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Collective fluctuations and wetting in nematic liquid crystals
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The role of wetting in the dynamics of collective orientational fluctuations in confined nematic liquid
crystals is examined by analyzing the spectrum of normal modes in planar geometry bounded either by
disordering or ordering substrates. The heterophase nature of the equilibrium configurations occurring in the
vicinity of the nematic-isotropic phase transition gives rise to a localized slow mode, which corresponds to
fluctuations of thickness of th@is)ordered boundary layer and becomes soft if the wetting is complete. In
addition, a few modes restricted to the boundary layer—director modes in case of ordering substrate, and
biaxial modes in case of disordering substrate—also exhibit pretransitional slowdown provided that the surface
interaction is strong enough. Analogous behavior of fluctuations is expected in other wetting geometries, e.g.,
in the case of a substrate-stabilized smectic boundary layer in nematic and isotropic samples.
[S1063-651%98)06707-5
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I. INTRODUCTION inner surface of the host medium is roudh6]: in this case
a reduction of the degree of order in the boundary layer is

The variation of material properties of liquid crystals in expected below the phase transition temperature, and the
the vicinity of phase transitions has attracted the attention cgubstrate induces wetting by the isotropic phase.
both experimentalists and theorists for a long time, mainly ~There are, therefore, a number of parameters of wetting in
because it can offer an insight into the evolution of the ordefiquid-crystalline systems that seem to be pertinent to the
characteristic for the low-temperature phase. In the isotropi€ehavior of collective excitations of the ordering in the vi-
phase, for example, the onset of short-range orientational ofinity of the nematic-isotropic phase transition. In order to
dering is observed on cooling towards the nematic-isotropi®@rovide a more complete account of the phenomenon first
phase transitiofil]. On a large temperature scale, the pre-discussed in a preliminary stui§], some of them are elabo-
transitional behavior can usually be explained quite accutated theoretically in this paper ij) comparing the spectra
rately by a mean-field theory, such as the Landau—de Genné&¥$ fluctuations in geometries with surface-induced order and
model of the nematic-isotropic transition. However, in thedisorder, andii) by extending the analysis to substrates with
immediate proximity of the phase transition the mean-fieldfinite strength of the surface interaction.
theory fails to provide a correct description of the system, the The phenomenological theory of the liquid-crystalline or-
discrepancy being due to fluctuations of the order parametéfering used in the analysis is described in Sec. II, and in Sec.
[1,2]. Should the pretransitional behavior be interpreted conlll the two relevant mean-field configurations are presented.
sistently, a detailed analysis of fluctuations is, therefore, imSection 1V deals with the fluctuations of the ordering in the
perative. complete wetting regime and in its vicinity. The results are

For over a decade, considerable scientific efforts havéummarized and discussed in Sec. V.
been focused on confined liquid crystals, which are already
re_:cognized as one of the cornerstones of present and future Il. THEORETICAL FRAMEWORK
display technologies. Regardless of the geometry of the host
medium, these systems are characterized by high surface-to- One of the difficulties encountered in any theoretical de-
volume ratio and thus very susceptible to any interactiorscription of confined liquid crystals is the curved or even
between the constituent molecules and the surroundingregular and random internal geometry of the host material,
walls. This interaction may result in aligning power of the which is often not easy to model. However, in case of wet-
walls, and in an earlier study it has been shown that an orting the anchoring effect of the confining surface is either
dering substrate with a prescribed nematiclike degree of opartly or completely screened, and thus the actual topology
der at the surface results in a critical slowdown of fluctua-of walls is not really important: it can be expected that the
tions as the nematic-isotropic phase transition temperature 3asic physics of these systems can be captured by a model
approached from abovg3]. The slow modes have been planar geometry consisting of a nematic liquid crystal sand-
found to be closely related to the existence of the quasinewiched between two parallel substrates, which is adopted in
matic wetting layer induced by the ordering action of thethe present analysis. Two types of walls are considered: the
substratd 4]. disordering substrategives rise to an isotropic boundary

However, the surface coupling encountered in actual conlayer below the nematic-isotropic phase transition tempera-
fined systems is usually not strong enough to be describabkeire, where the largest part of the sample is nematic, and to
by a fixed value of the degree of order at the wall, andperfectly isotropic phase above the transition. In caserof
requires a more realistic model. Second, the surface interadlering substratehe equilibrium configuration is nematic be-
tion may also have a disordering effect if, for example, thelow Ty,, and aboveTy, it remains nematic within the
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boundary layer whereas the core melts into isotropic phase. 9Q  of

The forthcoming analysis, based on the Landau—de Gennes _FE: 30" (4)

model of the phase transition, is concentrated on the two

wetting geometries, i.e., the disordering substrate below th@herer is the effective kinetic coefficient, proportional to

clearing point and the ordering substrate above it. the rotational viscosity of the materigd,10]. If spelled out,
The nematic ordering can be described by a macroscopic

order paramete), which is mathematically an irreducible dQ — S,

tensor of rank two. As suggested by de Gerlifdsa Landau ot 6Q+ 3\/€Q —2Q tr Q°+{°V-Q, ®)

theory of the nematic-isotropic phase transition can be con-
structed by expanding the free energy density of the orderegihere the tilde denotes the traceless part of the tensor in
phase in terms of scalar invariants of the order parameter question, and the kinetic coefficient has been disposed of by
1 1 1 introducinzg the gimensionless tima«—t/7, with 7,
- _T* 2_ = 3, 2)2 =(27C/B)I'~10"° s[10].
f ZA(T ™rQ SB trQ+ 4C(tr Q) In order to study the harmonic excitations around the
equilibrium, Q should be split into a mean-field and a fluc-

+ %L VQ:VQ, (1) tuating part

Q(r,t)=A(r)+B(r,t), (6)

whereA, T*, B, C, andL are temperature-independent ma-
terial constants, and is the temperaturéBeing represented WhereA corresponds to docal) minimum of the total free
by a single elastic term, the deformational free energy ignergy of the system, whereBsis governed by a linearized
treated within the one constant approximatiofhe surface form of the equation of motiofiEqg. (5)], which reads
free energy is modeled by B
d
1 E=—0B+3\/§(A-B+B-A)—ZB tr A2—4A tr (A-B)
fs=5G tr (Q-Q9)?, 2

+ (?V?B. (7

where G is the strength of the interaction ar@s is the ¢4 jiquid-crystalline ordering is uniaxial, a suitable tenso-
preferred value of the order parameter tensor at the substratg,| ase corresponding to the five degrees of freedom of the
Wh|cr_1 is assum_ed to be hqmeotrop|c ar_u_j umaﬁ@] _ order parameter is given by

It is appropriate to rewrite the quantities involved into a
dimensionless form. From now on, the temperature will be
controlled by 6=(T—T*)/(Ty,—T*), where Ty=T* 0= ,
+B2?/27AC is the phase transition temperatuse=0 and 1 V6
thus correspond t@* and Ty,, respectively. The rescaled
order parameter is measured in units of the degree of order in e®e —6Re e®et+eRe
nematic phase aty,, 2B/3\/6C, and the dimensionless spa- leTv —1:Tv ®)
tial coordinates are expressed in terms of sample thickthess
The dimensionless free energy density then reads

3nen—I

T_e1®n+n®e1 T _eentnee
2 \/E 1 -2 \/E ’

(3)  wheren (the nematic directgr e;, ande, form an orthonor-
mal triad, and is the unit second rank tensfd1]. The base
where¢=/27CL/B?d? and the gradient operatd now re-  tensors can be interpreted as follows: the componer® of
fers to dimensionless coordinatgs y, andz. The dimen- alongT, is equal to the sum of mean-field profile and fluc-
sionless surface interaction is given bfs=gtr (Q tuations of the degree of order, the projections of the order
—Qq)?/2, whereg=(27C/B?d)G. (In the following, the re- parameter ontd . ; correspond to fluctuations of the degree
duced quantities are used exclusively; they can, therefore, b@f biaxiality and to fluctuations of the biaxial director, re-
denoted by the original symbaols. spectively, and theiflT., complements represent director
The temporal evolution of the orientational order in liquid fluctuations(Fig. 1).

crystals is, in principle, coupled to the translational motion of The material parameters enter the above formalism
the molecules. However, the characteristic time scales of théhrough the reduced temperatut@and through?, the ratio of
two types of dynamics differ by two orders of magnitude, thethe bare correlation length and the sample thickness. Since
hydrodynamic degrees of freedom being faster than the orithe study is focused on the pretransitional behavior of fluc-
entational one$1]. It is, therefore, reasonable to derive an tuations, the relevant range éfis centered around 1, and by
effective equation of motion of the slow variables based orsetting to 0.01 the forthcoming analysis corresponds to an
the adiabatic elimination of the fast ones, and within thisapproximately 800 nm thick film of a typical liquid-
approximation the dissipative dynamics of the order paramerystalline material such as 5CB\E0.13x 10° J/InPK, B
eter is described by the time-dependent Ginzburg-Landae3.89x10° J/in?, C=3.92x1C° J/n?, L=9x10 12 N
model [12,13).

1
=50t Q2-2.6 tr Q3+ (tr Q?)2+ {2VQ: VQ],
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FIG. 1. A schematic representation of the five types of fluctua-
tions of the orientational ordering visualized by a block such that
the anisotropy of its sides is proportional to the eigenvalues of the
order parameter. Fluctuations of the degree of order correspond to a
breathing modeT); fluctuations of the degree of biaxiality simul-
taneously decrease one of the short sides and increase the other by
the same amountT); and fluctuations of the biaxial and nematic
director are identified by rotations of the box about the lomg )
and the two short axesT(.,), respectively.

0.2

z

I1l. MEAN-FIELD STRUCTURES
FIG. 2. Mean-field profiles of the degree of order in the vicinity

To make the analysis as transparent as possible, the equif a disordering substrate #=1-10"", 1-1073, and 1-10°°
librium director field is assumed to be uniform and homeo-(top), and an ordering substrate at1+10"*, 1+10°%, and 1
tropic in both geometries in question. In case of disorderingt 10° (bottom). In both cases, the surface interaction is modeled
substrate, the orientation of the director is supposed to bBY a prescribed degree of ord@qual to 0 and 1.1, respectively
maintained by the aligning action of the magnetic field. The
only external force the field has to compete with is the an- |n both wetting geometries the mean-field profile of the
choring at the nematic-isotropic interface, which induces obyegree of order exhibits a substrate-induced variation in the
lique alignment of the moIecuI¢9.4];EI3—lowever, the strength 1o ndary layer and levels off at the bulk value in the center
of this interaction is very smalk-10"° J/n?, and the direc- ot yo samplgFig. 2). On approaching the nematic-isotropic

tor configuration can be reoriented even by a weak magnetighse transition, the thickness of the wetting layer increases
field (~0.01 T), which need not be included in the analysis;p,q if it diverges aBy,—which can, of course, only occur in

explicitly. On the other hand, the homeotropic alignment ing gemi_infinite sample—the wetting is referred to as com-
the quasinematic boundary layer at the order-inducing wall IBlete. On the other hand, the wetting is partial if the thick-

fixed by the anchoring. , ness of the substrate-induced phase remains finite at the
For a uniform director field with=¢,, the base tensors clearing poinf12].

are uniform themselves provided that the orientation of the Although the wetting behavior of liquid crystals can be

two a_rbitra_ry vectore; ande, are also p_osi_tion—independ_ent, quite complex{ 15,16, complete wetting is generally related
e.g., identified bye, ande,. Being uniaxial, both wetting 5 supstrates with larg@dis)ordering power, whereas other-
structures are thus characterized by an inhomogeneous prgjise partial wetting is to be expected. For the quadratic sur-
file of the degree of orderap), which depends only on the face interaction used in the present study, complete wetting
distance from(one o the substrates and is symmetric, of the disordering wall occurs only #,s=0 andg=0.02. In
whezreas the other four coefficients in the expansn case of an order-inducing substrate the critical valueg of
=X _,a(r)T; are all equal to 0. The Euler-Lagrange equa-gepends on the preferred degree of order, which must exceed
tion, which determines the mean-field prOf”eag, reduces 1: for examp|e,gc(aosz 11): 0.0053. These figures corre-
to spond t0G,=0.002 and 6.X 10 * J/n? and are consistent
. 5 5 with the results of an earlier studl§2], based on a somewhat
{“ag— bagt3a;—2a;=0, (9 different type of surface interaction. To illustrate the role of
the strength of the surface interaction in the wetting behav-
where prime denotet/dz. SinceQg is assumed uniaxial and jor, some mean-field profiles of the degree of order in the
homeotropic, the boundary conditions 260 andz=1/2  two geometries are shown in Fig. 3.
read In a confined geometry, the transition between a surface-
induced heterophase ordering and a homophase structure oc-
ap,=9%(ag—aps)/ (10 curs at a temperature somewhat different from the clearing
point. In case of disordering walls, the transition from the
(whereayg is the preferred degree of order at the substratelow-temperature phase characterized by molten boundary
andag=0, respectively. The disordering wall is described bylayer to the high-temperature isotropic phase is shifted below
aps=0, and the order-inducing substrate should be charagdhe nematic-isotropic phase transition temperature. Con-
terized byays™>1, say,aps=1.1. versely, in the order-inducing geometry the transition from
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12 - whereg/ =dg;/dzand\;=u;— 52(k§+ ki) are the reduced

%o 1 | 00026 relaxation rates of the modes; the in-plane components of the
wave vectork, andk,, are assumed to be subjected to pe-
riodic boundary conditions. In case of finite anchoring
strength, the corresponding boundary condition at the sub-
strate is given by

Bi(z=0)=9gBi(z=0)/£, (13

and otherwiseB;(z=0)=0. Due to symmetry arguments,

the normal modes must be either e\e#] (1/2)=0] or odd

[ Bi(1/2)=0] with respect to the center of the sample.
Before proceeding with the analysis of fluctuations in the

two wetting geometries, it is instructive to outline their be-

havior in homophase samplgE9].

A. Homophase structures

In a nematic layer bounded by the walls characterized by
strong surface interaction and a bulklike value of the pre-
0 0.1 02 ferred degree of ordefB;’s reduce to sine waves, and their

z relaxation rates may be cast into

FIG. 3. Some profiles of the degree of order in the finite anchor- o= 572+ évz[(th 1)77]2 (14)
ing model: a disordering substrate &&=1—10"° (top), and an eN '
ordering substrate at=1+ 10"° (bottom); the preferred degrees of where&y, s are the(dimensionlesscorrelation lengths of a

order are equal to 0 and 1.1, respectively. The profiles are Iabeleﬂarticular type of excitations given by
by the reduced anchoring strenggh

9
nematic to paranematic phase takes place alfigye The §,§%=Z\/1—80/9(1+ V1-86/9),
actual magnitude of the shift depends on the size of the
sample and on the parameters of the surface interaction, and 27
is practically negligible in micrometer-size cavities: for ex- §ﬁ2t1:_(1+ V1-—8619), (15)
ample, for=0.01 and perfectly disorderingrdering wall ' 4
with g—o and apgs=0 (1.1), the transition occurs ab 5
=0.992 74(1.0073, which indicates that the two shifts do én2=0.
not exceed 0.01 K. However, in smaller cavities the effec

can be far more promineft 7,18, LI'he correlation length of the fluctuations of the degree of

order diverges ab** =9/8, the superheating limit, whereas
én,+1 remains finite in the entire range @hetgstability of
the nematic phase. On the other hand, the director modes,
Once the relevant mean-field structures in the two wettingvhich are related to the broken orientational symmetry of the
geometries have been described, the scene is set for tidered phase, are characterized by infinite correlation
analysis of fluctuations. The dynamics of the five scalar com!ength. In the vicinity of the nematic-isotropic phase transi-
ponents of collective excitations—introduced by the expantion, &y 5~6—56 and &% ;~18-96.
sion B(r,t) =32 _,b;(r,t) T—is derived by projecting the Above the clearing point, a disordering wall produces a
equation of motioffEq. (7)] onto the base tensors. The two Perfectly isotropic phase. In this case, all five types of fluc-
biaxial modes turn out to be degenerate and so are the twiyations are degenerate, and theimensionlesscorrelation
director modes, and since the mean-field profiles depend dgngth is determined by

the z-coordinate only, the normal modes can be factorized as >y
follows: & "=0. (16)

bi(r,t)=expli(kx+k,y)18i(2) exp(—uit), (11) Obviously, ¢ diverges at the supercooling limig* =0,
where the local minimum of the free energy corresponding to
where u;’s are the dimensionless relaxation rates of thethe isotropic phase ceases to exist.
eigenmodes. Their normal componegisare uncoupled and The hardness of a given type of fluctuations can be char-

IV. FLUCTUATIONS

determined by acterized by its correlation length: the shorter the correlation
- ) length, the higher the energy of fluctuations. To understand
{*Bo—(6—6agt6as—ro)Bo=0, the pretransitional behavior of the system, it is important to

> ) know how the energy levels of excitations in nematic phase

(B~ (0+6ap+2a5—N.1)B.1=0, (12 compare with those in isotropic phase. In the vicinity of the

- 5 phase transition, fluctuations of the degree of order are
(B~ (6—3apg+2a5—N.)B:2=0, equally hard in both phases; in nematic phase, the biaxial



606 P. ZIHERL, A. VSARLAH, AND S. ZUMER PRE 58

4 and 5. The elementary mode of fluctuations of the degree
of order is localized at the phase boundary between the wet-
ting layer and the bulk phase, and since it is even with re-
spect to the center of the sample, it corresponds to fluctua-
tions of thickness of the central part of the slab. Similarly,
the lowest odd mode—also localized at the nematic-isotropic
interface—represents fluctuations of position of the core.
However, the relaxation rates of these two modes are the
same within numerical accuracy, indicating that the two wet-
N oV U ting layers are effectively uncoupled. This is directly related
0.9 0.920.940.960.98 10 0.1 02 03 04 0.5 to the thickness of the sample, which is much larger than
6 z &nos the typical length scale of the variation of the degree of

FIG. 4. Disordering substrate: spectrum of fluctuations of theorder. Were the system thinner, the correlation between the

degree of ordefleft), illustrated by the portraits of a few typical (dis)ordered regions induced by the two substrates would be
modes labeled by the number of nodeght; 6=1—10"5). The  Stronger and the degeneracy of the lowest two normal modes
lowest mode characterized by soft dispersion of the relaxation rat@/ould be removed.

corresponds to fluctuations of the thickness of the wetting layer, In the complete wetting regime, the relaxation rate of the
whereas the upper part of the spectrum is basically the same as #lementary excitations of the degree of order exhibits a linear
the purely nematic sample and disturbs the whole of the sampleritical temperature dependence typical for soft modes:
Dashed line: mean-field profile of the degree of ordp; .

Noo==C.(6-1), (17)
modes are energetically far more costly than in isotropic
phase — as opposed to the director modes, which are chafhere “—” and “ +” correspond to nematic phase with
acterized by an infinite correlation length in nematic phasemolten boundary layer and paranematic phase, respectively.
whereast, is finite at the phase transition temperature. (The difference between the coefficie@@s andC . , which
are approximately equal to 5.6 and 3.0, can be attributed to
the fact that the thickness of the isotropic wetting layer at the
disordering wall at9=1— 6 is half of the thickness of the

Due to surface-induced inhomogeneity of the profile ofnematic wetting layer at the ordering substratefatl + &
the degree of order, the eigenmodes of fluctuations in the tWp0].) The slowdown of the relaxation rates of the surface-
wetting geometries can only be determined numerically. INnduced soft modegi.e., the divergence of their relaxation
the following the spectra of collective excitations in nematictimeg at the phase transition temperature is a well-known
phase with molten boundary layers and in paranematic phasghd clear signature of the continuity of the transition, which
are interpreted simultaneously. is actually just another face of the advancing phase boundary
in any complete wetting geometf4,21]. In a finite system,
however, a wetting-driven phase transition can never be truly

In both systems, the primary effect of wetting is related tocontinuous, because the heterophase configuration eventually
the existence of a slow mode characterized by soft dispersiopecomes unstable in the immediate vicinity of the clearing
of its relaxation rate, whereas the upper part of the spectrurpoint—but in samples of thickness 100 nm this effect is
remains more or less the same as in homophase sybigm  detectable only if the temperature resolution of the experi-
mental method is better than, say, 0.01 K.

In both wetting geometries, the upper part of the spectrum
is more or less the same as its homophase, nematic and
isotropig counterpart, which is reflected in its regularity as
well as in the sinusoidal profiles of the normal modEgwys.

4 and 5. This also means that the upper, quasihomophase
modes are more or less independent on the strength of the
surface interactiofwhich has been verified numericalyOn
the other hand, the behavior of the wetting-induced elemen-
tary mode does depend strongly on the magnitudg dfthe
wetting is partial instead of complete, the pretransitional de-
crease of the localized modes’ relaxation rates is less pro-
z nounced. They do not drop to O but remain finitedgf=1,

FIG. 5. Ordering substrate: relaxation rates of fluctuations of the>® that the transition from surface-molte_n nem_atlc_ to isotro-
degree of order in paranematic phatest), and some typical modes PIC phase(or from nematic to paranematic phase discon-
(right; 6=1+10"5). As in Fig. 4, the soft mode represents fluctua- inUOUS even in semi-infinite systems, although the corre-
tions of the thickness of the wetting layer, and the upper part of théPponding latent heat may be reduced considerably compared
spectrum is more or less the same as in perfectly isotropic samplé the bulk nematic-isotropic transition. However, the tem-
which is also reflected in the sinusoidal behavior gf,-,(z). ~ Perature variation of the relaxation rates of the lowest modes
Again, the mean-field profile of the degree of order is plotted withremains linear, implying that the underlying mechanism is
the dashed lineg— o°. basically the same as in the complete wetting geometry.

B. Heterophase ordering

1. Fluctuations of degree of order

1.2
AO,n 1
0.8
0.6
0.4r

021
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FIG. 7. Biaxial modes in a nematic sample bounded by disor-
dering substrates: the lowest modes exhibit pretransitional slow-
down on approaching the clearing poiift) and are confined to
the isotropic wetting layefright; #=1—10"%). The upper part of
the spectrum is more or less nematiclike, the modes being spread
over the whole slab.

FIG. 6. Relaxation rate of fluctuations of the thickness of the
boundary layer in disorderingdashed ling and ordering wetting
geometry(solid line) as a function of the strength of the surface
interaction. In both cased,q is finite for g<g. (partial wetting
and 0 otherwisdcomplete wetting the critical values ofy being
equal to 0.018disordering substrateand 0.0053(order-inducing
wall). Note that the two geometries differ in the type of the behav-
ior of Ag in the vicinity of g . fields, the wetting-specific dynamics must be primarily re-

lated to fluctuations of the degree of order. On the other

These findings are quantitatively summarized in Fig. 6,hand, any critical behavior of the biaxial and director modes
where the lowest mode’s relaxation rate at the nematicShould be merely an indirect effect of the surface-induced

isotropic phase transition temperature is plotted as a functiof®t€rophase ordering. . .

of the anchoring strength. In the partial wetting regime, Biaxial modesare the hardest type of fluctuations in
which corresponds to smals, A o s finite; in the complete uniaxial nematic phase, which is related to the fact that ther-
wetting regime, on the other hand, it (@ithin numerical mal excitations of transverse molecular order have to com-

accuracy equal to 0. The two geometries give rise to slightly PEte with the existing uniaxial alignmeriin systems with
different behavior of\g, in the vicinity of the critical intrinsic biaxiality, biaxial fluctuations are expected to be
strength of the surface interaction: in the case of a disordefuch soften. At the phase transition temperature, the lower
ing wall, Ao, approaches 0 somewhat more slowly than inlimit of their relaxation rates in nematic phase is nine times
the case of an order-inducing wall. larger than in isotropic phas{Eqs.(lS) and(16)], and this

In addition to the two elementary modes corresponding tc5:on5|derable dlfferer_lce in the energy Igvels of bla_X|aI modes
fluctuations of thickness of the boundary layers, there ardl the two phases is reflected in their spectra in the two
actually two more localized modes with relaxation rates thatVetting geometries. , , , ,
do depart from the quasihomophase spectrum—although not !N the case of nematic phase confined by a disordering
as distinctly as the soft dispersion X . These modes rep- Wall, the lowest modes are bounded to the isotropic wetting
resent fluctuations of the shape of the phase boundaries: tIf&Ye"; Obviously, a strong elastic deformation of the modes in
even one is related to simultaneous sharpening/flattening dpe thin isotropic region of the sampl_e IS energet.|cally more
the phase boundaries, whereas the odd one describes out-§ivorable than a moderate deformation in the thick nematic
phase fluctuations of their slope. The relaxation rates of thesgP'® (Fig. 7). The number of these modes depends on .the
two modes are degenerate, which is, as it has already bedickness of the wetting layer and, thus, on temperature: as
established, related to the fact that the system considered 8¢ Sample is heated towards the clearing point, more and

rather thick, so that the correlation between the two wettingn©"® 1evels depart from the upper, nematiclike part of the
layers is very weak. spectrum, which corresponds to modes that disturb the whole

There are, therefore, two localized modes associated tgf the sample.

each interface between nematic and isotropic phase: one of /N Paranematic phase induced by the ordering substrate,
them corresponds to fluctuations of the position of the phas@i@xial fluctuations are, conversely, expelled from the or-
boundary, and the other one changes its profile. Since thgered boundary layefFig. 8), so that the allowed wave-

theoretical approach used in this analysis is quite universal iff9ths of the normal modes are determined by the thickness
its very nature, it seems that the same should hold true iopf the central isotropic part, not by the actual thickness of the

any interface that can be described by a scalar variable@mple. The difference between these two is not significant

However, in case of a phase boundary with a more comple?xcem in the vicinity of the phase transition temperature,

structure, additional and more sophisticated localized mode¥nere the nematic wetting layers squeeze the isotropic core
are expected. and speed up the relaxation rates of the biaxial modes.

Director modesare, as opposed to biaxial fluctuations,
excited very easily in nematic phase, where their Hamil-
tonian is purely elastic, whereas in isotropic phase they are

As the mean-field structures discussed are characterizazharacterized by finite correlation lendtkq. (16)]. This im-
by inhomogeneous profiles of the degree of order and homaplies that their wetting-induced behavior should be quite the
geneous profiles of the degree of biaxiality and directorinverse of what is predicted for the biaxial modes.

2. Biaxial and director fluctuations
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o . i FIG. 10. Director modes in paranematic phase: the relaxation
FIG. 8. Biaxial modes in paranematic phase are all expelledates of the lowest modes, which are restricted to the nematic wet-
from the quasinematic boundary layeight; 6=1+10"°), and in ting layer (right; 6=1+10"5), decrease to 0 ag— 1 (left) due to
the immediate vicinity offy, their relaxation rates must therefore the growth of the wetting laye(ct. Fig. 8.

increase along with the thickness of the boundary ldiedt).
V. CONCLUSION

In the disordering geometry, for example, the director
modes are forced out of the substrate-induced isotropig\l
boundary layer into the nematic co(Eig. 9) just like the

The analysis has revealed a close relationship between the
etting regime induced bydis)ordering substrates and the
retransitional behavior of thermal fluctuations of the order-

into the isotropic core of the paranematic phase induced b
the ordering substrate. Far from the phase transition temper
ture, their relaxation rates are temperature-independe

¥f the bounding surface, a heterophase structure consisting of
n isotropic wetting layer and a nematic core occurs below

. S . . ) e nematic-isotropic phase transition temperature, whereas a

whereas in the vicinity of the clearing point they all increaseg \notrate with an ordering power stabilizes a quasinematic

because of rapld_ growth of the wetting Iayer. boundary layer even at temperatures well above the clearing
In paranematic phase a few lowest director modes ar§

fined to th tic bound | h th oint where the central part of the sample is isotropic. Both
confined 1o the nematic boundary 1ayer, whereas theé Upp&o,netries are characterized by a wetting-induced interface
ones extend over the whole sample and are more or less t

; factly isotropic phadaa. 10. The relaxati Yetween nematic and isotropic phase, which gives rise to two
same as in perfectly isotropic pha@eg. 10. The relaxation .localized normal modes: the first one represents fluctuations

rates of the lowest mOd?S ?Xh'b't a CL.‘Spl'k? slowd_own SIMIof the position of the phase boundary and is characterized by
lar to that observed in biaxial modes in a disordering geom

trv (Ei M thei 0 itional slowd a soft dispersion of its relaxation ragerovided that the wet-
€ ry_( ig. 7). oreover, their prétransitional Slowdown re- ting is completg and the second one corresponds to fluctua-
sulting from the increase of the thickness of the wetting laye

) wally critical. i i thi the fluctuati f ions of the shape of the interface. Moreover, there are a few
IS actually critical, since in this case the tluctuations confin€d, yyiional siow modes, which are restricted to the wetting
to the wetting layer are Goldstone modes.

Th Its di d d to infinitely st layer and whose pretransitional behavior is related to its
€ results discussed correspond 1o Infinitely strong Sl.”(_':]rowth: an isotropic boundary layer accommodates the low-
face interaction. How do they change if this constraint is

lxed. i.e.a<»? Fora's which | h o ind est biaxial modes, whereas the lowest director modes are
relaxed, 1.6.g=ce ¥ Forg s which are largé enough to INAuCe ., y4rained within the nematic boundary layer. If the wetting
complete wetting, the spectra of fluctuations remain qualita

tively th h therwise the sl d is partial, the slowdown of the localized modes is not as
Ively the same, whereas onerwise he siow modes are r";.c)’ronounced as in the complete wetting regime, but the un-

longer critical. Eventually, if the strength of the surface 'n'éierlying physics remains the same.

teraction is very weak, all fluctuations become cosinelike an Th L L :
i . : e wetting-induced pretransitional behavior of the fluc-
their spectrum is described by Eq44), (15), and(16). tuations of the liquid-crystalline ordering is certainly not lim-

ited to geometries discussed in this study. For example, a
similar phenomenon is expected in nematic and isotropic
samples with substrate-stabilized smectic boundary layer
[22,23, which should exhibit critical slowdown in the vicin-
ity of the smectic-nematic and smectic-isotropic phase tran-
sition, respectively. This effect is probably quite ubiquitous
because some smectic order is induced by any solid wall —
at least by its impenetrability and the corresponding broken
translational symmetry of nematic or isotropic phase. But the
0 AV analogy with the substrate-stabilized nematic layer above the
0.9 0.920.940.96098 10 0.1 02 03 04 05 nematic-isotropic phase transition is not complete due to lay-
o z ered structure of the smectic ordering, which presumably
FIG. 9. Director modes in a nematic sample bounded by disorgives rise to nontrivial features of the Wetting-induced fluc-
dering substrates: director fluctuations are forced out of the bounduations in this system.
ary layer(right; #=1—10"°%) and must speed up on approaching It seems possible that the effect described here has al-
the clearing pointleft), just like the biaxial modes in paranematic ready been detected experimentally in some microconfined
phase(Fig. 8). liquid-crystalline systems, where a huge increase of the de-
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cay time of fluctuations has been observed in the vicinity ofavoided by reducing the degree of order. Since the disor-
nematic-isotropid24] and smecticA—nematic phase transi- dered regions called defects are more complex than the pla-
tion [25]. However, conclusive evidence can only be pro-nar nematic-isotropic interfad®7—29, they should be ac-
vided by a detailed and comprehensive analysis of the existompanied by several localized modes related to fluctuations
ing data or by an experiment designed to probe the dynamicgs their structure as well as those corresponding to fluctua-
within the boundary layer, which could be based on, fortions of their size, position, and shape. This indicates that the
example, the evanescent light scattering techn[@6g defects should be considered as possible generators of slow

The results of the study can be extrapolated beyond thgondirector fluctuations in confined liquid crystals.
geometries discussed once it has been realized that the slow

dynamics of the localized modes is actually directly related

to the_ existence of the ph_ase boun_dary and that the wetting ACKNOWLEDGMENTS
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