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Change of the nature of the multicritical point in magnetically induced
splay-twist Fréedericksz transitions
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The phase diagram in the vicinity of the Fre´edericksz transition from the uniform to the deformed homo-
geneous or periodic states of a nematic slab under a magnetic field with rigid boundary conditions was
qualitatively calculated in the mean-field approximation for intermediate geometries between the splay and
twist Fréedericksz transition geometries. It was found that the multicritical point where the uniform state, the
homogeneous deformed, and the periodic deformed states meet is of the Lifshitz type only for a limited range
of the Frank elastic constants ratioK2 /K1 . @S1063-651X~98!09507-5#

PACS number~s!: 61.30.Gd, 64.70.Md
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Lonberg and Meyer@1# were the first to report the Freed
ericksz transition in the splay geometry where the usual
mogeneous splay state is replaced by a periodic disto
splay-twist state for a suitable range of theK2 /K1 elastic
constants ratio. Since then, several authors have studied
subject, extending the analysis to the other magnetic fi
director geometries, considering the simultaneous prese
of a magnetic and electric field and considering also the
fect of soft boundary conditions@2–23#. Intermediate geom-
etries were also studied by Kini@2#.

In this work we have investigated the phase diagrams n
the Fréedericksz transition from the uniform to the deform
homogeneous or periodic states of a nematic with a pos
diamagnetic susceptibility anisotropy, contained in betwe
two parallel plates under a magnetic field with rigid plan
boundary conditions for intermediate magnetic field-direc
geometries in between the splay and twist Fre´edericksz tran-
sition geometries.

The calculated phase diagrams show the existence
three different nematic director structures, separated by t
sition lines of first or second order that meet at a multicriti
point as found in the pure splay and twist geometries@11–
13,15#. The control parameters in the phase diagrams
tained are the magnetic field strength and either the ela
constant ratioK2 /K1 or the magnetic field orientation.

To determine the uniform to either periodic or homog
neous distorted states transition lines, we have perform
linear stability analysis of the uniform state. We calculat
the Frank elastic free energy plus the magnetic field con
bution on the unit of volume, keeping terms up to four
order in the order parameters, which are the coefficient
the Fourier series expansion considered for the angles
parametrize the nematic director. The limits of the stabi
region for the uniform state were then calculated. To de
mine the coexistence line, the director field in the distor
states was obtained by minimization of the total free ene
per unit volume and the free energy minima correspondin
the homogeneous and periodic distorted states comp
yielding the Maxwell set.

The magnetic field-director geometry studied is shown
Fig. 1. The pure splay and twist cases correspond toc50
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andc5p/2, respectively.
The magnetic field is given by

Hx50,

Hy5H sin~c!, ~1!

Hz5H cos~c!.

The director considered is

nx5cos~u!cos~f!,

ny5cos~u!sin~f!, ~2!

nz5sin~u!.

The Ansatzconsidered is

FIG. 1. Magnetic field-nematic director Fre´edericksz transition
geometry analyzed in this study. The plates are atz56 l /2.
626 © 1998 The American Physical Society
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u5@u001u01 cos~qyy/ l !#cos~pz/ l !

1u11 sin~qyy/ l !sin~2pz/ l !, ~3a!

f5f11 sin~qyy/ l !sin~2pz/ l !

1@f001f01 cos~qyy/ l !#cos~pz/ l !. ~3b!

The Ansatzis appropriate to describe the director for sm
deformations by including the lowest-order Fourier ser
terms for they andz dependence of the parametrizing ang
of the director compatible with thez boundary conditions
and allowing for the existence of a periodic distortion in t
y direction. The possibility of periodic distortions in thex
direction and in arbitrary directions in thex,y plane were
also investigated but were not favored. The order parame
are u00, u01, u11, f00, f01, andf11. The value ofqy is
also determined in the minimization process. The Frank f
energy plus the magnetic contribution per unit of volume
@24#

F5
1

lly
E

ly

dyE
2 l /2

l /2

dz
1

2
$K1~“•nW !21K2~nW •“3nW !2

1K3~nW 3¹3nW !22xa~n•H !2%. ~4!

The reduced magnetic field considered is

h5
l

p S xa

K2
D 1/2

H. ~5!

In Fig. 2 is presented a typical phase diagram obtained
r[K2 /K150.2. The value ofh at the multicritical point
(hc) as a function ofr andcc is given by

hc5S 1

cos2~cc!~r 21!11D 1/2

~6!

FIG. 2. Phase diagram for the splay-twist mixed geometry
r 50.2. The dashed line represents continuous transitions and
full line is a coexistence line obtained withK35K1 . U, uniform
state;P, periodic distorted state; HD, homogeneous distorted st
c, multicritical point.
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in agreement with the result of Deuling@25#. For cc no
simple analytical expression can be given, it is found as
value ofc for which the threshold fields for the onset of th
periodic and aperiodic distorted states are equal. Its dep
dence onr is plotted in Fig. 3 where the two branches of th
(r ,cc) curve are isomorphic for the transformatio
(r ,cc)↔(1/r ,p/22cc) as first noticed by Kini@2#. Figure 4
shows an enlargement of Fig. 3 for ther ,0.3 region, where
we will concentrate our study.

The behavior of the multicritical point can be understo
from Fig. 5, where the selected value ofqy (qys), found by
minimizing the transition magnetic field, is plotted as a fun
tion of c andr . For r in betweenr T andr c'0.298 the wave
vectorqys over the transition line uniform-periodic distorte
goes to zero continuously at the multicritical point making

r
he

e;

FIG. 3. Multicritical point locus in thec versusr plane for the
splay-twist mixed geometry.T denotes the point where the natu
of the multicritical point changes.

FIG. 4. Enlargement of Fig. 3 forr ,0.3.
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628 PRE 58CASQUILHO, GONÇALVES, AND FIGUEIRINHAS
a Lifshitz point@11–13,26#. For r ,r T the multicritical point
is no longer a Lifshitz point and becomes a bicritical poi
Below the pointT the wave vectorqys changes abruptly
when crossing the line of critical points. The intersection
the surfaceqys(c,r ) with the planeqys50 gives the line
shown in Fig. 3. The coordinates and the nature of the p
T can also be obtained using a mean-field phase trans
analogy, whereqy now plays the role of an order paramet
and the role of a potential is played by the reduced magn
field squaredhr

2(qy). We first writehr
2(qy) in the form of a

power series inqy up to the sixth order:

hr
2~qy![

hp
2~qy!2ho

2

ho
2 5aqy

21bqy
41cqy

6, ~7!

wherea, b, andc are long functions ofc andr , andhp(qy)
and ho are the threshold fields for the onset of the perio
and aperiodic distorted states. Sincec.0 for the interesting
range of the control parameters, this expression is of
form of a classical~mean-field! tricritical model @27#. The
point T is then simply the tricritical point and its coordinate
in the (c,r ) plane can then be obtained from the resolut
of the system:

a50, ~8a!

b50, ~8b!

yielding @cT55.504 98...(°), r T50.264 77...# which is the
exact result obtainable from the solution of the system
equations ]h2(qy)/](qy

2)50, ]2h2(qy)/](qy
2)250. In the

light of this analogy, the surface shown in Fig. 5 is just t
analog of an equation of state in a classical tricritical mo
of phase transitions.

As in the tricritical model, we found that the jump inqys
from zero to a finite value along the line of first-order tra
sitions decreases continuously to reach the zero value a
tricritical point T. The numerical value of the jump in
qys(c,r ) along that line shows that it is proportional
(r * )1/2[(r 2r T)1/2. The jump inqys(c,r ) along the line of

FIG. 5. Selected wave vectorqys as a function ofc and r .
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first-order transitions as found numerically is compared w
the tricritical model value of (24a/b)1/2 along the same line
in Fig. 6.

The method that we employed for the study of the ph
diagrams relies on the small value of the amplitude of
distortions considered. It is then only valid for magne
fields not much stronger than the values for the transit
uniform-distorted, making its use a poor approximation
studying the higher magnetic field range. When flexoel
tricity is also considered, an extra term appears in expres
~4! @28#, but this term will not contribute to the critical mag
netic field. The only effect that flexoelectricity will have o
the work presented is to alter somewhat the position of
coexistence line shown in Fig. 2, but not the point where
meets the continuous transition lines.

The phase diagrams previously described were obta
with Ansätzethat only contain the lowest harmonics of thez
dependence of the director. ThoseAnsätze allow a correct
calculation of the position of the second-order transition l
from the uniform to the homogeneous distorted state, but
actual coordinates of the multicritical point and of the coe
istence and second-order transition lines that border the
riodic distorted state may be off by as much as 5%. A t
was made with the inclusion of the second harmonic in
analyses of the pure splay geometry increasing the valu
r c from 0.297 95... obtained with the first harmonic
0.298 72...; the exact value is 0.303 25...@3#.

In conclusion, we found that the multicritical point in th
phase diagram associated with the Fre´edericksz transitions in
the splay-twist mixed geometry changes its nature for a va
of r around 0.264 77... . This change atr T is equivalent to a
tricritical behavior when considering an analogy with t
classical tricritical model with the wave vector playing th
role of an order parameter and the magnetic field squared
role of a potential.

The authors wish to thank Professor M. M. Telo da Ga
for a helpful discussion. The PRAXIS XXI program is a
knowledged for financial support through Project No. 3/3
MMA/1769/95.

FIG. 6. Jump inqys along the line of first-order transitions inqy

as found numerically~a! and given by the tricritical model analog
~b!.
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