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Two-dimensional froths and the dynamics of biological tissues
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Two-dimensional foams are used to model the evolution and the steady state of biological tissues. When
only cell division occurs, we deduce the mode of division simply from the stationary distribution of the number
of sides per cells, by inverting a system of coupled rate equations. Comparisons with experimental data confirm
the method. We then discuss the time evolution of tissues evolving both through cell division and cell
disappearance, theoretically and by topological simulations. Simulations reproduce realistically the steady state
of the innermost layer of the human epidermis. We conclude that short-ranged topological information is
sufficient to explain the evolution and stability of biological tissU&L063-651X%98)08111-7

PACS numbdis): 87.10+€, 87.22:--q

[. INTRODUCTION Topologically, a two-dimensional cellular tissue is a froth,
partitioning the plane into irregular polygons. Every vertex is

Random cellular structures form the basic frame of manythe equilibrium point of three edges under tensitre line
natural or engineered materidts]. Among the many mate- tension of the interface between two cgll& vertex with
rials that have already been studied, epithelial tisqties  higher incidence number is not mechanically stable; it splits
human epidermis, the epithelium of the cucumber, or thénto several stable vertices with coordination number 3. In a
cork epithelium are most striking for their ability to remain froth, all the possible cell configurations can be explored by
in steady state despite the fact that cells constantly divide omitosis and disappearance. Cell mitosis and disappearance
die. Better than any other systems, they can recover any exe specific combinations of the local, elementary topologi-
ternally induced departure from equilibriutmjuries or ex-  cal transformations: (i) Exchange of neighborsT(l); (ii)
ternal stress disappearance of a three-sided celi2] or its inverse

Unlike other types of tissuegin vertebrates: nerve, (T271). There is only one random variable associated with a
muscle, blood lymphoid, and connective tisguespithelial  cell, namely the numbes of its sides(or its topological
tissues have a scant extra-cellular matrix and tightlychargeq=6-s). It is shuffled by mitosis or disappearance,
bounded, polyhedral-shaped cells. They cover all the cavitiebut its averaged valugs)=6 is fixed throughout the evolu-
and free surface of the body. They form barriers to the movetion of the tissue by Euler’s relation and minimal incidence
ment of water, solutes, and cells from one body compartmentumber. Corrections of orderN/are due to boundary con-
to another. A deeper understanding of the cellular dynamicsditions, whereN is the total number of cells. These correc-
and the organization mechanisms of epithelial tissues maions vanish identically if, as here, periodic boundary condi-
yield new biological insights relevant for some skin diseasesions are used. They are negligible for large tissues
(psoriasig or wound healing. (thermodynamic limitN— ).

The mechanisms that allow an epithelial tissue to return to In this paper, computer simulations of froths evolving
its sound state involve intricate biological processes whictwith cell mitosis andor) disappearance are performed. The
eventually result in the division or disappearance of a cellcellular networks consist of more than*i@xcept when test-
These two biological events produce local topological transing the influence of the size of the netwpiells on a lattice
formations that summarize the topological fate of a cell.with periodic boundary conditions. Starting from different
They are ultimately responsible for the dynamics of the tis-nitial systems, ordered or disordered, we study their evolu-
sue. tion when cells divide andor) disappear under specific to-

The precise signals that induce a cell to divide or to depological rules. We show that the evolution of a biological
tach (as, for example, from the basal layer of the humantissue depends only on the rules chosen for its dynamics, not
epidermig are a matter of concern for biologists. Broadly, on its initial states.
the issue is whether the equilibrium state of a sound tissue is For tissues, such as the epithelium of the cucumber,
the result of communication between the célis it short or  evolving with mitosis only, inversion of the coupled rate
long rangedl or whether it can be explained solely by the equations for cell populatiof2] shows that the kernel of
local environment of a celfsuch as its topological charac- division can be deduced from the shape of the steady-state
teristicy. distribution. This establishes a link between the steady-state

distribution and the dynamics that generates it. This result is
confirmed by computer simulations and is used to predict the

*Electronic address: benoit@maxent.u-strasbg.fr mode of division in cucumbef3], cork, amnion[3], and
"Electronic address: tomaso@!|dfc.u-strashg.fr cultured Madin-Darby Canine-KidneyMDCK) epithelial
*Electronic address: helgo@maxent.u-strasbg.fr cells [4]. The predictions are in qualitative agreement with
SElectronic address: nick@Idfc.u-strasbg.fr the experimental data available.
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When both cell division and disappearance occur, as is the Il. RATE EQUATIONS

case in the human epidermis, the simulations confirm the In order to characterize statistically the cut of a biological

theoretical results obtained [B]. We analyze the evolution tissue whose cells divide and disappear, we used a local

of various systems in terms of the way cells divide and dis'mean-field model based on the topology of the cells. Each

appear. The results indicate that the ability of a real tissue tQq|| is associated to a polygdtopological cell whose num-
recover its sound steady state is explained by shapgser of sides equals the number of first neighbors of the bio-
dependent information stored in its cells. No additional in-jggjcal cell. The cut of the biological tissue is thus associated
formation is needed. to a connectivity graph of cell edges and three-fold vertices.
We describe the epithelial tissue as a topological froth angyo geometry or physical attributes such as vertex positions,
study the consequences. Physically, a topological froth anddge curvatures, cell areas, or internal pressures are taken
its evolution result from space-filling by cells, separated byinto account. The population of thé cells of such a cellular
interfaces which carry all or most of the elastic enefy  system is partitioned into subpopulationshf s-sided cells
This is indeed the case in a two-dimensional soap froth(3<s). The topological transformatior{glivision and disap-
where ann-sided cell shrinkgor expandsat a rate propor- pearancgof cells may produce a mix of the subpopulations.
tional to (6—n), the local, topological information stored in For instance, the symmetric division of a six-sided cell pro-
the cell (Von Neumann’s lal Von Neumann'’s law is the duces two five-sided daughter cells and increases by one the
generalization to the froth of Laplace’s law for an isolatednumber of sides of two neighbors of the dividing cell. Simi-
bubble (whereby the pressure difference inside and outsiddarly, the disappearance of a cell comes along with a modi-
the bubble, driving its evolution, is proportional to the sur- fication of the number of sides of some of its neighbors, thus
face’s tension and to its curvatyréndeed, it can be obtained mixing the cell subpopulations.
simply as the resultant of three interfaces with equal tension The steady state of each subpopulation has been studied
pulling on any one of tha vertices of the cell. The topologi- in [5], using a system of rate equations. For clarity and
cal description is therefore a direct consequence of the phygompletion, we recall that the variation of the subpopulation
ics of the froth. of s-sided cells is given by

dps 2
P kam<k>Dm<k>(—5ks+r<kﬂs>+E[Ms_ﬂk)—ms(k)]—ps]
k=3
s—3
+ 2 PiPa(KIDu(K)| —de=Mo(K)+ X Mo i(K)ai(k)+ps . @

ps=Ns/N is the probability that a cell belongs to the sub- ments[8,6] for structures in statistical equilibrium, is a very
popu|a‘[ion of s-sided cells. Changes qjs are due to(|) gOOd aSSUmpuon for SyStemS eVOIVIng with cell division

division of ans cell, (i) formation of ans-sided daughter
cell, (iii) affected neighbors that hagesides or 6—1) sides

before division,(iv) disappearance of amcell, (v) affected

neighbors that haves(-i) sides (- 1<i=<s—3) before dis-
appearance. In the steady statp,/dt=0.

The steady-state equatiorh5] depend on the follow-
ing: (@ Pn(k)Dy(k) and P4(k)D4(k), the conditional
probability that an existing-sided cell divides or disappears
per unit of time;(b) the division kernel3T'(k—s), condi-
tional probability that &-sided dividing cell has as-sided
daughteryc) a;j(k), the conditional probability that lrsided
detaching cell gives sides (-1<i<k—4) to one of its

neighbors;(d) the nearest-neighbor topological correlations

M(K) = psAxs, Where pcApcN? is the total number of
pairs of neighboring- andk-sided cells.

only. In[9], Ag is shown to depend linearly dnands, if no
constraints other than those imposed by filling the space at
random are imposed®g,=(s—6)o(k—6)+s+k—6. Here,
o<t is a structural parameter, which is negative in biologi-
cal tissues.

The second part of Eq1) is obtained forP (k) D (k)
=0. It governs the evolution of a system whose cells are
only allowed to detach. During mitosis, only two neighbors
gain one side. But when a cell detaches, several neighbors
(sometimes aJl can gain or lose sides. This effect is gov-
erned bya;(k), which has been computed in a mean-field
approximation in5] through the recursion relations

a_,(K)=[(k—3)a_,(k—1)+1]/k for k=4,

aj(k)=[(k—3)aj(k—1)+2a;_,(k—1)]/k @

This equation has two parts. The first part describes the

division mechanisnfi(i)—(iii )] and the second describes cell

disappearancgiv) and(v)]. If we forbid cell disappearance,

for k=i+4, i=0

P4(k)Dy4(k)=0, Eq.(1) becomes the rate equation of a sys-and the initial conditiona_,(3)=1. It is properly normal-

tem evolving with cell division(or fragmentatioponly. This

ized: 3;a;(k)=1. By definition, a;(k)=0 for i>k—4, k

equation, first introduced if2], has been further analyzed by =3. The sum rule&;ia;(k) =1—6/k insures that when a cell

Delannayet al. in [7]. They confirmed that the linear varia-
tion of My(k) on k, predicted by maximum entropy argu-

disappears, it removes six edges from the system, so that
(s)=6 is conserved.
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TABLE I. Comparison of the analytical solutions given[ifi with the solutions obtained numerically. To
obtain the last significant digip, is computed fok=<500.

Structure Method P4 Pe Mo o
S, Analytical [7] 0.217 72 0.12517 12.883
Numerical 0.217 716 0.125174 12.877 0.1173
S Analytical [7] 0.196 36 0.13358 8.166
Numerical 0.196 363 0.133 580 8.166 02 —0.0577

Equation(1) describes thus the interplay of two opposite  Once the stability of the numerical method has been veri-
phenomena: the creation of cells by mitosis and the disapfied, we solved Eq(l) for different values of the parameters
pearance of cells by detachment or death. When mitosi® (k) andI’(k—s). To explore the widest possible range of
dominates [ZpcPm(K)Dn(k)>Z,pPa(k)Dy(k)], the steady-state solutions, we chose a one-parameter-dependent
number of cells in the system increases, whereas it decreasesponential function foP (k) D,(k) =C exp(ak) (whereC
if detachment is preponderant. A steady number of cells i$s a constant of normalizatiopnP ,(3)=P,,(4)=0, and five
ensured when cells divide at the same rate on average as thdiyision kernels with different levels of symmetfgiven in
detach. the Appendiyx. We chose an exponential functional form for

Up to now, Eq.(1) has been studied in particular casesthe rate of division for two reasons(i) From the data given
[2,7,5. In the next section, we show that its first part can beby Lewis for the cucumber one can deduce that
solved numerically for almost any value of the parameters (k)D (k) =C exp(1.4) [2]. We supposed that other bio-
Pm(K)Dy(k) and I'(k—s). The properties of the steady- logical tissues had similar rate@i) This functional form is
state distributiorp, (especiallypg and the third momens) very convenient to explore the effect ofstrongly) increas-
classify cellular networks through their division kernel. So-ing or decreasing rate on the steady-state distribution.
lutions of the whole equation are then obtained from topo- For each kernel, we solved numerically the first part of
logical simulations. Eqg. (1). The parametew can range from-4 to 4, but it must

In general, the solution of Eq1) is the distributionpg, be constrained so that every solution respétis,=1 and
characterized by its moments, specifically=((s—(s))"), >sps=6 with the requirements defined above. Each set of
with (s") =3 ps" and(s)=6. The parameters are three sets,parameters yields a steady-state solution of a cellular system
the division kernell'(k—s), P (K)Dy(K), Pg4(k)Dy(k), evolving with cellular division.
and the structural parameter The numerical solutions, as a function of the parameters,
can be classified into different families. Two solutions are
members of the same family if they have the same division
kernel.

Consider a given family. Two different members of the

The steady state of a cellular structure evolving with di-family are characterized by differety,(k)Dy(k), i.e., by
vision only depends only on two sets of parametersthe way dividing cells are chosen. Whex,(k) D ,(K) is an
Pm(K)D(K) and I'(k—s), which define completely how increasing function ok, many-sided cells divide preferen-
cells divide. For given values of these parameters, we havéally and the associated distributiopg are narrow(small
solved numerically the first part of E€L) using the module ), with large ps (=3). By contrast, decreasing functions
HYBRD from the packag@iNPACK (retrieved fromNETLIB). Pm(K)Dn(K) yield very broad distributions, associated with
This code finds a zero of a systemmhonlinear functions largeu, and lowpg. A constant?(k) =1/N corresponds to
[here, the first part of Eq(1)] in n variables(herep,) by a  a random choice of the cells and is associated with broad
modification of the Powell hybrid method. This code wasdistributions(cf. solutionS;).
found to be very robust for the problem we tackled. How- We illustrate this behavior in Figs. 1 and 2 for the family
ever, to avoid as much as possible numerical efanphysi-  defined by a fully symmetric kernel.
cal distribution$, we checked for each solution obtained that Figures 1 and 2 indicates that the stationary distributions
0spss<1, =,ps=1, and = ;sp,=6. All the solutions pre- within the same family are usefully characterizedpyyand
sented here satisfy these two conditions within tand are  the second momeni, or the third momentuz=23¢(s
zeros of the first part of Eq1) with an error smaller than —(s))3ps. As usual,(s)=6 is fixed. Bothu, and u; are
10735, decreasing monotonically with increasimg, or with in-

Furthermore, to test the reliability and the precision of thecreasing «, the parameter of the rate of division
method, we compared the numerical solutions with the anaP,(k)D,(k)=C exp(ak). Accordingly, ps decreases mono-
lytical ones, in the two cases where analytical solutions existonically with decreasingy. This is not the case fgos and
[7], namely for a flat kernel'(k—s)=2/(k—1) (3sssk p;.
+1), when dividing cells are selected randomly amadwhg It has been inferred by the maximum entropy argument
cells[P(k)D(k)=1/N, caseS,] and when dividing cells that the relation betweem, and pg is universal in two-
are randomly selected by first choosing one edge at randomimensional froths in statistical equilibrium fqug>0.33
[P (K)D (k) =k/6N, caseS,]. Table | illustrates the reli- [10]. This universality had been suggested empirically earlier
ability of the numerical method. [11]. Thus, different distributions with the sammg>0.33

Ill. STEADY-STATE SOLUTIONS
UNDER DIVISION ONLY
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FIG. 1. Division only. The distributiom, is the solution of the
first part of Eq.(1) for a fully symmetric division kernel and
Pm(K)D (k) =C exp(k) for —4<a<4. For low values ofr, the
distribution is very broadg,>30), but becomes very narrow as
approaches 4y,< %). Mo iNncreases an@g decreases monotoni-
cally asa decreases. By contragt; andp; are not monotonic i

have the same second moment. As Fig. 3 illustrates, they a

distinguished by the third momenpt;, which measures the
asymmetry of the distribution abo(s)= 6, together with its

width. Thus, to distinguish between different families, sta-

tionary distributions should be characterizedgyyand w3.
Precisely, if the functional form ofP,(k)D(k) is
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FIG. 3. Each curve is a representatiguns(as a function ofpg)
of the distributions solution of Eq.l) (division only whenT (k
—s) is fixed andP,(k)D,(k)=C exp(k), a e[ —4,4]. Five dif-
Fgrent division kernels are representgbm left to right: I'; to
I's, see the Appendjx The most asymmetric kernel'() corre-
sponds to the leftmost curve. As the kernel becomes more symmet-
ric, its associated curve moves to the right. The rightmost curve
corresponds to the fully symmetric kernel's). This family-
specific relation betweep,; and pg is to be contrasted with the

1
0.15

known, there is a one-to-one map between the two mostklation betweeru, and pg (Fig. 2), which is the same for every

relevant parameters of the stationary distributign;,{3)
and the parameters governing the dynamics of the cells:

tion is indicated in Fig. 3: for each familgeach type of
division kerne), there is a relation between; and pg, pa-

family (i.e., independent of the division kerhel

the
division kernel and the rate of cell division. This classifica-

cell divides. We have thus inverted the first part of the sys-
tem of Eq.(1). From any distribution resulting from cell
division only, we obtain the dynamics that drove the froth to

rametrized bye, i.e., by the rate of division. Each curve of its steady state. Other functional forms for the rate of divi-
Fig. 3 represents this relation, for the five different familiession give qualitative results identical to the ones plotted in
whose division kernel is given in the Appendix. The curvesFig. 3. The overall position and shape of the curves may
are nonintersecting. Figure 3 can be regarded as a map of tiehange slightly. Comparison and prediction for real tissues
dynamics. To each pointpg,u3) corresponds a division are given in Sec. V.

kernel and a value of (i.e., the probability that &-sided

IV. SIMULATIONS

30
When Pgy(k)D4(k) =0, the numerical resolution of Eq.
(1) is robust and easy. However, when the full equation is

% considered, the code used becomes much more unstable, and
even if some solutions can be obtain&d, analysis similar

20 to the one done in the previous sections is impossible. For
most of the parameters we tried, the solver was not able to

i, 159 find a physical solution, with probabilitiesOp,<1 and a
mean number of sides per cell equal to 6. Topological simu-
lations are not subject to the same drawbacks. The condi-

10 tional probabilities that &-cell divides or disappears are

. chosen arbitrarily, and the system is left to evolve.

5 A simulation starts with the generation of a hexagonal
cellular network ofN cells with periodic boundary condi-
tions (typically, N=10%). The network can be taken as initial

%1 0.2 0.3 0.4 05 0.6 structure, or it can be disordered by performingN301

Ps
FIG. 2. Division only. Plot of the second moment of the distri-
butions solution of the first part of Eql) as a function ofpg, for
a fully symmetric division kernel, an®,(k)D,(k) =C exp(ak).
Small u, are associated with large values@f pg decreases as
decreasegsee Fig. 1 The full dots correspond thzpé:llzm
inferred to be universal for 0.33pg<<0.66[10].

transformationgexchange of neighbor®n edges chosen at
random. If aT1 produces a two-sided cell or a cell sharing
an edge with itself, it is refused. Throughout the simulation,
the cellular network is purely topological, consisting of a
connectivity graph of cell edges and threefold vertices. Only
the graph is retained during the simulations; there are no
geometric or physical attributes such as vertex positions,
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TABLE Il. The conditional probabilities per move of divisio®(m|k), of a k-sided cell, for different
modesa, b, ¢, andd of simulation.

Kk 3 4 5 6 7 8 9 10 >10
P(m|k)? 1 1 1 0 0 0 0 0 0
P(m|k)P 0 0 0 0 1 1 1 1 1
P(ml|k)¢ 0 0 0 0.01 0.02 0.05 0.1 0.2 1
P(m|k)¢ 0 0 0.01 0.05 0.4 1 1 1 1
edge curvatures, cell areas, or internal pressures. We computed the integral rate of grow{t), defined as

Two types of dynamics have been performed: cell divi-the ratio of the total number of divisions performed to the
sion only and cell division together with cell disappearancetotal number of divisions attempted:
In both cases, the simulation consists of a series of succes- N(t)— N(O)
sive moves numbered 0,1,2,3. . Amove is defined as fol- R(t)= —
lows.

A cell is chosen at random. It h&sneighbors, say(i) In )
the case of division only, the cell is divided symmetrically Theé average increase of cells per mowN(t)/dt
with the probability P(m|k) and left unchanged with the =2 p()P(mlK) is related toR(t) through Eq.(3) by

()

probability 1— P(m|k). (ii) In the case of division and dis- dN(t)  dIN(t)—N(O d
appearance, if the move number is even, the cell is divided® p,(t)P(ml|k)= () = [N® —N(0)] =—[tR(1)].
symmetrically with the probabilityP(m|k) and left un- k dt dt dt
changed with the probability -2 P(m|k). If the move num- (4)

ber is odd, the cell is made to disappear with the probability . :
P(d|k) and left unchanged with the probability-1P(d|k). " &ll modesR(t) reaches an asymptotic valé®, (Fig. 4),
A move is unsuccessful if the cell chosen is left un_mdependent of the time. This implies, through &4), that

; : S p(HP(mlk)=R.,, which strongly suggests, since
changed, successful otherwise. The disappearance lof a <kFPk\*/ "\ . o=
sided cell is obtained with a succession &f<3) T1 per- P(m|k_) is independent of the tlme,_that the d_|str|butnn,[(t)
formed on its edges chosen randomly, followed By2alf a IS Stationary. Thus, wheR(t) =R., itis very likely that the
T1 is not possible, as is the case wHen the edge chosen system remains statistically unchanged, and that its second
also that of a three-sided neighbor,T2 is performed in- moment is constant as observed in Fig. 5.

stead. As a consequence, the disappearance of one cell maé/W'thlml":1 famllly, Rxogepends on the vglugsh 951m|k). In
induce the disappearance of several cells. géneral, low values oR,, are associated with the more or-

In all simulations, unless specifically mentioned, cells di-4€réd structures. We found thgt.=0.73, 0.19, 0.05, and

vide with a symmetric kernel. The choice of the neighborsO-01 for systemsi—d, respectively(Fig. 4).

affected by the division is random, as is the choice of the Similarly, the number of moves necessary f(t) to
daughter cell with the extra edge whirs odd. reach its asymptotic valuR., depends orP(m|k). But it

The only parameters of the simulations are the two distri-2/S0 depends on the size and the disorder of the initial sys-
butionsP(m|k) and P(d|k), which are unrelated. They are t€m- For each mode—d, we started the smulat;on from
equivalent to the parameteRs,(k)D (k) and P4(k)D4(K), two disordered initial networks of 100 cells and*1€ells,

respectively, defined in Eq1). In the simulations, the time 'eSPectively. When small systems are considefd, is
is measured by the total number of moves attemjpsent- reached after  10* divisions, that is, 200 times the size of

cessful or not the initial network. The evolution of large systermbl(t
=0)=10%] indicates thaR(t) converges to its limit faster
for systems with smalR,, (Fig. 4). Systemd reachedR,,
after only 7x 10* divisions while systena is still far from

We investigated the evolution of systems evolving withR,, after 25x 10* divisions. We expect the rate of systems
division only for four different choice¢a,b,c,d of P(m|k),  andb to reach its asymptotic value after 20Q0* divisions,
given in Table II. that is, 200 times the size of the initial network.

In order to compare the results of the simulations with the The steady state reached by a system evolving with divi-
solutions of the first part of Eq1) (Sec. 1), P(m|k) should  sion only is independent of the initial disorder of the froth.
have been taken as proportional to edg( If we do so, We have obtained statistically identical froths starting from
sinceP(m|k)<1 for all k, mostP(m|k) are close to 0, and the hexagonal latticeu,=0) or from a very disordered net-
the time needed to reach equilibrium in the simulations iswork with u,>13 (Fig. 5). In the first case, the system
prohibitive. This is why the compromise(m|k)=1 for k  evolves from order to disorder, whereas in the second case it
>kgy and has been chosen. is the opposite. Division is thus a local topological transfor-

In mode a, only cells with a small number of side& ( mation, which, if performed with given rules, leads any cel-
<5) divide, and we anticipate a very disordered steady statdular system into a steady distribution whatever its initial
By contrast, in mode b, only cells with a large number of state.
sides k=7) divide. Modesc and d have been chosen to Consider a system that is driven away from its steady
reproduce the distributions of natural structures. state by some external disturbaripéysical or biological If

A. Cellular division
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FIG. 6. Simulations with division and disappearance. Distribu-
tions of the number of sides for the modes-f). Circles: modes;

from top to bottom. Plain lines: initial disordered structure of 100 Squares: modé crosses: mode; and stars: modé. The param-

cells. Dotted lines: initial disordered structures of* idlls. We
have plotted the rate of division as a function of the number o
divisions instead of the timéghumber of movesbecause only suc-
cessful movegdivisiong make the system evolve towards station-
arity. A stationary distribution is reached well befdrét)=R., :
Using py(t) = pi in Eq. (4), one obtainR(t) =R, + B/t, whereB is

a constant related to the initial size of the system ar@(im|k). In
terms of the number of divisiondNg;,), the distribution is station-
ary whenR(Ng,)=R.(1+1[Ng/B—1]). Thus, the Ng,) scale
should be rescaled bs.

14
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H,

10
number of divisions

FIG. 5. Evolution of the second moment of two systems as
divisions are performed. Initial structures havé tells. If the ini-
tial network is a hexagonal lattideaising curvesu,(t=0)=0],
the system evolves towards a disordered state. If the initial networ
is highly disordereddescending curvesi,(t=0)=13.2], the sys-

eters defining each mode are given in Table Il
f

the information contained in the cells pertaining to the way
they divide[i.e., P(m|k) and I'(k—s)] is unchanged, the
system will self-regulate to return to its original steady state.

B. Division and detachment

We analyzed the disorder and the temporal evolution of
four systemge, f, g, andh) for which there is no systematic
proliferation of cells or no catastrophic disappearance of all
the cells over a long time. Typically, for all times between 0
andt=N(0)?, N(t) is bounded betweeN(0)/5 and 3N(0).

The different choices of the parameters are given in Table
Il

In modese andf, few-sided cells divide and many-sided
cells detach, whereas in modgsand h, many-sided cells
divide and few-sided cells detach.

The distributions obtained in modesand f have broad
unimodal distributions centered k& 4 (Fig. 6) and highu.,
(u5>40, Mf2~21). The distributions are stationafwithin
statistical fluctuations with a large tail, which induce large
fluctuations ofu, (Fig. 7).

Conversely, distributions obtained with modgsand h
have narrow unimodal distribution&ig. 6) centered on 6,
with small u, (u3=1.42, u5=0.5). Those systems are
highly ordered and statistically similar to natural systems
(see Sec. Y Their steady-state distributions fluctuate much
less than those of systemsandf (Fig. 7).

For system®—h, we computedR™(t) [RY(t)], the inte-

gral rate of division(disappearangedefined as the ratio of
the total number of divisior{disappearangeperformed to
|fhe total number of divisiofdisappearangattempted. As in

tem evolves towards a less disordered state. The final iiztes- the case of d_IVISlon only, the two rates can be expressed in
tical equilibrium) of each mode of simulation is independent of the terms ofpy(t):
initial configuration of the network. The system associated to the

two upper curves is the syste® of Sec. lll. Cells, chosen by first

selecting an edge at random, divide with a flat division kernel. The

cells of the system associated to the two lower curves divide with

moded (symmetric division: many-sided cells are more likely to

divide than few-sided cells; cf. Table)ll

Wm=§pmwmw»

RIt) =2 py(t)P(d|K).

k
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TABLE Ill. The conditional probabilities per move of divisioR,(m|k), and disappearanc®(d|k), of
a k-sided cell, for different modes, f, g, andh of simulation. Attempted divisionpwith P(d|k)=0] and
attempted disappearandegith P(m|k) =0] are alternated.

k 3 4 5 6 7 8 9 10 >10
P(m|k)® 1 1 0 0 0 0 0 0 0
P(d|k)® 0 0 0.305 1 1 1 1 1 1
P(m|k)f 1 0.3 0.2 0.1 0 0 0 0 0
P(d|k)f 0 0 0 0.09 0.295 0.7 1 1 1
P(mlk)? 0 0 0.04 0.12 0.16 0.4 0.5 1 1
P(d|k)9 1 0.8 0.2 0.05 0.011 0 0 0 0
P(mlk)" 0.05 0 0 0 0.05 0.5 0.95 1 1
P(d|k)" 1 0.515 0.069 0 0 0 0.069 0.515 1

For modes—h, R™(t) andRY(t) reach an asymptotic value Long-range fluctuations of the number of cells introduce a
(R™ andRY, respectively, independent of the timgFig. 8.  variation of the size of the system by a factor of 5. Conse-
This strongly suggests that the distribution becomes statiorguently, either the average surface of a cell or the area of the
ary, pu(t)=pi. For all these modesR™(t)=RY(t), even substrate should be flexible. Furthermore, as in the case of
though the number of cells is not increasing overall. This isdivision only, the evolution of systems whose cells divide
because the disappearance of a cell may induce the disapnrd disappear is fully determined by the topological rules
pearance of some of its three-sided neighbors. Howevegiven for division and disappearance. It is independent of the
modesg and h have a very narrow distribution with hardly Ssize or the disorder of the initial system.

any three-sided cells, arf@"=RY to a very good approxi-
mation.

The temporal evolution of systengs-h is characterized . . . : .
by periods of cell gain alternating with periods of cell loss. '.A‘S m_ent|oned in the Introduction, the dynamics of bio-
This fluctuating behavior is found to have the same erratiéo_glcal tissues forme_d from cqnflqent cells can be modeled
characteristics, whatever time scale is considéFegl 9). At with 2D fr oth§ e\{olvmg with divisions qnd/or de'ta'lc'hmt.ents.

a given time of its evolution, a system can be simultaneousl| ome epithelial tissues evolve solely with cell .OI'V'S'(@@"
in a different trend according to the scale at which we look. helium of the cucumb_er wht_areas_t_he dynamics of more
For example, on a short-range and middle-range time scale,%?mplex ones{mammaha_n epidermjsinvolve algo cell dis-
system may lose cells even though it is growing over a |ong§tppearance. In th_|s section, we use t.he t.echmque developed
range time scale of growtfstar in Fig. 9. It is impossible to N Sec. Il to predict the way cells divide in natural systems
predict, within a given time scale, whether the system will&"d compare the results with the data available. We then use
eventually grow or die away. the _S|mulat|ons of Sec. IV to produce systems statlstlca_lly
equivalent to natural ones. We conclude that topological in-

V. COMPARISON WITH NATURAL SYSTEMS

formation limited to the cell suffices to mimic the evolution
55 of a biological tissue.
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FIG. 7. Fluctuations of the second moment of mode# (top 0.0 ‘ . ‘ ‘
to bottom) as divisions and disappearances are performed. The two To 1 2 3 4 5x10°
highly disordered modes andf evolve with large fluctuations of number of successful moves

their second moment. By contrast, the second moment of the less FIG. 8. Evolution of the rates of divisiongatio of the number
disordered modeg and h is constant(within statistical fluctua- of divisions attempted to the number of divisions perforinaad
tions). All distributions are stationary, but divisions of cells with disappearancéatio of the number of disappearances attempted to
many sides induce huge fluctuationsin in modese andf, where  the number of disappearances perforjrfed modese, long-dashed;
the distribution has a larger tail. f, dashedp, dotted; anch, solid line. For all modesR}= RY.
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A. Division only Although the distributions ofii) and (iii) have different

We analyzed the distributions of four different biological (Ps.#3), they are almost on the same cupg=f(ps) (Fig.
tissues evolving with division only: the epithelium of a 100 10). This suggests that they have very similar kernels of
mm cucumbef3] (i), the cork(ii), human amniod3] (iii), division. The cells of the cork and human amnion thus divide
and cultured MDCK[4] (iv). with the same type of symmetry. The two systems differ by

We computed the third moment of each experimental disthe conditional probability that their cells divide. We found
tribution; their labels are given in bracketpg(usz). The that  Pr(k)Dp(k)~exp(l.X) and Py (k)Dp (k)
cucumber(0.474,0.08is characterized by a very narrow dis- ~exp(1.3%). Thus, many-sided cells divide with a higher
tribution p, centered on 6 and a smalk;. The cork probability in the human amnion than in the cork.
(0.3784,0.179has a wider distribution centered on 6 and a The cucumber’s cells belong to a different family. They
fairly high w3, denoting an asymmetrical distribution. The divide more symmetrically with a conditional probability
human amnior(0.397,0.06 has the lowesj.; and thus the Pp(k)Di,(k)~exp(1.&4). These observations are in very
most symmetrical distribution. As for the cultured MDCK good agreement with the data given by Lej8§ The family
(0.364,0.67% its steady-state distribution is centered on 6,0f the cultured MDCK is close to that of the cucumber, but
very narrow and fairly asymmetric:ps=0.310 andp,  Wwith a division kernel that is almost fully symmetric, as ob-
=0.184. served experimentally. We found thaP;;(k)D} (k)

We then reported each couplgg( us) in Fig. 10, a mag- =~exp(0.%)
nification of Fig. 3, and deduced for each tissue the values of The values of the parameters of each system, approxi-
the parameter?(m|k), and I'(k—s), characterizing the mated from Fig. 10, can be computed with more precision by

way cells divide. solving directly the first part of Eq(l). They can then be
21500 T T 22000 T v T
\/\/\A 21000
21000 |
2 2
: R WA
k] ks
= 20500 F 4 -
[ [
'E 'g 19000 |
: 2 V\
20000
18000 J
19500 . N 17000 L N
1.250 1.255 1.260 1.265x10 122 1.24 1.26 t1.28 1.30 1.32x10
number of successful moves number of moves
T T T T T T T T T
60000 - .
0
8
w 40000 - s
(o]
-
[}
o)
e
3 .
c
20000 A ‘ 4
o i t n 1 " I L 1 1 1 L
0 2 4 6 8 10 12x10°

number of successful moves

FIG. 9. Evolution of the system as divisions and detachments are perfqmmeteh). Three time scales are represented, increasing
clockwise from top left. A star represents the number of d@B337 of the system after 12 53410* moves. The star illustrates the fact
that the system can appear in different trefdicreasing, stationary, or increasing number of reltgen viewed from different scales. The
thick line on the abscissa marks the number of successful moves represented in the preceding figure.
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compared to the experimental data and the numerical solu-
tion. The concordance between the three distributions is very
good.

i The evolution of the simulated system is very sensitive to
the values ofP(m|k) andP(d|k) for 4<k=8. For example,
increasingP(d|4) from 0.515 to 0.516 yields a system that
dies away after 868 10° moves. The same result is obtained
TH after 717 10° moves if P(m|8) is changed from 0.500 to
0.499.

1 VI. CONCLUSIONS

We have studied the evolution of epithelial tissues formed
from confluent cells using 2D topological foams. Two types
of tissues were analyzed: those evolving with cell divisions

. . . . . s s only, such as the cucumis epithelia, the cork, or the amnion,
020 025 030 035 040 045 050 055 and those evolving with both cell divisions and cell disap-
Ps pearances, such as the basement membrane, the innermost

FIG. 10. The dynamic mappg,us) of Fig. 3, enlarged, for the  layer of the human epidermis. The tissues were assimilated
four families of division kernels, defined in the Appendix, wdh  to a planar graph of cell edges and threefold vertices: a 2D
=1, 0.5, 0.13, and 0 from left to right. Points represent natural data§0p0|ogica| froth.

*, cucumber(0.474,0.08 [3]; +, human amnior(0.397,0.06 [3]; The rate equation governing the variation of the number
X, cork (0.3784,0.178F o, MDCK (statistics computed from pic-  of s.sided cells of a froth evolving with divisions only has
tures of MDCK cells, given by Wegener, and cultured a34h).  peen solved numerically for a variety of division kernels and
Cell§ in the co_rk and human amnion divide similarly, less SYM-2 wide range ofP,(k)D,(k), the conditional probability
metr".:a"y th.an n Cucumber. e.p'the“um' The cultured MDCK cells 1hat ak-sided cell divides per unit of time. We classified the
are highly disordered, yet divide almost perfectly symmetrically. solutions in families containing systems with the same divi-
sion kernel. Each solution is characterizedibyandpg. For
each family, we obtained a continuous curng(ps). The
curves for different families do not intersect. The relation
m3(pg) is therefore characteristic of the family. If one knows
the third moment of a distributiopg and the probability that

As shown in[5], 2D froths can be used to model realisti- a six-sided cell exists, one can deduce the symmetry of the
cally the renewal of mammalian epidermal tissues. Such tisdivision kernel and the conditional probability per unit of
sues have a layered structure that can be regarded as a fldithe, P,(k) D (K), that ak-sided cell divides. From the sta-
of cells filling at random the space between the dermis antionary distribution, we can infer the dynamics of cell divi-
the outer surfacéhorny layey. The renewal of epidermal sion. We used this technique to predict the symmetry of the
tissues depends on the dynamics of their innermost one-celtlivision kernel and?,,(k) D (k) for the epithelia of the cu-
deep layer—the basement layer—which is the only placeumis, the cork, the human amnions, and the cultured
where cells divide. The cells of the basement layer can eithelDCK. The predictions are in very good agreement with the
divide or detach to ascend in the upper layers. The set adlata available for the cucumbs].
attachments of these cells on the dermis is very similar to a We have performed topological simulations of systems
2D froth evolving with cell divisions and cell disappear- evolving with divisions only and with divisions and detach-
ances. ments. When only divisions are performed, we showed that

In [5], it was found that equations 1 admitted only onethe systems evolve toward a steady state whatever initial
solution that fulfilled the steady-state constraint: froth is chosen. The convergence is very fast when the sys-
kPP m(K)D (k) ==, pkP4(k)D4(k). This solution is asso- tems converge to a froth with a small,, but can be slower
ciated to the parameter®,(k)Dn(k)=(5.11-k)® and if u, is larger. We were able to produce steady-state froths

used to perform(time-consuming topological simulations
with the same characteristics as the biological tissues.

B. The human epidermis

P4(K)Dg4(k) = (7.01— k)8, with a very different amount of disorder from,<0.45 to
We simulated a tissue evolving with parameters reproducg.,>30.
ing those of the numerical solution. This system is mbaé When both divisions and detachments are performed, the

Sec. IV. The distribution obtained is given in Table IV and is evolution of the system is a mixture of two competing

TABLE V. Distributions obtained with the simulation compared to the experimental data and the nu-
merical solution.

k 3 4 5 6 7 8 =9
px (simulation 0 0.006 0.214 0.571 0.194 0.014 0
px (experimenk 0 0.012 0.208 0.566 0.194 0.020 0
px (theory 0 0.002 0.218 0.564 0.199 0.007 0
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mechanisms: gain of cells and loss of cells. We analyzed One of the main parameters controlling the topological
the evolution of systems in statistical equilibrium, for which, division of a cell is the symmetry with which it divides. For
on average, the gain of cells compensates the loss of cellgistance, a six-sided cell may divide symmetrically in two
When the systems are highly disordered, their second mdive-sided daughters, more asymmetrically into a six- and a
ment exhibits large fluctuations. When they have small  four-sided daughter, or fully asymmetrically into a three- and
the fluctuations are much smaller. In all cases, the distribua seven-sided cell.

tions are stationary after some time and within statistical In our model, the symmetry of the division is controlled
fluctuations. The temporal evolution of the systems over @y the kernel of divisiorsI'(k—s), introduced in Sec. Il. It
long time is characterized by a scale-invariant evolution ofis the conditional probability that a daughter cell produced
their number of celldN(t). Over a long timeN(t) can in- by the division of an existing dividing-sided cell hass
crease or decrease by a factor of 5. We showed that th&des. For symmetrid’, we expect cellular systems whose
general evolution of systems evolving with division and de-dynamics include cellular division to evolve toward a steady-
tachment is independent of the initial disorder of the frothstate characterized by narrower distributions and smaljer
and of its size. The information contained R(m|k) and  Conversely, asymmetriE are expected to yield more disor-
P(d|k) andT'(k—s) thus determines the eventual statisticalganized systems.

state of the system. I'(k—s) is constrained by three relatiof3:
We simulated the evolution of the innermost layer of the
epidermis, the basement membrane. The distribution ob- I'(k—s)=I'(k—k+4-5s), (A1)

tained by simulation is in very good agreement with experi-
mental data and with the analytic solution.

The main conclusion of this work is that purely topologi- > T(k—s)=2, (A2)
cal information limited to the cell suffices to explain the s
stability and the evolution of biological tissues evolving with
division and/or detachment. No additional informati@pe- 2 SI'(k—s)=k-+4. (A3)
cific cell-cell correlation or long-range signas needed. S

The approach we developed can be applied to all types of
tissues made of confluent cells evolving through divisionif a k-sided cell divides into as-sided daughter cell, it also
and/or disappearance, regardless of the species considergioduces a K+4—s)-sided daughter[relation (A1)].
For such tissues, the predictions we made in Secs. Il and ¥'(k—s) is normalized to 2 with relatioiA2) [the division
give qualitative information on the cell dynamics. Our pre-kernel3I'(k—s) is normalized to 1. Relation(A3) is a con-
dictions are exact when the functional forms of the paramsequence of the symmetry b{k—s). We studied five dif-
eters of division are known. These functional forms can béerent types of division kernell(j, i=1,...,5) associated
deduced directly or indirectly from experiments, as has beeith increasing degrees of symmetry iaisicreases.
done in[2]. (i) 'y is the most asymmetric kernel. Each dividikg

We have shown that purely topological information on ansided cell produces a three- and la+(1)-sided daughter.
individual cell determines its fate, and suffices to explain theThis kernel yields the most disordered structutbighest
stability and evolution of biological tissues. Specifically, in /~L2)a similar to the fractal patterns that one obtains by sys-
the mammal’s epidermis, basal cells whose 2D attachmengmatic vertex decoration with a three-sided ¢&R].
on the basement membrane has five sides or fewer detach, (i) T', is a broad, flat kernel. T',(k—s)=2/(k—1)
while 2D cells with seven sides or more divide, as Symmetri-(‘?,gsg k+ 1) A k-sided cell is fragmented into two cells by
cally as possible. an edge which bisects two different sides chosen at random
among itsk sides.(The two sides must be different to avoid
two-sided cells.

(iii) For I';=3, we used the following functional form,
Here, we define the division kerndi§k—s) introduced parametrized with the numbes: g;=1, g,=0.5,g5=0.

APPENDIX

in Sec. Il and used to obtain Figs. 3 and 10. For 3<k=38,

kis 3 4 5 6 7 8 >8
3 1 1 0 0 0 0 0
4 Oi 2_29i gi 0 0 0 0
6 0i/8 30;/8 2—0; 30i/8 0i/8 0 0
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For k=9, if k is even, 30,
Ti[k—(k+1)/2+3]=T[k—(k—1)/2+1]= —,
Ti[k—(k+4)/2]=2—g;, ilk—(k+1) 1=T[k—(k—1) 1=

Fi[k—)(k+4)/2—1]:Fi[k—>(k+4)/2+l]:%, g-
[i[k—(k+1)/2+4]=T[k—(k—1)/2]= El

I';=0 otherwise.

I‘i[k—>(k+4)/2—3]=1"i[k—>(k+4)/2+3]=%3. I's is the most symmetric kernel. AkE 2n)-sided cell

divides into two i+ 2)-sided cells and ak=2n+1)-sided

If k=9 is odd. cell divides into daughter cells with+3 andn+2 sides. It

corresponds to the rightmost curve of Fig. 37, is slightly

. _ B .9 asymmetric. '3, more asymmetric thah,, is qualitatively
Titk=(k+ )2+ 2]=Ti[k—(k=1)l2+2]=1 4’ halfway betweerd", andT's.
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