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Collective fluctuations and wetting in nematic liquid crystals

P. Ziherl, A. Šarlah, and S. Zˇ umer
Department of Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia

~Received 19 February 1998!

The role of wetting in the dynamics of collective orientational fluctuations in confined nematic liquid
crystals is examined by analyzing the spectrum of normal modes in planar geometry bounded either by
disordering or ordering substrates. The heterophase nature of the equilibrium configurations occurring in the
vicinity of the nematic-isotropic phase transition gives rise to a localized slow mode, which corresponds to
fluctuations of thickness of the~dis!ordered boundary layer and becomes soft if the wetting is complete. In
addition, a few modes restricted to the boundary layer—director modes in case of ordering substrate, and
biaxial modes in case of disordering substrate—also exhibit pretransitional slowdown provided that the surface
interaction is strong enough. Analogous behavior of fluctuations is expected in other wetting geometries, e.g.,
in the case of a substrate-stabilized smectic boundary layer in nematic and isotropic samples.
@S1063-651X~98!06707-5#

PACS number~s!: 61.30.Cz, 64.70.Md
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I. INTRODUCTION

The variation of material properties of liquid crystals
the vicinity of phase transitions has attracted the attention
both experimentalists and theorists for a long time, mai
because it can offer an insight into the evolution of the or
characteristic for the low-temperature phase. In the isotro
phase, for example, the onset of short-range orientationa
dering is observed on cooling towards the nematic-isotro
phase transition@1#. On a large temperature scale, the p
transitional behavior can usually be explained quite ac
rately by a mean-field theory, such as the Landau–de Ge
model of the nematic-isotropic transition. However, in t
immediate proximity of the phase transition the mean-fi
theory fails to provide a correct description of the system,
discrepancy being due to fluctuations of the order param
@1,2#. Should the pretransitional behavior be interpreted c
sistently, a detailed analysis of fluctuations is, therefore,
perative.

For over a decade, considerable scientific efforts h
been focused on confined liquid crystals, which are alre
recognized as one of the cornerstones of present and fu
display technologies. Regardless of the geometry of the
medium, these systems are characterized by high surfac
volume ratio and thus very susceptible to any interact
between the constituent molecules and the surround
walls. This interaction may result in aligning power of th
walls, and in an earlier study it has been shown that an
dering substrate with a prescribed nematiclike degree of
der at the surface results in a critical slowdown of fluctu
tions as the nematic-isotropic phase transition temperatu
approached from above@3#. The slow modes have bee
found to be closely related to the existence of the quas
matic wetting layer induced by the ordering action of t
substrate@4#.

However, the surface coupling encountered in actual c
fined systems is usually not strong enough to be describ
by a fixed value of the degree of order at the wall, a
requires a more realistic model. Second, the surface inte
tion may also have a disordering effect if, for example,
PRE 581063-651X/98/58~1!/602~8!/$15.00
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inner surface of the host medium is rough@5,6#: in this case
a reduction of the degree of order in the boundary laye
expected below the phase transition temperature, and
substrate induces wetting by the isotropic phase.

There are, therefore, a number of parameters of wettin
liquid-crystalline systems that seem to be pertinent to
behavior of collective excitations of the ordering in the v
cinity of the nematic-isotropic phase transition. In order
provide a more complete account of the phenomenon
discussed in a preliminary study@3#, some of them are elabo
rated theoretically in this paper by~i! comparing the spectra
of fluctuations in geometries with surface-induced order a
disorder, and~ii ! by extending the analysis to substrates w
finite strength of the surface interaction.

The phenomenological theory of the liquid-crystalline o
dering used in the analysis is described in Sec. II, and in S
III the two relevant mean-field configurations are present
Section IV deals with the fluctuations of the ordering in t
complete wetting regime and in its vicinity. The results a
summarized and discussed in Sec. V.

II. THEORETICAL FRAMEWORK

One of the difficulties encountered in any theoretical d
scription of confined liquid crystals is the curved or ev
irregular and random internal geometry of the host mater
which is often not easy to model. However, in case of w
ting the anchoring effect of the confining surface is eith
partly or completely screened, and thus the actual topol
of walls is not really important: it can be expected that t
basic physics of these systems can be captured by a m
planar geometry consisting of a nematic liquid crystal sa
wiched between two parallel substrates, which is adopte
the present analysis. Two types of walls are considered:
disordering substrategives rise to an isotropic boundar
layer below the nematic-isotropic phase transition tempe
ture, where the largest part of the sample is nematic, an
perfectly isotropic phase above the transition. In case ofor-
dering substratethe equilibrium configuration is nematic be
low TNI , and aboveTNI it remains nematic within the
602 © 1998 The American Physical Society



as
n

tw
th

op
e

o
re
r

a-

ra

a
b

d
er
-
s

,

id
o
th

he
o
n
o

hi
m
da

o

r in
f by

he
c-

o-
the

f
c-
der
e
-
r

ism

ince
uc-
y
an
-

PRE 58 603COLLECTIVE FLUCTUATIONS AND WETTING IN . . .
boundary layer whereas the core melts into isotropic ph
The forthcoming analysis, based on the Landau–de Gen
model of the phase transition, is concentrated on the
wetting geometries, i.e., the disordering substrate below
clearing point and the ordering substrate above it.

The nematic ordering can be described by a macrosc
order parameterQ, which is mathematically an irreducibl
tensor of rank two. As suggested by de Gennes@7#, a Landau
theory of the nematic-isotropic phase transition can be c
structed by expanding the free energy density of the orde
phase in terms of scalar invariants of the order paramete

f 5
1

2
A~T2T* ! tr Q22

1

3
B tr Q31

1

4
C~ tr Q2!2

1
1

2
L ¹QA¹Q, ~1!

whereA, T* , B, C, andL are temperature-independent m
terial constants, andT is the temperature.~Being represented
by a single elastic term, the deformational free energy
treated within the one constant approximation.! The surface
free energy is modeled by

f S5
1

2
G tr ~Q2QS!2, ~2!

where G is the strength of the interaction andQS is the
preferred value of the order parameter tensor at the subst
which is assumed to be homeotropic and uniaxial@8#.

It is appropriate to rewrite the quantities involved into
dimensionless form. From now on, the temperature will
controlled by u5(T2T* )/(TNI2T* ), where TNI5T*
1B2/27AC is the phase transition temperature;u50 and 1
thus correspond toT* and TNI , respectively. The rescale
order parameter is measured in units of the degree of ord
nematic phase atTNI , 2B/3A6C, and the dimensionless spa
tial coordinates are expressed in terms of sample thicknesd.
The dimensionless free energy density then reads

f 5
1

2
@u tr Q222A6 tr Q31~ tr Q2!21z2¹QA¹Q#,

~3!

wherez5A27CL/B2d2 and the gradient operator¹ now re-
fers to dimensionless coordinatesx, y, and z. The dimen-
sionless surface interaction is given byf S5g tr (Q
2QS)2/2, whereg5(27C/B2d)G. ~In the following, the re-
duced quantities are used exclusively; they can, therefore
denoted by the original symbols.!

The temporal evolution of the orientational order in liqu
crystals is, in principle, coupled to the translational motion
the molecules. However, the characteristic time scales of
two types of dynamics differ by two orders of magnitude, t
hydrodynamic degrees of freedom being faster than the
entational ones@1#. It is, therefore, reasonable to derive a
effective equation of motion of the slow variables based
the adiabatic elimination of the fast ones, and within t
approximation the dissipative dynamics of the order para
eter is described by the time-dependent Ginzburg-Lan
model
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2G
]Q

]t
5

d f

dQ
, ~4!

whereG is the effective kinetic coefficient, proportional t
the rotational viscosity of the material@9,10#. If spelled out,

]Q

]t
52uQ13A6Q2̃22Q tr Q21z2¹2Q, ~5!

where the tilde denotes the traceless part of the tenso
question, and the kinetic coefficient has been disposed o
introducing the dimensionless timet←t/ta with ta
5(27C/B2)G;1028 s @10#.

In order to study the harmonic excitations around t
equilibrium, Q should be split into a mean-field and a flu
tuating part

Q~r ,t !5A~r !1B~r ,t !, ~6!

whereA corresponds to a~local! minimum of the total free
energy of the system, whereasB is governed by a linearized
form of the equation of motion@Eq. ~5!#, which reads

]B

]t
52uB13A6~A•B1B•A!22B tr A224A tr ~A•B!

1z2¹2B. ~7!

If the liquid-crystalline ordering is uniaxial, a suitable tens
rial base corresponding to the five degrees of freedom of
order parameter is given by

T05
3 n^ n2I

A6
,

T15
e1^ e12e2^ e2

A2
, T215

e1^ e21e2^ e1

A2
, ~8!

T25
e1^ n1n^ e1

A2
, T225

e2^ n1n^ e2

A2
,

wheren ~the nematic director!, e1, ande2 form an orthonor-
mal triad, andI is the unit second rank tensor@11#. The base
tensors can be interpreted as follows: the component oQ
alongT0 is equal to the sum of mean-field profile and flu
tuations of the degree of order, the projections of the or
parameter ontoT61 correspond to fluctuations of the degre
of biaxiality and to fluctuations of the biaxial director, re
spectively, and theirT62 complements represent directo
fluctuations~Fig. 1!.

The material parameters enter the above formal
through the reduced temperatureu and throughz, the ratio of
the bare correlation length and the sample thickness. S
the study is focused on the pretransitional behavior of fl
tuations, the relevant range ofu is centered around 1, and b
settingz to 0.01 the forthcoming analysis corresponds to
approximately 800 nm thick film of a typical liquid
crystalline material such as 5CB (A50.133106 J/m3K, B
53.893106 J/m3, C53.923106 J/m3, L59310212 N
@12,13#!.
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III. MEAN-FIELD STRUCTURES

To make the analysis as transparent as possible, the e
librium director field is assumed to be uniform and home
tropic in both geometries in question. In case of disorder
substrate, the orientation of the director is supposed to
maintained by the aligning action of the magnetic field. T
only external force the field has to compete with is the
choring at the nematic-isotropic interface, which induces
lique alignment of the molecules@14#. However, the strength
of this interaction is very small,;1025 J/m2, and the direc-
tor configuration can be reoriented even by a weak magn
field (;0.01 T), which need not be included in the analy
explicitly. On the other hand, the homeotropic alignment
the quasinematic boundary layer at the order-inducing wa
fixed by the anchoring.

For a uniform director field withn5ez , the base tensor
are uniform themselves provided that the orientation of
two arbitrary vectorse1 ande2 are also position-independen
e.g., identified byex and ey . Being uniaxial, both wetting
structures are thus characterized by an inhomogeneous
file of the degree of order (a0), which depends only on the
distance from~one of! the substrates and is symmetri
whereas the other four coefficients in the expansionA
5( i 522

2 ai(r )Ti are all equal to 0. The Euler-Lagrange equ
tion, which determines the mean-field profile ofa0, reduces
to

z2a092ua013a0
222a0

350, ~9!

where prime denotesd/dz. SinceQS is assumed uniaxial an
homeotropic, the boundary conditions atz50 and z51/2
read

a085gz2~a02a0S!/z2 ~10!

~wherea0S is the preferred degree of order at the substra!
anda0850, respectively. The disordering wall is described
a0S50, and the order-inducing substrate should be cha
terized bya0S.1, say,a0S51.1.

FIG. 1. A schematic representation of the five types of fluct
tions of the orientational ordering visualized by a block such t
the anisotropy of its sides is proportional to the eigenvalues of
order parameter. Fluctuations of the degree of order correspond
breathing mode (T0); fluctuations of the degree of biaxiality simu
taneously decrease one of the short sides and increase the oth
the same amount (T1); and fluctuations of the biaxial and nemat
director are identified by rotations of the box about the long (T21)
and the two short axes (T62), respectively.
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In both wetting geometries the mean-field profile of t
degree of order exhibits a substrate-induced variation in
boundary layer and levels off at the bulk value in the cen
of the sample~Fig. 2!. On approaching the nematic-isotrop
phase transition, the thickness of the wetting layer increa
and if it diverges atuNI—which can, of course, only occur in
a semi-infinite sample—the wetting is referred to as co
plete. On the other hand, the wetting is partial if the thic
ness of the substrate-induced phase remains finite at
clearing point@12#.

Although the wetting behavior of liquid crystals can b
quite complex@15,16#, complete wetting is generally relate
to substrates with large~dis!ordering power, whereas othe
wise partial wetting is to be expected. For the quadratic s
face interaction used in the present study, complete wet
of the disordering wall occurs only ifa0S50 andg*0.02. In
case of an order-inducing substrate the critical value og
depends on the preferred degree of order, which must exc
1: for example,gc(a0S51.1)50.0053. These figures corre
spond toGc.0.002 and 6.131024 J/m2 and are consisten
with the results of an earlier study@12#, based on a somewha
different type of surface interaction. To illustrate the role
the strength of the surface interaction in the wetting beh
ior, some mean-field profiles of the degree of order in
two geometries are shown in Fig. 3.

In a confined geometry, the transition between a surfa
induced heterophase ordering and a homophase structur
curs at a temperature somewhat different from the clea
point. In case of disordering walls, the transition from t
low-temperature phase characterized by molten bound
layer to the high-temperature isotropic phase is shifted be
the nematic-isotropic phase transition temperature. C
versely, in the order-inducing geometry the transition fro

-
t
e

o a

r by

FIG. 2. Mean-field profiles of the degree of order in the vicin
of a disordering substrate atu5121021, 121023, and 121025

~top!, and an ordering substrate atu5111021, 111023, and 1
11025 ~bottom!. In both cases, the surface interaction is mode
by a prescribed degree of order~equal to 0 and 1.1, respectively!.



th
a

x-

o
ec

in
r
m

an

o
tw

a

th

the
e-
g
ub-

,

he
e-

by
re-
ir

of
s

des,
the
tion
si-

a
c-

to

ar-
ion
and
to
se

he
are
xial

o

f
el

PRE 58 605COLLECTIVE FLUCTUATIONS AND WETTING IN . . .
nematic to paranematic phase takes place aboveuNI . The
actual magnitude of the shift depends on the size of
sample and on the parameters of the surface interaction,
is practically negligible in micrometer-size cavities: for e
ample, forz50.01 and perfectly disordering~ordering! wall
with g→` and a0S50 ~1.1!, the transition occurs atu
50.992 74~1.0073!, which indicates that the two shifts d
not exceed 0.01 K. However, in smaller cavities the eff
can be far more prominent@17,18#.

IV. FLUCTUATIONS

Once the relevant mean-field structures in the two wett
geometries have been described, the scene is set fo
analysis of fluctuations. The dynamics of the five scalar co
ponents of collective excitations—introduced by the exp
sion B(r ,t)5( i 522

2 bi(r ,t)Ti—is derived by projecting the
equation of motion@Eq. ~7!# onto the base tensors. The tw
biaxial modes turn out to be degenerate and so are the
director modes, and since the mean-field profiles depend
thez-coordinate only, the normal modes can be factorized
follows:

bi~r ,t !5exp @ i ~kxx1kyy!#b i~z! exp ~2m i t !, ~11!

where m i ’s are the dimensionless relaxation rates of
eigenmodes. Their normal componentsb i are uncoupled and
determined by

z2b092~u26a016a0
22l0!b050,

z2b619 2~u16a012a0
22l61!b6150, ~12!

z2b629 2~u23a012a0
22l62!b6250,

FIG. 3. Some profiles of the degree of order in the finite anch
ing model: a disordering substrate atu5121025 ~top!, and an
ordering substrate atu5111025 ~bottom!; the preferred degrees o
order are equal to 0 and 1.1, respectively. The profiles are lab
by the reduced anchoring strengthg.
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whereb i85db i /dz andl i5m i2z2(kx
21ky

2) are the reduced
relaxation rates of the modes; the in-plane components of
wave vector,kx andky , are assumed to be subjected to p
riodic boundary conditions. In case of finite anchorin
strength, the corresponding boundary condition at the s
strate is given by

b i8~z50!5gb i~z50!/z2, ~13!

and otherwiseb i(z50)50. Due to symmetry arguments
the normal modes must be either even@b i8(1/2)50# or odd
@b i(1/2)50# with respect to the center of the sample.

Before proceeding with the analysis of fluctuations in t
two wetting geometries, it is instructive to outline their b
havior in homophase samples@19#.

A. Homophase structures

In a nematic layer bounded by the walls characterized
strong surface interaction and a bulklike value of the p
ferred degree of order,b i ’s reduce to sine waves, and the
relaxation rates may be cast into

l̃ i5jN,i
221z2@~n11!p#2, ~14!

wherejN,i ’s are the~dimensionless! correlation lengths of a
particular type of excitations given by

jN,0
225

9

4
A128u/9~11A128u/9!,

jN,61
22 5

27

4
~11A128u/9!, ~15!

jN,62
22 50.

The correlation length of the fluctuations of the degree
order diverges atu** 59/8, the superheating limit, wherea
jN,61 remains finite in the entire range of~meta!stability of
the nematic phase. On the other hand, the director mo
which are related to the broken orientational symmetry of
ordered phase, are characterized by infinite correla
length. In the vicinity of the nematic-isotropic phase tran
tion, jN,0

22'625u andjN,61
22 '1829u.

Above the clearing point, a disordering wall produces
perfectly isotropic phase. In this case, all five types of flu
tuations are degenerate, and their~dimensionless! correlation
length is determined by

j I
225u. ~16!

Obviously, j I diverges at the supercooling limit,u* 50,
where the local minimum of the free energy corresponding
the isotropic phase ceases to exist.

The hardness of a given type of fluctuations can be ch
acterized by its correlation length: the shorter the correlat
length, the higher the energy of fluctuations. To underst
the pretransitional behavior of the system, it is important
know how the energy levels of excitations in nematic pha
compare with those in isotropic phase. In the vicinity of t
phase transition, fluctuations of the degree of order
equally hard in both phases; in nematic phase, the bia
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ed
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606 PRE 58P. ZIHERL, A. ŠARLAH, AND S. ŽUMER
modes are energetically far more costly than in isotro
phase — as opposed to the director modes, which are c
acterized by an infinite correlation length in nematic pha
whereasj I is finite at the phase transition temperature.

B. Heterophase ordering

Due to surface-induced inhomogeneity of the profile
the degree of order, the eigenmodes of fluctuations in the
wetting geometries can only be determined numerically.
the following the spectra of collective excitations in nema
phase with molten boundary layers and in paranematic ph
are interpreted simultaneously.

1. Fluctuations of degree of order

In both systems, the primary effect of wetting is related
the existence of a slow mode characterized by soft disper
of its relaxation rate, whereas the upper part of the spect
remains more or less the same as in homophase system~Figs.

FIG. 4. Disordering substrate: spectrum of fluctuations of
degree of order~left!, illustrated by the portraits of a few typica
modes labeled by the number of nodes~right; u5121025). The
lowest mode characterized by soft dispersion of the relaxation
corresponds to fluctuations of the thickness of the wetting la
whereas the upper part of the spectrum is basically the same
the purely nematic sample and disturbs the whole of the sam
Dashed line: mean-field profile of the degree of order;g→`.

FIG. 5. Ordering substrate: relaxation rates of fluctuations of
degree of order in paranematic phase~left!, and some typical mode
~right; u5111025). As in Fig. 4, the soft mode represents fluctu
tions of the thickness of the wetting layer, and the upper part of
spectrum is more or less the same as in perfectly isotropic sam
which is also reflected in the sinusoidal behavior ofb0,n.1(z).
Again, the mean-field profile of the degree of order is plotted w
the dashed line;g→`.
c
ar-
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f
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4 and 5!. The elementary mode of fluctuations of the degr
of order is localized at the phase boundary between the w
ting layer and the bulk phase, and since it is even with
spect to the center of the sample, it corresponds to fluc
tions of thickness of the central part of the slab. Similar
the lowest odd mode—also localized at the nematic-isotro
interface—represents fluctuations of position of the co
However, the relaxation rates of these two modes are
same within numerical accuracy, indicating that the two w
ting layers are effectively uncoupled. This is directly relat
to the thickness of the sample, which is much larger th
jN,0 , the typical length scale of the variation of the degree
order. Were the system thinner, the correlation between
~dis!ordered regions induced by the two substrates would
stronger and the degeneracy of the lowest two normal mo
would be removed.

In the complete wetting regime, the relaxation rate of t
elementary excitations of the degree of order exhibits a lin
critical temperature dependence typical for soft modes:

l0,056C6~u21!, ~17!

where ‘‘2 ’’ and ‘‘ 1 ’’ correspond to nematic phase wit
molten boundary layer and paranematic phase, respectiv
~The difference between the coefficientsC2 andC1 , which
are approximately equal to 5.6 and 3.0, can be attribute
the fact that the thickness of the isotropic wetting layer at
disordering wall atu512d is half of the thickness of the
nematic wetting layer at the ordering substrate atu511d
@20#.! The slowdown of the relaxation rates of the surfac
induced soft modes~i.e., the divergence of their relaxatio
times! at the phase transition temperature is a well-kno
and clear signature of the continuity of the transition, whi
is actually just another face of the advancing phase bound
in any complete wetting geometry@4,21#. In a finite system,
however, a wetting-driven phase transition can never be t
continuous, because the heterophase configuration event
becomes unstable in the immediate vicinity of the clear
point—but in samples of thickness*100 nm this effect is
detectable only if the temperature resolution of the exp
mental method is better than, say, 0.01 K.

In both wetting geometries, the upper part of the spectr
is more or less the same as its homophase~i.e., nematic and
isotropic! counterpart, which is reflected in its regularity a
well as in the sinusoidal profiles of the normal modes~Figs.
4 and 5!. This also means that the upper, quasihomoph
modes are more or less independent on the strength o
surface interaction~which has been verified numerically!. On
the other hand, the behavior of the wetting-induced elem
tary mode does depend strongly on the magnitude ofg: if the
wetting is partial instead of complete, the pretransitional
crease of the localized modes’ relaxation rates is less
nounced. They do not drop to 0 but remain finite atuNI51,
so that the transition from surface-molten nematic to isot
pic phase~or from nematic to paranematic phase! is discon-
tinuous even in semi-infinite systems, although the cor
sponding latent heat may be reduced considerably comp
to the bulk nematic-isotropic transition. However, the te
perature variation of the relaxation rates of the lowest mo
remains linear, implying that the underlying mechanism
basically the same as in the complete wetting geometry.
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These findings are quantitatively summarized in Fig.
where the lowest mode’s relaxation rate at the nema
isotropic phase transition temperature is plotted as a func
of the anchoring strength. In the partial wetting regim
which corresponds to smallg’s, l0,0 is finite; in the complete
wetting regime, on the other hand, it is~within numerical
accuracy! equal to 0. The two geometries give rise to sligh
different behavior ofl0,0 in the vicinity of the critical
strength of the surface interaction: in the case of a disor
ing wall, l0,0 approaches 0 somewhat more slowly than
the case of an order-inducing wall.

In addition to the two elementary modes corresponding
fluctuations of thickness of the boundary layers, there
actually two more localized modes with relaxation rates t
do depart from the quasihomophase spectrum—although
as distinctly as the soft dispersion ofl0,0. These modes rep
resent fluctuations of the shape of the phase boundaries
even one is related to simultaneous sharpening/flattenin
the phase boundaries, whereas the odd one describes o
phase fluctuations of their slope. The relaxation rates of th
two modes are degenerate, which is, as it has already
established, related to the fact that the system considere
rather thick, so that the correlation between the two wett
layers is very weak.

There are, therefore, two localized modes associate
each interface between nematic and isotropic phase: on
them corresponds to fluctuations of the position of the ph
boundary, and the other one changes its profile. Since
theoretical approach used in this analysis is quite universa
its very nature, it seems that the same should hold true
any interface that can be described by a scalar varia
However, in case of a phase boundary with a more comp
structure, additional and more sophisticated localized mo
are expected.

2. Biaxial and director fluctuations

As the mean-field structures discussed are character
by inhomogeneous profiles of the degree of order and ho
geneous profiles of the degree of biaxiality and direc

FIG. 6. Relaxation rate of fluctuations of the thickness of
boundary layer in disordering~dashed line! and ordering wetting
geometry~solid line! as a function of the strength of the surfa
interaction. In both cases,l0,0 is finite for g,gc ~partial wetting!
and 0 otherwise~complete wetting!, the critical values ofg being
equal to 0.018~disordering substrate! and 0.0053~order-inducing
wall!. Note that the two geometries differ in the type of the beh
ior of l0,0 in the vicinity of gc .
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fields, the wetting-specific dynamics must be primarily r
lated to fluctuations of the degree of order. On the ot
hand, any critical behavior of the biaxial and director mod
should be merely an indirect effect of the surface-induc
heterophase ordering.

Biaxial modesare the hardest type of fluctuations
uniaxial nematic phase, which is related to the fact that th
mal excitations of transverse molecular order have to co
pete with the existing uniaxial alignment.~In systems with
intrinsic biaxiality, biaxial fluctuations are expected to b
much softer.! At the phase transition temperature, the low
limit of their relaxation rates in nematic phase is nine tim
larger than in isotropic phase@Eqs. ~15! and ~16!#, and this
considerable difference in the energy levels of biaxial mo
in the two phases is reflected in their spectra in the t
wetting geometries.

In the case of nematic phase confined by a disorde
wall, the lowest modes are bounded to the isotropic wett
layer; obviously, a strong elastic deformation of the modes
the thin isotropic region of the sample is energetically mo
favorable than a moderate deformation in the thick nem
core ~Fig. 7!. The number of these modes depends on
thickness of the wetting layer and, thus, on temperature
the sample is heated towards the clearing point, more
more levels depart from the upper, nematiclike part of
spectrum, which corresponds to modes that disturb the wh
of the sample.

In paranematic phase induced by the ordering substr
biaxial fluctuations are, conversely, expelled from the
dered boundary layer~Fig. 8!, so that the allowed wave
lengths of the normal modes are determined by the thickn
of the central isotropic part, not by the actual thickness of
sample. The difference between these two is not signific
except in the vicinity of the phase transition temperatu
where the nematic wetting layers squeeze the isotropic c
and speed up the relaxation rates of the biaxial modes.

Director modesare, as opposed to biaxial fluctuation
excited very easily in nematic phase, where their Ham
tonian is purely elastic, whereas in isotropic phase they
characterized by finite correlation length@Eq. ~16!#. This im-
plies that their wetting-induced behavior should be quite
inverse of what is predicted for the biaxial modes.

-

FIG. 7. Biaxial modes in a nematic sample bounded by dis
dering substrates: the lowest modes exhibit pretransitional sl
down on approaching the clearing point~left! and are confined to
the isotropic wetting layer~right; u5121025). The upper part of
the spectrum is more or less nematiclike, the modes being sp
over the whole slab.
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In the disordering geometry, for example, the direc
modes are forced out of the substrate-induced isotro
boundary layer into the nematic core~Fig. 9! just like the
biaxial modes are expelled from the nematic boundary la
into the isotropic core of the paranematic phase induced
the ordering substrate. Far from the phase transition temp
ture, their relaxation rates are temperature-independ
whereas in the vicinity of the clearing point they all increa
because of rapid growth of the wetting layer.

In paranematic phase a few lowest director modes
confined to the nematic boundary layer, whereas the up
ones extend over the whole sample and are more or les
same as in perfectly isotropic phase~Fig. 10!. The relaxation
rates of the lowest modes exhibit a cusplike slowdown si
lar to that observed in biaxial modes in a disordering geo
etry ~Fig. 7!. Moreover, their pretransitional slowdown re
sulting from the increase of the thickness of the wetting la
is actually critical, since in this case the fluctuations confin
to the wetting layer are Goldstone modes.

The results discussed correspond to infinitely strong s
face interaction. How do they change if this constraint
relaxed, i.e.,g,`? Forg’s which are large enough to induc
complete wetting, the spectra of fluctuations remain qual
tively the same, whereas otherwise the slow modes are
longer critical. Eventually, if the strength of the surface
teraction is very weak, all fluctuations become cosinelike a
their spectrum is described by Eqs.~14!, ~15!, and~16!.

FIG. 8. Biaxial modes in paranematic phase are all expe
from the quasinematic boundary layer~right; u5111025), and in
the immediate vicinity ofuNI their relaxation rates must therefor
increase along with the thickness of the boundary layer~left!.

FIG. 9. Director modes in a nematic sample bounded by dis
dering substrates: director fluctuations are forced out of the bou
ary layer ~right; u5121025) and must speed up on approachi
the clearing point~left!, just like the biaxial modes in paranemat
phase~Fig. 8!.
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V. CONCLUSION

The analysis has revealed a close relationship between
wetting regime induced by~dis!ordering substrates and th
pretransitional behavior of thermal fluctuations of the ord
ing in confined liquid crystals. In case of disordering acti
of the bounding surface, a heterophase structure consistin
an isotropic wetting layer and a nematic core occurs be
the nematic-isotropic phase transition temperature, where
substrate with an ordering power stabilizes a quasinem
boundary layer even at temperatures well above the clea
point where the central part of the sample is isotropic. B
geometries are characterized by a wetting-induced inter
between nematic and isotropic phase, which gives rise to
localized normal modes: the first one represents fluctuat
of the position of the phase boundary and is characterized
a soft dispersion of its relaxation rate~provided that the wet-
ting is complete!, and the second one corresponds to fluct
tions of the shape of the interface. Moreover, there are a
additional slow modes, which are restricted to the wett
layer and whose pretransitional behavior is related to
growth: an isotropic boundary layer accommodates the lo
est biaxial modes, whereas the lowest director modes
constrained within the nematic boundary layer. If the wetti
is partial, the slowdown of the localized modes is not
pronounced as in the complete wetting regime, but the
derlying physics remains the same.

The wetting-induced pretransitional behavior of the flu
tuations of the liquid-crystalline ordering is certainly not lim
ited to geometries discussed in this study. For example
similar phenomenon is expected in nematic and isotro
samples with substrate-stabilized smectic boundary la
@22,23#, which should exhibit critical slowdown in the vicin
ity of the smectic-nematic and smectic-isotropic phase tr
sition, respectively. This effect is probably quite ubiquito
because some smectic order is induced by any solid wal
at least by its impenetrability and the corresponding brok
translational symmetry of nematic or isotropic phase. But
analogy with the substrate-stabilized nematic layer above
nematic-isotropic phase transition is not complete due to
ered structure of the smectic ordering, which presuma
gives rise to nontrivial features of the wetting-induced flu
tuations in this system.

It seems possible that the effect described here has
ready been detected experimentally in some microconfi
liquid-crystalline systems, where a huge increase of the

d

r-
d-

FIG. 10. Director modes in paranematic phase: the relaxa
rates of the lowest modes, which are restricted to the nematic
ting layer ~right; u5111025), decrease to 0 asu→1 ~left! due to
the growth of the wetting layer~cf. Fig. 8!.
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cay time of fluctuations has been observed in the vicinity
nematic-isotropic@24# and smecticA–nematic phase trans
tion @25#. However, conclusive evidence can only be p
vided by a detailed and comprehensive analysis of the e
ing data or by an experiment designed to probe the dynam
within the boundary layer, which could be based on,
example, the evanescent light scattering technique@26#.

The results of the study can be extrapolated beyond
geometries discussed once it has been realized that the
dynamics of the localized modes is actually directly rela
to the existence of the phase boundary and that the we
itself is merely a mechanism that introduces a heteroph
structure—and, therefore, a phase boundary—into the
tem. In confined liquid crystals, heterophase ordering is v
often induced by topological constraints imposed by curv
walls, which result in singularities of the director fiel
where very strong elastic deformation of the nematic phas
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avoided by reducing the degree of order. Since the dis
dered regions called defects are more complex than the
nar nematic-isotropic interface@27–29#, they should be ac-
companied by several localized modes related to fluctuat
of their structure as well as those corresponding to fluct
tions of their size, position, and shape. This indicates that
defects should be considered as possible generators of
nondirector fluctuations in confined liquid crystals.

ACKNOWLEDGMENTS

This work was supported by the Ministry of Science a
Technology of Slovenia~Grant No. J1-7470!, European
Commission ~INCO–Copernicus Project No. IC15CT96
0744!, and U.S.–Slovene NSF Joint Fund~Grant No. NSF
95–457!.
,

ys.

M.

.

tt.
@1# P. G. de Gennes and J. Prost,The Physics of Liquid Crystals
~Clarendon Press, Oxford, 1993!.

@2# C. Fan and M. J. Stephen, Phys. Rev. Lett.25, 500 ~1970!.
@3# P. Ziherl and S. Zˇ umer, Phys. Rev. Lett.78, 682 ~1997!.
@4# P. Sheng, Phys. Rev. Lett.37, 1059~1976!.
@5# R. Barberi and G. Durand, Phys. Rev. A41, 2207~1990!.
@6# T. Moses and Y. R. Shen, Phys. Rev. Lett.67, 2033~1991!.
@7# P. G. de Gennes, Mol. Cryst. Liq. Cryst.12, 193 ~1971!.
@8# M. Nobili and G. Durand, Phys. Rev. A46, R6174~1992!.
@9# L. D. Landau and I. M. Khalatnikov, Dokl. Akad. Nauk SSS

96, 469 ~1954!.
@10# S. Hess, Z. Naturforsch.30a, 728 ~1975!.
@11# V. L. Pokrovskii and E. I. Kats, Zh. Eksp. Teor. Fiz.73, 774

~1977! @Sov. Phys. JETP46, 405 ~1977!#.
@12# P. Sheng, Phys. Rev. A26, 1610~1982!.
@13# G. P. Crawford, R. J. Ondris-Crawford, J. W. Doane, and
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