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Solitary waves for two and three coupled nonlinear Schro¨dinger equations

F. T. Hioe
Department of Physics, St. John Fisher College, Rochester, New York 14618

~Received 27 March 1998!

We present solitary-wave solutions of two and three coupled nonlinear Schro¨dinger equations when the
waves propagate in the normal and anomalous group-velocity dispersion regions. A wave of the form
sech2 j2

2
3 is found, which, together with two known waves of the forms tanhj sechj and sech2 j, are shown

to form a new generation of complementary waves. The implication of this wave set and its applications to
coupled solitary-wave propagation is discussed.@S1063-651X~98!07411-X#

PACS number~s!: 42.65.Tg, 42.81.Dp, 03.40.Kf
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I. INTRODUCTION

Because of its many useful applications in nonlinear
tics @1#, the problem of two interacting optical waves th
satisfy two coupled nonlinear Schro¨dinger ~NLS! equations
and that are shape-preserving~solitary! has been extensivel
studied for many years. The well-known cases of interact
between two solitary waves are~i! two bright solitary waves
that propagate in the anomalous group-velocity dispers
~GVD! region@2#, ~ii ! one bright solitary wave in the anoma
lous GVD region that interacts with a dark solitary wave
the normal GVD region@3#, ~iii ! one bright solitary wave in
the normal GVD region that interacts with a dark solita
wave in the anomalous GVD region@4#, and ~iv! two dark
solitary waves that propagate in the normal GVD region@5#.
The simplest bright and dark solitary waves have the for
sech(aj) and tanh(aj), respectively, wherea is some con-
stant andj5t2z/v, with t, z, andv denoting the time, dis-
placement, and velocity. A solitary wave pair that consists
a product type of the forms tanh(aj)sech(aj) and sech2(aj)
was given by Tratnik and Sipe@6#, that of the forms
tanh(aj)sechs21(aj) and sechs(aj), wheres is between 1 and
2, was given by Silberberg and Barad@7#, and that where
both waves are asymmetric but which reduce under cer
limits to the forms tanh(a1j)sech(a2j) and sech(a1j) was
given by Christodoulides and Joseph@8#. Solitary waves,
each of which is a superposition of bright and dark solita
waves, were given by the author@9#, and many periodic soli-
tary waves, which are expressed in terms of Jacobian elli
functions or their products, were given by several auth
@9–12#.

Let us denote the simplest forms of dark and bright s
tary waves by

f 1~j!5tanh~aj!

and

f 2~j!5sech~aj!, ~1!

respectively. We refer to Eq.~1! as the first generation o
solitary wave set.

In this paper, we present a number of coupled solit
waves for two and three coupled NLS equations that pro
gate in the normal and in the anomalous GVD regions. F
we present a solitary wave pair for two coupled waves t
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propagate in the normal GVD region. The pair consists o
solitary wave of the form sech2(aj)22

3. Indeed, we shall
show that the set of three solitary waves of the forms

g1~j!5sech2~aj!2 2
3 ,

g2~j!5tanh~aj!sech~aj!,

g3~j!5sech2~aj! ~2!

can be appropriately considered as the second generatio
solitary wave set. This generation consists of the three m
bers of Eq.~2! ~which we shall call red, white, and blu
solitary waves for easy reference, as opposed to dark
bright solitary waves of the first generation!, and we show
that it is one of the simplest sets of ‘‘complementary
solitary-wave solutions, i.e., a solution that consists of th
differentwave forms, for three coupled NLS equations. Su
sets of it appear as solutions for two coupled NLS equatio
the white-blue or (g2 ,g3) combination given by Tratnik and
Sipe @6#, and the red-white or (g1 ,g2) combination that we
present in this paper. The significance of this wave form a
the realization that it is one of the solitary waves for a so
tion of three coupled NLS equations will be further amplifie
in the following sections.

II. N COUPLED NONLINEAR SCHRÖ DINGER
EQUATIONS

When two optical waves of different frequencies coprop
gate in a medium and interact nonlinearly through the m
dium, the propagation equation for slowly varying compl
amplitudefm(z,t) of the mth electric field is@1#

ifmz1 ib1mfmt2
b2m

2
fmtt1

iam

2
fm

1gm~ f mmufmu212 f mm8ufm8u
2!fm50,

m51,2, m8Þm, ~3!

where b1m51/vgm , vgm is the group velocity,b2m is the
group-velocity dispersion~GVD! coefficient,am is the loss
coefficient,gm is the nonlinear coefficient, andf mm8 is the
overlap integral, and where the subscripts inz and t denote
derivatives with respect toz andt as opposed to the subscrip
6700 © 1998 The American Physical Society
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m for different components. The medium is said to exhi
normal dispersion ifb2.0, anomalous dispersion ifb2,0.

If the nonlinear coupling is between two polarizatio
componentsfm(z,t), m51,2, of a wave at some centra
frequency, the propagation equations are

if1z1 ib11f1t2
b2

2
f1tt1

ia

2
f11g@~ uf1u21puf2u2!

3f11qf1* f2
2e22iDbz#50,

~4!

if2z1 ib12f2t2
b2

2
f2tt1

ia

2
f21g@~ uf2u21puf1u2!

3f21qf2* f1
2e2iDbz#50,

whereDb5b112b12 is the wave-vector mismatch due t
for example, the birefringence of the medium through wh
the wave propagates, and the parametersp and q satisfy p
1q51. For a medium such as an optical fiber with a re
tively large birefringence, the wave propagation equatio
can be approximated by

if1z1 ib11f1t2
b2

2
f1tt1

ia

2
f11g~ uf1u21Buf2u2!

3f150,

if2z1 ib12f2t2
b2

2
f2tt1

ia

2
f21g~ uf2u21Buf1u2!

3f250,

whereB can vary between 2/3 and 2, and these equations
similar to Eqs.~3!.

If the two coupled waves or components propagate w
approximately the same group velocityv, theib1mfmt terms
in Eqs. ~3! and ~4! can be eliminated by the transformatio
t→t2z/v, and Eqs.~3! and ~4! become coupled nonlinea
Schrödinger-like equations.

The two sets of equations~3! and ~4! are mathematically
similar, and their generalization toN(.2) coupled waves or
components can be written down. Analytic solutions, mai
in the form of coupled solitary waves, are possible only
some special cases. The analytic solitary waves we s
present in this paper forN52 and 3 are also only applicabl
to some special cases. However, they could provide s
useful guides for studies of two or three nonlinearly coup
waves that propagate under conditions that are not too
ferent from the physical conditions that have been assu
to permit these solitary waves.

Instead of writing down the generalN coupled wave
equations, we begin with the following two equivalent se
Eqs.~5! and~6! below, ofN coupled wave equations, whic
can be seen to reduce, forN52, to Eqs.~3! ~with specific
values for f ’s! and ~4!, respectively. ConsiderN coupled
equations for the slowly varying complex amplitudes
componentsfm(z,t), m51,2,...,N of the electric fields
propagating along thez axis that satisfy the following
coupled nonlinear Schro¨dinger-like equations:
t
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ifmz1fmtt1kmfm1pmS (
j 51

N

uf j u2Dfm1qmS (
j 51

N

f j
2D

3fm* 50, m51,...,N, ~5!

wherep’s andq’s are dimensionless parameters that we
sume satisfy the relationpm1qm5«, «511 or 21. A
closely related set of coupled equations is

icmz1cmtt1pmS (
j 51

N

uc j u2Dcm

1qmS (
j 51

N

c j
2e2ik j zDcm* e22ikmz50, m51,...,N

~6!

which can be transformed into Eq.~5! with the substitutions
cm5fmexp(2ikmz). We first search for the stationary-wav
solution of the form

fm~z,t !5xm~ t !exp~ iVz!, ~7!

whereV is a real constant, andxm(t) are real functions oft
only. Equations~5! reduce to the following, which we cal
the associated dynamical coupled nonlinear Schro¨dinger
equations:

ẍm2Amxm1«S (
j 51

N

xj
2D xm50, m51,...,N, ~8!

where Am5V2km , ẋ denotesdx/dt, and «511 or 21.
Because Eqs.~5! and~6! are invariant under a Galilean tran
formation, traveling waves can be constructed from Eq.~7!
by replacingfm(z,t) by

fm~z,t2z/v !exp@ i ~ t2z/2v !/~2v !#, ~9!

wherev is the velocity of the waves.
The case«511, N51 for Eq. ~5! @or Eq. ~6!# can be

identified with the standard NLS equation for waves th
propagate in the anomalous GVD region and one that g
the bright solitary wave; and the case«521, N51 can be
seen to be equivalent to the standard equation for waves
propagate in the normal GVD region and one that gives
dark solitary wave. ForN.1, it should be noted that Eqs.~5!
have either«511 or «521 for all N equations, i.e., where
all N coupled waves propagate either in the anomalous«
511) GVD region or in the normal («521) GVD region,
not any ‘‘mixed’’ cases where one or more of the equatio
have«511 and21. To eliminate the permutation symme
try, we assume that the equations in~8! have been arrange
according toA1<A2<¯<AN .

III. TWO COUPLED NLS EQUATIONS

We first present nine periodic~or elliptic! solutions in
terms of Jacobian elliptic functions of modulusk for N52,
«511 of Eqs.~8!. Seven of these that do not include tho
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6702 PRE 58F. T. HIOE
with the same wave forms were given earlier@12#, but some
of them were not expressed in the most simplified form
Ref. @12#. We present the complete set below, which
number~I! to ~IX !; note in particular solutions~III ! and ~V!
and solutions~VIII ! and~IX !, which are expressed in simple
forms more suitable for comparisons with our other resu
later. The modulusk of the elliptic functions given below is
in the range 0,k2<1 unless otherwise specified.

Solution ~I!:

x15C1sn~at,k!, x25C2cn~at,k!,

a25~A22A1!/k2, C1
25A21a222a2k2,

C2
25A21a2, A2.A1 .

Solution ~II !:

x15C1k sn~at,k!, x25C2dn~at,k!,

a25A22A1 , C1
25A21a2k222a2,

C2
252A22a2k2, A2.A1 .

Solution ~III !:

x15C1cn~at,k!, x25C2cn~at,k!,

a25A1 /~2k221!, C1
21C2

252a2k2, A15A2 ,

A1.0 for k2.1/2, A1,0 for k2,1/2.

Solution ~IV !:

x15C1~k/k8!cn~at,k!, x25C2~1/k8!dn~at,k!,

a25~A22A1!/k82, C1
252A22a2k212a2,

C2
25A22a2k2, A2.A1 .

Solution ~V!:

x15C1dn~at,k!, x25C2dn~at,k!,

a25A1 /~22k2!, C1
21C2

252a2, A15A2.0.

Solution ~VI !:

x15Ck sn~at,k!cn~at,k!, x25C cn~at,k!dn~at,k!,

a25~A22A1!/3, k25~4A22A1!/@5~A22A1!#,

C252~4A22A1!/5, A2>4A1 .

Solution ~VII !:

x15C sn~at,k!dn~at,k!, x25C cn~at,k!dn~at,k!,

a25~4A22A1!/15, k255~A22A1!/@~4A22A1!#,

C252~4A22A1!/5, A1,A2<4A1 .

Solution ~VIII !:

x15Ck2sn~at,k!cn~at,k!, x25C@ 1
3 G12k2sn2at,k!],
s

a25
1

10
@A 5

3 ~A2
22A1

2!12A223A1#

k25
2A 5

3 ~A2
22A1

2!

A 5
3 ~A2

22A1
2!12A223A1

,

C5
3

5

A 5
3 ~A2

22A1
2!12A223A1

A2~A22A1!
,

1
3 G15F3

2
2

1

2 S 3~A21A1!

5~A22A1! D
1/2G21

,

A2>4A1 .

Solution ~IX !:

x15Ck sn~at,k!dn~at,k!, x25C@ 1
3 G12k2sn2~at,k!#,

a25A 1
15 ~A2

22A1
2!, k25

A 5
3 ~A2

22A1
2!12A223A1

2A 5
3 ~A2

22A1
2!

,

C5A 6
5 ~A11A2!, 1

3 G15
1

2
1

1

2 S 5~A22A1!

3~A21A1! D
1/2

,

8A1/7,A2<4A1 .

It should be noted that whenever the two solitary wav
are of the same form, it necessarily requires that the co
spondingA’s in Eqs. ~8! must be equal. This is one reaso
that the use of different or complementary wave forms
sometimes advantageous or necessary as it permits m
freedom in the choice of parameters compared to the us
the same wave form. These nine solutions reduce to o
three distinct solutions in terms of~1! and ~2! when k251,
and they are given in Table I. Solution~3! of Table I, which
gives the solitary wave pair (g2 ,g3) involving a subset of the
second generation of solitary wave set was first given
Tratnik and Sipe@6#.

Next, we present below five elliptic solutions forN52,
«521, of Eqs.~8!, which we number~i!–~v!. Both A1 and
A2 are assumed to be,0.

TABLE I. Solutions of Eqs.~8! for N52, «511.

~1! ~2! ~3!

x1 C1f 1 C1f 2 C1g2

x2 C2f 2 C2f 2 C2g3

A’s A2.A1.0 A15A2.0 A254A1.0
a2 A22A1 A1 A1

C’s C1
25A1 C1

21C2
252A1 C1

25C2
256A1

C2
252A22A1
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Solution ~i!:

x15C1sn~at,k!, x25C2sn~at,k!,

a252A1 /~11k2!, C1
21C2

252a2k2, A15A2 .

Solution ~ii !:

x15C1sn~at,k!, x25C2cn~at,k!,

a25~A22A1!/k2, C1
252A22a212a2k2,

C2
252A22a2, A2.A1 .

Solution ~iii !:

x15C1k sn~at,k!, x25C2dn~at,k!,

a25A22A1 , C1
252A22a2k212a2,

C2
252A22a2k2, A2.A1 .

Solution ~iv!:

x15C@ 1
3 G22k2sn2~at,k!#, x25Ck2sn~at,k!cn~at,k!,

a25 1
10 ~A 5

3 ~A1
22A2

2!12A123A2!,

k25
2A 5

3 ~A1
22A2

2!

A 5
3 ~A1

22A2
2!12A123A2

,

C5
3

5

A 5
3 ~A1

22A2
2!12A123A2

A2~A22A1!
,

TABLE II. Solutions of Eqs.~8! for N52, «521.

~1! ~2! ~3!

x1 C1f 1 C1f 1 C1g1

x2 C2f 1 C2f 2 C2g2

A’s A15A2,0 A2,0, A2.A1 A15
8
7 A2,0

a2 2A1/2 A22A1 2A1/8
C’s C1

21C2
252A1 C1

252A1 C1
25C2

2529A1/4
C2

2522A21A1
1

3
G25F3

2
1

1

2 S 3~A11A2!

5~A12A2! D
1/2G21

,

~8/7!A2<A1,A2 .

Solution ~v!:

x15C@ 1
3 G22k2sn2~at,k!#, x25Ck sn~at,k!dn~at,k!,

a25A 1
15 ~A1

22A2
2!, k25

A 5
3 ~A1

22A2
2!12A123A2

2A 5
3 ~A1

22A2
2!

,

C5A2 6
5 ~A11A2!,

1

3
G25

1

2
2

1

2 S 5~A12A2!

3~A11A2! D
1/2

,

4A2,A1<~8/7!A2 .

These five solutions reduce to three distinct solutions
terms of Eqs.~1! and~2! whenk251, and they are given in
Table II. In particular, solution~3! of Table II gives a solitary
wave pair (g1 ,g2) that involves a wave formg1 , and that,
together with solution ~3! of Table I suggests tha
(g1 ,g2 ,g3) may be a triplet of complementary waves th
should be considered together. The periodic form of t
wave (g1) is 1

3 G22k2sn2(at,k). Let us first present the
solutions of Eqs.~8! for N53 in the next section.

IV. SOLUTIONS OF COUPLED NLS EQUATIONS
FOR N53

In terms of Eqs.~1! and ~2!, the aperiodic solutions o
Eqs. ~8! for N53 are given in Tables III and IV for
«511, and in Tables V and VI for«521. In particular, the

TABLE III. Solutions of Eqs.~8! in f’s of Eq. ~1! for N53, «
511.

~1! ~2! ~3!

x1 C1f 1 C1f 1 C1f 2

x2 C2f 1 C2f 2 C2f 2

x3 C3f 2 C3f 2 C3f 2

A’s A3.A15A2.0 A25A3.A1.0 A15A25A3.0
a2 A32A1 A22A1 A1

C’s C1
21C2

25A1 C1
25A1 C1

21C2
21C3

252A1

C3
252A32A1 C2

21C3
252A22A1
TABLE IV. Solutions of Eqs.~8! in g’s of Eq. ~2! for N53, «511.

~4! ~5! ~6!

x1 C1g1 C1g2 C1g2

x2 C2g2 C2g2 C2g3

x3 C3g3 C3g3 C3g3

A’s A354A223A1 , A2.A1.0 A354A154A2.0 A35A254A1.0
a2 A22A1 A1 A1

C’s C1
259A1/4 C1

21C2
25C3

256A1 C1
25C2

21C3
256A1

C2
253(2A22A1)

C3
253(8A227A1)/4
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TABLE V. Solutions of Eqs.~8! in f’s of Eq. ~1! for N53, «521.

~1! ~2! ~3!

x1 C1f 1 C1f 1 C1f 1

x2 C2f 1 C2f 1 C2f 2

x3 C3f 1 C3f 2 C3f 2

A’s A15A25A3,0 A15A2,0 A25A3,0
A3.A1.2A3 A2.A1.2A2

a2 2A1/2 A32A1 A22A1

C’s C1
21C2

21C3
252A1 C1

21C2
252A1 C1

252A1

C3
2522A31A1 C2

21C3
2522A21A1
t o
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only complementary solutions, i.e., solutions that consis
different wave forms, are solution~4! of Table IV for
«511 and solution~6! of Table VI for «521. These two
solutions can be conveniently expressed together as

x15C1g1 , x25C2g2 , x35C3g3 , ~10!

where

C1
259«A1/4, C2

253«~2A22A1!,

C3
253«~8A227A1!/4, a25A22A1 ,

A354A223A1 ,

A2.A1.0 for «511,

A1,0, A2.A1>8A2/7 for «521.

We thus come to the important realization th
(g1 ,g2 ,g3) is a solution forN53, «511 or 21. It means
that even though the red solitary wave (g1) cannot propagate
in the anomalous GVD region with another coupled wa
~for N52!, and that the blue solitary wave (g3) cannot
propagate in the normal GVD region with another coup
wave~for N52!, either of themcanpropagate in the norma
or the anomalous GVD region if it is coupled withtwo other
waves of different colors.

We may recall a similar situation when we go fro
N51 to N52 for Eq. ~5!, where the bright solitary wave i
a solution forN51, «511 and not«521, and that the
dark solitary wave is a solution forN51, «521 and not
«511, but where the coupled bright and dark solitary wa
pair can propagate in either the normal or anomalous G
f

t

e

d

e
D

region, i.e., the bright-dark solitary wave pair is a soluti
for N52, for «511 or 21. Thus to experimentally realize
our solitary wave pair (g1 ,g2) that consists of a wave form
g1 , the pair needs to propagate in the normal GVD regi
but it can also propagate in the anomalous GVD region if
pair is coupled tog3 . Similarly, the solitary wave pair
(g2 ,g3) found by Tratnik and Sipe@6# that can propagate in
the anomalous GVD region can be made to propagate in
normal GVD region if the pair is coupled tog1 .

Tables IV and VI show that forN53 two other combi-
nations involving (g1 ,g2) are possible for «521:
(g1 ,g2 ,g2) and (g1 ,g1 ,g2); and two other combinations in
volving (g2 ,g3) are possible for«511: (g2 ,g2 ,g3) and
(g2 ,g3 ,g3). That means that to send solitary waves of t
second generation through a medium, the red solitary w
(g1) is always needed as one of the coupled waves if
waves are to travel in the normal GVD region, the blue so
tary wave (g3) is always needed as one of the coupled wa
if the waves are to travel in the anomalous GVD region, a
the white solitary wave (g2) is always needed as one of th
coupled waves in either region.

As in the case forN52, periodic or elliptic solutions can
be found for the caseN53. We present three such solution
here that reduce to Eq.~10! whenk251.

Solution ~I!:

x15C1a@ 1
3 G22k2sn2~at,k!#,

x25C2ak sn~at !cn~at,k!],

x35C3ak cn~at !dn~at,k!],

where
TABLE VI. Solutions of Eqs.~8! in g’s of Eq. ~2! for N53, «521.

~4! ~5! ~6!

x1 C1g1 C1g1 C1g1

x2 C2g1 C2g2 C2g2

x3 C3g2 C3g2 C3g3

A’s A15A258A3/7,0 A25A357A1/8,0 A354A223A1 , A1,0
A2.A1>8A2/7

a2 2A1/8 2A1/8 A22A1

C’s C1
21C2

25C3
2529A1/4 C1

25C2
21C3

2529A1/4 C1
2529A1/4

C2
253(22A21A1)

C3
253(28A217A1)/4



the

PRE 58 6705SOLITARY WAVES FOR TWO AND THREE COUPLED . . .
G6511k26~12k21k4!1/2,

a25 1
3 ~A32A2!, k25 1

3 @2~g22!12~g22g22!1/2#,

g5~2A31A223A1!/~A32A2!,

C1
25«@~4A32A2!/~A32A2!25k2#/@ 1

9 G2
2 2 2

3 G2k21k4#,

C3
25~k22 2

3 G2k2!C1
216«,

C2
25k2~C1

21C3
2!.

This solution is applicable in the region 2,g<3, 0,k2

<1, or A3>4A223A1 , and A2.A1 . For «511, A1.0,
and for «521, A2 ,A1,0; and it becomes Eq.~10! when
A354A223A1 for which g53 andk251. Compared to the
aperiodic solutions, periodic solitary-wave solutions perm
v

le
it

an additional freedom of choice that can be used to affect
shapes and amplitudes of the waves.

Solution ~II !:

x15C1a@ 1
3 G22k2sn2~at,k!#,

x25C2ak sn~at !cn~at,k!,

x35C3a@ 1
3 G12k2sn2~at,k!#,

where

G6511k26~12k21k4!1/2,

a25~A32A2!/~41k222G2!,

k25~2g222!/@g2211~3g223!1/2#,

g5~A32A1!/~A322A21A1!,
C1
25

«$6A2G1~G123k2!23A1@22G1
21~2G123k2!~41k2!#%

@2k4~G12G2!~A22A1!#
,

C3
252«@61~k22 2

3 G2!C1
2#/~k22 2

3 G1!,

C2
25k2~C1

21C3
2!.
This solution is applicable in the region 1,g<2, 0,k2

<1, or A3>4A223A1 , and A2.A1 . For «511, A1.0,
and for «521, A1 ,A2 ,A3,0. It becomes Eq.~10! when
A354A223A1 for which g52, andk251.

Solution ~III !:

x15C1a@ 1
3 G22k2sn2~at,k!#,

x25C2ak sn~at !dn~at,k!,

x35C3aF1

3
G12k2sn2~at,k!G ,
where

G6511k26~12k21k4!1/2,

a25~A32A2!/~114k222G2!,

k25@g2211~3g223!1/2#/~2g222!,

g5~A32A1!/~A322A21A1!,
C1
25

«$6A2G1~G123!23A1@22G1
21~2G123!~114k2!#%

@2~G12G2!~A22A1!#
,

C3
252«@61~12 2

3 G2!C1
2#/~12 2

3 G1!,

C2
25C1

21C3
2.
led

it-

ally
an
This solution is applicable in the regiong>2, 1/2,k2<1, or
A1,A2,A3<4A223A1 . For «511, A1.0, and for«5
21, A1 ,A2 ,A3,0. It becomes Eq.~10! when A354A2

23A1 for which g52, andk251.
These three solutions are examples that show that e

though the solitary wave13 G22k2sn2(at,k) cannot propa-
gate in the anomalous GVD region with another coup
en

d

wave, and the solitary wave13 G12k2sn2(at,k) cannot
propagate in the normal GVD region with another coup
wave, either of themcan propagate in the normalor the
anomalous GVD region if it is coupled with two other su
able solitary waves.

The periodic solutions are of increasing interest especi
after a recent experimental observation of the evolution of
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arbitrarily shaped input optical pulse train to the sha
preserving Jacobian elliptic pulse-train corresponding to
Maxwell-Bloch equations@13#.

V. OTHER NONLINEAR EQUATIONS

It seems natural to ask whether the wave13 G2

2k2sn2(at,k) or its aperiodic form sech2(at)22
3 when k2

51, appears as a solution of other simpler nonlinea
coupled dynamical equations. The answer is affirmative,
we shall give the following simple examples, even thou
the equations may not be of any great physical interest.

Consider the two coupled nonlinear equations given b

ẍm1«~x11x2!xm5Amxm , m51,2,

and «511 or 21. ~11!

These coupled equations may be considered as the asso
dynamical equations of coupled equations of two interact
complex field componentsf1(z,t) and f2(z,t) that satisfy
the following coupled equations:

ifmz1fmtt1kmfm1«~ uf1u1uf2u!fm50, m51,2,
~12!

as the transformations~7! and ~9! can be shown to apply to
Eqs. ~11! and ~12! also. A solution of Eq.~11!, for A2
.A1 , is

x15«C1a2@ 1
3 G22k2sn2~at,k!#,

x25«C2a2@ 1
3 G12k2sn2~at,k!#,

a25~A22A1!/@2~G12G2!#,
~13!

G6511k26~12k21k4!1/2,

C1526A1 /~A22A1!, C256A2 /~A22A1!, 0,k2<1.

The aperiodic solution of Eq.~13! ~for k251! is

x152« 3
2 A1g1 , x25« 3

2 A2g3 ,

~14!
a25~A22A1!/4.

The corresponding single nonlinear equation is

ẍ1«x25Ax. ~15!

For A,0, a solution of Eq.~15! is

x56«a2@ 1
3 G22k2sn2~at !#,

~16a!

a252A/@2~G12G2!#, G6511k26~12k21k4!1/2,

which, for k251, reduces to

x52« 3
2 Ag1 , a252A/4. ~16b!

For A.0, a solution of Eq.~15! is

x56«a2@ 1
3 G12k2sn2~at !#, ~17a!
-
e

y
d

h

ted
g

a25A/@2~G12G2!#, G6511k26~12k21k4!1/2,

which, for k251, reduces to

x5 3
2 A«g3 , a25A/4. ~17b!

Note that solutions~16! and ~17! for the single nonlinear
equation~15! are exclusive of each other because of the c
dition thatA is ,0 or .0, but the two coupled equations~11!
bring them together as solutions forx1 andx2 , respectively,
the required condition being simplyA1ÞA2 ~we have as-
sumedA1,A2 in our solutions~13! and ~14! but the order
can be clearly interchanged!. This is analogous to the situa
tion we found when we considered the solutions fro
N51 to N52 to N53 for Eqs. ~8!, which we discussed
following Eq. ~10!. Notice that the red-blue (g1 ,g3) combi-
nation given by Eqs.~14! is not found for Eqs.~8! for N
52.

VI. SUMMARY

In summary, we have presented solitary waves for t
and three coupled NLS equations, and in particular, solit
waves@~i!–~v! in Sec. III and solution~3! of Table II# for
N52 that can propagate in the normal GVD region an
when coupled with a third solitary wave, can propagate
either the normal or the anomalous GVD region@Eq. ~10!,
solutions~I!–~III ! in Sec. IV, and solutions~4! and ~6! in
Tables IV and VI#. The wave1

3 G22k2sn2(at,k) or its ape-
riodic form sech2(at)22

3 is shown to be a solution of othe
nonlinear equations~Sec. V! and is thus not uncommon
These solitary waves are stable for«511, at least linearly
stable, as can be shown by following the stability analy
given by Infeld @14# for similar periodic and aperiodic
coupled waves given by Grobe and the author@15#. The spe-
cial feature of this result is that not only a wave formg1 of
solitary wave has been found, but also the introduction of
idea that ~i! a second generation of solitary wave
(g1 ,g2 ,g3) which form the simplest set of three different o
complementary waves, may, in addition to the two solita
waves (f 1 , f 2) of the first generation, become a useful a
practical tool, and~ii ! a third coupled wave may indeed b
helpful for extending the region of applicability for propag
tion of a pair of solitary waves. Idea~i! may be used for
extending the variational approach@16# and may stimulate
systematic searches for the next generation of solitary wa
Idea ~ii ! gives a concrete example that extended the v
successful idea of using two optical waves instead of one
better control of wave propagation@15,17,18# to using three
optical waves instead of two.
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