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Thermal phase diagrams of columnar liquid crystals
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In order to understand the possible sequence of transitions from the disordered columnar phase to the helical
phase in hexdexylthiotriphenylene, we study a three-dimensional planar model with octupolar interactions
inscribed on a triangular lattice of columns. We obtain thermal phase diagrams using a mean-field approxi-
mation and Monte Carlo simulations. These two approaches give similar results, namely, in the quasi-one-
dimensional regime, as the temperature is lowered, the columns order with a linear polarization, whereas
helical phases develop at lower temperatures. The helicity patterns of the helical phases are determined by the
exact nature of the frustration in the system, itself related to the octupolar nature of the molecules.
[S1063-651%98)04211-1

PACS numbsgs): 61.30.Cz, 61.30.Gd, 64.70.Md

I. INTRODUCTION order in this phase is so far an open question and so is the
exact mechanism of the, 4 H transition. However, in this
The study of phase transitions in columnar liquid crystalspaper we will study solely the nature ofientationalorder-
[1,2] is of fundamental interest: These materials combineing of the HHTT molecules. We make the hypothesis that
aside from the vast phenomenology of soft matter, manyrientational ordering is robust with respect to the type of
features at the origin of important phenomena of the solichositional order(long-range vs quasi-long-rangerhis hy-
state. In particular, they show a relatively strong elastic anpothesis is justified since, even in the case of quasi-long-
isotropy in the direction of the columns, a geometrical frus-range order, the positional coherence length is long enough
tration of the intermolecular interaction coming from the tri- that we may assume from the start that the molecules occupy
angular nature of the lattice of columns, and discoidwell-defined positionsthis also simplifies the mathematical
molecules with nontrivial point-group symmetry. The treatment It is thus possible to have orientational ordering
present study is based on héxaxylthiotriphenylene even if the positional ordering is not long ranged. Indeed, as
(HHTT), whose discoid molecule is made of a rigid core of mentioned in Ref[8], this underlying orientational order
aromatic cycles and of six flexible hydrocarbon chains, remay very well favor quasi-long-range positional order along
sponsible for its characteristic thermotropic character. HHTTthe columns. Thus the eventuality of quasi-long-range order
is the only compound from the triphenylene derivatives tomakes the present work that much more relevant and inter-
show two distinct columnar phases. Indeed, as the temperasting.
ture decreases, the sequence of phases is the following: We suggest an effective Hamiltonian for the in-plane ori-
(isotropic liquid, Dpq (disordered columnar phaséd (heli-  entation of the HHTT molecules and study its thermal phase
cally ordered columnar phaseand K (monoclinic crystal.  diagram by means df) a Landau free-energy functional in a
These phases were identified by x-ray measurements anean-field approximation an@i) Monte Carlo simulations
powders[3] and freely suspended strands-7] of HHTT. on a finite-size lattice. Previous work has been done on the
These x-ray results are best interpreted by asserting thground state of a related modgd] and on thermal phase
the D4 phase of HHTT (70°&T<93°C) has long-range diagrams for a two-dimensional model of uniform columns
positional order in the plane perpendicular to the columnsf10,11]. Our analysis confirms that, as previously seef at
Columns are located on a triangular lattice. Within a column,=0, the octupolaiG coupling[12] is determinative for ob-
short-rangéliquid) positional order is realized. The columns taining the helicity configuration of the columns at any tem-
slide freely one against the other. Thephase (62°€&T  perature. It also suggests that a variety of phases survive at
<70°C) has in-column positional and orientational helicalT+0. For weak transverse couplings, the model produces the
order. In this last phase, two neighboring molecules in axpected low-temperature helical phases, but also suggests
single column are separated on the average by a distangleat some linearly polarized phases could exist at higher tem-
dj=3.6 A and rotated from each other by an angte peratures.
~45°, constant on the whole temperature interval of the In Sec. I, the model Hamiltonian is presented with an
phase. In order to reduce the frustration associated with themphasis on the intercolumn intermolecular interactions. In
triangular geometry of the lattice, the lattice reorganizes it-Sec. Ill the location of second-order phase transitions from
self in a superlattice/3x \/3R30°: One-third of the columns the disordered phase to an ordred phase is obtained by a
have a vertical offset of half the intermolecular distancemean-field approach. It is followed by the construction of the
(dj/2). The displaced columns have the opposite helicitythermal phase diagrams and characterization of the different
a~—45°, instead of+45°. The x-ray experiments show phases in terms of the helicity pattern and relative orienta-
long correlation lengths but, as proposed &), quasi-long- tion. In Sec. IV the thermal phase diagrams are obtained
range order may be achieved. The nature of the in-colummsing Monte Carlo simulations on finite-size systems, in con-
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junction with the spiraling algorithm. Finally, in Sec. V we column (the sign of «), we use a next-nearest-neighbor
discuss the results and conclude. model (see [16-18), with competing interactions of the
form

Il. MODEL HAMILTONIAN

—J1€08 3( O+ 1— 61— Ioc043(bko— 6) ], 2
As indicated above, the main purpose of our calculation is 16093( b1~ 001 12009 3( b2~ 61 @

to elucidate the role played by the angular degrees of freq,—v
dom. Despite our ignorance of the exact nature of the posi
tional order in the columns, we will freeze the positional

degrees of freedom. A model for discotic phases aIIowinng/\J2 ratio determines the magnitude af but allows op-

lattice distortions is studied id]. We also assume that the osite helicities for different columns and even helicity re-
molecules lie on a three-dimensional triangular lattice of orP y

dered columns, with one-third of the columns offset verti—versals within & column, separating helicity domains.
S T ; o For an isolated molecule of HHTT at finite temperature, it
cally. This simplification is certainly valid in thél phase,

. ) o : ' _is unclear whether chirality is a well-defined property: A
even if only quasi-long-range positional order existed, since

order would then be maintained over man intermoleculaConforma1ti0n analysigL3] shows that the energy barier be-
. . . . many : tween opposite chirality configurations is comparable to the
distances. Accordingly, we will usé,§) site indices to iden-

tify the unit cell of the three columns of the two-dimensional thermal energy in théd and Dpq phases. In the present

. ! . : model, the chirality of a molecule is the result of a collective
V3x J3R30° superlattice of colum_ns and 1o identify the behavior governed by the intracolumn interacti¢®)s Every
column: =1 and 2 label the undisplaced columns ad

. . molecule in a particular helicity domain has the same chiral-
=3 labels the columns offset by;/2. Finally, an indexk P y

identifies the sites a molecule occupies in thegi(j) col- -
umn. We formally write {,j,k) asm, an index labeling a _ _
plaquette of three molecules. B. Intercolumn interactions
Within the framework of this plastic state model, each  Given the approximation that each molecule is fully de-
molecule ,m) has a well-defined position,, and an ori-  scribed by its orientation,,,, we may write its mass density
entation labeledd,,,: We assume from the start that its as a multipole expansiofl2,19. Because of thé, point
plane is perpendicular to the direction of the columns. Ori-symmetry of the molecule, the first nonzero moment is the
entational disorder may mimic an effectii®,q phase, octupolar moment, which may be representedQ@y,,, a
which, however, would possess orientational and positionalank-three tensork(l,m=x,y). The only interactions that
disorder along the columns. We did not explicitly considerare bilinear inQ as well as invariant with respect to the
the shape and flexibility of the tails, which would vary with symmetries of the hexagonal lattice have a c@s-3() or
the temperature. However, it has been suggeies] that  cos 3¢+ 6') form [12]. The intercolumn interaction is then
the stiffening of the tails may be responsible for gy  approximated to be
—H transition. The above considerations are implicitly inte-
grated out as weakly temperature-dependent renormalization —Jcog§3(6,i;—0,i/j))]—G cog 3( 0, + 6,i/j:)].
effects of the intercolumn interactions, allowing us to use, to ©)
a good approximation, an effective model with athermal val-
ues of the interaction parameters. The resulting thermalhe first term is invariant under continuous rotations and
phase diagrams will represent a somewhat distorted versionould be present even if the molecules had lower symmetry
of the true temperature dependence. multipole moments. However, the second term is specific to
The last thing to consider in the model is that the mol-the octupolar character of the molecules and has only a dis-
ecules are not exactly disklike: They develop a spontaneousete rotational symmetry.
chirality associated with the alternate arrangement of the ali- To extract theD; symmetry of the molecules, we replace
phatic tails. Indeed, conformational analysis on compoundghe real orientation®,,, by angular variables , =36,
similar to HHTT [13,14] shows that this “propeller blade” The complete Hamiltonian of the system then reads
configuration is the ground state of a single molecule and of
two stacked molecules, one on top of the other.

ith 3;>0 and J,<0. In the ground state, the molecules
adopt a helical configuration with intrinsic pitely given by
cos r=—J,/43, if 4|J,|=|J;| and zero otherwise. The

H==2 2 [3um 0 0L bum= bun)
Moy m,
A. Intracolumn interactions

In their ground state, two stacked HHTT molecules mini- Gumun COL bymt Pun) - @

mize their conformation energy by allowing an angular shift

« between the two moleculdd3,14. An intrinsic chiral J.m,»n cONtains the intracolumn interactions: Each site is

model represented by the Hamiltonian coupled to its first and second intracolumn nearest neighbors
by J; andJ, as in Eq.(2). The intercolumn couplings are
—Jcog3(b:1— 6— )] (1) embedded i, ,, and G, ,n- Eachu=1 site interacts

with threeu =2 and sixu =3 neighborgthree upward and
would be appropriate to represent this situation since théhree downward The intercolumn couplings have different
HHTT molecules hav® ; symmetry[15]. However, there is  values:J and G for in-plane molecule$1-2 bondg and J’
no a priori selection between right- and left-handed chirali-andG’ for out-of-plane moleculeél-3 and 2-3 bondgsee
ties. In order to allow for the two possible chiralities of eachFig. 1(b)]. Nevertheless, it is physically justifi¢dQ] to sup-
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with
Jj(q)=cosq+J,cos A,

=5(3+G),

54(0)=J3%:(q)=3(J+G)cos3q, (10

3=3(3-06),

J54(0) = J354(0) =3(I—G)cos3q.

FIG. 1. (8 Two-dimensional triangular lattice of columns. Open The displacement of the=3 columns changes the coordi-

circles represent displaced columns=t3) and closed circles un- .
displaced columnsyg=1 and 2. Dashed lines represent the unit nation number from 6 to 3 and adds a é}nﬁ(factor.

cell of the superlattice(b) Three-dimensional illustration of the
couplings for three columns. Dotted lines represent fictitious sites A. Second-order phase transition temperatureT .
and interactions for an undisplaced column 3.

Order-disorder continuous phase transitions are related to
the divergence of the “paramagnetic” susceptibility,
which in turn is related to the single-site susceptibility
=1/2T, with kg=1, by the standard random-phase approxi-
mation relation

pose thatl’~J and G’ ~G and, for simplicity, we assume
J'=J andG’'=G. J; is positive and taken to be unitjt
sets the energy scale

With the notations

: x(a)=xo[ 1= xod(a)] ™. (11)
Cum=CO bpum)s  Sum=SiNb,m), (5) o
) o The 6X 6 matrix between square brackets is singular when at
we may rewrite the Hamiltonia(¥) as least one of its eigenvalues is zero. As the temperature is

lowered, the transition occurs for somg maximizing one

H=— 2 2 [‘]Zm,vncﬂmcvﬂ+Jim,vnSMmSVﬂ]' (6) of the six eigenvalues af(q). The corresponding eigenvec-

v mn tor identifies the configuration involved in the transition. The
. s eigenvalue itself is twice the critical temperaturg.
where  J/ 1 ,n=dumuntGumen  ANd I 0= umun J(q) is block diagonal, and the sixth-order characteristic

—G,mwn- The reader should note that the mappi@g>  equation reduces to the two cubic equations given by
—G interchanges the and s variables and amounts to a

rotation ¢ ,m,— ¢é,,m+ /2 of the molecules. defJ®5(q)—j%s1]=0. (12

Ill. MEAN-FIELD CALCULATION The eigenvalues are

Let us introduce a six-component variabl&,, jr(a)=9y(a) 337, (139
=(C1mC2m+C3m+S1m»S2mSam)- IN Fourier space, the mean )
fieldis i@ =3y()+ 31355~ VIT2+ 8355 (@], (13D
1§°(a)=y(@) + 3355+ 952+ 8355 ()% (130
hi(@)=2 J;(a)(S(a)), ) ? PRI R T s
! The eigenvectors are of the form
where J;;(q) is a 6x6 block diagonal matrix constructed ¢S — (1 _
from the J¢ and J° couplings of Eq.(6): vi(@)=(1-10), (143
Xq 0 o5 =[i5°=Jy(a), i$°=J(@), 23351, (14D
J(q)=< ) ®) , _
0 @ 0§ =[i§°= (@), i§5-I(@), 2355(@)]. (149

Because there are three columns in the unit cell, the meafqr each parameter set,G,J,) we numerically find which
field transverse components gfare zero(this detailed cal-  of the six eigenvalues is maximal and the corresponding
culation is not shown heyeFrom now on, without any am- |t turns out that the only two eigenvalues to be maximum are

biguity, we replacey by g, its zcomponent. We also set 1o jc angj$. The critical temperature is thus the maximum of
unity the intracolumn distance between two moleculds ( tne two temperatures

=1). TheJ® andJ® matrices are then

Jj(a) B Ja(a)
Fs=| Iz  Ja) I3z |, (9) =3(c0sqc+J,c08 A +3(I=G)

sr(@) J55(a)  Jy(@) +2]3+G|\1+32coé iq.. (15)

Te®=max3j5°)
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4 B. Thermal phase diagrams
In order to investigate finite-temperature effects near the
3 order-disorder transition, to better specify the nature of the
phases and to rule out the possibility of higher-temperature
G 2 first-order transitions, we set up a Landau theory from the
microscopic model. We follow in essence the method pro-
1 posed by Bak and von Boeh[20].
0 1. Free-energy functional expansion
-4 4 For commodity, we divide the Landau free-energy func-

tional F into two parts:F; andF;. In reciprocal space, to
fourth order, we find that
FIG. 2. Phase diagrams at the critical temperature Jpr
—1.0,—-0.8,—0.6, and—0.4. The full lines, all superimposed with
the precision used, are the boundaries between cos and sin phaseET=T2 2 [c.(Q1)C,(—a1)+5s,(a1)s,(—d1)]

and the dashed lines are the boundaries betweeg th® andq, !

#0 phases. FO6<0, the diagram is a mirror image of the above

with cos and sin phases interverted. +1 > [c.(di)c,(dz)c,(d3)C,(—01—02—0d3)
d1,02.93

If TS>TE (Te<Ty), only the cosingsine components are +2¢,(01)¢,(02)S,(03)S,(— 01— 02— 03)

involved in the transition. The boundary between the cosine

) - . . .
and sine transitions is defined By=T:. Because of the +5,(01)5,(02)S,(d3)S,(— 01— A2~ q3)1 |, (18)

(a,a,b) structure of thev§ andv3 eigenvectors, we conclude

that columns 1 and 2 play similar roles, whereas column 3

has a distinct behavior. with T=1/3. ¢,(q) ands,(q) are the Fourier transforms of
In the J-G plane and for a particular value df, we the mean valueéc,,) and(s,m). This truncated power ex-

identify four regions corresponding roughly to the four quad-pansion is numerically close to the exact vafless than 1%

rants, two of them being shown in Fig. 2. The li@=0, difference up to \/<cﬂm)2+<sﬁm 2~0.5. A sixth-order de-

where the cosine and sine components are equivalent, is alopment is 1% accurate up{@cﬂm>2+<sﬂm)z~0.65. For

obvious boundary. The curve every mean value under this limit of validity, a negligible

number of fictitious spins with modulus higher than 1 con-

tribute to the statistics. We also find that

Fy=— J5 c c,(—
on whichT¢=T¢, follows from a mechanism similar to the ’ MZ/ % [a(@)Cu(@)e,(= )

spin-flop mechanism of magnetism. Fa{ and |G| suffi-

S
ciently high relative tdJ,|, q. vanishes, i.e., the transverse +3.,(91)8,(A2)8,(— ) ]. (19
couplings have “untwisted” the columns. The equation ] .
Te(9.=0)=Tg(q.=0) then relatesd andG: These expressions represent the free-energy functional for a

group of three columns. All the umklapp terms have been
dropped from theq summations. These umklapp terms
(J+G)+ |J+G|\/§:(‘]—G)+ |J_G|\/3_3, (17 would have pinned the modulation to commensurate values.
By ignoring them, we allow incommensurate phases to oc-
cupy the entire parameter space, leaving a space of measure
The solutions ar&=0 and|G|= — /33J. Thus, in the limit  zero to commensurate phases. In real systems a devil’s stair-
q.=0, we findg=\/33~5.74, independently of or J,. At  case[20] is expected instead of the continuaygrofile.
g.=0, the columns behave like a single vector flipping under
the anisotropic effect ofs. For smaller values ofJ| and 2. Order parameters
|G|, qc is nonzero and) decreases, but the same mechanism
remains. ~ ~
In the “cosine” regions, the helicity at the transition is a Sx(d)=0 (V) except forg=*g. In other words, we con-
function .= q.(J+ G,J,) becausel+ G is the only combj- Centrate on the f|r§t harmonic to appear in the modulated
nation ofJ andG appearing irj5. In the “sine” regions, we phasgs. This is val!d at the transition but it is not excluded
haveq.=q.(J— G,J,) for the same reason. Fds>— 1%, q. that higher harmonics may appear at lower temperatures, as
vanishes, i.e., each column stabilizes a “ferromagnetic” or-Secondary order parametecg(q) ands,(q) are thexandy
der[16,17). ForJ,<—1, there is a region of tha-G plane ~ components of three polarization vectors
whereq.#0, butq.=0 for |J| and|G| high enough. The R R
boundary is determined by the competition betwgkh and Su(@)=c,(q)x+s,(q)y. (20
the transverse couplings, respectively, inducing a modulation
in the columns and favoring.=0. These are complex quantities that may be expressed as

We then assume that, near the transitiop(a)=0 and
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c#=|cﬂ|ei“’ft, sﬂ=|sﬂ|e“”i. (21)

This choice of variables allows for any elliptical polarization M~
and relative global phase for each column. To simplify the
notation, we replacc,| by ¢, and|s,| by s, and, to avoid
any ambiguity, we make no use of the complexands,
anymore. In real space,

(Su)=3[S,(0)e9%+ Sk (q)e %] =c ,coqqz+ ¢5)X

+5,040Z+ @)Y, (22
FIG. 3. 5(T) curves forG=0 and different values af. 7(T) is

with z,=k+ 8,3, SO thate® are the global phases of the gefined only forT below the critical temperatur&,, which de-
different columnsu at thez=0 level. pends on thd value.

The function to minimize is thek=F++F;, with
Instead of the ordinary “120° state” for an evenly frustrated
_ 22yt 4, 4 system, our system concentrates the frustration in the 1-2
FT_T% [Z(C“+S")+ 4(6(C”+S") bond, which has a lower coordination number than 1-3 and
s . s 5 2-3 bonds. In contrast to the results obtained &t0 in [9],
+4{2+cod2(¢,—¢,)]}c,s,)] (23)  \where every column was forced to adopt the same amplitude
and a deformed 120° state was achieved, we obtained here a

and fully colinear antiphase.
This fundamental difference arises from the freedom of
Fy=— E [wac#cy cog S— <PZ) the above model to adopt different amplitudes of modulation
B for the different columns. This was not allowed[8]. Using
+35,5,5,c08 05— ¢)], (24) the definitions
with couplings as previously defineB.is a function ofc,, , %ZE - 3' nszﬁ - %y (28)
S, ¢,°, andq that is, at first, numerically minimized. The Ci C S1 S

reader should note that the permutatios 2 in the indices

leavesF unchanged, which reflects the equivalence of col-We have presented on Fig.72 and 7 as functions of the
umns 1 and 2. temperature, foilG=0 and different values of. Because

G=0, we havern.= ns= 7 and the curves are identical for
3. Helicity patterns eachJ. This ratio has a well-defined value only below the

We numerically observe simple relationships between thé:rmcal temperaturd .. It is to be noticed that for all cases

c S . S presented; is always larger than unity. Far<O, the be-
p.hastBSp#har}dgoM. Thesef n t;’_m Ielalc:ié?_a:)s[[rgpllfleql expr%s- havior is even larger than fal>0. As a consequence, the
sion‘for the Iree-energy functional. =Y, the cosine an displaced columns show a larger amplitude for the modu-
sine components are equivalent agd-c,, . By numerically

inimizing E btai lated phases.
minimizing F we obtain For G#0, the rotational invariance is broken and we ex-

- pect noncircularly polarized phases. Numerically, we still
QDZ_(’D;:t? (25  find @5, — @5, =*7/2 and, if|J|=|G|, a (+ + +) configura-
tion is realized. If{J|<|G|, we have a ¢+ —) configura-

so that the modulation appearing in the columns is circularl)}'on’ as previously found if12] (see Fig. 4 The intercol-

: : SR : . umn relative phases are related to the sigd 6fG for the
polarized, with a helicity given by the sign on the right-hand ™" . - )
side. This sign ¢,=*) may differ from oneu value to cosines and 0§ —G for the sines. Fod+G>0,
another. We denoteo(; ,0,,03) the helicity configuration of

c_ _Cc_ C
the three sublattices of columns. F®r=0, the only allowed P1= P2~ P3 (29
helicity configuration is ¢ + +) [or equivalently & ——)]. .
Depending on the sign af, the relative global phases of while for J+G<0,
each component from one column to another are G ar. c ¢ ¢
P1=pr=p3E . (30)

ForJ>0, the columns adopt a “ferromagneticlike” arrange-

ment
If G is replaced by- G, identical relations hold fot?, .

(26) These phase relationships divide thes plane in four
guadrants, as seen in Fig. 4. This diagram possesses an ather-
and for J<O0, the triangular geometry imposes a colinearmal character since these relative phases are the only vari-
“antiphase” ables having an influence on the sign of each ternt pf
cs e es cos@q) being always positive. However, it is important to
PLIT=Qy =@z E . 27 stress that the phaséand the phase relationshjpkave a

CS_ CS_ GCS
1 TP TP3
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braic form of the preserE, the sign of each convexity co-
efficient atx=0 indicates whethe® is a minimum or notf
is minimal atO if every coefficient is positive, but one or
more negative coefficients means tBas no longer a mini-
mum. A vanishing eigenvalue ¢i: at x=0 corresponds to
a second-order transition.

Hr has two distinct, doubly degenerate eigenvalues given

by

hes=3[2T—(1+J,)— (J=G)]

+\[2T—(1+J,)—3(J£G)]°+144I+G)>.
(33

FIG. 4. Helicity patterns and phase differences inih@ plane.
The first numbeK0 or + 7) is the differencep§— ¢ and the sec-
ond is ¢3— ¢3.

hg correspond td+ G andhg to J—G. For a set §,G,J,),

T is the critical temperatur@; when everyhg is positive at
x=0, but at least one vanishes. The eigenvalues vanish at the
physical meaning only when their corresponding amplitudesemperatures

are nonzero. From these partial results, we may rew#iire
a simpler form

Te=3(143)+3J+6) + 3= G338, (39

Fr=2T{2c3+c3+2s+ 83+ 3[3(2c]+c3+2si+53) We retain the solution that keefis positive for anyJ and
G. These expressions coincide with E45) if q.=0. The
cosine or sine components order depending on which of the
two temperature§¢ or Tg is maximum. We have a phase
boundary between the two types of order &fr=T:. This
equality is equivalent to Eq17). Forg.# 0, the same analy-
sis leads easily to Eq15).

For a smallg,, we expandl$® in powers ofg. Theqs
coefficient is negative. The boundary betwegn=0 and

The absolute values of some couplings reflects the helicity) 0 phases occurs when tm% coefficient vanishes. We
choice made in order to minimizZ€. The positive signs of have the relation

the coefficients ot{s? andc3s; favor competition between
c ands variables.

+2(2c?s2+c3s9)1}, (31

F,=—(cosq+J,c0s 29)(2c%+ c3+ 282+ s5) — 3(J+ G)c2
—12/J+G|(costq)c,c3— 3(J—G)s?

—12/J—G|(cos5q)s;S;. (32

REXe] 7)) (39

22 (=3

\/E‘B 2 4
_ .In this section we |nvest|g_ate the first order-dlsorder_ tran-Which defines the boundaries on Fig(tBe dashed lings
sition to appear when lowering the temperature, that is, the
highest temperature for which at least one order parameter is
nonzero. This resulting critical temperature and the boundary
between different phases should agree with the results found Below the critical temperature and fdrand G exactly
in Sec. IllA. This is presented in order to express the conlying on the|G|=—g(J,J,)J curve, both thec ands com-

sistency of the Landau theory and its numerical treatmentponents order. For the san®andJ, but for a higherd, the

4. Phase boundaries at J

5. Thermal phase diagrams

For each parameter setf ,J,G,J,), we minimizeF defined
with the expression&31) and(32); using Eqs(23) and (24)

¢ components order first, followed at lower temperature by
the s components and conversely for a lowé&r Conse-

would be equivalent, but numerically inefficient. The critical quently, a concomitant ordering of both theands compo-

temperature is found by selectifigsuch that one o€, cs,

nents exists for a range & From the equivalence of the

Sy, Or s; is as small as possible, but nonzero. We have rex=1 andu=2 columns, we have observed tltat=c, and

covered the diagram of Fig. 4. and g, being identical to

s;=5,. Conversely, because of their mutual hindrance,

those found in Sec. lll A. We also conclude that the transi-<c; ands;<ss;.
tions are always of second order, even with sixth-order terms We show in Fig. 5 the thermal phase diagrams for con-

in the expansion oF .

Forq.=0, that is, whenJ| or |G| is large enough, some

analytical results are easily obtainable. The mafitk:};;

={9°F/dx;dx;}, wherex is a vector constructed from the

order parameterfx=(c4,C3,S1,S3)], defines the local con-

vexity of F. We diagonalizeH to express this convexity

along some eigendirectionis;: , the four eigenvalues df ¢,

stant values ofG and J,=—1. The symmetry ofF with
respect toG« — G allows us to consider onl5=0. Each
diagram has a high-temperature disordered phdsaoted

d) and at lower temperatures ordered phases sin and cos. For
g+ 0, these phases are denotddsin andM cos. Just below

the |G|=—g(J,J,)J curve is a mixed sifrcos phase that
transforms continuously from sin to cos when approaching

are the convexity coefficients. For each parameter sehis region from large positive and negatideForg=+0, the

(T,J,G,J,), F is minimal for a particuliarx. For the alge-

region sint-cos is an elliptical phase denot&d
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15
By G=4
10 ...
] ¥
sin+cos
b) 0 : 1 1 1 1 Ié;{’
10
A
sl sin
i sin+cos
04— 17—
©) ] G=1
J
FIG. 6. Thermal phase diagrams in the quasi-one-dimensional
regime (see the text For (8 G=0.5 the E(++-) and
E(+ + +) are separated. Fdb) G=0.3 and(c) G=0.1 the dashed

lines denote first-order helicity reversal transitions.

FIG. 5. Thermal phase diagrams for strong transverse couplings. |ndeed, the — quasi-one-dimensional ~regime, where
(see the tejt For (2) G=4 there are no modulated phases. f)r |J1|,|J2|>|J|,.|G|, IS Interesting beqause It Is more realistic
G=3 the modulated phases are reentrant. The dotted lines indicaf@r HHTT, with E phases having different helicity patterns.
the limit of validity of the fourth-order free-energy expansion, be- We show in Fig. 6 thermal phase diagrams ®from 0.1 to
low which at least one order parameter is greater than 0.5. Th8.5. Both theE(+ + +) andE(+ + —) phases exist and are
insets schematically illustrate the orientations of the three moleculesometimes adjacent. On tliénterval presented in Fig. 6, all
in a plaquette for sin and cos phases. the ordered phases are modulated. The temperature “depth”

of theM sin andM cos phases is approximately proportional

For high values ofJ| or |G|, q remains zero below,, as  t© |G| and independent of. g .
shown in Fig. §a). For small|G| and increasingJ|, steep Figure 7 illustrates schematically the positions and orien-
boundaries between modulated and nonmodulated phases &#H0ons of the molecules for different phases encountered in
crossedsee Fig. §)]: g vanishes continuously fromf cos e diagrams of Fig. 6, in the case whebe-0. Some are
to cos and fromM sin to sin. Inversely, for smallJ| and also present in Fig. 5. The length of the tails represent the
increasindG|, a reentrant boundary is crossed: A modulatec@MPlitude of ordering. The sin phase{Fig. 7(a)] shows
elliptical phase reappears with increasing temperatises modulated order with uniform orientations along the col-

Fig. 5(b)]. For high values ofJ|, below the critical tempera- Umns and where column 3 is in phase opposition. €or
ture, the disordered variables {n the sin phase anslin the >0: t_he M cos phaSG{F'Q- 7b)]is a modulateq ferromag-
cos phasgorder at lower temperatures, forming $i0os neticlike sf[ate. The maximum lengths of the tails shows that
phases. FoG=1 [Fig. 5c)], we see the beginning of this colum_n 3 is more ordered than co!umns 1 ar_1d 2. The_ corre-
phase follJ|=2. The phase boundaries are parallel to the sipPonding sin and cos phases are illustrated in R@. ¥ig-

and cos boundaries with the disordered phase. These lo#'® Ac) and d) represent th? various elliptical phases
temperature phases are not shown on Fig.&nd 8b), but encountered from left to right in Fig. 6.

they occur respectively fofJ|=6 and 8. Because helicity

configurations have meaning only whep, s, , andq are IV. MONTE CARLO SIMULATIONS

nonzero, that is, foE phases, the diagrams of Fig. 5 do not
show the richness of Fig. 4. For the choice of parameters, the
centralE phases in Fig. 5 are{ + —) phases. For smaller We use the Metropolis algorithrfsee [21] for general
values of|G|, itis expected that a phase boundary betwen Monte Carlo methodgo simulate a three-dimensional lattice
phases having{ + —) and (+ + +) configurations would of XY variables. Our goal is to obtain the essential features
be observable. of the thermal phase diagram of the systé restricting

A. Method and algorithm
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correlation length is large relative to the cluster size, this
approximation loses some validity.

We simulated a & 6 triangular lattice of columns, that is,
12 groups of three columns. We used periodic boundary con-
ditions in the plane and the spiraling algorithm in the col-
umns’ direction. Each column has its ownvariable.

For two neighboring columns with nonplanar interactions
(J’ andG"), the spiraling algorithm introduces some small
energy discrepancies. This problem arises from the non-
equivalence of some of the couplings at the edges of the
lattice. Due to the relatively small energy involved in this
boundary effectespecially for a quasi-one-dimensional sys-
tem), it was neglected.

We identify the different phases with the nonzero values

of the Fourier coefficients of wave vectgrof the x andy
components defined by

~ 2 ~
al(Q)=5c 2 > COS¢yjcosqz, (398
# ING fHzr, &
FIG. 7. Schematic illustration of the orientations of molecules bZ(OI)= 12N j)§:R Ek: COS(f)i]—kSiank, (39b
JeRy,

and the amplitudes of mean values wiB™>0 for (a) the M sin

phase with column 3 in phase oppositidn) the M cos phase with 5
column 3 in phase conjunctiokg) the E(+ + +)(,7) phase/(d) as(q) = SiN ;.. COSaz 390
the E(+ + —)(0,7) phase, ande) the E(+ + +)(0,0) phase. W@ 12N(i,jéR# g ijkCOSAZ, (399

ourselves to the quasi-one-dimensional regime. The above _ 2 3

method has been implemented in conjunction with the “spi- b= Ty > X singysingz, (399
raling” algorithm [22,23, which simulates incommensurate (i)eR, Kk

helical phases by relaxing the constraint associated with the 1 _
finite size of the lattice. Outside the critical regime, the re-With zZ=k+38,3. R, represents the sublattice ¢f col-

sults are in principle independent of the lattice size. Thisdmns andN is the number of sites in each column. Using
method is applied on each column &f XY variables these coefficients, we construct the order parameters

{p1, ...,&n}. We simulate the neighbors ap, and ¢, _ — —
with phantomsites (denoted by a primerelated to sites of c.(@)=a}(q)*+bf(a)?, (409
the opposite extremity of the column:

Sha=dn-1i-NA, d=dy-NA.  (36) 5.(0) = Val(@*+b(@)" (40b

For the sitespy_; and ¢y, we use the phantom neighbors The (c,(q)) and (s,(q)) profiles show a maximum af
=(o and may show secondary peaks. Indeed, it has been

d1=¢1tNA, =+ NA. (37)  shown[24] that a third harmonic afj;=3q, should appear

. . - for linearly polarized columns. In our simulations, this third
The reader will note that foh =0 simple periodic boundary o monic should be an indication of such a linear polariza-
conditions are recovered is an effective field representing
an additional indefinite length of a lattice modulated with a
constant pitch. For the system to select its own boundar;él
conditions, we consideA as a thermodynamic variable. s~ o~ S~ o~
Each Monte Carlo step of the spiraling algorithm consists in s e~ a(@a (q)+bi(q)b,(q)

cog ¢, —¢,)(q)=

tion. For each wave vectay, we also construct the cosines
nd sines of the relative phases of the columns defined by

N ordinary trial flips of theg variables, plus a single trial flip S,,,(a)Cp,(a)
of A. We modify A by a small random angléA. In order (419
for the newA to be compatible with the above equations, a
twist must be imposed on the lattice: bS (ac (o) —as (a)bS (g
' Sin( 65— 4)(3) = 2(d) ﬂ(q~) M~(q) ()
di—¢i+(i—1)6A. (38) s.(a)c,(a)

41b
The new state has a new total energy and is then tested for (41D

acceptance with the Metropolis algorithm. We may compare AN C e
the spiraling algorithm to a high-order mean-field approxi- cog ¢ — ¢°)(q)= awl(Q)au(Q)j bﬂ+~1(Q)bM(Q)
mation, where the exact clusters have the size of the finite . K’ C.+1(a)c,(q)

lattice used in the simulation. Close to a transition, when the (410
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bS .1 (@)al(a)—a,,,(q)b(a)
C;/,+ l(a)cﬂ(a)

Sin(¢S,. 1~ ¢5)(Q)=
(410

~ @ (@ad(a)+bd, (9)bs(a)
COS( S+ _ S)( ): M 13 - /”~ 14
Pura™ ¢ S,+1(9)s,(Q)

(410

bs 11 (@)a5,(a) —aj,. 1 (a)bs(a)
Su+1(@)s.(a)

Sin( ¢y, .1~ 6,)(Q) =
(419

We compare cos(;, — #;)(qo)) to the mean-field expression
cos(g;,— ¢;) and so on for each mean value.

The amplitudeg40) converge relatively fast, but the an-
gular phase$41) converge much more slowly: They are ra-
tios of fluctuating quantities. For some simulations, we are

only interested in théc,(q)) and(s,(q)) values and we

have simulated only 2000 Monte Carlo steps per GH€S/
S), including 1000 MCS/S for thermalizatioN, the number

of sites per column, was set to 40. However, many more S5
steps were needed to obtain the relative angular phases ;:,,;;f;/
$’ 1.5

(25000 MCS/S, including 5000 MCS/S to thermajizén
these cased\ was taken to be 12. To improve numerical
efficiency, we discretized thé and A variables into 256

values from 0O to Zr. '
. . o _ FIG. 8. (a) (c1(q)) and (b) (s1(q)) temperature profiles fal
All simulations are done withlG=0.1 andJ,=-1, a =-0.15,G=0.1, andJ,=—1. The arrows indicate the first and

quasi-one-dimensional limit. We perform the simulations by,...4 narmonics They, peaks appear di~0.4 for ¢, andT~0.9
gradually decreasing the temperature for each valugd.of ¢ ' 0 ’ ! '
This allows a greater numerical stability for low-temperature

phases and retains the helicity sipf#-+ ) or (—— )] (cos(¢>i—¢;)(qo)>~0 and(sin(¢i—¢i)(qo)>~tl, with signs
for all temperatures. . corresponding to the mean-field helicity configurations:
Preliminary simulations on a single plaquette of three col-(+ +—) or (——+) for |[3]<0.1 and ¢+ +) or (———)
umns were done_ to compare 'Fhe spiraling algorithm wit or |J|>0.1. Some longer simulations were done to establish
periodic boundaries conditions in some reasonable compu Slearly the phase differences, B¢ —0.15, — 0.05, 0.05, and

ing time. ForN=40, simulations using periodic boundaries . ;

along columns give very similar results compared to simula-0'15' For high enough amplltuqﬁs:ﬂ(qo))I and|(sﬂ(q0)>|,
. . S . all relative phases are compatible with the mean-field calcu-
tions with the spiraling algorithm, except for smaller mean

values(because of higher fluctuationand slightly displaced lations and with the results just cited. Moreover, many short
peaks. However, the difference is pronounced Kor 12, simulations where done on a single plaquette of three col-
where the spiraling algorithm broadens the principal peak, 2.0
while periodic boundaries conditions destroy the whole spec-

trum.

1.5

B. Thermal phase diagrams

Figure 8 shows a typical result for the temperature pro- r 1.0

files (c,(q)) and (s,(q)), from which the thermal phase
diagram is reconstructed: Notice that bath and q; peaks
appear at specific temperaturess (is folded in the[0,7]

interva). The (c,(q)) and(s,(q)) profiles show that, for _
J=—0.15 a decreasing temperature drives the system from 0.0 — . . .
thed phase to thé/l sin phase and finally to the phase. The -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3
critical temperatures are arbitrarily taken to be the points at J
which the amplitude of the peak is half its maximum value.

The thermal phase diagram is constructed by repeating FIG. 9. Thermal phase diagram f&=0.1 andJ,=—1 from
the simulations for manyJ values. Figure 9 shows Monte Carlo simulations. The continuous line is a guide to the eye
the diagram forG=0.1 andJ,=—1. We always obtain [see Fig. €) for the mean-field diagrain

0.5
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umns (N=40) and, although no phase transition is observednly through a larger amplitude of modulation for the dis-
(the system is one dimensiohahe phase differences are in placed columns as compared to the undisplaced ones, as
excellent agreement with Fig. 4. shown in Fig. 3.

Contrary to the mean-field resu[tsig. 6(c)], theE phases For values ofG moderate compared to the intracolumnar
with different helicity configurations were not found to be couplings(Fig. 6) both the helicity patterns++ +) and
adjacent: A linearly polarized phase opens up betweeli+ + —) are predicted. Also, it is to be noted that the tem-
the E(+++) and E(++—) phases. On the diagram, perature range over which the linearly polarized and modu-
for a given value of], a dot atT=0 means that no phase lated phases exist narrows with decreasing valugs.dfin-
transition was clearly identified when lowering the tempera-der these conditions, it is expected that the elliptical phases
ture. rapidly appear on lowering the temperature belqw In this

temperature range and fdiG|>|J|, an elliptical phase
(++ —) is predicted. Recall that thet(+ —) phase is the
V. DISCUSSION AND CONCLUSION one observef5] for HHTT in theH phase. We are then in a

X i HHTT h lead 1o the ob position to reiterate that HHTT is a quasi-one-dimensional
-ray measurements on ave lead 1o the ODSEIVas, 1o where the molecular orientations are determined by

“0_” ofa sequence of phases as tempefat“re. is lowered. TVY e nonrotationally invariant interaction between octupolar
neighboring phasesDq and H) at intermediate tempera- moments located on a distorted triangular lattice.

tures have a qolumnar structure. Entering It-hphase fro.m The finite-temperature Monte Carlo simulations on finite-
theDpq phase_lnvolves a_mutu_al and concomitant ordering Ofsize systems has confirmed the mean-field results. The one
both the position and orientation of the molecules along the’r‘mportant difference is that theH(+ —) and (+ + +) con-

columns. However, we may assert that the positions of th gurations are not seen to be adjacent in Monte Carlo simu-

molecules, bem.g submitted to more stringent mtermolecularations’ whereas they have a common boundary in the mean-
forces, are rapidly frozen with decreasing temperature,

8Reld approximation. The hard-spin constraift, +s2,= 1

compared to their orientations. This is the main justification. ; P ' .
I Lo . : is automatically satisfied in the Monte Carlo simulations. At
for restricting the model studied in this paper to orienta-

tional degrees of freedom. The results obtained and in pallpW temperature and in the intermediate regidie=|G|, the

ticular the general trend of the thermal phase diagram shoul@/Stem 1s ambivalent betwegnJr(+,+) and (+’+’._) .
help in understanding the behavior of HHTT inside tHe configurations. _A mpdulated_ Imear phase generally |mp_I|es
phase greater fluctuations in the orientation of each molecule since
The first result of interest is the existence of linearly po-the mean vaIu§S> is periodically zero. Because the_Montg
larized phases aT, with a finite wave numbeg, in the Carlo method implements fluctuations more realistically, it

columnar directiong, decreasing with increasing values of _sru_}:)(r)esiﬁecsor?tllrg)éltcs)l &Zarieesar?yf?erlsgmlixrﬁ gt?ogb\'ll'vﬁi;oma

the intermolecular couplings and eventually vanishes. A x_laiin whv so few columnar li uidpcpr stal matelrials havg

similar disappearance of the amplitude modulation has beeﬁelri)cal phages a y

predlcted[9] at_T=0,_Where it then shows up as an unwind- Regarding theDq—H transition in HHTT, this work

ing of the helical pitch. AtT., for large |J| and |G|, a : . :

boundary at a constant slope of magniti@/J= — 33 is raises the question of Fhe detailed natgre of the ob;dﬁled
. . . . \/phase near the transition: Is there a linearly polarizétl

predicted between two linearly polarized phases. This behav-

ior is reminiscent of the two boundary structures predicted aghase”? The presence of a linearly polarized modulated
T—0 between linearly polarized phases. B0, the con- hase, or even a noncircularly polarizeldphase, would be

tant sl f the boundari er " nd—5 an indication of the chiral octupolar nature of the molecule
stant slopes of the boundaries are respeciively a (the G coupling. Such a linearly polarized phase would au-

[Q]I'I'he frustration between ordered columns of molec Ietomatically have a third harmonic in the modulation of the
rustrati W raer umns u %olumns[24], leading to x-ray satellites. The most important

with an octupqlar mome”t on atriangular lattice _is_ high. Partresult of this paper is the higher amplitude of modulation

of this frustratlon IS rel_axed by freezing the positions of the redicted for the displaced columns compared to the undis-
molegules anq d|§pla0|ng one of every three columns by hal laced columns. This behavior would affect the x-rays re-

a lattice spacing in the columnar direction. However, eve ults through the Debye-Waller factors, i.e., the relative am-
r[5Iitude (larger amplitude equals smaller fluctuatipms the

remains for negative values of the interaction paraméter different Bragg peaks.

At T=0, with only fixed amplitude phases, a noncollinear
distorted 120° phase was obtained with global relative ori-
entation between the columns, which depends only on the
pitch of the helical modulation of the columf8]. In the
present case, allowing for a different amplitude on the dis-
placed column compared to the undisplaced ones, the result- The authors are grateful to M. L. Plumer for many discus-
ing configuration is collinear and the relative orientationssions. G. L. would like to thank W. M. Saslow for helpful
(e.g., p3— ¢;) are independent of the pitch. This angular suggestions related to the simulations. This work was sup-
configuration, typical of unfrustrated systems, is achievecported by NSERGCanadaand by FCAR(Québeo.
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