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Poisson ratio in composites of auxetics
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Mean-field theory of elastic moduli of a two-phase disordered composite with ellipsoidal inclusions is
reviewed together with an indication as to how interactions among inclusions may be taken into account. In the
mean-field approximation, the effective Poisson ratipin composites with auxetic inclusions of various
shapes such as discs, spheres, blades, needles, and disks is studied analytically and numerically. It is shown
that phase properties such as inclusion volume or area fragtimmd matrix and inclusion Poisson ratias,(
and o) and Young's moduli E,, andE) have a marked effect om,. The earlier theoretical findings of the
existence of auxeticity windows and the widening effect of inclusion-inclusion interactions on the window for
6=E/E,, are reconfirmed for composites of auxetic spheres in both two and three dimensions, with new
auxeticity windows discovered for the other inclusion shapes. For a compositerwith0.8, o,,=0.25, and
¢=0.4, it is found that the sphere is the mast-lowering or negativer.-producing inclusion shape faf
around 1/2, while disklike inclusions yield a most negatingfor  greater than 1.S1063-651X98)03911-7

PACS numbdps): 61.41+e€, 62.20.Dc, 62.96:k, 89.90:+n

[. INTRODUCTION by Reynolds and Hougfl1] in the case of dielectrics and
later by Berryman and Berd®] for elastic composites and
The appearance of man-made auxefit®], i.e., materi- indicate how corrections to the mean-field results may be
als with negative Poisson ratios, has led to the study of auxadded.
etic composite$3]. In this paper we study the Poisson ratio  Let us begin with a derivation of effective dielectric con-
of a special class of composites with auxetic inclusionsstante, of an isotropicN-phase composite. The assumption
which are believed to be of potential technological signifi-of macroscopic homogeneity of the composite medium and
cance. perfect bonding between phases leads to the following rules
The paper is organized as follows. The general mean-fieldf mixture for average electric displacemé&ntnd fieldE of
theory of effective elastic moduli of a two-phase disorderedhe composite:
composite is first reviewed along with corrections to the N
mean-field results that take into account two- and three-body B
interactions among the inclusions. Analytic and numerical D_Zfl $iD; @
results are then presented for auxetic inclusions having
spherical, needlelike, and disklike shapes. Finally, a discusand
sion of the results obtained and some conclusions are given.

N
E=D ¢, @)
1. MEAN-FIELD THEORY i=1

In calculating effective elastic moduli of a solid suspen-where ¢;, D;, andE; are the volume fraction, electric dis-
sion of spheres with a spherically symmetric elastic profile, gplacement, and field of thegh phase withD;=¢;E; and D
mean-field approximation that corresponds to the Lorentz lo= ¢ .E, which further yield
cal field in the theory of dielectrics was presented in 1992 by N
Felderhof and Iskg4]. The resulting expressions for the ef-
fective bulk modulusc, and shear modulyg, in the case of 21 bilei—ee)Ei=0. 3
uniform spheres reduce to those of W¢Bjand Markov| 6]
by use of the Mori-Tanaka mean-field theq@~9] and Es- The mean-field approximation requires that the homoge-
helby’s theoretical conclusiofilO] that there exists a uni- neous electric fieldE; (i=1,2,...N—1) inside thdth iso-
form strain field inside an ellipsoidal inclusion that is alge-tropic ellipsoidal inclusion§12] be algebraically related to
braically related to the matrix or host strain. In this sectionthe external fieldEy of the isotropic matrix as
we review the general mean-field theory of effective elastic
properties for ellipsoidal inclusions along the lines followed Ei=RinEn, 4

whereR;y is given by
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with L; denoting thejth depolarizing factor of the ellipsoid
[12—-17 andd the dimensionality of space in which the com-
posite resides. Substitution of E@) in Eq. (3) then gives

N—-1
21 bi(ei—ee)Rin=0, (6)

which, for a two-phase composif&1,17], reduces to

ge=(Pmemt deR)/(pn+ ¢R), (7)

where the subscriph denotes a matrix witkp=1— ¢, and
Ris the same aR;y but with g; /ey replaced by/e,, in Eq.
(5). We notice that, as given by Eq(7) obeys a general-
ized rule of mixture[3], i.e., Eq.(7) can be rewritten as,
=rmemt(1—ryne, withr,=én/(¢mt+ ¢R) €[0,1], and it
reduces to the well-known Clausius-Mossotti formidéfor
spherical inclusions. We further note that wheis replaced
by ein Eq. (4), one gets a governing equation fer that is
recognized as the effective medium approximafib®, 18 or
the self-consistent schen@].

For an analogous derivation of effective elastic moduli,
the average field variables that obey the rules of mixture ar
the stress and strain fields denoteddand &, respectively,
with o=L.¢e, e=M. 0, and M L.=1=L M., wherelL,
and M, are the effective stiffness and compliance tensors
respectively, and is the identity tensor of19] a 6X 6 unit
matrix. Use of these relations and similar ones betwaen
and g; for theith phase yields

N
Zl $i(Li—Le)g=0

S. F. EDWARDS PRE 58

N—-1

;l #i(Li—LTin=0, (14)

which, for an isotropic composite made of isotropic ellipsoi-
dal inclusions embedded in an isotropic matrix, reduces to

(3]

Ke=(PmkmT ¢xP)/(pn+ ¢P) (15

and

pe=(Pmpmt duQ)/(dmt ¢Q), (16)

where the expression df for isotropic materials, i.e L jj
=(k—d/2);j 6+ (6 65 + ) 9j), has been used. Equa-
tions (15) and(16), when explicit expressions & andQ for
spherical inclusions are used, yield the mean-field results of
Markov [6], Weng[5], Felderhof and Isk4], and Torquato
[22]. Furthermore k. and . as calculated from the above
equations are known to fall within or coincide with the
Hashin-Shtrikman-Walpole boun{i4,23]. We note that as in
the case of dielectrics, the replacemeniNdfy e in Egs.(10)
gnd(ll) results in the analogous effective medium or coher-
ént potential approximation t@, and u [9].

A correction to the mean-field approximation 4@ was
carried out by Kirkwood[24] and later by Brown[25],
Felderhofet al. [4,26], and Sen and Torquaf{®7], among
others. An analogous result fa, and i has recently been
presented by Torqua{@2] for any arrangement of spherical
inclusions within a matrix and for ang. For isotropic ellip-
soidal inclusions in an isotropic matrix, we find that the ex-

(8)  pansion parameters in the Kirkwood-Brown-Torquato expan-
sion of some chosen function of one of effective properties
are changed to R in the dielectric case and-1P and 1
and —Q in the elastic case, i.e.,
N
P e—ent(1—R)(eeg—€)]/(ce—€p)
2, ¢i(Mi=Mc)ai=0. ©) " : -
=¢— 2, Co(1-R)" 1, 1
The mean-field approximation in this case is tantamount to ¢ nZS nl ) an
assuming that
¢ k= kmt (1= P)(ke— )1/ (ke— Kpm)
£ =AinEN (10) e et
and =¢— E 2 AnmRiam; (18
n=3 m=0
whereB;y=LyAinM; andA;y is the Wu tensoiT;y [9,20], 2 = e+ (1— — ) (am
which is related to the Eshelby tensf10] by [8] i pat(1=Q)mem w) i pe™ pm)
w n-1
Tin=[1+SL H(Ly=L)] ™, (12 =¢= 2, 2 BunRom. (19
whose isotropic average [9,20] whereR, = (1= P)™(1—Q)" ™1 andA,. B, andC,
Tiji = (Ld)(P—Q) 6j 81y + (Q/2) (6 6; + 651 Ojic) s are coefficients yet to be determinéske Refs[22,27] for
(13)  explicit expressions of these coefficients in the case of

spheres and are all zero in the mean-field approximation.
where scalar® andQ may be analytically expressed in the We note that the truncation of the above series-aB yields
case of spheroidal inclusion$,9,20,2] and are generally corrections to the mean-field results that take into account
dependent on depolarizing or demagnetizing factors of théwo- and three-body interactions among inclusions and have
ellipsoid. Substitution of Eq(10) in Eqg. (8) then gives been used by Wei and Edwarf® in a study of composites
[6,8,9 of auxetic spheres.
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With . and u known, the effective Young modulls, ~ We note that the denominator in E@Q4) is positive as both
and Poisson ratior, may be calculated by use of P and Q are non-negative and the numerator is quadratic in

¢, which yields one meaningful root af, as
0e=(dre—2ue)/[d(d—1)+2ue] (20)

and b=l pm+ B/2— (BT/A— ppm5PQ)l’2]/(pm+Bl+p5P(Q))
28
Ec=2ue(l+0e)=dk[1+(1—d)o] (21)
. . . where p=o0s and p,,=o,Sy. In particular, for oo, <0,
for anyd=2, which may be readily proved in the framework e.g.,0m,=0 ando< or? we rﬂ;,ln\]/e— 1<0.<0if ¢p.< ¢>$m1. In

of classical elasticity theory. We note that in general one haﬁther words, an auxetic composite results whieaxceeds a
—1<0,<1/(d—1) and O<E.<% or[9,28] critical value as revealed in a study of auxetic composites

O'e(Ke,Lv/Jve,U)ga'e(Kevﬂe)ga'e(Ke,UuU«e,L) (22 [3]-
and Ill. SHAPE EFFECT
Ee(ke L te ) SEe(ke, e) SEe(Keu heu), (23 The effect of the inclusion shape on effective elastic
h d | d bounds af moduli of a composite material has been investigated exten-
WRETE Ke, aNA ke,y areé IOWer and Upper bounads @&, gyl in the pasf8,10,17,20,21,29-36In this section we

respectively. We further note that in the mean-field apprOX|-Stuoly this shape effect on the effective Poisson ratio by con-

mation E. and o obey generallzed rules of mixture only centrating our attention on three distinctive types of inclu-
when k=kpy OF u=pm, With 0e=¢nom+(1=¢m)o  gjon shapes, spheres, needles, and disks, for which the depo-
=(0) and E.=(E) for u=puy andd=2. For «, and u. larizing factors are very simplg9,13), i.e., (1/3,1/3,1/3),
given by Egs(15) and(16), in particular, we have from Eq. (0,1/2,1/2), and (0,0,1), respectively, while those of the

(20 two-dimensional analogs, i.e., discs and blades, are (1/2,1/2)

_ 2, 2pO— / 2 4 s 2P and (0,1). From these factors the Eshelby tensor and hence
7e=(TuSmbin T 0SE"PQ=S1ddm)l (Smbint S6°PQ the Wu tensor can be easily written down, which then yields
+Brddm), (29 analytic expressions fdR, P, andQ appearing in the mean-

_ field equations fore,, k., and u.. For d-dimensional
wheresy=s(o), s=s(o), ands(o) and B, are given by  spheres, it is shown by Torquatd22,27 that R
=1/F(d,eley), P=1/F(d,«x/ky), and Q=1/F(d,u/ pp),

s(o)=d(1+0) [1+o(1-d)]* @5 with F(d,x) defined as
and
F(d,x)=1+(x—1)/G(X, ¥m), (29
ﬁn:QSw(O'mvo'yﬁ)+5P5n(0'10'm1571)1 (26)
with 6=E/E,, ands, (o, 8) defined as where G(X,ym)=d, 1+2(1-1/d)ym, and (I+d/2)[1

—(2/d)/(2+1/y,)] for x=¢elepy, Kkl Ky, andul/ u ="y, re-
sp(om,0,0)=06l(1+o)+[d(n—1)—1]/[1+o,(1—d)]. spectively, withy,= un/xn. Ford=2 and 3 in particular
(27)  we have

_1:((1—0’m)[l+5(1+0m)/(1—0')]/2 (d=2) 30
(1-20)[2+8(1+ o)/ (1-20)]/13(1-0y,) (d=3)
and
1 A+ o)[1+8383—0on)/(1+0)]/4 (d=2) -
[7-50,+2y(4—50,)]/151-0,) (d=3).

In the calculation of the corrections to the mean-field results such as those carried out by T@gLatal Wei and Edwards
[3], analytic expressions for the coefficiems,, and B, that depend also og and the geometric arrangements of spheres
may be found in Refd.37-39. For d-dimensional needles, we fif®,20,34

[(1—0)[1+ S Y1+ o) (1-oyn)]2 (d=2)
= (32

(U3[1+y/(1-20)] Hy+(5—4oy)/(1-20,)] (d=3)

and

_[@+o)[1+ 5 Y3—a)(1+oy]4 (d=2)

[ (815)(L—ow)/[1+¥(3—4a )]+ (2/15(1+y) {1+ y—20) H8(1-20)+y[3(3—0)+8(1+ o]} (d=3),
(33
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TABLE I. Critical volume fraction atd=4/5 and critical Young modulus ratios &t=0.45 for the onset
of auxeticity in composites of auxetier& —0.9) inclusions of various shapes. Cases 1, 2 and 3 correspond
to 0,=0.45, 0.30, and 0.15, respectively. For case 2 there is an additional auxeticity window for disks, i.e.,

0<6<0.0231.

¢C 5(:1:5(:2
Shape Case 1l Case 2 Case 3 Case 1 Case 2 Case 3
Disc 0.3173 0.2366 0.1342 0.0309,2.301 0.0230,3.794 0.0171, 6.834
Sphere 0.4647 0.3258 0.1731 0.0905,4.323 0.0342,11.18
Blade 0.4065 0.2933 0.1617 0,5.410 0,17.46 0,28.21
Needle 0.5879 0.3679 0.1818 0.0957,12.93 0.0309,31.16
Disk 0.5677 0.2733 0.1171 0.0069,1.845 0.1541, 0,

while for three-dimensional disks we haj&9,20,21

P=(1-20)[2+ 8 Y1+ o) (1—20,)]/3(1— o) \//’/
(39 0.2

and \\'2/'«;—”' 6 8 o ¢
_0 ’2 V’/l
Q=[7-50+2y Y(4—-50)]/151- o). (35
-0.4
We note that the above expressionsPanay be reexpressed %
as a single one as -0.6p

P l=1+4(kl/km—1)/{1+2(d—1)¢ {1+ C(y—1)]},
(36)

where é=dk,/uy, and C=0, 1/4, and 1 for spheres and 0.2
discs (spheres ford=2), needles, and disks and blades

(needles ford=2), respectively(see also Ref{29]). Equa- Wo
tion (36) provides a means for determining inclusion shapes
by the measuring of effective bulk modulus of a composite -0.2p
with known composition and elastic moduli of the two iso- _, ,
tropic phases as in the case of dielectfi¢§]. '

With explicit expressions forP and Q for spheres, _; ¢ L/"
needles, and disks now at hand, one may calculate the effec L’//
tive Poisson ratios of composites with both auxetic and con- -g g}

ventional inclusions according to E(®4). Here we focus on

auxetic inclusions with the more general case left for a future Se
work. Before presenting numerical results og as calcu- 5
lated from Eq.(24), however, several interesting special )
cases may be treated analytically. The first one is that of 4
TABLE IlI. Effective Poisson ratio and Young modulus ratio for 5
composites of auxetico{= —0.9) inclusions of various shapes with ’
o= 0.25 and¢=0.45. 0.4
6=1/10 5=1 6=10 0
Shape e Oe e Se Oe Se
-0.8
Disc —0.3020 0.6158 —0.2856 1.125 0.1216 1.943

FIG. 1. Plots of the effective Poisson ratiq as a function of
Sphere —0.0624 0.8291 ~0.2081 1.435 0.0650 2236 the Young modulus ratia for three inclusion shapes: a sphere
Blade —0.2679 0.6438 —0.2266 1.172 —0.0508 3.220 (top), needle(middle), and disk(bottom), with a Poisson ratier of
Needle —0.0555 0.8350 —0.1714 1.570 —0.0562 2.999 —0.8 and a volume fractiog of 0.4. For each of the three cases,
Disk —0.0385 0.8497 —0.3575 2.108 —0.7387 6.699 the curves from top to bottom correspond tg,=0.45,0.2,0,
—0.5, and—0.8, respectively.
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FIG. 2. Plots ofo, vs ¢ with o0=—0.8 andé=0.8, otherwise
the same as in Fig. 1.
FIG. 3. Plots ofo, Vs o, with o= —0.8 and¢= 0.4, otherwise
equal shear rigidities of both inclusions and matrix, whichthe same as in Fig. 2, except for the assignments of various values
was studied by Hil[19], who found that fod=3 and arbi- ©of & for each curve. Curves from left to right on tle=0 line

trary inclusion shapes, correspond to 6=20,1/20,5,1/5, and 1 for spheresj
=1/20,20,1/5,5, and 1 for needles, afig 1/20,1/5,1,5, and 20 for
disks.
ge=(o)—oon)/(1—(c*))
=(0)+ ppm(o—om) (1= (a*)), (37) co_ (1-0%)(1-30)/8 (d=2)
1+ 0)(1-20)(1-50)/1151—0) (d=3),
which is greater than or equal {o) as opposed to the equal- (39

ity existing ford=2 and may be readily proved with the use
of Egs. (24) and (30)—(35). Here(c* )= ¢no+ poy,. An-
other shape-independent quantity is the coefficient & ( which is greater or less than zero according to whethés

—1)? in the expansion ofr in 6—1 for o=oy,, i.e., less or greater than 1/(2-1) for anyd=2. We note that
o.=1/(2d-1) if o=0,=1/(2d—1) for blades, disks, and
0= 0+ ddyCo(6—1)2+0((6—1)3) (38) any d-dimensional spheres while for needleg is in the

vicinity of 1/5 wheno=o,,=1/5. For6=1, o= — o, and

and ¢$=1/2, we find thalo, increases monotonically from 0 to a
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-1 -0.8 -0.6 -0.4 -0~ 0.2 0.4

-1 -0.8 -0.6 -0.4 0.2 0.4

FIG. 4. Plots ofo, Vs o= o, with ¢=0.4, otherwise the same

as in Fig. 3, except for the values éfcorresponding to each curve:

0.2
0.1
d
10
Se
0.2
" /
2 4 8 10 d
-0.1
-0.2

FIG. 5. Comparison of the dependenceogfon § among vari-
ous inclusion shapes: a disc and bldt®) and a sphere, needle,
and disk (bottom), with ¢=-0.8, 0,=0.25, and$=0.4. The
curves from top to bottom on th&= 6 line correspond to a disc and
blade in the upper figure and a sphere, needle, and disk in the lower,
respectively.

(8pm—3d+1)(Spmt+2¢°—p+1) (d=2)
0e=3 (0¢m+ d*—10p+4)/(26pm+ 11¢°— 144 +8)

(d=3),
(41)

which may be solved fogp. and &, such that whenp.< ¢
<1 and <6< §, one hasos,<0, as done by Wei and Ed-
wards[3].

In Table | auxeticity windows, i.e., 4.;,1) and
(8c1,6:2), are displayed for disks and both two- and three-
dimensional needles and spheres wiath4/5 for ¢, and ¢

10, 1/10, and 1 for spheres and needles and 1/10, 10, and 1 for 0.45 for ¢, and ;. Numerical values ofr, and J, for

disks.

certain value less than H{1) aso, increases from O to

composites of auxetica{=—0.9) inclusions of these five
types of shapes with,,=0.25 and¢=0.45 are tabulated in
Table Il. Figures 1-3 show plots of,, as a function of5, ¢,

and o, respectively, for auxetic =—0.8) spherical,

1/(d—1) for all the inclusion shapes but disks, for which oneneedlelike, and disklike inclusions when other parameters

has
0e=(022)(1— o) (4+ oy—202), (40)

which attains a maximum value of 0.0197581 a,
=0.700553 and a minimum one of 0 at,=0 and 1. In
particular, for spherical inclusions and fé=1 ando,,=0
we haveo.= poAy(o, @) with Ay(o,6)>0 ford=2 and 3
and foro=—-1 ando,,=1/(d—1),

are fixed, while Fig. 4 plotsre Vs o= o, with ¢=0.4 for
three values o6: 1/10,1, and 10. In Figs. 5 and 6 the depen-
dence ofo, ond at $=0.4 is compared among the five types
of inclusion shapes foror=-0.8 and o,,=0.25, ando
=o,= — 0.5, respectively. Finally, the effects of weak inter-
actions[3,22] among spherical inclusions on the dependence
of o on § are illustrated in Fig. 7.

IV. DISCUSSION AND CONCLUSION

The existence of auxeticity windows in composites of
auxetics was demonstrated by Wei and Edwar8lk for
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FIG. 6. Plots ofo, vs 8 with o= o,=—0.5 and¢=0.4, oth- FIG. 7. lllustrations of the effects of weak interactions among

erwise the same as in Fig. 5, except for the assignments of inclusiosPherical inclusions on the dependencergfon & with o= —0.8,

shapes corresponding to each curve: a blade and disc in the uppern=0.25, and¢=0.4. The curves from bottom to top on tf&e

figure and a needle, sphere, and disk in the lower, respectively. =4 line in both the uppe(disc) and lower(spherg figures corre-
spond to the mean-field result with and without the interaction ef-

spherical inclusions. It is seen from Table | that this is also€Cts being taken into account, respectively.

the case for other inclusion shapes. Bt 4/5, the critical

volume fractiong, above which the composite exhibits aux- dependence of, on o, is more varied for different values

ethlty decreases as, decreases from 0.45 to 0.15 for all of 5whethero-m ando are equa| or not, as shown in F|gS 3

the inclusion shapes withr=—0.9, but at a given value of and 4. In particular, from Fig. 4 it is seen that for= o,

o it varies considerably for different inclusion shapes, with — 1/5 one hasy,=1/5 for spheres and disks for all three

¢ for discs being smaller than that for blades in all three, 5 es of 5. but for needles only fors=1 [see also the
cases considered and the smallggt being produced by jiscussion ;‘ollowing Eq(39)].

sph_eres abr,=0.45 and disks atrp,=0.30 _and 0.15. We For composites of auxetics with both equal and unequal
notice that¢. for needles are the largest in both two and ., and o, different kinds of dependence of, on & for all

e dmeans Fo =45, hers s at st o1 4 nclusion shapes are compare i Figs.  and r
y —0.8, 0,,=0.25, and¢p=0.4. It is seen from Fig. 5 that in

inclusion shapes except for spheres and needles in case 1 ft(\?\;o dimensionss. is lower for discs whers lies approxi
which no such window is found. It is also seen tl#&g} is e PP

either zero or close to zero in all the cases and that disklik@1ate|y petwegn 0.3 a.nd. 1'6,’ but higher otherW|s_e, while n

inclusions gives the largest auxeticity window at,=0.30 three dlmensmns.a S|'m|Iar '|nt§rval for spheres |§ approxi-

and 0.15. The magnitude of the effective Poisson ratjo Mately[0.3,0.8, with disks yielding the most negative, at

and Young modulus rati@, for o=—0.9, 0,=0.25, and 9>1. Foro=opn=-0.5 and¢=0.4, we find from Fig. 6

#=0.45 vary considerably among different inclusion shapeghat for 6>2, discs give lower values of, than blades,

for 6= 1/10, 1, and 10’ as can be seen from Table ||’ W|thWh||e in three dimensions disks giVe the lowest and needles

discs and spheres yielding the most negatiyeat 5=1/10,  the highest values.

disks and disks ap=1, and blades and disks &t 10, in As revealed in Refl3], the effects of interactions among

which case one also hag>0 for both discs and spheres. spherical auxetic inclusions ow, are simply the slightly
The characteristic curves of, vs §, ¢, ando,,, respec- Wwidening of auxeticity windows fo®. This is the case for

tively, with other parameters fixed, are shown in Figs. 1-3spheres in both two and three dimensions as seen from Fig. 7

for spheres, needles, and disks. As for the first two types ofvith o= —0.8, 0,,=0.25, and¢=0.4.

curves, these three inclusion shapes are seen to give the sameWe have so far discussed the effectsaanof only three

kind of dependence af, on eitherd or ¢ with the exception distinctive types of inclusion shapes: spheres, needles, and

of disks ato,,=0.45 and 0.2, for which a maximum, instead disks. It must, however, be pointed out that other non-

of a minimum, ofo is present at a certain value 6f The ellipsoidal inclusion shapes such as oblong and convex poly-
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gons[41] may also be considered as may fine, cylindricalhave been obtained concerning the effects, on effective Pois-
fibers [33] or even randomly coiled wiref30]. The con-  son ratios of a two-phase composite, of both inclusion shapes
straint of perfect bonding between phases in the mean-fieldnd such parameters as inclusion volume or area fraction and
approximation may be relaxed by taking into account thepoisson ratio, matrix Poisson ratio, and the ratio of the
bonding imperfections or the interface zor{d®]. The ef-  young modulus of inclusion to that of the matrix. In particu-
fects ono, of the matrix being a half space or two joined |ar, the existence of auxeticity windows for composites of
semi-infinite elastic bOdieS, a bimaterial, may also be ConSidauxetiC diSCS, Spheres] b|ades7 need|ES, and disks is demon-
ered[43] as may the extension of the present treatment to thgtrated theoretically and some challenging problems for fu-
effective electroelastic properties of piezoelectric compositegyre work are identified including experimental verification

[44] with auxetic inclusions. Even effective micropolar elas- of the predicted existence of the auxeticity windows.
tic properties may be investigated as micropolar Eshelby ten-

sors for both spherical and cylindrical inclusions have been
obtai_ned[45], which recover classical Eshelby tensprs as ACKNOWLEDGMENTS
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