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Can one hear structures of smectic films?

I. Kraus,* Ch. Bahr,† I. V. Chikina,‡ and P. Pieranski
Laboratoire de Physique des Solides, Universite´ Paris–Sud, Baˆtiment 510, 91405 Orsay, France
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Drumhead vibrations are used to detect phase transitions in smectic films. We point out experimentally and
theoretically that vibrational eigenmodes are specially sensitive to structural transitions when the films are
curved. In particular, stacking transitions in thick SmBcryst-like films of 7O.7 are detected.
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I. CAN ONE HEAR STRUCTURES OF SMECTIC FILMS?

The question addressed in the title of this paper is a p
phrase of the celebrated article ‘‘Can one hear the shape
drum?’’ @1# in which the author, Mark Kac, asked, a lon
time ago, whether one can recognize the shape of a d
from its sound.

The drum considered by Kac consists of a thin, perfec
flexible, elastic, and isotropic membrane, spanned on a
boundaryG ~Fig. 1!. When the two-dimensional density o
the membraner is uniform, and the tensiont to which the
membrane is submitted is isotropic and uniform as well,
drum’s vertical displacementz(x,y;t) in the limit of small
amplitudes obeys the wave equation

]2z

]t2 5
t

r S ]2z

]x2 1
]2z

]y2D , ~1.1!

with the boundary conditions

z~G;t !50. ~1.2!

Such a drum is able to produce pure tones of frequencyvn
which are known as normal modes and have the form

zn~x,y;t !5zn~x,y!eivnt. ~1.3!

The frequencyvn of the eigenmodes and their associat
geometryzn(x,y) satisfy the equation

t

r S ]2zn

]x2 1
]2zn

]y2 D1vn
2zn50, ~1.4!

which can be rewritten in a dimensionless form usingL, the
length scaling the size of the drum, as

S ]zzn

] x̃2 1
]2zn

] ỹ2 D1lnzn50, ~1.5!

where
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From Kac’s mathematical point of view, the answer to h
question is given when the nature of the relationship betw
the shapeG and the spectrum of eigenvaluesln is found. In
particular, Kac wondered whether the spectrumln is unique
for every shape of the boundary. We know today that
answer to this last question is ‘‘no,’’ because there a
known examples of different shapes having the same spe
of eigenvalues@2–5#.

From the physical point of view represented in the pres
paper, the main interest in studying the sound of a drum i
extract information on the physical properties of the dru
membrane from itsln spectrum. It has been shown prev
ously @6,7# that the so-called free-standing smectic films
‘‘fluid’’ phases such as SmA or SmC behave indeed, to high
accuracy, as such ideal drums and are characterized by
two physical parameters: the two-dimensional~2D! densityr
and the isotropic tensiont. Indeed, unlike soap bubbles
which must be held in a wet atmosphere in order to prese
their stability, smectic films can vibrate in quasivacuu
When submitted to vacuum, they evaporate slightly, unl
the vapor pressure of the liquid crystal material reaches
saturation value, which is by few orders of magnitude low
than the one of water. Thus the mass of the surrounding

l

-
FIG. 1. Kac’s drum: a perfectly flexible and homogeneo

membrane of the densityr, spanned on contourG and submitted to
isotropic tensiont.
610 © 1998 The American Physical Society
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PRE 58 611CAN ONE HEAR STRUCTURES OF SMECTIC FILMS?
put into motion by the vibrating film can be neglected w
respect to the massr of the film itself. It is also important to
emphasize that in the liquidlike SmA or SmC phases, the
restoring force is mainly due to the tensiont of the smectic
film. This is so because the curvature elasticity effects
reasonably thin films can be neglected with respect to
tension effects. To sum up, in the case of smectic films
SmA or SmC phases, for known shapeG and sizeL of the
frame, the frequency of eigenmodes provides information
the ratiot/r of the tensiont to the densityr of the mem-
brane in the case of smectic films in SmA or SmC phases,
for known shapeG and sizeL of the frame.

In the present paper we will show that smectic films
crystalline smectic phases~SmB, SmG, etc.! no longer be-
have as an ideal drum because their 3D elasticity contrib
to the restoring force and affects the tune of the drum. Mo
over, we will point out that the change of tune due to the
elasticity is very sensitive to the 3D shape of the drum me
brane, that is to say, to the built-in Gaussian curvature of
film due to the deviation from the planar shape of the cont
G. In other words, we will show thatone can hear both the
structure and shape of the drum.

The paper is organized as follows. In Sec. II the gene
structure, and physical properties of smectic films are brie
discussed on the basis of the thermodynamic point of v
previously developed in Ref.@7#. In Sec. III the equation of
motion of smectic films is revisited in order to take in
account effects due to the curvature at rest and to the
elasticity. Section IV is devoted to the description of t
experimental setup developed for experiments involv
curved smectic films vibrating in vacuum. Experimental
sults obtained mainly with films of 7O.7 are presented an
discussed in the last sections.

II. THERMODYNAMICS OF SMECTIC FILMS

Before we start to discuss the effects of the Gaussian
vature on the vibrations of smectic films, it seems necess
to make a short introduction concerning the structure
smectic films, and to make clear that smectic films are v
peculiar objects from the structural, thermodynamic, and m
chanical points of view.

The most important fact about smectic films is that th
cannot exist on their own, but must stay suspended on a
enough frame. This is so because the elastic moduli of sm
tic phases, even of those that are crystalline in three dim
sions~SmBcryst or SmG!, are so low that they are unable
stand strains due to the surface tension, unlike thin slice
ordinary 3D crystals such as silicon. Being suspended, sm
tic films are always surrounded by a meniscus connec
them to the frame. It is possible only when the liquid crys
material has a tendency to wet the frame.

The limit between the film made of an arbitrary numberN
of molecular layers and the meniscus is well defined. Inde
in its thinnest portion, the linear meniscus shown on Fig. 2
nothing but a collection of monomolecular steps whose d
sity per unit lengthn(x) determines the shape of the men
cush(x),

h~x!5hf1dE n~x!dx, ~2.1!
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whereh(x) is the local thickness, andd is the thickness of
one molecular layer. The first step of the meniscus con
tutes obviously the limit of the film@8#. The position of the
first step as well as the whole distribution of other stepsn(x)
in the meniscus are determined by forces acting on them@9#.
The stability of the first step position requires that it must
submitted to a thermodynamic force pushing it toward
next steps of the meniscus which will exert a repulsive act
on the first step and stabilize the edge of the meniscus. In
opposite case, that is to say, if the first step was pulled by
thermodynamic force toward the center of the film, its dia
eter would decrease and, finally, the step would collapse

Starting from the discussion of the behavior of the fi
step in the meniscus, we arrived at a more general ques
about the sense and amplitude of the thermodynamic fo
acting on an isolated straight step separating two portion
the film with different thicknessesN and N11. This force
being nothing else but the difference between the tensiontN
and tN11 of films of thicknessesN and N11, we have to
find how the film tension depends on the thickness.

From the thermodynamic point of view, the tension
smectic films is similar to the pressurep in 3D materials, and
is defined as the derivative of the free energy per molec
f N(a,T) with respect to the surface areaa per molecule~T
refers to the temperature!:

tN5
] f N~a,T!

]a
. ~2.2!

Let us emphasize that the free energyf N as well as the sur-
face areaa occurring here are quantities averaged on
thickness of the film. In particular, the surface area per m
ecule is defined as the ratio

a5A/N ~2.3!

of the film area to the total number of moleculesN in it.
The value of the film tensiontN is determined by the

condition of its equilibrium with the meniscus which, i
most cases, has a large volume and acts as a reservo
particles fixing the chemical potentialmmen in the system. As
shown in Fig. 3 the equilibrium condition

mN5 f N~a!2tNa5mmen ~2.4!

FIG. 2. Structure of a smectic film suspended on a circu
frame: ~a! Perspective view of the film.~b! Enlarged view of the
meniscus~in sections! which, in the vicinity of the film, can be see
as a collection of steps pushed toward the frame.
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612 PRE 58I. KRAUS, CH. BAHR, I. V. CHIKINA, AND P. PIERANSKI
leads to the construction of a tangent to the curvef N(a)
intersecting the ordinate axis atmmen. Clearly, the resulting
slopetN depends on the position and shape of the funct
f N(a), which can be approximated as

f N~a!5 f N min1BN~a2aN min!
210~a4!. ~2.5!

In the simplest model, where the smectic film is treated a
stack ofN identical layers,f N min5f0 is independent ofN,
aN min5a/N and BN5bN with a and b constants. Within
such a model, it results from the construction of Fig. 3 t
the tension of the film increases with its thickness wh
mmen, f 0 . In other words, for eachN one has

tN,tN11 . ~2.6!

When this inequality holds, the collection of steps form
ing the meniscus is stable for anyN, but the film itself is
only metastable with respect to any decrease of its thickn
@9#. In order to decrease the film thickness, a pore mus
created in at least one of theN molecular layers forming the
stack. This process is analogous to the nucleation of a
phase in the old one during a first-order phase transit
When the radius of the pore is large enough, that is to
larger than the critical radiusr c @7#, the pore will open more
and more until its edge hits the meniscus edge. In the op
site case,r ,r c , the pore will collapse. It is important to
know that in most cases the nucleation barrier for the c
ation of a pore is much larger thankT, so that the metasta
bility of smectic films with respect to the reduction of the
thickness is only virtual. This explains the astonishing
bustness of smectic films contrary to the proverbial fragi
of soap bubbles.

The above analysis of the film stability has to be revisi
when the structure of theN molecular layers depend on the
position i 51, . . . ,N in the stack or when the structure of th
i th layer is a function of the total thickness of the stack.
such case, all coefficients of expression~2.5! can depend on
N in a complex way. In particular it can happen that in so
thickness interval@N1 ,N2#, the inequality is inverted:

FIG. 3. Geometrical representation of the thermodynamic e
librium between the meniscus fixing the chemical potentialmmen

and films of thicknessesN21, N, andN11. The tensiontN of the
film of thicknessN corresponds to the slope of the line starti
from mmen and tangent to the functionf N(a).
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tN.tN11 . ~2.7!

Thicknesses from the interval@N1 ,N2# will thus be prohib-
ited, and the meniscus will have a clifflike shape; the thic
ness of the film will jump fromN,N1 to N.N2 . As the
free energyf N depends on the temperature as well, such
interval of prohibited thicknesses can appear for some t
perature range@T1 ,T2#. Outside@T1 ,T2#, a film of thickness
Np@N1 ,N2# can coexist with a smooth meniscus. Howev
when the temperature enters the@T1 ,T2# range, theDN
5N22Np steps of the meniscus will collapse until the fil
thickness reachesN2 .

It is obvious from the above considerations that the t
sion of smectic films is the parameter ruling their stabili
From a formal point of view, the equilibrium states of
system in contact with a reservoir of particles are ruled
the grand canonical potentialV which must be minimal. In
our case, one has, by definition,

V5F2mN ~2.8!

whereF is the total free energy, andN is the total number of
molecules in the film. Using the definition of the chemic
potential@Eq. ~2.4!#, one finds that

V5tA, ~2.9!

whereA is the total area of the film fixed by the frame. A
expected, the tension of the film should be minimal for co
stantA.

In the above analysis of the thermodynamic equilibriu
in smectic films, the free energy per moleculef N , averaged
over the film thickness, plays the central part. By definitio
one has

f N5
1

N (
i 51

N

f Ni
~2.10!

where f Ni
stands for the free energy per molecule in thei th

layer of the stack made ofN layers. When the thickness of
smectic film is very small, the contribution to the avera
free energyf N(a) of molecular layers close to the film su
faces becomes important. In spite of exchanges of molec
from layer to layer, each of the layers in the stack can hav
different structure in principle and, consequently, a differe
surface area or free energy per molecule. Indeed, interact
between layers and exchanges of molecules between a
cent layers impose only the equality of the chemical poten
mNi

. The free energyf Ni
can be different provided the ten

siontNi
, defined separately for each of the layers, is prope

adjusted. Obviously, because of different environments~be-
cause of the drastic change at the interfaces!, structures in the
surface layers can be very different from those in a b
material at the same temperature. Moreover, these struc
must depend on the film thicknessN.

Because of the dependence of layers structure on the
thickness, the polymorphism of the smectic films can be d
ferent and sometimes richer than that of the bulk mater
For this reason, the structural terminology coined for bu
smectic phases, where all layers are identical, cannot be
for smectic films such as it is. For example, in ALLO@10#, in

i-
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PRE 58 613CAN ONE HEAR STRUCTURES OF SMECTIC FILMS?
the temperature range where the bulk material should b
the SmA phase, films of thickness larger than 90 layers c
have a hybrid structure: a SmA-like core sandwiched be
tween several SmC-like surface layers. Such a structure c
be described by the tilt angle distributionu i(T). In the limit
of very large thicknesses, when the relative contribution
the surface layers to the averaged thermodynamic quan
can be neglected, one can say that the film structure
SmA-like. Nevertheless, because of the presence of
SmC-like layers, the symmetry of the whole film is broke
and cannot be qualified as SmA, strictly speaking. In the
temperature range where the bulk material should be in
SmC phase, the tilt anglesu i(T) are larger than in the
SmA-like films. Thus the ‘‘state’’ of a smectic film can b
established considering its tilt angle distributionu i(T). In
ALLO films thicker than 90 layers, there is a discontinuo
change in the tilt angle distribution as a function of the te
perature. By continuity with theN⇒` limit, such a struc-
tural change can be qualified as a SmA-SmC-like transition.
For thicknesses less than 90 layers there is no discontin
in the distributionu i(T) but just a continuous change: th
SmA-SmC phase transition line in the (N,T) phase diagram
terminates forN590 at a critical point.

As a second example of the specific polymorphism
smectic films, important for the purpose of the present pa
let us quote that of 7O.7 films established on the basis of th
x-ray diffraction studies. On the (N,T) phase diagram estab
lished by Sirotaet al. @11# the phase sequence in theN⇒8
limit is

C/33 °C/SmGcr/55 °C/SmBcr/69 °C/SmC/72 °C/SmA/

83.7 °C/N284 °C/Iso,

but for thicknesses less than 103 Å, the SmF-like structure
appears between the SmB-like and SmG-like structures. The
temperature range of the SmF-like structure increases with
decreasingN, mainly at the cost of the SmB-like phase, with
decreasingN. Another interesting feature of the 7O.7 (N,T)
phase diagram is the existence of stacking transitions
tween different variants of the SmB-like phase, as pointed
out in Refs.@11#. Our purpose here will be to show that a
these structural transitions in 7O.7 films can be detected ‘‘by
hearing the sound of the drum.’’

III. MECHANICAL PROPERTIES OF SMECTIC FILMS

One can expect that vibrations of smectic films, wh
their structure is crystal-like, should be very sensitive to th
shapes. Indeed, the common-day experience shows tha
rigidity of an iron sheet depends a lot on its shape, a
consequently, quite complex shapes are generated in ord
satisfy requirements for the rigidity.

In the case of smectic films, like for soap bubbles,
choice of shapes is limited to minimal surfaces. Indeed, s
face strains that would result from any deviation of the mi
mal surface shape cannot be equilibrated by the bulk rigi
of smectic phases on a long time scale. This is quite sim
to the necessity mentioned above of suspending sme
films on a rigid frame. More precisely, exchanges of m
ecules between smectic layers in the film and between
in
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film and the meniscus are rapid enough to restore the m
mal surface area of the film on a less-than-few-minutes t
scale. Obviously, the relaxation time of such strains depe
a lot on the structure of molecular layers in the films and
its thickness. It is of the order of 1022 sec in thin films made
of SmA-like layers, but it can be as large as few minutes
thick films made of crystalline SmB-like layers.

In conclusion, the drums we want ‘‘to hear’’ are all min
mal surfaces and as such must have the zero mean curv
H. Using the expression of the mean curvature for surfa
of the Monge formz5z(x,y), one obtains a nonlinear dif
ferential equation:

2H5
1

R1
1

1

R2
5

~11zy
2!zxx22zxzyzxy1~11zx

2!zyy

~11zx
21zy

2!3/2 50,

~3.1a!

where 1/R1 and 1/R2 are the principal curvatures of the su
face,zx andzy are the first derivative ofz with respect tox
andy respectively, andzxx , zxy , andzyy are second deriva
tives. Equation~3.1a! reduces to the linear Laplace equatio

]2z

]x2 1
]2z

]y2 50 ~3.1b!

in the limit of almost flat shapesz'0. The solutions of these
differential equations depend on the shapeG of the frame.

In the simplest case, invoked by Kac, the contourG is a
flat curve and the smectic film is a plane. However, it
important to remark that such a perfectly flat film is only
mathematical concept because in practice several me
nisms will generate deviations from the flat shape. First
all, every smectic film is submitted to the gravity force whic
has to be equilibrated by the adequate deformation of
film. In the case when the film is horizontal and its surfa
density is given byrclh, one obtains

tS ]2z

]x2 1
]2z

]y2D5rclhg, ~3.2!

whereg is the gravity acceleration. On a circular contour
radiusr G , the film will take the shape of a paraboloid:

z~x,y!5
r G

2

2R
2

x21y2

2R
, ~3.3!

where the curvature radiusR is inversely proportional to the
film thicknessN,

R5
t

rclhg
5

R1

N
, ~3.4!

and where

R15
t

rclgd
5

l 2

d
~3.5!

is the curvature radius calculated for one molecular laye
thicknessd. In the above equation we introduce the capilla
length 1 which for a film tension of the order of 50 dyn/c
and a density ofrcl51 g/cm is of the order of 2 mm. The
curvature radiusR calculated for a two-layer films of the



by means

614 PRE 58I. KRAUS, CH. BAHR, I. V. CHIKINA, AND P. PIERANSKI
FIG. 4. Minimal surfaces spanned on a frame made of eight straight mutually orthogonal edges. These shapes are calculated
of the Weierstrass’ formulas@Eq. ~3.7!# using the analytic functionR(z)5(z82Cz411)21/2. The aspect ratioa5Lz /L depends on the
value of the parameterC.
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thicknessh5631027 cm is of the order of one kilometer
and seems enormous. However, the deflection in the ce
of the film of radiusr G ,

zmax5
r G

2

2l 2 h, ~3.6!

is of the order of the film thickness forr G'1 cm and thus,
strictly speaking, cannot be neglected. The second sourc
deviation from the flat shape is due to the imperfections
the frame. For any frame constructed by conventional m
chining procedures, the scale of these imperfections is in
best case in the micrometer range. For the frames used in
present study and the previous studies, we estimate the
perfection to be in the 1022-cm range, that is to say, 103

times larger than the thicknessh51000 Å of a 30-layer film.
Finally, as we shall see in Sec. IV, the film shape can
affected by a nonuniform distribution of the excess liqu
crystal material in the meniscus. Without annealing
sample slightly below the SmA–nematic transition tempera
ter

of
f
-
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the
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ture, smectic films show corrugations located in the vicin
of the meniscus. Well visible in a reflecting microscope, t
local curvatures of such corrugations can be fairly large,
the order of a few cm21. In conclusion, perfectly flat films do
not exist in practice and one has to examine how local
global curvature affect vibrations of such ‘‘flat’’ films.

When a smectic film is disturbed by a transverse vibrat
from its rest shapez(x,y), the resulting deviationz(x,y,t)
from the equilibrium state will generate restoring forces i
plied in the film’s equations of motion. The nature and t
magnitude of these forces depend on the shapez(x,y) of the
film as well as on the structure of the film, that is to say,
the whole set of structures of theN molecular layers in the
stack.

In order to be more explicit, let us consider the exam
of a family of minimal surfaces generated by the contourG
made of eight mutually orthogonal straight edges, as sho
in Fig. 4. Let the length of the horizontal edges be the sa
Lx5Ly5L. The shape of the surface depends then on
lengthLz5aL of the four vertical edges. The minimal su
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PRE 58 615CAN ONE HEAR STRUCTURES OF SMECTIC FILMS?
faces spanned on such a frame are known as the so-calT
surfaces@14#. Their shape can be calculated numerically u
ing the method of Weierstrass in which the Cartesian co
dinates (x,y,z) of the surface are calculated as followin
integrals:

x5Re E
z0

zl
~12z2!R~z!dz,

y5Re E
z0

zl
i ~11z2!R~z!dz,

z5Re E
z0

zl
2zR~z!dz, ~3.7!

wherez5u1 iv andR(z) is the analytic function of the form

R~z!5~z82Cz411!21/2. ~3.8!

When z050 ~the origin of the complex plane! and z1 are
points from the interior of the circle of radius 1, this alg
rithm generatesT surfaces with the aspect ratioa depending
on the value of the parameterC. In the limit C⇒`, a tends
to 0, and the surface is flat. WhenC is finite but very large,
a!1, and one obtains a saddlelike surface which appro
mate analytic expression is

z5
2a~x22y2!

L
. ~3.9!

For C52, a tends to infinity, and one obtains the so-call
Scherk’sk51 surface@13,14#. Such a surface can be seen
composed of two pairs of almost flat and vertical walls co
nected by a saddle. In the absence of gravitation, the e
librium position of the saddle isz(0,0)50.

In the fundamental mode of vibrations of such surfac
the central saddle point moves up and down. In the limia
50 of the flat square film, the eigenmodes and their frequ
cies are known:

zmn~x,y,t !5zmax cos~vmnt !sinS m
p~x2L/2!

L D
3sinS n

p~y2L/2!

L D ~3.10!

vmn5S t

rN
D 1/2 p

L
Am21n2

so that ~3.11!

v115S 2t

rN
D 1/2 p

L

In the opposite limita@1, the vibration of the surface con
sists in the motion of the saddle whose approximate mas
m'rNL2. The restoring force due to the film tensiont and
acting on the saddle can be written as

Fz
ten'2tFS 1

a D z00 ~3.12!
d
-
r-

i-

s
-
ui-

,

n-

is

whereF(1/a) is an unknown function. The system looks lik
a harmonic oscillator of frequency:

v5S t

rN
D 1/2 p

L
FS 1

a D . ~3.13!

From Eq.~3.11!, we already know thatF(1/a)521/2 in the
limit of a50. In the limit ofa⇒`, the energy of the system
cannot depend on the positionz00 of the saddle~when the
four vertical edges arestrictly parallel and equidistant!.
Therefore, the functionF(1/a) must tend to zero. It is cru-
cial to emphasize here that the expression of the resto
force is based on the implicit assumption that the film
liquid and inviscid. Nevertheless, during the ‘‘up and down
motion of the saddle, the molecules must be transferred
tween the two pairs of vertical walls that change th
lengths. As the amount of the transferred matter islinear in
z, it can generate forces linear inz which must be taken into
account at the same level of calculations as the resto
force due to the film tension.

When the layers in the film are liquidlike, this transfer
possible by way of a pure shear flow in the saddle reg
~Fig. 5!. In a viscous fluid, such a flow generates visco
stresses which in the limit 1/a⇒0 are of the order of

s i j 5
hh

2 S ]v i

]xj
1

]v j

]xi
D'hh

z00

L S 1
0

0
21D , ~3.14!

whereh is the viscosity andv is the flow velocity. These
stresses create a difference

Dt'
hh

L

dz00

dt
5 iv

hh

L
z00 ~3.15!

in the film tension between the two pairs of vertical wa
and contribute to the restoring force acting on the saddle

Fz
visc' ivhhz00. ~3.16!

Let us note that as this viscous friction force does not dep
on a, the oscillator becomes overdamped and its relaxa
time of the order of

FIG. 5. The displacementz of the saddle generates a shear d
formation indicated by the arrows.
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Tr'
hh

tF~1/a!
~3.17!

diverges in the limit 1/a⇒0.
When the film is crystalline, the vertical displacement

the saddle creates elastic stresses due to the shear def
tion

s i j 5
mh

2 S ]ui

]xj
1

]uj

]xi
D'mh

z00

L S 1
0

0
21D , ~3.18!

wherem is the shear modulus andu is the displacement. The
corresponding restoring force is

Fz
el'mhz00. ~3.19!

Neglecting the contribution of the film tension in the lim
a⇒0, one obtains the frequency of the oscillator:

v5S mh

rcl
D 1/2 p

L
, ~3.20!

independent of the film tension.
Let us now consider in more detail the casea!1 of an

almost flat surface. During the surface vibrationz(x,y,t),
each surface element is submitted to inertial and resto
forces that can be elastic and/or dissipative. These forces
be decomposed into the components parallel and perpen
lar to the film surface.

In the limit of a50, the most important are the comp
nents orthogonal to the film surface. Indeed, for symme
reasons, the forces orthogonal to the film must be first or
in z, while those which are tangent to the film must be s
ond order inz. If one considers the trajectories of molecul
in the film, and supposes in the first approximation that th
are orthogonal to the film surface at each time, then the
stantaneous velocity is

nW ~j1 ,j2 ,t !'
]z

]t
nW , ~3.21!

where nW is the unit vector normal to the surface an
(j1 ,j2 ,j3) are the orthonormal coordinates such thatj1 and
j2 are curvilinear coordinates along the curvature lines of
surface~Fig. 6!. The acceleration of this surface element h
then two components. The first,

a35
]2z

]t2 , ~3.22!

is of the order ofv2z, while the second,

aW i5
]z

]t

]nW

]t
5S ]z

]t D
2 ]nW

]j3
, ~3.23!

is one order higher inz. It has been shown recently that th
nonlinear inertial force is at the origin of a large variety
phenomena occurring when the amplitude of vibration
large enough@15#. Here we are interested in the limit o
small vibrations, so that the amplitude of motions tangen
the film surface is a second order small quantity.
f
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When aÞ0, the symmetry with respect to the mirro
plane (x,y) is broken so that forces tangent to the film su
face may have components which are first order inz. How-
ever, as these tangent components must be linear ina, they
can be made as small as necessary by a proper choice o
out-of-plane deformation.

For these reasons, let us start the search for eigenm
by considerations of normal forces. We know that the fi
tension is a source of such a force. As defined in Sec. II,
thermodynamic tensiont provides an isotropic contribution
to the stress tensor components tangent to the surface o
film. In the curvilinear orthogonal coordinates (j1 ,j2 ,j3),
one has

Ni j 5td i j for i , j 51,2. ~3.24!

Even if the modulust of the tension tensor is uniform
throughout the film, it can make a contribution

F3
cap5tS 1

R1
1

1

R2
D ~3.25!

to the restoring force in the normal direction when the fi
has an average curvature during its vibration. At rest, one
F350, so that the principal curvatures 1/R1o and 1/R2o must
cancel each other:

1/R1o521/R2o51/Ro. ~3.26!

Due to the displacementw5w(j1 ,j2 ,t) in the directionj3
orthogonal to the surface, the changes of the principal c
vatures are@12#

1

R1
2

1

Ro
5

1

A1

]

]j1
S 1

A1

]w

]j1
D1

1

A1A2

]A1

]j2
S 1

A2

]w

]j2
D1

w

Ro
2 ,

~3.27!

1

R2
1

1

Ro
5

1

A2

]

]j2
S 1

A2

]w

]j2
D1

1

A1A2

]A2

]j1
S 1

A1

]w

]j1
D1

w

Ro
2

FIG. 6. Definition of curvilinear coordinatesj1 and j2 . The
principal curvature 1/R1 is positive, while 1/R2 is negative.



t

e
ac
e
is

s
rc
su

rr
fa
-

nt

he

ne

s

m-
ly,

ian

lm

i-
e is
he
ces
ting
ls

be-
is
tion

e

,
f
ar

PRE 58 617CAN ONE HEAR STRUCTURES OF SMECTIC FILMS?
so that one obtains the restoring force

F3
cap5tS 1

R1
1

1

R2
D5tS 2w

Ro
2 1D̃wD , ~3.28!

where

D̃5
1

A1

]

]j1
S 1

A1

]

]j1
D1

1

A2

]

]j2
S 1

A2

]

]j2
D

1
1

A1A2

]A1

]j2
S 1

A2

]

]j2
D1

1

A1A2

]A2

]j1
S 1

A1

]

]j1
D

5S 1

A1
2

]2

]j1
2 1

1

A2
2

]2

]j2
2D 2S 1

A1
3

]A1

]j1

]

]j1
1

1

A2
3

]A2

]j2

]

]j2
D

1
1

A1A2

]A1

]j2
S 1

A2

]

]j2
D1

1

A1A2

]A2

]j1
S 1

A1

]

]j1
D ~3.29!

is the Laplacian operator in curvilinear coordinates (j1 ,j2).
In the above equations,A1 andA2 are coefficients of the firs
fundamental form of the surface:

ds25A1
2dj1

21A2
2dj2

2. ~3.30!

The restoring force in Eq.~3.28! has two terms. The first on
corresponds to the mean curvature induced by the displ
mentw of the minimal surface. It would exist even when th
displacementw was position independent. Moreover, th
term is proportional to the local Gaussian curvature, 1/Ro

2, of
the surface at rest and, consequently vanishes when the
face is flat. The second term contributes to the restoring fo
when the displacement is position dependent. On a flat
face, whereAi51, the differential operatorD̃ becomes the
usual Laplacian so that the restoring force equals2tDw, as
expected. On a curved surface, the functionsAi depend on
curvilinear coordinates and one has to calculate the co
sponding derivatives. Let us take as an example the sur
given by Eq.~3.9!. For smalla, the curvature lines are al
most parallel to thex andy axes, so thatx andy coordinates
play the role of the curvilinear coordinatesj1 and j2 . In
such coordinates, the coefficients of the first fundame
form are

A1
2511a2x2 and A2

2511a2y2 ~3.31!

where

a54a/L. ~3.32!

From Eqs.~3.25!, one obtains the restoring force due to t
deformationw5w(x,y):

F3
cap

t
5S 1

11a2x2

]2w

]x2 1
1

11a2y2

]2w

]y2 D
2S a2x

~11a2x2!2

]w

]x
1

a2y

~11a2y2!2

]w

]y D
1

2a2w

@11a2~x21y2!#2 . ~3.33!
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This has three contributions. In the limit ofa⇒0 ~flat film!,
the two last contributions tend to zero, while the first o
tends to the usual Laplace termtDw, as expected. On a
square frame of the sizeL2, its order of magnitude depend
on the wave vector of the eigenmode. Forw
5wo(t)sin(mpx/L)sin(npy/L), one getsDw52(m21n2)
3(p/L)2w. When the film becomes curved, one has to co
pare this term with the two other ones which, respective
are of the order ofa2L(m21n2)1/2(p/L)w and a2w. The
factor a2 in these two terms corresponds to the Gauss
curvature of the surface:

1

Ro
2 'a25a2

16

L2. ~3.34!

Therefore, as long as the principal curvature of the fi
1/Ro'a is much smaller than the wave vector (m2

1n2)1/2(p/L) of the eigenmode, the Laplacian term dom
nates and the correction due to the Gaussian curvatur
second order ina. Besides the restoring forces due to t
isotropic static tension of the film, one has to examine for
due to stresses induced by in-plane strains of the vibra
film. Indeed, it is well known from the theory of thin shel
that the deformationw(j1 ,j2) orthogonal to the film surface
induces the in-plane strains@12#:

«115
w

R1
, «225

w

R2
and «125«2150. ~3.35!

On a minimal surface, these deformations are traceless
cause 1/R1521/R251/Ro . Therefore, as expected, there
no change in the surface area of the film and the deforma
is a pure shear. When the film is liquid, as in SmA or SmC
phases, the shear rate generates viscous stresses:

s i j
visc5hh«̇ i j 5hh

ẇ

Ro
S 1
0

0
21D ~3.36!

while, when the film is crystalline, like in the SmBcryst phase,
the shear deformation generates elastic stresses:

s i j
el5mh« i j 5mh

w

Ro
S 1
0

0
21D . ~3.37!

These in-plane stresses generate the normal force

F3
el5S s11

R1
1

s22

R2
D'2mh

w

Ro
2 ~3.38!

in an elastic film, and

F3
visc5S s11

R1
1

s22

R2
D'2ivhh

w

Ro
2 ~3.39!

in a viscous film.
Let us note that expressions~3.38! and ~3.39! are similar

to the first term in expression~3.28! of the force due to the
thermodynamic tensiont of the film. In all three cases on
finds the same termw/Ro

2 multiplied by different prefactors:
t for the isotropic tension,tm52mh for the elastic response
and i th52ivhh for the viscous one. The typical tension o
smectic films is of the order of 50 dyn/cm. For the she
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elastic modulus of crystalline film of the order o
108 dyn/cm2, one obtainstm'102 dyn/cm for a two-layer
film, 103 dyn/cm for a 20-layer film, and 104 dyn/cm for a
0.5-mm-thick film. Forv'2000 s21 andh'1 P, the viscous
contributionth is only of the order of 231023 dyn/cm for a
two-layer film. In conclusion, the shear deformation
curved films is expected to have significant effects on eig
modes in crystalline thick films, but can be neglected in l
uid films.

In order to estimate the effects of the Gaussian curva
on the eigenmodes, let us introduce the forces given by
~3.38! in the equation of motion of a film submitted to
deformationw(x,y,t) in the directionj3 :

r
]2w

]t2 5tDw1
w

Ro
2 ~2t12mh!. ~3.40!

In the approximation whereRo is considered as small an
position independent, the eigenmodes of this differentia
equation are the same as the ones for the flat film@Eqs.~3.8!
and ~3.9!#, and one obtains the dispersion equation

rvmn
2 5tqmn

2 1
2t12mh

Ro
2 , ~3.41!

where

qmn
2 5p2S m2

Lx
2 1

n2

Ly
2D . ~3.42!

In agreement with the heuristic arguments from the beg
ning of this section, one finds that the global Gaussian c
vature of the film increases the frequency of the eigenmo
in the case when the film possesses an in-plane shear
ticity. The shift of the frequency squared is proportional
the product of the global Gaussian curvature and of the e
tic shear modulus of the film.

IV. EXPERIMENTAL SETUP

The general view of the experimental setup is presente
Fig. 7. This setup is roughly similar to the one used in p
vious studies@16#, but the frame on which the smectic film
are spanned is new, to our knowledge. It is presented
detail in Fig. 8.

The smectic film is held on a rectangular metallic fram
with two sides fixed and two sides mobile. As shown in F
8, the two fixed sides have V-shaped, 90°, sharp linear ed
E1 andE2 playing two roles. First, they serve as rails for t
two mobile parts of the frame fitted on these edges by me
of 90° notches. Moreover, they constitute two linear s
ments of the film boundary, which is completed by the ed
E3 andE4 of the mobile parts.

In the case when these mobile edges are V-shaped, lin
and, by construction, put in the same plane as the fi
edges, the whole boundary is, in principle, a plane rectan
and the held film should be flat@Fig. 8#. In practice, one
always observes deviations from such an ideal flat sh
mainly for two reasons:

1°—First of all, as we saw in Sec. III, the film is con
nected to the frame via the meniscus containing much m
-
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of the liquid crystal~LC! substance than the film itself. With
out annealing the sample slightly below the SmA–nematic
transition temperature, the distribution of the LC in the m
niscus and, consequently, its shape vary on the scale of
tenths of a mm, so that the film presents corrugations lo
ized along its boundary. These corrugations are well visi
in the reflecting microscope, as they show a quite stro
intensity variations.

2°—After annealing the sample, these localized corru
tions disappear but the film keeps always a global Gaus
curvature due to unavoidable mechanical imperfections
the frame. This global curvature shows as~and can be de-
duced from! an elliptical modification of the shape of th
laser beam reflected on the film.

Once we started to suspect that these accidental cu
tures modify vibrations of the smectic film in crystallin
phases, even if they are small, we decided to amplify a
control them by means of two different modifications of t
frame.

In order to introduce the localized curvature, the edgesE3
andE4 of the frame have been made sinusoidal shaped u
corrugated stripes of a thin copper sheet soldered to the
ear edges of the standard V-shaped mobile parts of the fr
@see Fig. 8~c!#. Let us note that the corrugations present
opposite edges fit precisely one to the other, so that su
modified frame can be closed completely and the proced
of drawing a film is identical to the one using the standa
frame @7,8#.

The global Gaussian curvature of the film has been
tained simply by a change in the height of the mobile line
edgesE3 andE4 with respect to the fixed edgesE1 andE2
@see Fig. 8~b!#. Let as note that the frame modified in such
manner cannot be completely closed; when the edgesE3 and

FIG. 7. Experimental setup.
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E4 are in contact, open spaces persist at their extremities
order to pull a film, these holes must be carefully filled w
an extra amount of the LC material.

The frame is installed in a metallic cell fixed to the tran
lation stage of the reflecting microscope. The cell of a qu
complex structure plays several roles.

1°—It has a removable cover fixed to the base part
means of six screws. When the cell is open, all manipu
tions necessary for deposition and distribution of the LC m
terial on the frame are possible.

2°—When closed, the cell is tight, thanks to theo ring
situated between the cover and the base, and it can be
mitted to vacuum.

3°—The cell is equipped with two axles screwed to t
mobile parts of the frame. Both axles glide in tighto rings
equipped with bearings, and can be manipulated from
exterior of the cell by means of translation stages. Theref
smectic films can be drawn and their dimensions can
changed with the cell closed.

4°—One of the axles is connected to a piezo translator
that dimensions of the frame can be modulated with accur
in the micrometer range.

5°—The cell is equipped with oblique glass windows f

FIG. 8. Frames:~a! Planar rectangular frame.~b! Out-of-plane
frame; the edgesE3 and E4 are lower thanE1 and E2 due to the
lateral shiftDL. ~c! Frame with crumpled edgesE3 andE4 .
In

-
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y
-
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e
e,
e

o
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direct observations and for detection of the film motion
means of a laser beam. The bottom window allows als
passage of a chopped IR beam used for the purpose
periodic modulation of the film’s temperature.

6°—The mean temperature of the cell is regulated us
two electric heaters situated in the base and in the cove
the cell. Moreover, the fixed parts of the frame are equipp
with two other heating elements, so that the temperature
the frame is controlled independently and can be m
higher than the one of the cell. As we will see below, this
very useful when one wants to avoid film damages caused
phase transitions. The temperature regulation thus obta
is better than60.03 °C.

7°—The cover of the cell holds a system of four ele
trodes that have been machined from a single copper b
in order to control as well as possible their geometry. Th
electrodes can be translated vertically by means of
coupled rods gliding ino-ring-equipped bearings situate
within the cover. In their ‘‘up’’ position, the electrodes ar
far enough from the frame to allow the motion of the mob
edges during pulling of the film. Once the film has be
drawn, the electrodes are lowered and approached to the
as close as about 0.1 mm.

The four electrodes can be supplied independently w
voltagesVi5Vdc1Viac ( i 51, . . . ,4) having dc and ac com
ponents.

The dc componentVdc of about 50 V is identical for all
electrodes. Its role is to charge the capacitor consisting
these four electrodes, and of the film whose conductanc
very low but which behaves effectively as a conductor
time scale longer than 30 s. The surface density of char
sdc brought by this dc field on the film is proportional to th
capacityC and to the dc voltage,

sdc;CVdc. ~4.1!

These dc charges are submitted to the alternating fi
created by the ac components of the voltage applied to
electrodes. It can be eitherVac sin(vt) ~coming directly from
the internal generator of the lock-in amplifier! or
2Vac sin(vt) ~produced by a voltage invertor!. The geom-
etry of the electric field created by the ac voltage is mai
defined by the distribution of grounded metallic parts in t
cell, because the presence of a very resistive film can
ignored due to the high enough frequencyv. The ac electric
field is the most intense in the vicinity of the electrodes,
which it is orthogonal. In conclusion, the dc charges distr
uted in the film~mainly below the electrodes! are submitted
to forces proportional to the ac voltages:

f ;CVdcEac;CVdcViac. ~4.2!

Using different combinations of the ac voltages, seve
eigenmodes of the film can be excited selectively. For
ample, in order to excite the fundamental mode~1,1!, all four
electrodes are connected to the same source of the ac vo
~also see Sec. V!. In order to excite selectively the~1,2! and
~2,1! modes, adjacent electrodes are connected in pairs
spectively,AB-CD andAD-BC ~see Fig. 7!.

Vibrations of the film are detected optically using the sy
tem shown in Fig. 7. The He-Ne laser beam reflected from
appropriate portion of the film~the portion where, for a given
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mode, the excursion of the film slope is the largest! is sent on
a quadrant photodiode which detects its motions. The dif
ential signalI (v) coming from the photodiode and synchr
nous with the exciting ac voltage is analyzed by the fi
lock-in.

The first eigenmodes of the film usually being ve
slightly damped~in air, the damping is mainly due to th
viscous dissipation of air currents!, the signalI (v) shows
quite sharp resonances with well defined eigenfrequen
vn,m . In order to track the evolution of the resonance f
quency of one of the eigenmodes as a function of temp
ture, the phase outputf of the first lock-in is used as th
error signal. Necessary corrections of the excitation f
quency are calculated from this, and are sent to the loc
signal generator by a computer that also deals with all o
tasks such as temperature control and data accumulatio

Let us note that the precision of this resonance track
method is limited by the accuracy of the frequency definit
of the lock-in generator which is 0.1 Hz in the range 10
1000 Hz and 1 Hz in the range 1–10 kHz.

Once the excitation frequency is corrected back to
resonance valuevnm , the slopeDf/Dv of the phasef vs
the frequency is determined from measurements of the p
for frequenciesvnm110 Hz andvnm210 Hz.

In some experiments, due to the modulation of the fra
surface or film temperature, the film tension and, con
quently, the frequency of the eigenmodes, oscillate slo
around its equilibrium value. The typical modulation fr
quencyV of about 1 Hz is lower than the eigenmode fr
quency by two orders of magnitude at least. The amplitu
Dvnm(V) and the phaseCnm(V) of this vibrato is detected
by the second lock-in, and has the phase outputf of the first
lock-in as an input. Indeed, one has

Dvnm~V!5
Dfnm~V!

S df

dv D ~4.3!

whereDfnm(V) anddf/dv are, respectively, the excursio
of the phase and the phase slope detected by the first loc

V. EXPERIMENTAL RESULTS

As stated at the beginning of Sec. III the rigidity wit
respect to the bending of crystal-like smectic films should
influenced by their Gaussian curvature. In order to prove
validity of this generic idea by a simple but neverthele
crucial experiment, we first used a frame with sinusoid
shaped mobile edges. In this case, the Gaussian curvatu
localized in two bands of approximate widthl, parallel to
the deformed edges. The corresponding increase in the b
ing rigidity of the film should be localized there. In practic
this means that when the film becomes crystalline, these
peripheral bands where the film is strongly curved should
excluded from vibrations. As a consequence, the film sho
behave as if it was shorter in the direction orthogonal to
crimped edges, and the frequencyvmn of its eigenmodes
should rise.

Results of this crucial experiment are shown in Figs
and 10. In Fig. 9 are plotted four resonance peaks co
sponding to the first four eigenmodes of a 7O.7 film drawn
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on a rectangular frame~Lx55.5 mm andLy55.0 mm!. In
the SmC-like phase@Fig. 9~a!#, the resonance frequency o
the ~2,1! mode is lower than that of the~1,2! mode. This is
due to the fact that the smectic layers are liquidlike, so t
the localized Gaussian curvature has almost no effect on
film vibrations, as discussed in Sec. III. At lower temper
ture, when the film is in the SmB-like phase@Fig. 9~b!#, the
frequencies of all four eigenmodes are higher than the c
responding ones recorded in the SmC-like phase, but the
frequency shift is much larger for the~2,1! mode than for the
~1,2! mode. These results are summarized in Fig. 10 wh
the frequenciesf mnC of the four eigenmodes in the SmC-like
phase are plotted versus corresponding frequenciesf mnB of
the eigenmodes recorded in the SmB-like phase~crosses!.

This anisotropic behavior of the~1,2! and ~2,1! eigen-
modes at the SmC⇒SmBcryst phase transition constitutes
suitable proof of the rigidifying action of the curvature. In

FIG. 9. Spectra of the first four eigenmodes in the SmC and
SmB phases. The frequency shift at the SmC⇒SmB transition of
the ~2,1! mode is larger than the one of the~1,2! mode. This differ-
ence is due to the curvature localized in the vicinity of the cor
gatedLy edges.

FIG. 10. Fit of the experimental results using Eq.~5.4!.
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deed, the distribution of the Gaussian curvature in the film
anisotropic. The curvature is localized in two bands ortho
nal to thex axis, so that the effectiveLx dimension of the
film is shortened under the SmC⇒SmB transition while the
Ly dimension remains unchanged. Quantitatively, the
quency of the (m,n) eigenmodes in the SmC-like phase is
expected to obey the Rayleigh-type expression:

f mnC
2 5

tC

4rmnC
F S m

LxC
D 2

1S n

LyC
D 2G , ~5.1!

whereLxC5Lx andLyC5Ly . The densityrmnC is an effec-
tive quantity taking into account not only the mass of t
smectic film but also the mass of the air surrounding the fi
and that is put into motion by the vibrating film. As the ma
of the air participating in the film vibrations depends on t
shape of the eigenmode, the effective densityrmnC depends
on the indices (m,n). Introducing the air densityrair and the
effective thickness of the air layerHmn , the effective 2D
density can be written as
te
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rmnC5rairHmn1rclh, ~5.2!

whereh is the film thickness.
In the SmB phase, expression~5.1! is modified according

to Eq.~3.40! by the addition of the curvature dependent te

f mnB
2 5

tB

4rmnB
F S m

LxB
D 2

1S n

LyB
D 2G1 f p

2, ~5.3a!

where

f p
25

1

~2p!2

2mh

rmnBRo
2 . ~5.3b!

In agreement with our model, theLy dimension of the film
stays unchanged,LyB5Ly , while LxB5Lx2DL is shortened
by the ripples. From the above two equations one obtains
following relation:
f mnB
2 5 f mnC

2 tB

tC
F S m

Lx2DL D 2

1S n

Ly
D 2G Y F S m

Lx
D 2

1S n

Ly
D 2G1 f p

2 ~5.4!
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between the frequencies of eigenmodes in SmC- and
SmB-like phases. This contains three adjustable parame
The first one is the ratiotB /tC between the film tensions in
the SmB-like and SmC-like phases respectively. It is ex
pected to be of the order of 1. The second parameter is
ripple-induced reductionDL of the film length in the
SmB-like phase. It should be of the order of the ripple wav
length, i.e.,l50.1 cm. Finally, there is the frequency sh
f p due to the global Gaussian curvature of the film. As no
in Sec. II, one cannot exclude its existence due to sm
accidental imperfection of the frame geometry. With t
choice of the three adjustable parametersf p5134 Hz, DL
50.1065 cm, andtB /tc51.03, the theoretical values of th
frequenciesf mnB are calculated from Eq.~5.4! and plotted in
Fig. 11 versus the measured frequenciesf mnB. The data
computed~open circles! are aligned on a straight line o
slope 1.

Besides the confirmation of the expected rigidifying ro
of the localized ripples, this experiment and several ot
similar experiments show that, even when the accidental
bal film curvature is small, it plays an important role in fil
vibrations in the SmB-like phase.

In order to understand better the role of the global cur
ture in different mesophases, a long series of experim
was performed on 7O.7 films of various thicknesses draw
on the out-of-plane frame with straight edges@Fig. 8~b!#. The
effective radius of curvature in the center of those films w
estimated from the shape of the reflected laser beam t
Ro'20 cm.

All films were drawn first in the SmA-like phase. In order
to determine their thicknessh, the frequencyf 12A of their
~1,2! mode was measured in vacuum. The typical plot of
rs.

he

-

d
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ts
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e

vibration amplitude and phase versus the excitation
quency is shown in Fig. 11. Knowing the value of the res
nance frequencyf 12, the dimensions of the frame~Lx

50.5 cm andLy50.59 cm!, the liquid crystal densityr
'1 g/cm3, and the film tensiont'50 dyn/cm, the film
thicknessh was determined from Eq.~5.2! with the 2D mass
density set tormn5rh.

After the thickness determination, the air was introduc
into the sample cell again, and all other measurements w
made in the air atmosphere. Except for very thick films,
effective densityrmn5rclh1rair is dominated by the contri-
bution of the air participating in the vibrations of the film, s
that effects due to changes in the film density as a function
the temperature can be neglected.

For each film, four different quantities were measured a
function of temperature during a slow cooling fromTu

'68 °C to T1'35 °C. The typical scan rate wasdT/dt
'20.1 °C/60 s. The two plots shown in Fig. 12 conce
two parameters of the~1,2! eigenmode: its resonance fre
quency f 12(T) and the phase slopeDf/20 Hz measured as
explained in Sec. IV. The two other plots in Fig. 13 conce
the response of the eigenmode frequency to thermomech
cal stresses induced in the film by an IR beam modulate
a low frequency of 1.2 Hz. It is important to note that durin
these temperature scans, the frame was slightly heated~see
Sec. IV! in order to introduce a small radial temperatu
gradient in the film. The purpose of this temperature gradi
was crucial: Due to the radial temperature gradient,
SmB-like phase always nucleates in the center of
SmC-like film during the phase transition, and grows by
slow outward propagation of the phase boundary. Dur
such directed growth of the SmB-like phase, the density dis
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continuity Dr between the SmB- and SmC-like phases gen-
erates a mass flow of molecules from the meniscus to
moving phase boundary. Due to the persistent fluidity of
meniscus which is still in the liquid SmC-like phase, such a
mass flow is possible without generation of the destruc
mechanical stresses that would have appeared in the opp
case if the meniscus became frozen (SmB) before the main
body of the film. All four plots in Figs. 12 and 13 sho
anomalies coinciding with phase transitions in the film.

The main feature of the plotf 12(T) is the increase of
about 20% in the resonance frequencyf 12 in the SmB-like
phases with respect to all other phases. The heightD f 12
5 f 12B2 f 12C of the frequency jump at the SmC⇒SmB tran-
sition depends on the film thickness@compare Figs. 12~a!
and 12~b!#, as shown in Fig. 14~filled circles!. The two other
plots of this figure show the variations of the frequenc
f 12C and f 12B with the film thicknessh.

Following Eq.~5.1!, the observed variation off 12C(h) in
the SmC phase can only be due to the variation of the eff
tive densityrmnC with the thickness@Eq. ~5.2!# because it is
known that the film tension varies very little with the film
thickness@4#. Using this assumption, the experimental da
were fitted to the expression

f 12C~h!5 f o /A11h/ho, ~5.5!

FIG. 11. Spectra of the~1,2! mode recorded in vacuum for film
of different thicknesses. Knowing the dimensions of the film a
the density of the liquid crystal, the thicknessesh5590 and 12 400
Å of films have been determined from the resonance frequenc
e
e

e
site

s

-

with two adjustable parameters

f o
25

tC

4rairH12
F S 1

Lx
D 2

1S 2

Ly
D 2G ~5.5a!

and

ho5
rair

rcl
H12. ~5.5b!

The parameterho corresponds to the film thickness in th
case where the inertia of the film and of the air are the sa
The values extracted from the fit aref o5830 Hz andho
52500 nm. Knowingho and the ratiorair /rcl'1023, one
obtains the effective thickness of the air layer:H12
52.5 mm. This value is in agreement with the crude e
mate based on the air flow pattern in the vicinity of the film
From f o , H12, the air densityrair51023 g/cm3 and the film
dimensions ~Lx50.5 cm, Ly50.59 cm!, one obtains tC
545 dyn/cm, in agreement with typical values of the fil
tension@6,7,18#.

In the SmB-like phase, the experimental data in Fig. 1
show that the~1,2! eigenfrequency increases with thicknes
unlike with the SmC-like phase. Following Eq.~5.3!, this

.

FIG. 12. Frequency of the eigenmode~1,2! and the slope of the
phase at the resonance plotted as a function of the tempera
Note differences in the range of temperatures for which, due to
SmB crystalline structure, the frequency of the~1,2! eigenmode is
shifted with respect to its level in the SmC phase.
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means that the effect of the in-plane shear elasticity mod
mh of the SmB-like phase overcomes the action of the e
fective density rise. The experimental data were fitted to
expression

FIG. 13. The film is submitted to a chopped IR light beam. T
frequency of the eigenmode~1,2! is modulated due to thermome
chanical stresses induced by IR heating. The amplitude and p
of this modulation measured with the second lock-in are plotted
a function of the temperature.

FIG. 14. Frequency jump of the~1,2! mode at SmC⇒SmB
transition as a function of the film thickness.
us

e

f 12B~h!5Af o
21ah/A11h/ho, ~5.6!

where the meanings off o and ho are the same as above
while the meaning of the parametera is given by Eq.~5.3!:

a5
1

~2p!2

2m

rnmBRo
2 .

Its value determined from the fit isa51.53107 s22 cm21.
Using r12B52.531023 g/cm2 and Ro'20 cm, one obtains
m'108 dyn/cm2, in agreement with the expected value
the shear modulus in the SmB phase.

VI. DISCUSSION

Besides the positive shift of the~1,2! eigenfrequency
when entering the SmB phase, the plots of Figs. 12 and 1
contain several other interesting features.

Range of the SmB phase:Most obviously, the widthDTB
of the temperature range in which this shift occurs depe
on the film thickness. It is about 7.5 °C for a 590-Å-thic
film and 20 °C for a 12 400-Å-thick film. For films thinne
than 300 Å, a frequency jump does not occur, which can
interpreted as due to the absence of the SmB phase. In the
phase diagram of Fig. 15, the upper limit of the SmB phase
is plotted using filled triangles, while the lower limit is ind
cated with filled circles~SmB⇒SmF phase transition—see
below! or diamonds~SmB⇒SmG phase transition!.

Stacking transitions:As reported in Ref.@11# several
stacking transitions occur in the range of the SmB phase in
7O.7. These stacking transitions are visible on plot 13~b!
showing the modulation of the eigenmode frequency due
thermomechanical stresses induced by the IR chopped b
One notes two changes in the amplitude level: one at 52
and one at 54 °C. These features are plotted as open
monds, squares, and triangles on the phase diagram of
15.

Presence of the SmF phase:For thicknesses between 30
and 2000 Å, the SmB phase is partially~depending on the
thickness! replaced by the SmF phase. Due to the absence

se
s

FIG. 15. Phase diagram of temperature vs thickness of 7O.7
films established from singularities occurring in plots shown
Figs. 12 and 13. Note the presence of stacking transitions in
SmB phase. Lines on this diagram are only guides to the eye.
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the crystalline order, the shear modulus of this phase is z
so that the frequency of the~1,2! eigenmode recovers th
level of the SmC phase. The lower limit of the temperatu
range of the SmF phase~filled squares on the phase diagra
of Fig. 15! has been determined from small irregulariti
such as those visible in plots of Figs. 12~a! and 13~a! around
45 °C.

Shear modulus of the SmG phase:The SmG phase is
known to possess a crystalline order but, in contradistinc
with the SmB phase, the frequency of the~1,2! eigenmode is
not shifted@see Fig. 12~b!#. The explanation of this parado
was given in Ref.@16#. In the SmG phase, molecules ar
tilted with respect to the layers normal. The tilt angle is
additional degree of freedom used by the system in respo
to changes in the in-plane distances between molecules
this reason, the in-plane elastic moduli of the SmG phase are
smaller by a factor of the order of 102 with respect to those
of the SmB phase.

In-plane thermal dilation:The tilt angle also plays a cru
cial role in thermal dilation. As shown in Fig. 13~b!, the
phase of the thermally induced modulation of the eigenm
frequency has ap change at the SmB⇒SmG phase transi-
tion. This means that, for example, under an increase in t
perature, the thermomechanical stresses are compressi
the SmB phase and tensile in the SmG phase. This is due to
the fact that molecules are normal to the layers in the SB
phase, so that they can respond only by a change of t
intermolecular distances when the temperature changes.
result, under heating, the 2D density of the SmB phase
would decrease if the surface area of the film could chan
In the SmG phase, the tilt angle depends on the temperat
It decreases under heating, so that the 2D density of the SG
phase would increase if the surface area of the film co
change.

Temperature vs thickness phase diagram:The phase dia-
gram established from all these features is shown in Fig.
Let us note that theY axis indicates the reduced temperatu
T2TCB with respect to the SmC⇒SmB ~or SmC/SmF!
phase transition temperatureTCB . The reason for such a
choice is that our experiments were performed in air on a
times scale~typical length of a run! so that the phase trans
tion temperatures showed some shifts due to the degrad
of the liquid crystal. In spite of this lack of knowledge of th
absolute temperatures, we can conclude that the diagra
Fig. 15 is very similar to the one established from x-r
studies by Sirotaet al. @11#.

VII. CONCLUSIONS

In the present work, it has been shown both theoretic
and experimentally that in-plane crystalline elasticity
creases the frequency of eigenmodes of smectic films w
they are curved and, more precisely, when they posse
Gaussian curvature. The frequency shift with respect to
pure-capillary case~SmA or SmC phases! was found to be
proportional to the product of the effective in-plane she
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modulusmh, and of the global Gaussian curvature 1/Ro
2.

Let us note that the theoretical model used here was o
simplified because, in the search for the eigenmodes of
equation of motion@Eq. ~3.40!#, the Gaussian curvature wa
supposed to be position independent. This is a crude appr
mation because, in general, the Gaussian curvature va
from one point of a minimal surface to another and theref
depends on the two curvilinear coordinates (j1 ,j2), except
for the case of the catenoide. As pointed our recently by B
Amar and da Silva@17#, the Gaussian curvature does n
depend on the azimuthal angle, due to the symmetry of re
lution.

In light of this remark, one could say that the shapes
smectic films used in our experiments were too comp
from a theoretical point of view. However, our aim was
explain some surprising results obtained previously with
rectangular planar~in principle! frame@8#. This is the reason
why frames used here were obtained by simple modificati
of the rectangular planar one. For future experiments
‘‘tilted square’’ frame made of four oblique straight se
ments seems to be the most suitable. Within such a fra
the minimal surface can be approximated as a simple sa
@Eq. ~3.9!#, and its Gaussian curvature can be controlled
changes in the tilt angle.

As the frequency shift due to the Gaussian curvature
proportional to the in-plane shear elastic modulus of
smectic film, its measurements as a function of tempera
allowed us to detect phase transitions. In particular,
stacking transitions, discovered previously by Sirota, Pe
han, and Deutsch@11# in the SmB phase, have been detecte

The signature of the stacking transitions has also b
found in experiments where the modulation of the~1,2!
eigenmode was induced by a low frequency periodic hea
of smectic films with an IR beam. These experiments sh
that the sign of the in-plane thermomechanical stresse
inverted, with respect to the SmB phase, in the SmG and
SmF phases. We interpreted this effect as due to the p
ence of the molecular tilt, which decreases with temperat
and leads to an in-plane contraction under heating.

In conclusion, the drumhead vibrations of smectic film
have been shown to be very sensitive to their structures w
the films have a built-in Gaussian curvature. This allowed
to detect phase transitions and to establish a phase dia
of temperature vs thickness similar to the one of Ref.@11#.
Further progress in the quantitative interpretation of the m
surements requires exact calculations of the eigenmo
This seems to be difficult in cases where the Gaussian
vatureK depends on the two curvilinear coordinates of t
surface. The case of a catenoid seems simpler, sinceK de-
pends only on one of the isothermal coordinates.
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