (2) gap solitons
@7#, in which large ‘‘voids’’ were found inside the formally
available existence domain.

Proceeding to the stability of the fundamental solito
one sees that it would be really difficult to investigate
analytically ~in particular, the VA is much less convenie
for this than to search for the shape of stationary soliton!.
Therefore, the stability was tested by direct simulations
Eqs. ~2!, using the beam propagation method~BPM!. The
stationary shape of the solitons produced by the fin
s
ce

l

s.

ly,

a
-

s-

e-
to

c

,

f

-

difference numerical solution was used as the initial confi
ration for the BPM simulations, with an additional perturb
tion generated by increasing the amplitude of the wa
components by 1%. In most cases, the simulations were
over the propagation distancez52p @in the notation of Eqs.
~2!#, which was quite sufficient to discern between the sta
and unstable solitons; however, in some cases, the sim
tions were run twice as long for stable solitons in order
further check the stability. No change has been observe
the longer simulations as compared to those withz52p.

It has been found that when the mismatchq is large
enough, the solitons are stable~in agreement with the result
reported in@11#!. The solitons existing atk.0 become un-
stable asq decreases past athreshold value qthr

(F) @which de-
pends on the wave-number shiftk and slightly on the diffrac-
tion coefficientD ~see below!; the superscriptF refers to the
fundamental solitons, as another stability threshold for tw
solitons will be found below#. For smaller positive values o
k, qthr

(F) is smaller too and fork,0 the threshold does no
exist: In this case,all the solitons turn out to be stable i
the simulations~see more details below!. On the other hand
when k gets close to its limit value 1~see above!, qthr

(F) be-
comes very large~i.e., the stability is lost in the limitk→1
when the soliton demonstrates the unexpected behavior
scribed above!. The simulations also demonstrate that t
instability of the solitons withq slightly belowqthr

(F) evolves
by developing an asymmetry between the two FH com
nents: For instance,u1 grows while u2 diminishes or vice
versa. Thus the instability breaks the reduction that le
from Eqs.~3! to Eqs.~4!. The asymmetry is enhanced as t
waves propagate. For still smaller values ofq, the soliton
breaks up or develops large distortion very rapidly.

In Fig. 4 we summarize the results found numerically f
the stability of the fundamental solitons in the form of the
stability and instability domains on the (k,q) ~with k.0)
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FIG. 4. Numerically found stability domains for the fundamental solitons:~a! on the (q,k) plane atD50.5 and~b! on the (q,D) plane
at k50.1.
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and (D,q) parametric planes~the presentation of these re
sults in the form of one three-dimensional plot is undesira
because it does not seem clear!. Evidently, the borders be
tween the domains simultaneously display the depende
qthr

(F)(k) and qthr
(F)(D), respectively, With regard to the gre

difference in the vertical scales between Figs. 4~a! and 4~b!,
it can be inferred that the diffraction parameterD, unlike the
wave-number shiftk, has a little effect onqthr

(F) .
Additional information is given by Fig. 5, where we hav

redrawn the stability and instability domains~the boundary
between them is labeled as the ‘‘stability’’ curve consisti
of circles! on the (k,q) parametric plane with a differen
scale, so that the soliton existence limit 4k1q50 ~shown by
crosses and labeled as the ‘‘existence’’ curve! and the
boundaryq5q0(k) @see Eq.~7!# between the free-tail and
tail-locked solitons~the solid line labeled ‘‘tail’’! can all be
plotted too,k,0 being also included. The other two-solito
existence limitsk561 form the left and right boundaries o
the figure. In this figureD is fixed at 0.5. Solitons exis
above the existence boundary are stable to the left of
stability boundary and are of the tail-locked type above
tail boundary. Note that the free-tail solitons exist only in
narrow stripe. It can be deduced from Eq.~7! that, asD
decreases, the curvature of the tail curve reduces~but with
the end points atk561 fixed! and thus the free-tail soliton
existence region will further shrink, tending to nothing
D→0.

The stability and existence curves intersect in Fig. 5
(k,q)5(0.08,20.3); thusall the solitons atk,0 arestable,
which was verified in many runs of the numerical simu
tions. It is also noteworthy that, at the negative mismatcq
,0 there is only a tiny stability domain, atk very close to 0.
e

es

e
e

t

-

It is interesting that not all the solitons with the exact
matched harmonics~corresponding to the tail curve! are
stable. This situation is drastically different from that know
for the usualx (2) solitons, which are always stable at th
exact-match point@7,8,15#. Also, in the usualx (2) models,
all the tail-locked solitons~corresponding to positive mis
match! and a part of the free-tail ones~that correspond to
negative mismatch! are simultaneously stable. This is diffe
ent from what is depicted here: Only part of both the ta
locked and the free-tail solitons are stable.

VI. TWO-SOLITON STATES

The parametric space of Eqs.~4! was numerically scanned
to search for other possible stationary solutions and a fam
of two-soliton bound states was found. A shape of a typi
two-soliton solution is shown in Fig. 6. To describe th
whole family of the two-soliton solutions, in Fig. 7 we plo
the FH and SH amplitudes, together with the SH width of t
individual bound pulses, vsq and D, fixing k50.1. Note
that the two individual pulses in the bound state always h
equal peak values.

It can be seen that the basic features of the two-sol
solutions are similar to those of the fundamental-solit
ones. The amplitudes of the FH and the SH compone
increase while the widths decrease, with the increase oq.
The effect of changingD is much smaller. As can be ex
pected, the SH amplitude and width decrease and incre
accordingly, with the increase ofD, while the FH amplitude
and width are only slightly affected by changingD. The
soliton existence limit 4k1q50 is also included in Figs.
7~a! and 7~b!, showing the trend of the solitons to disappe
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FIG. 5. Numerically determined domains of existence, stability, and tail type for the fundamental solitons on the (q,k) plane atD
50.5.

FIG. 6. Typical shape of a numerically found two-soliton atk50.1, D50.5, andq51. The solid and dotted curves are the real a
imaginary parts of the FH fieldu and the dot-dashed curve is the real SH fieldu3 .
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FIG. 7. Family of the two-soliton solutions:~a! the amplitude of the FH (u) field, ~b! the amplitude of the SH (u3) field, and~c! the SH
width of the individual bound pulse inside the two-soliton plotted vs the phase mismatchq and the SH diffraction parameterD at a fixed
wave-number shiftk50.1. The inset in~a! shows an extended plot of the FH amplitude vsq at D51. The line consisting of crosses show
the existence boundary 4k1q50 for the free-tail solitons.
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by getting infinitely broad and having vanishing amplitud
in this limit. The curves were not traced up to the limit b
cause of the slow convergence of the numerical sche
however, there is no doubt that this trend persists.

In the limit q→`, when the SH field can be eliminated
cast the model into the MTM form@11#, the two-solitonsdo
not exist because MTM does not have such solutions. T
e;

is

inspires one to search for the two-solitons existence limit
large q and the way they disappear when approaching
limit. In the inset of Fig. 7~a! we show the dependence of th
FH amplitudes vsq for k50.1 andD51, with q extended to
larger values. It can be seen that the amplitude keeps
increasing and the increase accelerates when atq;20. The
widths of the waves~not plotted here! are decreasing accord
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FIG. 7 ~Continued!.
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ingly. Thus the trend for the two-solitons is to become tal
and narrower asq increases. Atq.20, the numerical
scheme has failed because of an instability caused in it by
large change of the derivatives at the sharp peaks of
pulse. Although an exact existence limit of the two-solito
was not reached at largeq, we conjecture that they disappe
through a collapselike mechanism, similarly to what is w
known in the multidimensionalx (3) models.

A specific characteristic of the two-soliton is the depe
dence of the separationS between the individual bound
pulses on the model’s parameters. The simulations dem
strate that the separation is nearly immune to the change
the parameters over most of the range considered, excep
S slightly decreases with increasingq and increases at thos
existence limitsk521 and 4k1q50 where the fundamen
tal solitons broaden indefinitely. It seems that, near th
limits, the individual pulses repel each other more stron
as they spread out. A separate plot of the dependenceS vs D
is shown in Fig. 8 forq510 andk50.1. It demonstrates a
interesting feature that, beyondD'1.1, the separation of th
pulses rapidly increases withD. This probably indicates a
two-solitons existence limit at largeD.

The effect of the wave-number shiftk on the characteris
tics of the bound-state solutions was also investigated. W
out displaying detailed results, it is sufficient to note t
characteristics of the two-solitons vary withk similarly to
those of the fundamental solitons~see Fig. 3!: With increas-
ing k, the amplitudes increase and the widths decrease
the existence limitsk521 and 4k1q50 are approached
the solitons broaden and amplitudes vanish.

The stability of the two-solitons is a crucially importa
issue, as similar bound states are also known in the u
~two-wave! x (2) model, but they arealways unstable@16#.
On the other hand, a numerically stable object similar t
r

he
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s
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-
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hat
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a

two-soliton was found in simulations of the four-wavex (2)

gap-soliton model combining SHG and the Bragg scatteri
but completely ignoring the diffraction~dispersion! @7#. We
have performed systematic BPM simulations of perturb
two-solitons in order to test their stability in the prese
model~it is virtually impossible to study the stability analyt
cally, first of all, because the stationary two-soliton is n
known in an analytical form!. As in the case of the funda
mental solitons, the initial perturbation added to the stati
ary two-solitons was generated by an increase of the am
tudes of the two constituent pulses by 1% and
simulations were then typically run over the propagation d
tance ofz52p, which was sufficient to conclude if the two
soliton was stable or not. In many cases when the tw
solitons seemed stable, the runs were made twice as lon
order to control the accuracy of the results, which, howev
never revealed an additional instability.

The stability was first tested for fixedk50.1, whileq and
D were varied. In addition to the fundamental solitons, t
two-solitons are always found to bestableat a sufficiently
large phase mismatchq, getting destabilized whenq de-
creases past a specific two-soliton threshold valueqthr

(2) . As
an illustration, in Figs. 9~a! and 9~b! we show a typical ex-
ample of the evolution of slightly perturbed stable and u
stable two-solitons, corresponding toq taken, respectively,
above~at q56) and beneath~at q51) the threshold. Only
the FH components are shown in Fig. 9,v1 being displayed
in the regionx,0 and, simultaneously,v2 at x.0. This way
of presenting the numerical results was adopted for con
nience; in reality, of course, both components occupy
same space in the medium. It can be seen that the st
two-solitons in Fig. 9~a! maintains its shape and amplitude
while the two-soliton in Fig. 9~b! clearly develops an insta
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FIG. 8. Separation between the bound pulses inside the two-soliton vs the diffraction parameterD at k50.1 andq510.
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bility, developing an asymmetry betweenv1 and v2 (v2
grows andv1 diminishes!.

The stability thresholdqthr
(2) is found to be higher than tha

for the fundamental solitons, although the two thresholds
actually close. The numerically determined stability dom
for the two-solitons was plotted on the (q,D) plane in Fig.
10. As D increases, the thresholdqthr

(2) decreases, althoug
the effect of changingD is actually very weak~note at the
vertical scale of Fig. 10!. Also, the border between the stab
and unstable domains isobtainedto be practically straight,
within our accuracy. It can be seen thatqthr

(2) decreases to
wards the threshold valueqthr

(F) for the fundamental soliton
@see Fig. 4~b!#, which is quite natural: As it follows from Fig
8, the two pulses in the two-soliton state separate asD in-
creases, hence the two-soliton stability essentially amo
to the stability of the individual pulses, although the reas
why qthr

(2) decreases with increasingD, in the range of small
D, where the separation between the two individual pulse
quite insensitive toD, is unknown.

For values ofk other than 0.1, the stability was also in
vestigated. Fork.0.1, all the two-solitons were found to b
unstable, while fork,0, they all are stable, so that a
stability-threshold curve on the (q,k) plane, similar to that
drawn in Fig. 4~a! for the fundamental solitons, cannot, as
matter of fact, be obtained for the two-solitons. However
dependence of the two-solitons stability threshold on
wave-number shiftk can be understood by the followin
argument. Fork50.1, it has been found that the thresho
qthr

(2) is close to but a bit larger than the thresholdqthr
(F) for the

fundamental soliton. Fork50.3, the results borrowed from
Sec. V yieldqthr

(F)557. If extrapolation from thek50.1 case
is approximately correct,qthr

(2) should be.60 for k50.3.
Then, of course, no stable two-solitons can be found fok
re
n

ts
n

is

a
e

.0.1 since the numerical scheme fails to find any station
two-solution forq.20, as mentioned above in the discu
sion related to the inset in Fig. 7~a!. Furthermore, if the two
thresholdsqthr

(2) andqthr
(F) are always close, Fig. 5 can be a

plied, approximately, to the two-solitons too. Recall that F
5 tells us that all the solitons are stable atk,0, which ex-
actly complies with the numerical finding that all the tw
solitons are also stable ifk,0.

The last issue to be addressed is the asymmetry betw
the two FH components, which spontaneously develops
the solitons propagate. Although it cannot be seen in F
9~a!, all the stable solitons,both fundamental and two-
solitons, are found to acquire a nonzero, although sm
asymmetry. Because the stability of the two-solitons is a c
cially important issue, more simulation runs with an exce
sively long propagation distancez510p were carried out to
see if the asymmetry will keep growing at the paramet
values inside the stability domain. A typical example of t
evolution of the asymmetry, forD50.5,k50.1, and q
510, is shown in Fig. 11. The asymmetry is quantified
the ratio of the peak values ofv1 andv2 . It can be seen tha
the ratio approaches a constant value, slightly different fr
1, after propagating over a very long distance. A natu
assumption that explains this numerical observation is
the underlying equations~3! have a general family ofasym-
metric stationary fundamental-soliton and two-soliton so
tions, the solution subject to the above symmetry reduct
u152u2* being only a particular one. Then a small pertu
bation breaking the solution’s symmetry~generated, e.g., du
to an inaccuracy of the numerical scheme! is expected to be
neutrally stable, leading to a slightly asymmetric establish
solution.

Furthermore, a survey of the asymmetry over the wh
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FIG. 9. ~a! Evolution of a slightly perturbed two-soliton over a propagation distance of 2p above the instability threshold atk
50.1,D51.2, andq56. (z is in units ofp.! ~b! Same as~a!, except thatq51, i.e.,below the two-soliton instability threshold.
o

s

c
a

soli-
, in
rati-
rit-
da-
ve
par-
parameter plane shows that for the stable solitons in the p
tive k region, the asymmetry is;1%, decreasing ask de-
creases. In the region of negativek ~where the solitons have
the trend to be more robust!, the observed asymmetry i
;0.1% atk520.1 and atk520.5 it drops to;0.01%,
which indicates that the soliton have practically no asymm
try. This is another confirmation of the general inferen
formulated above, according to which the two-solitons
essentially more robust at larger negativek.
si-

e-
e
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VII. CONCLUSION

We have demonstrated the existence of spatial gap
tons, and of their bound states in the form of two-solitons
a system of three waves, resonantly interacting in a quad
cally nonlinear planar waveguide with a Bragg grating w
ten on it. The model includes two components of the fun
mental harmonic, with different orientations of their wa
vectors, and the second harmonic, whose wave vector is
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FIG. 10. Numerically determined stability domains for the two-solitons on the (q,D) plane atk50.1.
th
tio
it

ble
ils

eri-
allel to the grating. Control parameters of the model are
phase mismatch between the harmonics and the diffrac
coefficient of the second harmonic that does not interact w
the grating. The analysis of the linearized andsemilinearized
e
n
h

versions of the model has allowed us to identify two possi
types of solitons, distinguished by the structure of their ta
~free-tail andtail-lockedsolitons!. Then a family of the com-
plex fundamental-soliton solutions was constructed num
FIG. 11. Evolution of the asymmetry ratio of the two-soliton over a very long propagation distance of 10p well above the instability
threshold atD50.5,k50.1, andq510. (z is in units ofp.!
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cally and analytically by means of the variational appro
mation, which demonstrates a fairly reasonable agreem
with the numerical solutions. This is, as a matter of fact,
example~together with the recent work@23#! of successful
application of the variational approximation to the search
complexstationary-soliton solutions, in a model where th
are not available in an exact form. Soliton existence lim
were found in an exact form. Mechanisms by which the fu
damental solitons disappear as these limits are approa
were explored. Unlike the gap solitons in the four-wavex (2)

model @7#, in the present one the solitons completely fill t
domain where they can exist~which implies that they should
be easier to observe in the experiment!.

Two-soliton solutions also exist in a broad paramet
range, with the separation between the bound pulses in
them very weakly depending on the parameters, except f
vicinity of the existence borders. With the increase of t
mismatch parameter, the two-solitons display a trend to
appear via a collapse.

The stability of the fundamental solitons and two-solito
was analyzed by means of direct partial differential equat
simulations. It was found that both types of solitons a
stable or unstable when the mismatch is above or benea
corresponding threshold value, respectively. The thresh
for the fundamental solitons and two-solitons are differ
but close, the latter one being somewhat higher. The thr
olds strongly depend upon the soliton’s wave-number s
k, but are nearly independent of the second-harmonic
fraction coefficient. Atk,0, the thresholds do not exist a
all the fundamental solitons and two-solitons are stable.
or
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pending on the parameters, the fundamental soliton at
point of the exact matching between the fundamental
second harmonics~which is, simultaneously, a boundary b
tween the free-tail and tail-locked solitons! may be both
stable and unstable, in contrast to the usualx (2) models. The
existence ofstabletwo-soliton bound states is a remarkab
feature of the model, which is a drastic difference from t
familiar x (2) systems. Because ax (2) waveguide with the
resonant grating can be easily fabricated, the most impor
physical result of this work is that it suggests straightforwa
ideas for the experimental search for single- and two-hum
three-wave spatial solitons inx (2) optical materials by mean
of the Bragg grating.

The size of the experimental sample necessary for
observation of the solitons is, in any case, no larger than
in which the usualx (2) solitons have been observed, i.e.,
few centimeters@24#, as the effective FH diffraction gener
ated by the grating is stronger than the natural diffraction a
hence the corresponding diffraction length, which determi
the soliton’s size, is smaller than without the grating, wh
the SH diffraction length is the same as in the usual mod
An experimental observation of the solitons in the plan
nonlinear waveguides of presently available sizes, with
grating written on them, appears to be quite possible.
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