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Validation of the variational approach for chirped pulses in fibers with periodic dispersion
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We consider the propagation of chirped optical solitons in a fiber with periodic dispersion and describe this
by a variational approach assuming a single pulse ansatz. We obtain a good agreement between the variational
equations and the full numerical solution for the low-frequency region below the fundamental resonance. In
that case we study the nonlinear resonances and chaotic oscillations of the pulse width and with this analysis
we can predict the stochastic decay of pulses under a periodic modulation of the dispersion. For the main
resonance and resonances above it, this simple variational approach fails because of a strong emission of linear
waves. Then the numerical solution decays slowly while the simple model predicts a fast breakup. In the
high-frequency limit the pulse is stable and we can describe it via averaged variational equations for its width
and chirp, which we derive. We show that this dynamical model yields interesting physical estimates for
soliton propagation in a fiber with dispersion managemigt063-651X98)12110-4

PACS numbeps): 42.65.Tg, 42.50.Ar, 42.81.Dp

I. INTRODUCTION one of the author§l4] showed that the soliton could break
up in the presence of noise and estimated its lifetime. More
The influence of the modulation of optical fiber dispersiongenerally, in works concerning the chaotic dynamics of soli-
on soliton propagation has attracted a lot of attention retons under periodic perturbatiod5,16 it is usually as-
cently. In particular, a strong modulation of the dispersionsumed that the soliton exists as a whole and that its param-
makes it possible to achieve a high bit rate in long opticaleters such as position and amplitude vary in time in a chaotic
communication line$1,2] because it allows us to approach fashion. This is not always the case, in particular, when ra-
the zero dispersion limit where optical pulses do not interactliation is present or when resonances occur. Then the solu-
strongly with one another. Another great advantage of suckions of the partial differential equatiqi?DE) and the varia-
systems as shown [8—5] is that the modulational instability tional ODE might disagree, as for the massive Thirring
is strongly reduced both in bandwidth and in gain. Howevermodel[17].
the periodic modulation of dispersion leads to the radiative In this work we have considered the case of a periodically
damping of solitong6,7] or to the existence of vibrating modulated dispersion and computed simultaneously the so-
solitons[8] and splitting of solitong9]. The quasistationary lution of the partial differential equation and of the varia-
propagation of a localized nonlinear wave in such an inhotional equations in order to show the correspondence that can
mogeneous medium is possible, but such a wave is not be established between the two systems in parameter space.
soliton in ordinary terms, due to the strong modulation ofWe are not looking for an exact correspondence in the evo-
dispersion a significant chirp develops. Nevertheless, théution but for a more general agreement over wide regions of
pulse appears to be stable in many numerical simulations gghase space and parameter space when extracting the main
in the case of a high-frequency modulatiph0]. For the features such as the width and chirp of the soliton from the
purpose of optical communications it is important to showfull numerical simulations. When the modulation frequency
that these pulses are indeed stable. Q) varies, we find three main regions depending on the ratio
Another important issue is the simplified description of /wg, wherewg is the main frequency associated with the
these chirped pulses via a variational apprgdch12. New  oscillation of the soliton width. Fof) <, we obtain a good
phenomena appear, such as the nonlinear resonances that egmeement between the PDE and ODE phase spaces and can
occur between the oscillations of the amplitude and width opredict the soliton breakup observed $] via a stochasticity
the soliton and the modulation of the dispersion or the noneriterion on the Hamiltonian associated to the ODE. When
linearity [8,13]. This problem corresponds to the motion of 0= w, the ansatz fails because of the emission of radiation
an equivalent particle with variable mass in a periodicallyby the soliton. This emission diminishes @sincreases past
varying Kepler potential. The authors 8] studied these wg SO that one can recover a correspondence for the case of
ordinary differential equation€ODE’s) and showed numeri- a rapidly varying modulation. In that case a perturbation
cally that chaotic oscillations existed for some values of theanalysis yields averaged variational equations, which provide
amplitude of the modulation of dispersion and soliton width.a good insight into the physics of the problem. The study
They also found numerically the critical amplitude modula-completes the picture d¢f7] by showing that the soliton ex-
tion that causes the decay of the soliton. Another study byibits a rapid decay for large amplitude modulation. We also
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give a quantitative mechanism for this decay that explaingpatial solitons in inhomogeneous media. For that, change
the results of9] and extend the approach [&] by examin-  variablesx—z, t—x and assume a periodic modulation of
ing the validity of the variational approach over the wholethe nonlinear part of the refraction index along thaxis.
range of modulation frequencies. Before describing the variational approach we briefly dis-
At this point it should be noted that many of the conclu- cuss the conserved quantities associated with(Eq.Fol-
sions obtained for the periodic dispersion case carry on to thimwing the method used by Karpm&20] we can show that
situation where the nonlinearity is periodically modulated.the number of particlesi#?= [ *|u|2dt and the momentum
This can be seen by making a change of variable on theo= (i/2)*%(u,u* —u¥u)dt are constants of the motion for

nonlinear Schidinger equation, it holds as long as the Eq. (1). The Hamiltonian is not preserved and its evolution
modulation is not strong enough to cancel the dispersions  given by  d/dx[f*Z(|ul*~|u]?)dt]= —2[f(x)
Another situation where this study is of interest is the case of_ 1]ff°°lm(ut2u*)dt. Because of the conservation of momen-

the_ pr(_)paga_tion_ of a sp.atiall soliton in a me.dium with & peri-ym the pulse can be assumed to be at rest so that the posi-
odic diffraction in the direction of propagation. tion and velocity variables can be ignored. We will calculate

The paper is organized as follows: Sec. Il describes thg,e n mper of particles, momentum, and energy during the
model and the main features of the variational ODE. In Sec

) ; computations as a check.
lll we compute the numerical solution of the perturbed non-— ) ot 5 now recall the variational description of a chirped
linear Schrdinger equation and compare its main featuresy,iton, [12]
with the ones given by the variational ODE in order to vali- ’
date the latter. Here we identify the two main regions where
the simple model holds. Section IV shows how one can ob- u(x,t)=A(x)sec+L
tain a criterion for chaos and soliton breakup in the subhar- a(x)
monic region by examining the nonlinear resonances for the
Hamiltonian associated with the ODE. The case of a rapidlywhere A(x), a(x), and b(x) describe the complex ampli-
varying periodic dispersion is addressed in Sec. V. There weude, width, and soliton frequency chirp, respectively. The
derive averaged equations for the pulse width and chirp andvolution of these variables is given b§]
show their relevance to the description of the solution of the

exib(x)t?], 2

partial differential equation. Section VI contains our con- [
ludi k b(x)= n & ()
cluding remarks. = 2i0
Il. DESCRIPTION OF THE MODEL
(alA[?)x=0, 4
Let us consider the propagation of optical pulses in opti-
cal fibers with a periodically varying dispersion. The govern- 2 2
) o o . o . 4f AN“f  a,f,
ing equation is a modified nonlinear Schioger equation A= — , (5)
(NLSE) for the dimensionless envelope of the electric field, mad® m%a?  f
iugt 3 f(X)ug+|ul?u=0, 1) f(x) 5 N2
(argA)x=— . (6)

_2 _|_ ,

wherex,t are the coordinates along the direction of propa- 3a® ©a

gation and time given in a moving reference frame, respec- ) _ _ _

tively. The functionf(x) describes the periodic modulation WhereN? is the conserved quantity associated with the num-

of dispersion. ber of particles,
Different types of modulation have been studied, such as,

for example, the periodic box modulatiph8]. Here we con-

sider the simple model of a one harmonic modulati¢r)

=1+fgsinQx, wherefy will be in general smaller than 1.

The period of the oscillations qf dlsp_er5|onIJ§27r/Q_ an_d From the system above it can be seen that the equation for
should be compared to the dispersive length, which is the . . IO

- . ) ; a is independent from the others. We can write it using as
characteristic scale associated with a soliton. Frequently au-

thors have considered the case when the dispersive length ew coordinatesg b)

much larger than the other scales. Then the guiding-center

fﬁ |u[2dt=2a] A|2=2N2. @

soliton concep{19] is valid. When the dispersive length is a,=2abf(x),

compatible withL, other approaches are necessary. This dis-

cussion for a pure soliton carries down to a chirped pulse for 2 f(x) N2

which the scale of internal oscillations is defined by a com- b,= 52 —2b?f(x)— >3 (8)
bination of the initial chirp and deviation from the solitonic ma Ta

solution. For picosecond pulses this period is very large but

for subpicosecond pulses it may be reduced to a few meterés can be seen from E@5) the soliton width evolution is
When this period is of ordelr we can await resonance phe- described by the motion of an effective particle of variable
nomena in the propagation of chirped solitons. The considmassm=1/f(x) in the nonstationary effective anharmonic
erations performed in this work also concern the case opotentialU [8],
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1.0 = T T corresponds to an unbounded motion for which the width of
| the soliton increases indefinitely indicating that it will be
o 7 destroyed §—o0). The orbit separating these two types of
motion corresponds tBy,=0 and is unbounded. Notice also
0.0 \ how all orbits get very close to the left of the fixed point,
b ' which corresponds to the pure soliton behavia,Q).
Therefore we expect that in the presence of a perturbation, a

1.0 , ) . .
stochastic layer will be generated so that orbits will get
M N mixed at that point leading to escape.
% 0.0 |- Below we will investigate the case when the first condi-
° B tion (E(<0) is valid. From Eq{(11) the total energy of the
o effective particle is
2 2
a; 2 4N
E= —+ ? - T (12)
FIG. 1. Potential11) and phase portrait(a,) associated to the 2 %% rfa

Kepler problem(9) for N?=1.18. _ _ _ _ _
For the oscillatory regimeE<0) the action variable is

d| 1 da U 2
— | —|===, 9) 1 2v2N 2
dx| f(x) dx da J=— a,dx= - —. (13
27 m\-E T
2
U(a,x)= 2f _ ﬂ The total energy is expressed in terms of the actiohy
232 7%a relation
and the Hamiltonian is 8N4 1
y HeE=" 2 mova? 19
H(a,a,,x)= o ; +U(a,x). (10 _ ' . '
() From this expression we can derive the frequency of oscilla-
tions of the soliton width
At this point it should be mentioned that Eq%) and (8)
present a singular behavior when the amplitude of the modu- dH  16N* 1
lation fq is greater than 1. Then the mass of the effective w(Jd)= 9= r o153
particle goes to 0 so that its speed under the influence of J ™ (md+2)
forcing tends to infinity. For the soliton this means that its 5
width goes to 0 and its chirp to infinity. __7 (—E)32 (15)
Whenf(x) is a periodic function we deal with a periodi- V2ZN? '

cally perturbed Kepler problem. Consequently, the investiga-
tion of the oscillations of the soliton width under the periodic which reduces taw, whenJ goes to zero oE=U,.
dispersion is reduced to the study of the dynamics of a par- We also need to know the spectral properties of the tra-
ticle of variable mass in a periodically perturbed Keplerjectories of the Kepler motiof21]. The orbits are given in
problem. Before proceeding to the solution we will first dis- parametric form:
cuss the unperturbed Kepler problem. We give here the in- _
formation necessary for further analy$&l,22. The poten- a=b(l—eycosé), wx=&—epsiné, (16)
tial energy is expressed by _
where e;=[1—( w?|E|/2N*)]2 is the eccentricity and
Uz 2 4N? 1 2N%/7?|E|. From Eq. (16) it follows that am,=b(1
m2a? wla (1 —eg) anda,.=b(1+ep) in agreement with12]. For fur-
ther analysis it is important to know the cutoff frequency
The minimum of this potential is achievedat=1/N? andis  above which the energy in the power spectrum for the un-
equal toU .= —2N* 72, From Eq.(11) the frequencyw, of  perturbed motion can be neglected. This gives a number of
small oscillations of the particle near the bottom of the po-active harmonic$y,
tential can be found. The result isy=2N*/ 7. It is the fre-
guency of oscillation of the width of a chirped soliton during
its propagation in the homogeneous fiber. Figure 1 shows the
potential (11) together with the associated phase portrait
(a,a,) obtained forN>=1.18. The character of the oscilla-
tions of the width and amplitude of the soliton is defined by !ll- NUMERICAL SIMULATIONS FOR THE VALIDITY
the initial total energyEq=2/m2a%—4N?/ w?ay+ 2a2b2. OF THE VARIATIONAL APPROACH

WhenE,<0, i.e., 1+ 272ab3< 2N?a, we have an oscilla- In this section we will proceed to compare in detail the
tory regime, but the casBy>0, i.e., 1+ 27%ajh3>2N%a, long term evolution of the PDE solution with that of the

3/2N 6

,n_3| E|3/2'

No=(1-eg) %=

17
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®© 1
FIG. 4. Three-dimensional plot of the PDE solution for the cal-
culation shown in Fig. 2.
0 L
0 100 200
X cretized using finite differences. Using an ordinary differen-

tial equation solver gives the scheme an implicit character,
that prevents the notorious instabilities that are present when
the scheme is explicit ix. The ODE solver that we have
used is the DOPRI5 method of Dormand and Prince, ana-
lyzed in[23]. This method is a combined fourth- and fifth-
order Runge-Kutta-Fehlberg method enabling step size con-
trol. This feature is very important because of the periodic
perturbation; it guarantees that the step is always adapted to
he solution. The tolerance chosen for the integrator i$°10

he time discretization is done using centered finite differ-
nces making the scheme second order. We have chosen for
Il the results presented 1200 discretization pointsand a
window of size 200. To prevent artificial reflections of the
waves emitted by the pulse, we have surrounded the compu-
tational domain by absorbing layers where an artificial
damping, smoothly increasing with has been introduced.
This damping has been adjusted so that the value of the
solution at each end of the domain is approximately °10
We are therefore sure that no significant reflection takes

FIG. 2. Variation of the widtha(x) for Q= wy/9f,=0.5, and
N?=1.2. The PDE solution is in full lines and the ODE in dashed
lines.

variational ODE’s[Eq. (8)]. This is an essential step to es-
tablish the validity of this simplified model, which cannot be
done a priori using analysis. We have concentrated on
comparison of the behaviors of the two systems in terms
the widtha and chirpb for long times and also in parameter
space. Throughout the computations we have fixed the initi
number of particleN?=1.18 for the pulse and therefore the
natural frequency of oscillation of the soliton width and var-
ied systematically the forcing frequend® over a wide
range.

The investigation of the ODE'’s for the first few low reso-
nances has been performed [i8] and detailed numerical
computations of the NLSE have been carried ouf9hfor
the slow modulation cas@ < wy and have shown the exis- place at these boundaries.

tence qf .regions in the parameter spabé, (o) where soli- The accuracy of the computations is monitored by check-
ton splitting occurs, and also the presence of islands of stgq e conservation of the number of particles, the momen-
bility. Here we complete this picture by estimating the width , . -4 the energy relation given above. For all cases the
a and chirpb from the numerical solution and validate the ., Jantum is conserved to the accuracy of 0 The num-

variational approach. Such a comparison was givefll}  por of particles is conserved to a very good accuracy up to

for the limiting case where the nonlinearity is negligible andthe point where waves start leaving the computational do-

for a large frequency of modulation in the dispersion man-, -1 and enter the absorbing layers.
agement scheme.

The numerical method that we have used is the method The widtha and chirpb were estimated from the numeri-

. . . o O(gal solution of the PDE in the following way. Using the
lines where the solution of Eq1) is advanced irx via an g way g

<" modulus of the solution around the pulse down to 20% of its
ODE solver and the temporal part of the operator is dis-

1

5
o | 0.9 f}
[0}
o 0
0.8 |
-2 L
0.7 :
5 : 0 100 200
30 50 70 X

FIG. 5. Variation of the widtha(x) for = wy/4 andfy=0.1
FIG. 3. Variation of the chirgo(x) for the same conditions as for the PDE solution shown in full lines and the ODE in dashed
for Fig. 2. lines.
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0.03 : - 0.6
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FIG. 8. Phase-portraita(b) for ()= wy/4 corresponding to Fig.
7. The orbit corresponding to the PDE is given in dots while the one
for the ODE is in dashed lines.

FIG. 6. Phase portraitab) for (1= wy/4 corresponding to Fig.
5. The orbit corresponding to the PDE is given in dots while that for
the ODE is in dashed lines.

Then the small ripples occurring when the pulse is highly

. . . compressed, disappear. The increase of the frequency is con-
maximum amp".t“de we ha_tve SOIVe.d a nonlinear least squarge e to the adiabatic invariart () [21] for the equivalent
problem assuming the chirped soliton fo®) and used a

dard . di btain th | particle oscillating in the potential well. As the dispersion is
standard conjugate gradient metti@d] to obtain the Solu- yecreased, the energy of the effective particle representing
tion. The chirp was estimated by a least square fit on th

- ) : . fhe pulse is increased because the potential well gets deeper
phase of the solution assuming that it has a quadratic depegy, that in order for the ratio to be constant the frequency
dance Int. . . should increase.

We first consider the case of a very slow modulation of " \ye now consider the case when the modulation frequency
the dispersiorf) = w /9. Figure 2 shows the evolution of the ;o equal towy/4 and find a good correspondence &gx) for
width of the pulsea(x) for the PDE and the variational ¢ _q 1 a5 shown in Fig. 5. Again the ODE solution exhibits

ODE's (5) for a forcing amplitudef,=0.5. We can see the 46 harmonics than the PDE solution. This is very apparent
very good agreement between the solution of the partial dlfbn the phase portraig(b) shown in Fig. 6 which also shows

ferential equatior(1) and the ODE solution except that the that the two solutions are very close. When the amplitude of

latter contains more harmonics. These oscillations increasgq forcing is increased we observe thatbecomes un-

in frequency as the “bottom” of the modulation curve is bounded both for the PDE fdi.=0.6 and the ODE foff
reached, there the chirp becomes very large as expected fror:n0 5. The evolution ofa for t%esé two situations is ;:;)re—
Eq. (5). Figure 3 shows the chirp(x) around the minimum sented in Fig. 7, where one can notice the good agreement
between the two systems even for the higher harmonics. The

. o : ephase portraitg,b) for the two systems presented in Fig. 8
ODE data and less on the PDE for which the fitting routine; ical of the Kebl | ith th hi f orbi
breaks down at the minimum. The three-dimensiof3i) s typical of the Kepler problem with the bunching of orbits

for smalla and the sharp turn for large. The blowup for

solution shown in Fig. 4 shows that the pulse becomes com: s ;
. e . X rr n h litting of th Ise into two small
pressed very strongly at that point and radiation is emltterchla( ) corresponds to the splitting of the pulse into two sma

This is mostly a humerical problem as can be seen by dmﬁulses as is shown in Fig. 9 and was observein Be-

. . e ) cause of the conservation of momentum the small pulses
bling the number of discretization points from 1200 to 2400'trave| with opposite velocities. The good agreement between

the variational ODE and the PDE solution is preserved when

4 Q= wy/2 and we observe breakup of the soliton fiy
=0.4(f;=0.3) for the PDE(ODE) solution with a good
global agreement in thea(b) phase-space as shown in Fig.
10.

© 2
0 L
0 100 200
X
FIG. 7. Variation of the widtha(x) showing breakup of the FIG. 9. Three-dimensional plot of the PDE solution correspond-

soliton forQ) = wy/4 andfy=0.6 for the PDE solution shown in full ing to Figs. 7 and 8 showing the splitting of the soliton into two
lines andf,=0.5 for the ODE solution shown in dashed lines. smaller pulses.
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0.8 : . 5

el 0 ©
2 L
0.8 : : 0 :
0.3 1 2 0 100 200
a X
FIG. 10. Phase-portraita(b) for Q= wy/2 andf,=0.4 for the FIG. 12. Variation of the widtla(x) for )= wy andfy=0.2 for

PDE solution shown in dots anf,=0.3 for the ODE solution the PDE solution shown in full lines and the ODE in dashed lines.
shown in dashed lines.

_ o domainM = [289u|?dt as a function o. This is shown in
When the modulation frequency) is increased and rig 14 for different values of the rati®/w,. We observe
reachesvg a resonance occurs for t_he chirped soliton. Figure;;most no decay for the subharmonic forcing, which suggests
11 shows a plot of the PDE solution fép=0.2. 1t ShowS ¢ the radiation remains locked to the pulse. On the other
that the pulse initially adjusts to the perturbation but veryp . there is a fast decay for the fundamental resonance as
quickly develops a strong background of radiatio.n. It will can t;e expected from the 3D picture Fig. 11. As expected
Eg:ggu\?atlﬁgrﬂtjnj ;;\?X}’Z %(eef\/av)é:r?r:ﬁ;esvsigfkﬁ-r;r:sd rteh?ao- from [7], the emission of linear waves by the soliton and the
chirp b is smallerothanw* =N*, the one for a pure soliton fje_cay rate of its_ ampli'Fude Is maxim_um 1= wo and as)
calculated using the inverse ,scattering transfd17]. In is increased, this rate is reduced. It is therefore expected that
a simplified description will hold for very large frequencies

other words, a soliton will break up for a smaller modulation]c hich th ted radiati Idb liaibl deed
frequency than expected from IST considerations because " Which the emitted radiation would be negligible. Indeed a

will develop a chirp that will resonate with its width. In this SIMPle model based on the Kapitsa averaging will be pre-
case the description of the chirped pulse via the variationafented in Sec. V and shown to be in good agreement with the
ODE'’s fails as shown in Fig. 12, which gives the evolution PDE. Another indication of this agreement is the fact that the
of a for the PDE solution and the ODE for the same param-Stochastic layer becomes exponentially narrow for large fre-
eters as Fig. 11. The ODE solution indicates a complete deduencies as will be shown in the next section.

cay of the soliton after four oscillations while the PDE solu-  T0 conclude this section, we present in Table | the main
tion shows a 10% decay over the same period of timef€sults in the comparison between the PDE solution and the

Notice, however, the good agreement between the twdyariational ODE. We have observed a very good correspon-
curves obtained fox<5 which is consistent with the initial dence between the PDE solution and the solution of the
evolution of the pulse in Fig. 11. As expected from IST variational ODE[Eq. (5] for close values of the forcing
consideration$7] the rate of decay of the pulse due to emis-amplitudef, as long ad)<wy. An important consequence
sion decreases 43 increases pasb,. Figure 13 shows the Of this is that one can establish a criterion for soliton splitting
evolution ofa for the PDE and the ODE fof)=2w, and  for the PDE by analyzing the perturbed Hamiltonian system
f,=0.2. The ODE solution escapes to infinity as was pre{5) for orbits that are close to the separatrix, which corre-
dicted in[8], while the PDE solution decays slower than for SPonds to an unbounded motion. This is the object of the
the main resonance. next section.
The overall correspondence between the PDE and the
variational ODE can be seen by examining if the radiation 4
remains in the vicinity of the pulse. For that we compute the
evolution of the number of particles inside the computational

0 50 100

FIG. 11. Three-dimensional plot of the PDE solution far
=wg andfy=0.2. FIG. 13. Same as Fig. 12 except tfat 2w, .



PRE 58 VALIDATION OF THE VARIATIONAL APPROACH FOR.. .. 6643

24 - electron escapes from the central potential under a strong
1;;' periodic electromagnetic field. Then the equation is very
” e similar to Eq.(5) except that the modulation is linear &
ﬁ e due to the field dipole interaction.
5 o For the purpose of analysis the theory of nonlinear reso-
= ] 5 1 nanceq26—28 will be applied. Then it is convenient to use
5] 2.2 2 - . .
5 ‘ the action-angle variables for the solution of the problem.
2 The total Hamiltonian in the action-angle variable® has
S 1 the form
=
H=Ho+f1(x)V=Ho(J)+H1(J,6,%), (18)
2 )
0 100 200 where the unperturbed Hamiltoni&ty, is given by Eq.(14)
X and the interaction terril; of the Hamiltonian in the ap-

. . . roximationf=1+f,, f;<1 is
FIG. 14. Evolution of the number of particles in the computa- P ot

tional domainf 23] u|2dt for different values of the ratié)/ w, and Hy(J,6:X)
an amplitude of the modulatiofy,=0.1.

1 2
_ _ = 2 =
IV. NONLINEAR RESONANCES AND CHAOS =f(x)| = 5(ald. 0"+ 252 =f()V.
IN THE SOLITON WIDTH
AND AMPLITUDE OSCILLATIONS (19

During the propagation of chirped soliton in optical fibers From Egs.(18) and(19) we can write the equations of mo-
there is an interplay between two periodic processes—th#ion using the variabled, 6,
soliton width oscillations and the periodic modulation of the

fiber dispersion—so that nonlinear resonances and dynami- E: _§ (x)ﬂ

cal chaos phenomena are possible. Bearing in mind though dx TN

that the chaotic motion in the given system is a transient

process, the effective particle will obtain in the diffusion de N

process over resonances, a sufficient amount of energy to be dx w(J)+F1(x) ik (20)

freed from the potential well and move as a free particle to

infinity. For this reason we can consider the stochasticity The periodic forcef(x) causes nonlinear resonances in
criterion that we obtairfEg. (28)] as a condition for the the oscillations of the soliton parameters. The regions of
breaking of the optical soliton. This problem has an interesthonlinear resonances can be obtained by using the expansion
ing close analogy with the problem of the stochastic ioniza-of V(J,6;x) in Fourier series ind. Using Eq.(17) we find

tion of a hydrogen atom in a periodic fie[@5] where an from Eq.(19)

TABLE |. Behavior of the solutions of the PD&) and the ODE®8) for different forcing frequencies.

Q .
— Variational ODE Nonlinear Schdinger
wo
Agreement forf ;<<0.5,
chirp |b|—,
width a—0
= Compressed pulse
3 No radiation
Agreement
3 a—ow for f,=0.5 Soliton break-up fof,=0.6
Agreement
i a—o for f,=0.3 Soliton break-up fof,=0.4
Disagreement
1 a—x for f;=0.2 Radiation 20% decay for<0x<<200
Disagreement
2 a—x for f;=0.2 Radiation 10% decay for<0x<200

Disagreement
3 a—x for f;=0.4 Radiation 5% decay for<Ox<200
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03t | o 1 03

da/dx
o
da/dx
o
V4 ”\\\
\)
/

06 1 1.4 1.7 0.6 1 14 1.7
a a

FIG. 15. Poincare sectiom(a,) for the case)= wy/2 and a

forcing amplitudef,=0.1. FIG. 16. Same as Fig. 15 for a forcing amplitufje=0.2.

Q
Hl:%( meke*im(}ﬂkﬂx_’_c.c., (21) 5w=|wm+1—wm|=m. (25)
1 r2 If we increase the value of the amplitude of the modulation
_ |\ aime of dispersionf ; then the width of the resonance will increase
Vi vemede. (22 ; X . .
2w Jo and the overlap of neighboring resonances is possible. One

condition for this overlap to occur {26]
Below for simplicity we consider the case when there is

only one harmonic term ifi,(x) = f ;sin Ox. Resonances ap- Aw)\?
pear when there is an integer such that K= So =1 (26)
mw(J)—Q=0, (23)  Substituting Eqgs(24) and (25) into Eq. (26) we obtain the
stochasticity criterion
i.e., whenw=w,=Q/m. The oscillations of the soliton
width a and amplitude resonate with the periodical modula- 4f oV w’ m2(m+1)2
tions of the fiber dispersion. To our knowledge, the first low =1. (27

nonlinear resonances were investigated 8 Notice also Q?
that the dynamics of chirped pulses in fibers with rando
parameters has been studiedid], where it was shown that
randomness can be used for the control of the parameters gt

the soliton. To investigate the influence of the external peri-

mFrom this condition we can find the value fif, when cha-
ic oscillations of the soliton width must occur, i.e.,

odic action on the character of motion the simplest is to fo= 0 . (28)
investigate a Poincare section built by sampling an orbit in 4V o' m?(m+1)>2

the phase spaceafa,) obtained from Eq.5) every time

interval 2m/(). This is the condition of the appearance of chaos neamthe

Figure 15 presents the Poincare section obtainedfor resonance. So, for almost all initial conditions and param-
= wy/2 andfy=0.1. One can see non resonant trajectoriegters of the problem, satisfying conditid@8) the oscilla-
slightly deformed corresponding to the KAM theorem. No- tions of the soliton width will be chaotic. Note that even in
tice the third-order resonance and the seventh-order resthe developed chaos region some regions of regular motion
nance just beneath the stochastic layer. The orbits enteringill remain. The Fourier component,,, can be calculated
this layer eventually escape to infinity. When the forcingfrom the equations foa andx in parametric formg¢16) and
parameter is increased fg=0.2 as shown in Fig. 16 all the (19), (21), to be
nonlinear resonances disappear and the stochastic layer be- . ‘
comes closer to the periodic orbit. 1 (27 @miEeosing

The Hamiltonian(18) corresponds to a system with one Vin= T J’ _

. m3p2 /O  1—eycosé
degree of freedom and therefore one can apply directly the
Chirikov stochasticity criteriorf26] where the width of the
nonlinear resonance is compared to the separation between

dé

Ezeng fzﬁ eim(gfeosin §>sin2§
- d

. 29
resonances. The width of the nonlinear resonance is given by 447 0 1—eqcosé ¢ 9
[26]
We have computed the integrals in E89) numerically us-
Aw=2|f.v do|? 24 ing the Romberg method because of the oscillating character
@=<4ToVmyg @9 of the integrands and found the right hand sige of the

inequality (28) for several values ofn. For Q= wy/4 we
The distance between resonances is find for an initial amplitude ap=0.8 and N?=1.18
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f,=0.19, f,=0.24, f;=0.76, andf,=3.47 while fora, i.e., the soliton will decay. The boundary frequency of the

=0.51, f,=0.16, f,=0.0185, f3=0.0054, andf;=0.002.  stochastic layern means that for some values of the initial
This agrees with the numerical observation that the orbit |S:h|rp bO and width of So|it0mo, i.e., the energy of effective
regular forap,=0.8 andf,=0.1 while it is in the stochastic particleE there exists a value of the frequency for which the
layer for theay=0.51. ForQ)= wy/2 which corresponds to gscillation will be chaotic.
Figs. 15 and 16, we find fom,=0.81, f;=0.74, f,=0.97, From the expression for the width of the stochastic layer
f3=3.04, andf,=13.89 and forap=0.77, f,=0.12, f,  (34) we observe that when the frequency of perturbation
=0.097,f3=0.13, andf,=0.54, which agrees with the ob- grows the stochastic layer gets exponentially narrow so that
servation from the Poincare section that the orbit &r the soliton becomes more stable in the high-frequency re-
=0.8 is regular while that folmy,=0.77 is chaotic forf;  gion. This shows the interest of studying pulse propagation
=0.2. in the case of a rapidly varying dispersion. This is the object

In the limiting case of a large value oh the Fourier of the next section.
componend/,,, can be estimated by computing the integrals
using a form of steepest descent. We obtain

V. PROPAGATION OF CHIRPED PULSE IN FIBER

begwX(l-e,) 1 WITH RAPIDLY CHANGING DISPERSION
m A 302 I 30 In the case of a high-frequency modulation, the radiation
emitted by the pulse is very strongly reduced, we therefore
whereJ,, is given by expect a low-dimensional description of the system to hold
and we will show that the variational approach can be used
2\m 1 to describe the propagation of a chirped pulse in a fiber with
Ji= 4 54 a rapidly and strongly changing dispersion. Such a system
5 \/ﬁ(’% (1—ep) has been intensively investigated as a perspective for optical

(1—e,)%? communicationg1]; an example is the two-step dispersion

XeXp( 1/4— 5m—0>, (31  Mmanagement scheme with alternating values of the disper-
6e(1)/2 sion value giving a nonzero average. Numerical simulations

have been carried out i8] and show that an additional
from which we can obtain an estimate for the chaos criterionamount of energy is necessary in order to propagate a pulse
Near the separatrix, wheB— 0, andb— o« the behavior of in such a medium; a formula for this additional energy was

V,, is given by suggested. In the recent wofR9] this problem has been
reduced to the investigation of the properties of a compli-
214 34 E|32 1 5 QO cated mapping and it was shown that the dynamics is de-
Vi~ S12 TGX 4 352wy (32)  scribed by the averaged dispersion. Here we follow a differ-

ent approach and show that the variational approach can

so that the oscillations of the width are chaotic when the® explain the main properties of the numerical calculations and
amplitude of the forcind, is greater than gives a formula for the additional energy in agreement with
0

[18].
3\/— |E|5’2 Assuming as above a sinusoidal variation of the disper-
= sion we perform the averaging of the variational equations
3 264 ()3% 3’4 (8) over fast oscillations following the Kapitza approach
[21]. In this methodf,,{) are not assumed to be small, but
1 5 O their ratio is small, i.e.e=fy,/Q2<1. We obtain the slow
xXex (33 . . S
4 3 252 wg dynamics via an expansion in powerseoft should be noted

that Eq.(8) should be used for the averaging and not &.
We can therefore use these estimates to predict chaos affi€liminate the singular behavior observed for low frequen-

the break-up of the soliton. In the region where the initialCies. We write the solution of the systei@) in the form
energy is negative, such tha&b§w2a§> 2N2a, where ac-
cording to the standard ana_llysig a sol_iton_must exist, it breaks a=(a)+da, b=(b)+sb,
up. The main reason consists in a diffusion over resonances
and a transition from the oscillatory regime to the unbounded
motion whereE>0. The boundary of the stochastic layer in da, odb<(a),(b), (35)
frequency is obtained by setting the parameter of stochastic-
ity K equal to 1. From Eq(33) we obtain

33yl (09N 35 F(:g 1 0

o= — -
4/553/10 wS/S 20 252 @,

where(a) and(b) are slowly varying over the distance(1/

and thed are rapidly changing functions. Below we will omit
), (34  the averaging symbof---). Substituting Eq.(35) into the

above mentioned equations fafx),b(x) we have the fol-
lowing equations for the mean valuagh:

where w, is defined by Eq(19). When the initial condition
is in the stochastic layer there will be diffusion over reso-
nances and eventually the soliton width will tend to infinity, a,=2ab+2a(sbf,)+2b(saf,)+2(sash), (36
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sa? saf 1.1
b= 1410 2>—4< 1>)—2b2—2(6b2>
ma a
2N? 6(5a2) L ) A
—4b(dbfy) = —5| 1+ ' (37 A Sl 0
mad a® < DU e e
and the equations for the correctioda, ob, I‘
da,=2 f;ab+2adb+2béda, (38
6N2 8 . 08 \ L K Y Y
oby= gt o da+ wza“_Zb f,—4bsb. 0 20 § 40 50
(39)

FIG. 17. Variation of the widtha(x) for =150, and f,=3.
Let solve these equations assuming & and b a har- The PDE solution is shown in full line and the averaged ODE
monic decomposition, taking into account that the parametefolution from Eqs(42) and(43) is drawn in short dash.
fy is large. Keeping the main order terms we obtain the
solution lution (42),(43) in short dashed line. As can be seen the pulse
width tends towards a constant while both ODE approaches
4f, predict oscillations. The value of the fixed point for the PDE
53 SiN(2x) about 0.95 is given to a good approximation by the average
(1% of the maximum and minimum of the ODE solutions, which

sa=— 219 cogxyab
a——vcos{ X)ab—

af is 0.9 assumin@,=0.84 andb;=0. The slight underestima-

——gsin(Qx), (40)  tion present here is reminiscent of the unperturbed case
where the variational ODE gives a periodic soliton width
while the PDE shows that the width tends towards a given

21, 4fob value. The chirb is shown in Fig. 18 for the PDE solution
ob=— —— cogX) + ——— sin({1x) in full line and the averaged ODE solution in dashed line.
Q) me°a o L -
The initial evolution is well approximated foe<5.
4f b3 We note here that an averaging procedure for the disper-
+ (;)2 sin(Qx). (41)  sion management scheme has been carried out directly on the

PDE[Eqg. (1)] and yielded a modified nonlinear Schinger

_ . equation with higher-order corrections nonlinear in the de-
Substituting Eqs(40) and (41) into Egs.(36) and (37) we (jyatives[30]. This explains the fact that the PDE solution

obtain the equations for the averaged soliton width and chirpends to the fixed point just as in the unperturbed case. An
interesting corollary of this work would be to find the field
_2ap? (42) equations corresponding to our averaged sys(ég),(43)
' and compare with the ones given[ig0].
The system(42),(43) can be written in a more elegant

~ f3 [ 4b
ax—2ab+§ 23

2 2N?2 way by using the new variable=ab suggested irf10],
b,= 5 4—2b2— o3 which shares withb the property of not having a singular
Ta 7 a evolution. We have

2 2 2K2

. tfo (123 3 6Nb>. w3 015

T QZ a4 2,8 a3

Equations(42),(43) provide a simple tool to investigate Al
the influence of a high-frequency modulation on a chirped ! U ‘ /
pulse. To examine the validity of the approach we have com- - o Ll il j
pared the numerical solution of the PEq. (1)] with the | l‘ | A
solution given by the ODE’SEQs.(42) and(43)]. An impor- HH
tant step in solving the latter is to take into account the fact ,
that the correction terméa and b in Egs.(40) and(41) are
nonzero wherx=0. Therefore the initial conditions for Egs.

(42 and (43) for x=0,(a;,b;) are given by bi=bg -0.15 ' '

+(2fo/m2Q) and aj={ay/[1— (2foby/m2Q)]} where 0 o2 30
(ap,bg) are the initial width and chirp for the PDE. Figure

17 shows the evolution o for (=150, and f,=3. The FIG. 18. Variation of the chirpp(x) for the calculation shown in

PDE solution is in full line, the previous variational ODE Fig. 17. The PDE solution is shown in full line and the averaged
[Eqg. (5)] solution in dashed line and the averaged ODE s0-ODE solution from Eqs(42) and (43) is drawn in short dash.
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f(2) 3 1 jL (—i2nmwx/L)
= . Z _9N? Ch=7— X)e ™LX,
a,=2v 1+Qz 3 a ZN) , (44) n= T 0¢( )
and they are
2 oN? y
TR p2a? gy it
) o I+l
fa 12| 1 . 2 N2l 5
— S5 5=tz vel.
02 72a*| 7222 \a Ad |  2nwly 2narl,
= —_— + —
Cn o sin 3 i| cos 1 1)1, (49

We can simplify this system by taking into account the

smallness of the expansion parame‘l%ﬂﬂ2 and obtain

whereAd=d;—d,.
From the fixed point relatiof47) and a time rescaling of

4 4N? 24f3 the NLSE[Eq. (1)] we obtain a stationary propagation of a
AT 53T .2 PO pulse of average widtla, and energyN? in a medium of
mal mat mTa average dispersiod when
6f3 (2
2 2 8 f2
- ——N2|(ay)?2. (46) d 6 N° f5
202,54 —
ma® \a ao—N2 1+ ik (50

This describes the motion of a particle in the field of an

anharmonic potential depending from the velocity. The fixedcompared to the uniform dispersion caff)=d such a

point of these equations is given by

pulse has a larger width and a smaller amplitude. Therefore
one needs additional energy to support it in the rapidly vary-

1 6N°f2 ing case. From the Fourier representationf aind Eq.(50)
a= er 02 a,=0. (470 we find this additional energy to be
2
It corresponds to the minimum of the effective potential E= i 1+ 3 & @ ) (51)
ao 274 d?  ag

2 4N?

4f2
Ueffzz__

wla? E+ w0238 “9

Compared with the unperturbed potentjall) we seen that
the difference is in the third term in E€48). This addition

This formula shows that increasing the dispersion difference,
or shortening the lengtHs or |, leads to an increase of this
energy. Also the main dependencies in this expression agree
with the empirical formula derived ifL8] from the numeri-

cal simulations.

corresponds to increasing of the short range repulsion. Re-
membering that this repulsive part of the potential corre-

sponds to the correction of the dispersion, we can conclude VI. CONCLUSION

that the averaged dynamics corresponds to a uniform fiber We have performed a validation of the chirped pulse

with a larger overall dispersion. , , variational approach in the case of a periodically modulated
_ The evolution of a chirped pulse in the two step disper-yishersion by comparing systematically the evolution of the
sion management scheme can be d_escrlbe(_j by a similar 38BDE solution with the one given by the ODE. We found
proach except that now the modulation of dispersion has ag,ee main regions of interest depending on the ratio of the
|r;f|n!te number of harmonics and using Parseval's relat'onforcing frequency() to the natural frequency of oscillation of
fo in Egs. (42 and (43 should be replaced by e pulsewy. When Q< w, the variational approach pro-
Zm+0(|Cnl?/M?), wherecy, is the Fourier coefficient of the yides a good model for the description of the soliton. Very
modulation functionf(x). So we obtain at first order the |ittje radiation is present. In that case we observe soliton
motion of a soliton in a medium with the averaged dispersionchaos and breakup due to nonlinear resonances. We predict
valued, which is small and corresponds to the anomaloughe value for breakup via the Chirikov stochasticity criterion
dispersion case. The corresponding corrections are of the ogy, the variational ODE. Whef) reachesw, a resonance
der e?=15/Q2. occurs and the soliton emits radiation. In this region, the
In the derivation we consider the propagation of a pulse insimplified model fails completely. The emission of radiation
a fiber with two segments of alternating dispersions withjs strongly reduced whefd> w, so that a low-dimensional
valuesd; and length; and negative valud, with lengthl,.  description is again possible. Also the analysis of the ODE
We expand such a periodic functidiix) into a Fourier se-  system reveals that increasing the frequency of modulation

ries leads to an exponentially small stochastic layer and thus to a
oo stable pulse.

f(x)= >, cpeliznm™L ~ By averaging a well chosen system of variational equa-

e " ' tions via the Kapitza approach, we obtain the equations for

the mean width and chirp of the pulse. Because the expan-

whereL=1,+1,. The coefficients are given by sion parameter is the ratio of the amplitude of the modulation
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to the frequency, the former can be large so that the studiheory of spatial solitons in modulated nonlinear media and
applies to the case of a dispersion management. The solutidar the motion of a body with variable mass in a central
of the variational equations is in good agreement with thepotential. In the rapidly varying case the analysis can also be
solution of the PDE. It predicts for example the increasedextended to any type of periodicity.

width of the pulse in such a medium. This simple model also

yields the additional power necessary to propagate a pulse in ACKNOWLEDGMENTS
a dispersion managed fiber as opposed to a uniform disper-
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