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Mean-field theory of elastic moduli of a two-phase disordered composite with ellipsoidal inclusions is
reviewed together with an indication as to how interactions among inclusions may be taken into account. In the
mean-field approximation, the effective Poisson ratiose in composites with auxetic inclusions of various
shapes such as discs, spheres, blades, needles, and disks is studied analytically and numerically. It is shown
that phase properties such as inclusion volume or area fractionf and matrix and inclusion Poisson ratios (sm

ands) and Young’s moduli (Em andE) have a marked effect onse . The earlier theoretical findings of the
existence of auxeticity windows and the widening effect of inclusion-inclusion interactions on the window for
d5E/Em are reconfirmed for composites of auxetic spheres in both two and three dimensions, with new
auxeticity windows discovered for the other inclusion shapes. For a composite withs520.8, sm50.25, and
f50.4, it is found that the sphere is the mostse-lowering or negative-se-producing inclusion shape ford
around 1/2, while disklike inclusions yield a most negativese for d greater than 1.@S1063-651X~98!03911-7#

PACS number~s!: 61.41.1e, 62.20.Dc, 62.90.1k, 89.90.1n
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I. INTRODUCTION

The appearance of man-made auxetics@1,2#, i.e., materi-
als with negative Poisson ratios, has led to the study of a
etic composites@3#. In this paper we study the Poisson rat
of a special class of composites with auxetic inclusio
which are believed to be of potential technological sign
cance.

The paper is organized as follows. The general mean-fi
theory of effective elastic moduli of a two-phase disorde
composite is first reviewed along with corrections to t
mean-field results that take into account two- and three-b
interactions among the inclusions. Analytic and numeri
results are then presented for auxetic inclusions hav
spherical, needlelike, and disklike shapes. Finally, a disc
sion of the results obtained and some conclusions are gi

II. MEAN-FIELD THEORY

In calculating effective elastic moduli of a solid suspe
sion of spheres with a spherically symmetric elastic profile
mean-field approximation that corresponds to the Lorentz
cal field in the theory of dielectrics was presented in 1992
Felderhof and Iske@4#. The resulting expressions for the e
fective bulk moduluske and shear modulusme in the case of
uniform spheres reduce to those of Weng@5# and Markov@6#
by use of the Mori-Tanaka mean-field theory@7–9# and Es-
helby’s theoretical conclusion@10# that there exists a uni
form strain field inside an ellipsoidal inclusion that is alg
braically related to the matrix or host strain. In this secti
we review the general mean-field theory of effective elas
properties for ellipsoidal inclusions along the lines follow

*Author to whom correspondence should be addressed.
FAX: 86-10-62751708.
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by Reynolds and Hough@11# in the case of dielectrics an
later by Berryman and Berge@9# for elastic composites and
indicate how corrections to the mean-field results may
added.

Let us begin with a derivation of effective dielectric co
stant«e of an isotropicN-phase composite. The assumptio
of macroscopic homogeneity of the composite medium a
perfect bonding between phases leads to the following ru
of mixture for average electric displacementD and fieldE of
the composite:

D5(
i 51

N

f iDi ~1!

and

E5(
i 51

N

f iEi , ~2!

wheref i , Di , andEi are the volume fraction, electric dis
placement, and field of thei th phase withDi5« iEi and D
5«eE, which further yield

(
i 51

N

f i~« i2«e!Ei50. ~3!

The mean-field approximation requires that the homo
neous electric fieldEi ( i 51,2, . . . ,N21) inside thei th iso-
tropic ellipsoidal inclusions@12# be algebraically related to
the external fieldEN of the isotropic matrix as

Ei5RiNEN , ~4!

whereRiN is given by

RiN5~1/d!(
j 51

d

@11L j~« i /«N21!#21, ~5!
6173 © 1998 The American Physical Society



-

-

li
a

r

t t

e

th

i-
to

-

s of

e
e

er-

l

x-
an-
ies

of
n.

unt
ave

6174 PRE 58GAOYUAN WEI AND S. F. EDWARDS
with L j denoting thej th depolarizing factor of the ellipsoid
@12–17# andd the dimensionality of space in which the com
posite resides. Substitution of Eq.~4! in Eq. ~3! then gives

(
i 51

N21

f i~« i2«e!RiN50, ~6!

which, for a two-phase composite@11,17#, reduces to

«e5~fm«m1f«R!/~fm1fR!, ~7!

where the subscriptm denotes a matrix withf512fm and
R is the same asRiN but with « i /«N replaced by«/«m in Eq.
~5!. We notice that«e as given by Eq.~7! obeys a general
ized rule of mixture@3#, i.e., Eq.~7! can be rewritten as«e
5r m«m1(12r m)«, with r m5fm /(fm1fR)P@0,1#, and it
reduces to the well-known Clausius-Mossotti formula@4# for
spherical inclusions. We further note that whenN is replaced
by e in Eq. ~4!, one gets a governing equation for«e that is
recognized as the effective medium approximation@16,18# or
the self-consistent scheme@9#.

For an analogous derivation of effective elastic modu
the average field variables that obey the rules of mixture
the stress and strain fields denoted bys and«, respectively,
with s5Le«, «5Mes, and MeLe5I5LeMe , where Le
and Me are the effective stiffness and compliance tenso
respectively, andI is the identity tensor or@19# a 636 unit
matrix. Use of these relations and similar ones betweensi
and«i for the i th phase yields

(
i 51

N

f i~L i2Le!«i50 ~8!

and

(
i 51

N

f i~M i2Me!si50. ~9!

The mean-field approximation in this case is tantamoun
assuming that

«i5A iN«N ~10!

and

si5BiNsN , ~11!

whereBiN5LNA iNM i andA iN is the Wu tensorT iN @9,20#,
which is related to the Eshelby tensorS @10# by @8#

T iN5@ I1SLi
21~LN2L i !#

21, ~12!

whose isotropic average is@9,20#

Ti jkl 5~1/d!~P2Q!d i j dkl1~Q/2!~d ikd j l 1d i l d jk!,
~13!

where scalarsP andQ may be analytically expressed in th
case of spheroidal inclusions@8,9,20,21# and are generally
dependent on depolarizing or demagnetizing factors of
ellipsoid. Substitution of Eq.~10! in Eq. ~8! then gives
@6,8,9#
,
re

s,

o

e

(
i 51

N21

f i~L i2Le!T iN50, ~14!

which, for an isotropic composite made of isotropic ellipso
dal inclusions embedded in an isotropic matrix, reduces
@3#

ke5~fmkm1fkP!/~fm1fP! ~15!

and

me5~fmmm1fmQ!/~fm1fQ!, ~16!

where the expression ofL for isotropic materials, i.e.,Li jkl
5(k2d/2)d i j dkl1m(d ikd j l 1d i l d jk), has been used. Equa
tions ~15! and~16!, when explicit expressions ofP andQ for
spherical inclusions are used, yield the mean-field result
Markov @6#, Weng@5#, Felderhof and Iske@4#, and Torquato
@22#. Furthermore,ke and me as calculated from the abov
equations are known to fall within or coincide with th
Hashin-Shtrikman-Walpole bounds@4,23#. We note that as in
the case of dielectrics, the replacement ofN by e in Eqs.~10!
and~11! results in the analogous effective medium or coh
ent potential approximation toke andme @9#.

A correction to the mean-field approximation to«e was
carried out by Kirkwood@24# and later by Brown@25#,
Felderhofet al. @4,26#, and Sen and Torquato@27#, among
others. An analogous result forke andme has recently been
presented by Torquato@22# for any arrangement of spherica
inclusions within a matrix and for anyd. For isotropic ellip-
soidal inclusions in an isotropic matrix, we find that the e
pansion parameters in the Kirkwood-Brown-Torquato exp
sion of some chosen function of one of effective propert
are changed to 12R in the dielectric case and 12P and 1
2Q in the elastic case, i.e.,

f2@«2«m1~12R!~«e2«!#/~«e2«m!

5f2 (
n53

`

Cn~12R!n21, ~17!

f2@k2km1~12P!~ke2k!#/~ke2km!

5f2 (
n53

`

(
m50

n21

AnmRnm , ~18!

and

f2@m2mm1~12Q!~me2m!#/~me2mm!

5f2 (
n53

`

(
m50

n21

BnmRnm , ~19!

whereRnm5(12P)m(12Q)n2m21 andAnm , Bnm , andCn
are coefficients yet to be determined~see Refs.@22,27# for
explicit expressions of these coefficients in the case
spheres! and are all zero in the mean-field approximatio
We note that the truncation of the above series atn53 yields
corrections to the mean-field results that take into acco
two- and three-body interactions among inclusions and h
been used by Wei and Edwards@3# in a study of composites
of auxetic spheres.
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With ke andme known, the effective Young modulusEe
and Poisson ratiose may be calculated by use of

se5~dke22me!/@d~d21!12me# ~20!

and

Ee52me~11se!5dke@11~12d!se# ~21!

for anyd>2, which may be readily proved in the framewo
of classical elasticity theory. We note that in general one
21<se<1/(d21) and 0<Ee<` or @9,28#

se~ke,L ,me,U!<se~ke ,me!<se~ke,U ,me,L! ~22!

and

Ee~ke,L ,me,L!<Ee~ke ,me!<Ee~ke,U ,me,U!, ~23!

where ke,L and ke,U are lower and upper bounds ofke ,
respectively. We further note that in the mean-field appro
mation Ee and se obey generalized rules of mixture on
when k5km or m5mm , with se5fmsm1(12fm)s
[^s& and Ee5^E& for m5mm and d52. For ke and me
given by Eqs.~15! and~16!, in particular, we have from Eq
~20!

se5~smsmfm
2 1ssf2PQ2b1ffm!/~smfm

2 1sf2PQ

1b2ffm!, ~24!

wheresm[s(sm), s[s(s), ands(s) andbn are given by

s~s!5d~11s!21@11s~12d!#21 ~25!

and

bn5Qsn~sm ,s,d!1dPsn~s,sm ,d21!, ~26!

with d5E/Em andsn(sm ,s,d) defined as

sn~sm ,s,d!5d/~11s!1@d~n21!21#/@11sm~12d!#.
~27!
s

i-

We note that the denominator in Eq.~24! is positive as both
P andQ are non-negative and the numerator is quadratic
f, which yields one meaningful root ofse as

fc5@rm1b1/22~b1
2/42rrmdPQ!1/2#/~rm1b11rdPQ!

~28!

where r5ss and rm5smsm . In particular, for ssm<0,
e.g.,sm>0 ands<0, we have21<se<0 if fc<f<1. In
other words, an auxetic composite results whenf exceeds a
critical value as revealed in a study of auxetic compos
@3#.

III. SHAPE EFFECT

The effect of the inclusion shape on effective elas
moduli of a composite material has been investigated ex
sively in the past@8,10,17,20,21,29–36#. In this section we
study this shape effect on the effective Poisson ratio by c
centrating our attention on three distinctive types of inc
sion shapes, spheres, needles, and disks, for which the d
larizing factors are very simple@9,13#, i.e., (1/3,1/3,1/3),
(0,1/2,1/2), and (0,0,1), respectively, while those of t
two-dimensional analogs, i.e., discs and blades, are (1/2,
and (0,1). From these factors the Eshelby tensor and he
the Wu tensor can be easily written down, which then yie
analytic expressions forR, P, andQ appearing in the mean
field equations for«e , ke , and me . For d-dimensional
spheres, it is shown by Torquato@22,27# that R
51/F(d,«/«m), P51/F(d,k/km), and Q51/F(d,m/mm),
with F(d,x) defined as

F~d,x!511~x21!/G~x,gm!, ~29!

where G(x,gm)5d, 112(121/d)gm , and (11d/2)@1
2(2/d)/(211/gm)# for x5«/«m , k/km , andm/mm[g, re-
spectively, withgm5mm /km . For d52 and 3 in particular
we have
res
P215H ~12sm!@11d~11sm!/~12s!#/2 ~d52!

~122sm!@21d~11sm!/~122s!#/3~12sm! ~d53!
~30!

and

Q215H ~11sm!@11d~32sm!/~11s!#/4 ~d52!

@725sm12g~425sm!#/15~12sm! ~d53!.
~31!

In the calculation of the corrections to the mean-field results such as those carried out by Torquato@22# and Wei and Edwards
@3#, analytic expressions for the coefficientsA3m andB3m that depend also onf and the geometric arrangements of sphe
may be found in Refs.@37–39#. For d-dimensional needles, we find@9,20,34#

P5H ~12s!@11d21~11s!/~12sm!#/2 ~d52!

~1/3!@11g/~122s!#21@g1~524sm!/~122sm!# ~d53!
~32!

and

Q5H ~11s!@11d21~32s!/~11sm!#/4 ~d52!

~8/5!~12sm!/@11g~324sm!#1~2/15!~11g!21~11g22s!21$8~122s!1g@3~32s!1d~11sm!#% ~d53!,
~33!
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TABLE I. Critical volume fraction atd54/5 and critical Young modulus ratios atf50.45 for the onset
of auxeticity in composites of auxetic (s520.9) inclusions of various shapes. Cases 1, 2 and 3 corresp
to sm50.45, 0.30, and 0.15, respectively. For case 2 there is an additional auxeticity window for disk
0,d,0.0231.

fc dc1 ,dc2

Shape Case 1 Case 2 Case 3 Case 1 Case 2 Case 3

Disc 0.3173 0.2366 0.1342 0.0309,2.301 0.0230,3.794 0.0171, 6.8

Sphere 0.4647 0.3258 0.1731 0.0905,4.323 0.0342,11.1

Blade 0.4065 0.2933 0.1617 0,5.410 0,17.46 0,28.21

Needle 0.5879 0.3679 0.1818 0.0957,12.93 0.0309,31.1

Disk 0.5677 0.2733 0.1171 0.0069,1.845 0.1541,` 0,̀
d
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while for three-dimensional disks we have@8,9,20,21#

P5~122s!@21d21~11s!/~122sm!#/3~12s!
~34!

and

Q5@725s12g21~425s!#/15~12s!. ~35!

We note that the above expressions forP may be reexpresse
as a single one as

P21511~k/km21!/$112~d21!j21@11C~g21!#%,
~36!

where j5dkm /mm and C50, 1/4, and 1 for spheres an
discs ~spheres ford52), needles, and disks and blad
~needles ford52), respectively~see also Ref.@29#!. Equa-
tion ~36! provides a means for determining inclusion shap
by the measuring of effective bulk modulus of a compos
with known composition and elastic moduli of the two is
tropic phases as in the case of dielectrics@40#.

With explicit expressions forP and Q for spheres,
needles, and disks now at hand, one may calculate the e
tive Poisson ratios of composites with both auxetic and c
ventional inclusions according to Eq.~24!. Here we focus on
auxetic inclusions with the more general case left for a fut
work. Before presenting numerical results onse as calcu-
lated from Eq. ~24!, however, several interesting spec
cases may be treated analytically. The first one is tha

TABLE II. Effective Poisson ratio and Young modulus ratio fo
composites of auxetic (s520.9) inclusions of various shapes wit
sm50.25 andf50.45.

d51/10 d51 d510

Shape se de se de se de

Disc 20.3020 0.6158 20.2856 1.125 0.1216 1.943

Sphere 20.0624 0.8291 20.2081 1.435 0.0650 2.236

Blade 20.2679 0.6438 20.2266 1.172 20.0508 3.220

Needle 20.0555 0.8350 20.1714 1.570 20.0562 2.999

Disk 20.0385 0.8497 20.3575 2.108 20.7387 6.699
s
e

c-
-

e

of

FIG. 1. Plots of the effective Poisson ratiose as a function of
the Young modulus ratiod for three inclusion shapes: a sphe
~top!, needle~middle!, and disk~bottom!, with a Poisson ratios of
20.8 and a volume fractionf of 0.4. For each of the three case
the curves from top to bottom correspond tosm50.45,0.2,0,
20.5, and20.8, respectively.
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equal shear rigidities of both inclusions and matrix, whi
was studied by Hill@19#, who found that ford53 and arbi-
trary inclusion shapes,

se5~^s&2ssm!/~12^s* &!

5^s&1ffm~s2sm!2/~12^s* &!, ~37!

which is greater than or equal to^s& as opposed to the equa
ity existing ford52 and may be readily proved with the us
of Eqs. ~24! and ~30!–~35!. Here ^s* &[fms1fsm . An-
other shape-independent quantity is the coefficient ofd
21)2 in the expansion ofse in d21 for s5sm , i.e.,

se5s1ffmCd~d21!21O„~d21!3
… ~38!

and

FIG. 2. Plots ofse vs f with s520.8 andd50.8, otherwise
the same as in Fig. 1.
Cd5H ~12s2!~123s!/8 ~d52!

~11s!~122s!~125s!/15~12s! ~d53!,
~39!

which is greater or less than zero according to whethers is
less or greater than 1/(2d21) for any d>2. We note that
se51/(2d21) if s5sm51/(2d21) for blades, disks, and
any d-dimensional spheres while for needlesse is in the
vicinity of 1/5 whens5sm51/5. Ford51, s52sm and
f51/2, we find thatse increases monotonically from 0 to

FIG. 3. Plots ofse vs sm with s520.8 andf50.4, otherwise
the same as in Fig. 2, except for the assignments of various va
of d for each curve. Curves from left to right on these50 line
correspond to d520,1/20,5,1/5, and 1 for spheres,d
51/20,20,1/5,5, and 1 for needles, andd51/20,1/5,1,5, and 20 for
disks.
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6178 PRE 58GAOYUAN WEI AND S. F. EDWARDS
certain value less than 1/(d21) assm increases from 0 to
1/(d21) for all the inclusion shapes but disks, for which o
has

se5~sm
2 /2!~12sm!/~41sm22sm

2 !, ~40!

which attains a maximum value of 0.019 758 1 atsm

50.700 553 and a minimum one of 0 atsm50 and 1. In
particular, for spherical inclusions and ford51 andsm50
we havese5fsAd(s,f) with Ad(s,f).0 for d52 and 3
and fors521 andsm51/(d21),

FIG. 4. Plots ofse vs s5sm with f50.4, otherwise the sam
as in Fig. 3, except for the values ofd corresponding to each curve
10, 1/10, and 1 for spheres and needles and 1/10, 10, and
disks.
se5H (dfm23f11)/(dfm12f22f11) (d52)

(dfm1f2210f14)/(2dfm111f2214f18)

(d53),
~41!

which may be solved forfc anddc such that whenfc,f
,1 and 0,d,dc one hasse,0, as done by Wei and Ed
wards@3#.

In Table I auxeticity windows, i.e., (fc ,1) and
(dc1 ,dc2), are displayed for disks and both two- and thre
dimensional needles and spheres withd54/5 for fc andf
50.45 for dc1 anddc2 . Numerical values ofse andde for
composites of auxetic (s520.9) inclusions of these five
types of shapes withsm50.25 andf50.45 are tabulated in
Table II. Figures 1–3 show plots ofse as a function ofd, f,
and sm , respectively, for auxetic (s520.8) spherical,
needlelike, and disklike inclusions when other paramet
are fixed, while Fig. 4 plotsse vs s5sm with f50.4 for
three values ofd: 1/10,1, and 10. In Figs. 5 and 6 the depe
dence ofse on d at f50.4 is compared among the five type
of inclusion shapes fors520.8 and sm50.25, and s
5sm520.5, respectively. Finally, the effects of weak inte
actions@3,22# among spherical inclusions on the dependen
of se on d are illustrated in Fig. 7.

IV. DISCUSSION AND CONCLUSION

The existence of auxeticity windows in composites
auxetics was demonstrated by Wei and Edwards@3# for

for

FIG. 5. Comparison of the dependence ofse on d among vari-
ous inclusion shapes: a disc and blade~top! and a sphere, needle
and disk ~bottom!, with s520.8, sm50.25, andf50.4. The
curves from top to bottom on thed56 line correspond to a disc an
blade in the upper figure and a sphere, needle, and disk in the lo
respectively.
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spherical inclusions. It is seen from Table I that this is a
the case for other inclusion shapes. Ford54/5, the critical
volume fractionfc above which the composite exhibits au
eticity decreases assm decreases from 0.45 to 0.15 for a
the inclusion shapes withs520.9, but at a given value o
sm it varies considerably for different inclusion shapes, w
fc for discs being smaller than that for blades in all thr
cases considered and the smallestfc being produced by
spheres atsm50.45 and disks atsm50.30 and 0.15. We
notice thatfc for needles are the largest in both two a
three dimensions. Forf50.45, there exists at least one au
eticity window for d in all the three cases and for all th
inclusion shapes except for spheres and needles in case
which no such window is found. It is also seen thatdc1 is
either zero or close to zero in all the cases and that disk
inclusions gives the largest auxeticity window atsm50.30
and 0.15. The magnitude of the effective Poisson ratiose
and Young modulus ratiode for s520.9, sm50.25, and
f50.45 vary considerably among different inclusion shap
for d51/10, 1, and 10, as can be seen from Table II, w
discs and spheres yielding the most negativese at d51/10,
disks and disks atd51, and blades and disks atd510, in
which case one also hasse.0 for both discs and spheres

The characteristic curves ofse vs d, f, andsm , respec-
tively, with other parameters fixed, are shown in Figs. 1
for spheres, needles, and disks. As for the first two type
curves, these three inclusion shapes are seen to give the
kind of dependence ofse on eitherd or f with the exception
of disks atsm50.45 and 0.2, for which a maximum, instea
of a minimum, ofse is present at a certain value ofd. The

FIG. 6. Plots ofse vs d with s5sm520.5 andf50.4, oth-
erwise the same as in Fig. 5, except for the assignments of inclu
shapes corresponding to each curve: a blade and disc in the u
figure and a needle, sphere, and disk in the lower, respectively
o

for

e

s

3
of
me

dependence ofse on sm is more varied for different values
of d whethersm ands are equal or not, as shown in Figs.
and 4. In particular, from Fig. 4 it is seen that fors5sm

51/5 one hasse51/5 for spheres and disks for all thre
values of d, but for needles only ford51 @see also the
discussion following Eq.~39!#.

For composites of auxetics with both equal and uneq
sm ands, different kinds of dependence ofse on d for all
five inclusion shapes are compared in Figs. 5 and 6 ford5
20.8, sm50.25, andf50.4. It is seen from Fig. 5 that in
two dimensionsse is lower for discs whend lies approxi-
mately between 0.3 and 1.6, but higher otherwise, while
three dimensions a similar interval for spheres is appro
mately@0.3,0.8#, with disks yielding the most negativese at
d.1. For s5sm520.5 andf50.4, we find from Fig. 6
that for d.2, discs give lower values ofse than blades,
while in three dimensions disks give the lowest and need
the highest values.

As revealed in Ref.@3#, the effects of interactions amon
spherical auxetic inclusions onse are simply the slightly
widening of auxeticity windows ford. This is the case for
spheres in both two and three dimensions as seen from F
with s520.8, sm50.25, andf50.4.

We have so far discussed the effects onse of only three
distinctive types of inclusion shapes: spheres, needles,
disks. It must, however, be pointed out that other no
ellipsoidal inclusion shapes such as oblong and convex p

on
per

FIG. 7. Illustrations of the effects of weak interactions amo
spherical inclusions on the dependence ofse on d with s520.8,
sm50.25, andf50.4. The curves from bottom to top on thed
54 line in both the upper~disc! and lower~sphere! figures corre-
spond to the mean-field result with and without the interaction
fects being taken into account, respectively.
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6180 PRE 58GAOYUAN WEI AND S. F. EDWARDS
gons @41# may also be considered as may fine, cylindric
fibers @33# or even randomly coiled wires@30#. The con-
straint of perfect bonding between phases in the mean-
approximation may be relaxed by taking into account
bonding imperfections or the interface zones@42#. The ef-
fects onse of the matrix being a half space or two joine
semi-infinite elastic bodies, a bimaterial, may also be con
ered@43# as may the extension of the present treatment to
effective electroelastic properties of piezoelectric compos
@44# with auxetic inclusions. Even effective micropolar ela
tic properties may be investigated as micropolar Eshelby
sors for both spherical and cylindrical inclusions have be
obtained @45#, which recover classical Eshelby tensors
special cases. We thus see that many more challenging p
lems remain to be solved, especially those associated
accurate theoretical prediction and experimental determ
tion of effective Poisson ratios in composites of auxetics o
higher volume fraction for which both intensive and exte
sive research on their experimental preparations are u
way.

In conclusion, we have given a short but thorough revi
of the existing mean-field theory of effective elastic prop
ties of disordered composites with ellipsoidal inclusions a
indicated how interactions among the inclusions may
taken into account. Extensive analytic and numerical res
4

of

on

r

l

ld
e

-
e
s

-
n-
n
s
b-

ith
a-
a
-
er

-
d
e
ts

have been obtained concerning the effects, on effective P
son ratios of a two-phase composite, of both inclusion sha
and such parameters as inclusion volume or area fraction
Poisson ratio, matrix Poisson ratio, and the ratio of
Young modulus of inclusion to that of the matrix. In partic
lar, the existence of auxeticity windows for composites
auxetic discs, spheres, blades, needles, and disks is de
strated theoretically and some challenging problems for
ture work are identified including experimental verificatio
of the predicted existence of the auxeticity windows.
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