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Thermal phase diagrams of columnar liquid crystals

G. Lamoureux, A. Caille´, and D. Se´néchal
Département de Physique and Centre de Recherche en Physique du Solide, Universite´ de Sherbrooke,

Sherbrooke, Que´bec, Canada J1K 2R1
~Received 8 January 1998!

In order to understand the possible sequence of transitions from the disordered columnar phase to the helical
phase in hexa~hexylthio!triphenylene, we study a three-dimensional planar model with octupolar interactions
inscribed on a triangular lattice of columns. We obtain thermal phase diagrams using a mean-field approxi-
mation and Monte Carlo simulations. These two approaches give similar results, namely, in the quasi-one-
dimensional regime, as the temperature is lowered, the columns order with a linear polarization, whereas
helical phases develop at lower temperatures. The helicity patterns of the helical phases are determined by the
exact nature of the frustration in the system, itself related to the octupolar nature of the molecules.
@S1063-651X~98!04211-1#

PACS number~s!: 61.30.Cz, 61.30.Gd, 64.70.Md
al
ne
n
li

an
s

ri-
id
e

o
re
T
to
e
g

th

ns
n
s

a

an

th
t
i

ce
ity

m

the

at
of

ng-
ugh
upy
l
g
as

r
ng
der
ter-

ri-
ase
a

the

ns
t

m-
e at
the
ests

em-

an
. In
om
by a
he
rent
ta-

ned
on-
I. INTRODUCTION

The study of phase transitions in columnar liquid cryst
@1,2# is of fundamental interest: These materials combi
aside from the vast phenomenology of soft matter, ma
features at the origin of important phenomena of the so
state. In particular, they show a relatively strong elastic
isotropy in the direction of the columns, a geometrical fru
tration of the intermolecular interaction coming from the t
angular nature of the lattice of columns, and disco
molecules with nontrivial point-group symmetry. Th
present study is based on hexa~hexylthio!triphenylene
~HHTT!, whose discoid molecule is made of a rigid core
aromatic cycles and of six flexible hydrocarbon chains,
sponsible for its characteristic thermotropic character. HH
is the only compound from the triphenylene derivatives
show two distinct columnar phases. Indeed, as the temp
ture decreases, the sequence of phases is the followinI
~isotropic liquid!, Dhd ~disordered columnar phase!, H ~heli-
cally ordered columnar phase!, and K ~monoclinic crystal!.
These phases were identified by x-ray measurements
powders@3# and freely suspended strands@5–7# of HHTT.

These x-ray results are best interpreted by asserting
the Dhd phase of HHTT (70 °C,T,93 °C) has long-range
positional order in the plane perpendicular to the colum
Columns are located on a triangular lattice. Within a colum
short-range~liquid! positional order is realized. The column
slide freely one against the other. TheH phase (62 °C,T
,70 °C) has in-column positional and orientational helic
order. In this last phase, two neighboring molecules in
single column are separated on the average by a dist
di53.6 Å and rotated from each other by an anglea
'45°, constant on the whole temperature interval of
phase. In order to reduce the frustration associated with
triangular geometry of the lattice, the lattice reorganizes
self in a superlatticeA33A3R30°: One-third of the columns
have a vertical offset of half the intermolecular distan
(di/2). The displaced columns have the opposite helic
a'245°, instead of145°. The x-ray experiments show
long correlation lengths but, as proposed in@8#, quasi-long-
range order may be achieved. The nature of the in-colu
PRE 581063-651X/98/58~5!/5898~11!/$15.00
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order in this phase is so far an open question and so is
exact mechanism of theDhd↔H transition. However, in this
paper we will study solely the nature oforientationalorder-
ing of the HHTT molecules. We make the hypothesis th
orientational ordering is robust with respect to the type
positional order~long-range vs quasi-long-range!. This hy-
pothesis is justified since, even in the case of quasi-lo
range order, the positional coherence length is long eno
that we may assume from the start that the molecules occ
well-defined positions~this also simplifies the mathematica
treatment!. It is thus possible to have orientational orderin
even if the positional ordering is not long ranged. Indeed,
mentioned in Ref.@8#, this underlying orientational orde
may very well favor quasi-long-range positional order alo
the columns. Thus the eventuality of quasi-long-range or
makes the present work that much more relevant and in
esting.

We suggest an effective Hamiltonian for the in-plane o
entation of the HHTT molecules and study its thermal ph
diagram by means of~i! a Landau free-energy functional in
mean-field approximation and~ii ! Monte Carlo simulations
on a finite-size lattice. Previous work has been done on
ground state of a related model@9# and on thermal phase
diagrams for a two-dimensional model of uniform colum
@10,11#. Our analysis confirms that, as previously seen aT
50, the octupolarG coupling @12# is determinative for ob-
taining the helicity configuration of the columns at any te
perature. It also suggests that a variety of phases surviv
TÞ0. For weak transverse couplings, the model produces
expected low-temperature helical phases, but also sugg
that some linearly polarized phases could exist at higher t
peratures.

In Sec. II, the model Hamiltonian is presented with
emphasis on the intercolumn intermolecular interactions
Sec. III the location of second-order phase transitions fr
the disordered phase to an ordred phase is obtained
mean-field approach. It is followed by the construction of t
thermal phase diagrams and characterization of the diffe
phases in terms of the helicity pattern and relative orien
tion. In Sec. IV the thermal phase diagrams are obtai
using Monte Carlo simulations on finite-size systems, in c
5898 © 1998 The American Physical Society
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PRE 58 5899THERMAL PHASE DIAGRAMS OF COLUMNAR LIQUID . . .
junction with the spiraling algorithm. Finally, in Sec. V w
discuss the results and conclude.

II. MODEL HAMILTONIAN

As indicated above, the main purpose of our calculatio
to elucidate the role played by the angular degrees of f
dom. Despite our ignorance of the exact nature of the p
tional order in the columns, we will freeze the position
degrees of freedom. A model for discotic phases allow
lattice distortions is studied in@4#. We also assume that th
molecules lie on a three-dimensional triangular lattice of
dered columns, with one-third of the columns offset ve
cally. This simplification is certainly valid in theH phase,
even if only quasi-long-range positional order existed, sin
order would then be maintained over many intermolecu
distances. Accordingly, we will use (i , j ) site indices to iden-
tify the unit cell of the three columns of the two-dimension
A33A3R30° superlattice of columns andm to identify the
column: m51 and 2 label the undisplaced columns andm
53 labels the columns offset bydi/2. Finally, an indexk
identifies the sites a molecule occupies in the (m,i , j ) col-
umn. We formally write (i , j ,k) as m, an index labeling a
plaquette of three molecules.

Within the framework of this plastic state model, ea
molecule (m,m) has a well-defined positionrmm and an ori-
entation labeledumm : We assume from the start that i
plane is perpendicular to the direction of the columns. O
entational disorder may mimic an effectiveDhd phase,
which, however, would possess orientational and positio
disorder along the columns. We did not explicitly consid
the shape and flexibility of the tails, which would vary wi
the temperature. However, it has been suggested@5,6# that
the stiffening of the tails may be responsible for theDhd
→H transition. The above considerations are implicitly in
grated out as weakly temperature-dependent renormaliza
effects of the intercolumn interactions, allowing us to use
a good approximation, an effective model with athermal v
ues of the interaction parameters. The resulting ther
phase diagrams will represent a somewhat distorted ver
of the true temperature dependence.

The last thing to consider in the model is that the m
ecules are not exactly disklike: They develop a spontane
chirality associated with the alternate arrangement of the
phatic tails. Indeed, conformational analysis on compou
similar to HHTT @13,14# shows that this ‘‘propeller blade’
configuration is the ground state of a single molecule and
two stacked molecules, one on top of the other.

A. Intracolumn interactions

In their ground state, two stacked HHTT molecules mi
mize their conformation energy by allowing an angular sh
a between the two molecules@13,14#. An intrinsic chiral
model represented by the Hamiltonian

2J cos@3~uk112uk2a!# ~1!

would be appropriate to represent this situation since
HHTT molecules haveD3 symmetry@15#. However, there is
no a priori selection between right- and left-handed chira
ties. In order to allow for the two possible chiralities of ea
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column ~the sign of a), we use a next-nearest-neighb
model ~see @16–18#!, with competing interactions of the
form

2J1cos@3~uk112uk!#2J2cos@3~uk122uk!#, ~2!

with J1.0 and J2,0. In the ground state, the molecule
adopt a helical configuration with intrinsic pitcha, given by
cos 3a52J1/4J2 if 4 uJ2u>uJ1u and zero otherwise. The
J1 /J2 ratio determines the magnitude ofa, but allows op-
posite helicities for different columns and even helicity r
versals within a column, separating helicity domains.

For an isolated molecule of HHTT at finite temperature
is unclear whether chirality is a well-defined property:
conformation analysis@13# shows that the energy barrier be
tween opposite chirality configurations is comparable to
thermal energy in theH and Dhd phases. In the presen
model, the chirality of a molecule is the result of a collecti
behavior governed by the intracolumn interactions~2!: Every
molecule in a particular helicity domain has the same chi
ity.

B. Intercolumn interactions

Given the approximation that each molecule is fully d
scribed by its orientationumm , we may write its mass densit
as a multipole expansion@12,19#. Because of theD3 point
symmetry of the molecule, the first nonzero moment is
octupolar moment, which may be represented byQklm , a
rank-three tensor (k,l ,m5x,y). The only interactions tha
are bilinear inQ as well as invariant with respect to th
symmetries of the hexagonal lattice have a cos 3(u2u8) or
cos 3(u1u8) form @12#. The intercolumn interaction is the
approximated to be

2J cos@3~um i j 2um8 i 8 j 8!#2G cos@3~um i j 1um8 i 8 j 8!#.
~3!

The first term is invariant under continuous rotations a
would be present even if the molecules had lower symme
multipole moments. However, the second term is specific
the octupolar character of the molecules and has only a
crete rotational symmetry.

To extract theD3 symmetry of the molecules, we replac
the real orientationsumm by angular variablesfmm53umm .
The complete Hamiltonian of the system then reads

H52(
m,n

(
m,n

@Jmm,nn cos~fmm2fnn!

1Gmm,nn cos~fmm1fnn!#. ~4!

Jmm,nn contains the intracolumn interactions: Each site
coupled to its first and second intracolumn nearest neighb
by J1 and J2 as in Eq.~2!. The intercolumn couplings are
embedded inJmm,nn and Gmm,nn . Eachm51 site interacts
with threem52 and sixm53 neighbors~three upward and
three downward!. The intercolumn couplings have differen
values:J and G for in-plane molecules~1-2 bonds! and J8
andG8 for out-of-plane molecules~1-3 and 2-3 bonds! @see
Fig. 1~b!#. Nevertheless, it is physically justified@10# to sup-
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pose thatJ8'J and G8'G and, for simplicity, we assume
J85J and G85G. J1 is positive and taken to be unity~it
sets the energy scale!.

With the notations

cmm5cos~fmm!, smm5sin~fmm!, ~5!

we may rewrite the Hamiltonian~4! as

H52(
m,n

(
m,n

@Jmm,nn
c cmmcnn1Jmm,nn

s smmsnn#, ~6!

where Jmm,nn
c 5Jmm,nn1Gmm,nn and Jmm,nn

s 5Jmm,nn

2Gmm,nn . The reader should note that the mappingG→
2G interchanges thec and s variables and amounts to
rotationfmm→fmm1p/2 of the molecules.

III. MEAN-FIELD CALCULATION

Let us introduce a six-component variableSim
5(c1m ,c2m ,c3m ,s1m ,s2m ,s3m). In Fourier space, the mea
field is

hi~q!5(
j

Ji j ~q!^Sj~q!&, ~7!

where Ji j (q) is a 636 block diagonal matrix constructe
from theJc andJs couplings of Eq.~6!:

J~q!5S Jc~q! 0

0 Js~q!
D . ~8!

Because there are three columns in the unit cell, the me
field transverse components ofq are zero~this detailed cal-
culation is not shown here!. From now on, without any am
biguity, we replaceq by q, its z component. We also set t
unity the intracolumn distance between two moleculesdi
51). TheJc andJs matrices are then

Jc,s~q!5S Ji~q! J12
c,s J31

c,s~q!

J12
c,s Ji~q! J23

c,s~q!

J31
c,s~q! J23

c,s~q! Ji~q!
D , ~9!

FIG. 1. ~a! Two-dimensional triangular lattice of columns. Ope
circles represent displaced columns (m53) and closed circles un
displaced columns (m51 and 2!. Dashed lines represent the un
cell of the superlattice.~b! Three-dimensional illustration of the
couplings for three columns. Dotted lines represent fictitious s
and interactions for an undisplaced column 3.
n-

with

Ji~q!5cosq1J2cos 2q,

J12
c 5 3

2 ~J1G!,

J23
c ~q!5J31

c ~q!53~J1G!cos1
2 q, ~10!

J12
s 5 3

2 ~J2G!,

J23
s ~q!5J31

s ~q!53~J2G!cos1
2 q.

The displacement of them53 columns changes the coord

nation number from 6 to 3 and adds a cos(1
2q) factor.

A. Second-order phase transition temperatureTc

Order-disorder continuous phase transitions are relate
the divergence of the ‘‘paramagnetic’’ susceptibilityx,
which in turn is related to the single-site susceptibilityx0
51/2T, with kB51, by the standard random-phase appro
mation relation

x~q!5x0@12x0J~q!#21. ~11!

The 636 matrix between square brackets is singular when
least one of its eigenvalues is zero. As the temperatur
lowered, the transition occurs for someqc maximizing one
of the six eigenvalues ofJ(q). The corresponding eigenvec
tor identifies the configuration involved in the transition. T
eigenvalue itself is twice the critical temperatureTc .

J(q) is block diagonal, and the sixth-order characteris
equation reduces to the two cubic equations given by

det@Jc,s~q!2 j c,s1#50. ~12!

The eigenvalues are

j 1
c,s~q!5Ji~q!2J12

c,s, ~13a!

j 2
c,s~q!5Ji~q!1 1

2 @J12
c,s2AJ12

c,s218J23
c,s~q!2#, ~13b!

j 3
c,s~q!5Ji~q!1 1

2 @J12
c,s1AJ12

c,s218J23
c,s~q!2#. ~13c!

The eigenvectors are of the form

v1
c,s~q!5~1,21,0!, ~14a!

v2
c,s~q!5@ j 2

c,s2Ji~q!, j 2
c,s2Ji~q!, 2J23

c,s~q!#, ~14b!

v3
c,s~q!5@ j 3

c,s2Ji~q!, j 3
c,s2Ji~q!, 2J23

c,s~q!#. ~14c!

For each parameter set (J,G,J2) we numerically find which
of the six eigenvalues is maximal and the correspondingqc .
It turns out that the only two eigenvalues to be maximum
j 3
c and j 3

s . The critical temperature is thus the maximum
the two temperatures

Tc
c,s5max~ 1

2 j 3
c,s!

5 1
2 ~cosqc1J2cos 2qc!1 3

8 ~J6G!

1 3
8 uJ6GuA1132 cos2 1

2 qc. ~15!

s



in

e
n

d

is

e

e
n

e

sm

a

or

tio

the
the
ure
the
ro-

c-

f
-

le
n-

for a
en
s
es.

oc-
sure
tair-

ted
ed
, as

h
ha

e

PRE 58 5901THERMAL PHASE DIAGRAMS OF COLUMNAR LIQUID . . .
If Tc
c.Tc

s (Tc
c,Tc

s), only the cosine~sine! components are
involved in the transition. The boundary between the cos
and sine transitions is defined byTc

c5Tc
s . Because of the

(a,a,b) structure of thev3
c andv3

s eigenvectors, we conclud
that columns 1 and 2 play similar roles, whereas colum
has a distinct behavior.

In the J-G plane and for a particular value ofJ2 , we
identify four regions corresponding roughly to the four qua
rants, two of them being shown in Fig. 2. The lineG50,
where the cosine and sine components are equivalent,
obvious boundary. The curve

uGu52g~J,J2!J, ~16!

on whichTc
c5Tc

s , follows from a mechanism similar to th
spin-flop mechanism of magnetism. ForuJu and uGu suffi-
ciently high relative touJ2u, qc vanishes, i.e., the transvers
couplings have ‘‘untwisted’’ the columns. The equatio
Tc

c(qc50)5Tc
s(qc50) then relatesJ andG:

~J1G!1uJ1GuA335~J2G!1uJ2GuA33. ~17!

The solutions areG50 anduGu52A33J. Thus, in the limit
qc50, we findg5A33'5.74, independently ofJ or J2 . At
qc50, the columns behave like a single vector flipping und
the anisotropic effect ofG. For smaller values ofuJu and
uGu, qc is nonzero andg decreases, but the same mechani
remains.

In the ‘‘cosine’’ regions, the helicity at the transition is
function qc5qc(J1G,J2) becauseJ1G is the only combi-
nation ofJ andG appearing inj 3

c . In the ‘‘sine’’ regions, we
haveqc5qc(J2G,J2) for the same reason. ForJ2.2 1

4 , qc
vanishes, i.e., each column stabilizes a ‘‘ferromagnetic’’
der @16,17#. For J2,2 1

4 , there is a region of theJ-G plane
whereqcÞ0, but qc50 for uJu and uGu high enough. The
boundary is determined by the competition betweenuJ2u and
the transverse couplings, respectively, inducing a modula
in the columns and favoringqc50.

FIG. 2. Phase diagrams at the critical temperature forJ25
21.0,20.8,20.6, and20.4. The full lines, all superimposed wit
the precision used, are the boundaries between cos and sin p
and the dashed lines are the boundaries between theqc50 andqc

Þ0 phases. ForG,0, the diagram is a mirror image of the abov
with cos and sin phases interverted.
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B. Thermal phase diagrams

In order to investigate finite-temperature effects near
order-disorder transition, to better specify the nature of
phases and to rule out the possibility of higher-temperat
first-order transitions, we set up a Landau theory from
microscopic model. We follow in essence the method p
posed by Bak and von Boehm@20#.

1. Free-energy functional expansion

For commodity, we divide the Landau free-energy fun
tional F into two parts:FT and FJ . In reciprocal space, to
fourth order, we find that

FT5T(
m

H(
q1

@cm~q1!cm~2q1!1sm~q1!sm~2q1!#

1 1
4 (

q1,q2,q3

@cm~q1!cm~q2!cm~q3!cm~2q12q22q3!

12cm~q1!cm~q2!sm~q3!sm~2q12q22q3!

1sm~q1!sm~q2!sm~q3!sm~2q12q22q3!#J , ~18!

with T51/b. cm(q̃) andsm(q̃) are the Fourier transforms o
the mean valueŝcmm& and^smm&. This truncated power ex
pansion is numerically close to the exact value~less than 1%
difference! up to A^cmm&21^smm&2'0.5. A sixth-order de-
velopment is 1% accurate up toA^cmm&21^smm&2'0.65. For
every mean value under this limit of validity, a negligib
number of fictitious spins with modulus higher than 1 co
tribute to the statistics. We also find that

FJ52(
m,n

(
q1

@Jmn
c ~q1!cm~q1!cn~2q1!

1Jmn
s ~q1!sm~q1!sn~2q1!#. ~19!

These expressions represent the free-energy functional
group of three columns. All the umklapp terms have be
dropped from theq summations. These umklapp term
would have pinned the modulation to commensurate valu
By ignoring them, we allow incommensurate phases to
cupy the entire parameter space, leaving a space of mea
zero to commensurate phases. In real systems a devil’s s
case@20# is expected instead of the continuousq profile.

2. Order parameters

We then assume that, near the transition,cm(q̃)50 and
sm(q̃)50 (;m) except forq̃56q. In other words, we con-
centrate on the first harmonic to appear in the modula
phases. This is valid at the transition but it is not exclud
that higher harmonics may appear at lower temperatures
secondary order parameters.cm(q) andsm(q) are thex andy
components of three polarization vectors

Sm~q!5cm~q!x̂1sm~q!ŷ. ~20!

These are complex quantities that may be expressed as

ses
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cm5ucmueiwm
c
, sm5usmueiwm

s
. ~21!

This choice of variables allows for any elliptical polarizatio
and relative global phase for each column. To simplify t
notation, we replaceucmu by cm andusmu by sm and, to avoid
any ambiguity, we make no use of the complexcm and sm
anymore. In real space,

^Smk&5 1
2 @Sm~q!eiqzk1Sm* ~q!e2 iqzk#5cmcos~qzk1wm

c !x̂

1smcos~qzk1wm
s !ŷ, ~22!

with zk5k1 1
2 dm3 , so thatwm

c,s are the global phases of th
different columnsm at thez50 level.

The function to minimize is thenF5FT1FJ , with

FT5T(
m

†2~cm
2 1sm

2 !1 1
4 „6~cm

4 1sm
4 !

14$21cos@2~wm
s 2wm

c !#%cm
2 sm

2
…‡ ~23!

and

FJ52(
m,n

@Jmn
c cmcn cos~wn

c2wm
c !

1Jmn
s smsn cos~wn

s2wm
s !#, ~24!

with couplings as previously defined.F is a function ofcm ,
sm , wm

c,s , andq that is, at first, numerically minimized. Th
reader should note that the permutation 1↔2 in the indices
leavesF unchanged, which reflects the equivalence of c
umns 1 and 2.

3. Helicity patterns

We numerically observe simple relationships between
phaseswm

c andwm
s . These in turn lead to a simplified expre

sion for the free-energy functional. ForG50, the cosine and
sine components are equivalent andsm5cm . By numerically
minimizing F we obtain

wm
s 2wm

c 56
p

2
, ~25!

so that the modulation appearing in the columns is circula
polarized, with a helicity given by the sign on the right-ha
side. This sign (sm56) may differ from onem value to
another. We denote (s1 ,s2 ,s3) the helicity configuration of
the three sublattices of columns. ForG50, the only allowed
helicity configuration is (111) @or equivalently (222)#.
Depending on the sign ofJ, the relative global phases o
each component from one column to another are 0 or6p.
For J.0, the columns adopt a ‘‘ferromagneticlike’’ arrang
ment

w1
c,s5w2

c,s5w3
c,s, ~26!

and for J,0, the triangular geometry imposes a coline
‘‘antiphase’’

w1
c,s5w2

c,s5w3
c,s6p. ~27!
e

l-

e

y

r

Instead of the ordinary ‘‘120° state’’ for an evenly frustrate
system, our system concentrates the frustration in the
bond, which has a lower coordination number than 1-3 a
2-3 bonds. In contrast to the results obtained atT50 in @9#,
where every column was forced to adopt the same amplit
and a deformed 120° state was achieved, we obtained he
fully colinear antiphase.

This fundamental difference arises from the freedom
the above model to adopt different amplitudes of modulat
for the different columns. This was not allowed in@9#. Using
the definitions

hc5
c3

c1
5

c3

c2
, hs5

s3

s1
5

s3

s2
, ~28!

we have presented on Fig. 3hc and hs as functions of the
temperature, forG50 and different values ofJ. Because
G50, we havehc5hs5h and the curves are identical fo
eachJ. This ratio has a well-defined value only below th
critical temperatureTc . It is to be noticed that for all case
presented,h is always larger than unity. ForJ,0, the be-
havior is even larger than forJ.0. As a consequence, th
displaced columns show a larger amplitude for the mo
lated phases.

For GÞ0, the rotational invariance is broken and we e
pect noncircularly polarized phases. Numerically, we s
find wm

s 2wm
c 56p/2 and, if uJu>uGu, a (111) configura-

tion is realized. IfuJu,uGu, we have a (112) configura-
tion, as previously found in@12# ~see Fig. 4!. The intercol-
umn relative phases are related to the sign ofJ1G for the
cosines and ofJ2G for the sines. ForJ1G.0,

w1
c5w2

c5w3
c , ~29!

while for J1G,0,

w1
c5w2

c5w3
c6p. ~30!

If G is replaced by2G, identical relations hold forwm
s .

These phase relationships divide theJ-G plane in four
quadrants, as seen in Fig. 4. This diagram possesses an a
mal character since these relative phases are the only
ables having an influence on the sign of each term ofF,

cos(12q) being always positive. However, it is important
stress that the phases~and the phase relationships! have a

FIG. 3. h(T) curves forG50 and different values ofJ. h(T) is
defined only forT below the critical temperatureTc , which de-
pends on theJ value.
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physical meaning only when their corresponding amplitu
are nonzero. From these partial results, we may rewriteF in
a simpler form

FT52T$2c1
21c3

212s1
21s3

21 1
4 @3~2c1

41c3
412s1

41s3
4!

12~2c1
2s1

21c3
2s3

2!#%, ~31!

FJ52~cosq1J2cos 2q!~2c1
21c3

212s1
21s3

2!23~J1G!c1
2

212uJ1Gu~cos1
2 q!c1c323~J2G!s1

2

212uJ2Gu~cos1
2 q!s1s3 . ~32!

The absolute values of some couplings reflects the heli
choice made in order to minimizeF. The positive signs of
the coefficients ofc1

2s1
2 andc3

2s3
2 favor competition between

c ands variables.

4. Phase boundaries at Tc

In this section we investigate the first order-disorder tr
sition to appear when lowering the temperature, that is,
highest temperature for which at least one order paramet
nonzero. This resulting critical temperature and the bound
between different phases should agree with the results fo
in Sec. III A. This is presented in order to express the c
sistency of the Landau theory and its numerical treatm
For each parameter set (T,J,G,J2), we minimizeF defined
with the expressions~31! and~32!; using Eqs.~23! and~24!
would be equivalent, but numerically inefficient. The critic
temperature is found by selectingT such that one ofc1 , c3 ,
s1 , or s3 is as small as possible, but nonzero. We have
covered the diagram of Fig. 2,Tc andqc being identical to
those found in Sec. III A. We also conclude that the tran
tions are always of second order, even with sixth-order te
in the expansion ofFT .

For qc50, that is, whenuJu or uGu is large enough, some
analytical results are easily obtainable. The matrix$HF% i j
5$]2F/]xi]xj%, wherex is a vector constructed from th
order parameters@x5(c1 ,c3 ,s1 ,s3)#, defines the local con
vexity of F. We diagonalizeHF to express this convexity
along some eigendirections:hF , the four eigenvalues ofHF ,
are the convexity coefficients. For each parameter
(T,J,G,J2), F is minimal for a particuliarx. For the alge-

FIG. 4. Helicity patterns and phase differences in theJ-G plane.
The first number~0 or 6p) is the differencew3

c2w1
c and the sec-

ond isw3
s2w1

s .
s

ty

-
e
is

ry
nd
-
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-

i-
s

et

braic form of the presentF, the sign of each convexity co
efficient atx50 indicates whether0 is a minimum or not:F
is minimal at 0 if every coefficient is positive, but one o
more negative coefficients means that0 is no longer a mini-
mum. A vanishing eigenvalue ofHF at x50 corresponds to
a second-order transition.

HF has two distinct, doubly degenerate eigenvalues gi
by

hF
c,s53@2T2~11J2!2~J6G!#

1A@2T2~11J2!23~J6G!#21144~J6G!2.

~33!

hF
c correspond toJ1G andhF

s to J2G. For a set (J,G,J2),
T is the critical temperatureTc when everyhF is positive at
x50, but at least one vanishes. The eigenvalues vanish a
temperatures

Tc
c,s5 1

2 ~11J2!1 3
8 ~J6G!1 3

8 uJ6GuA33. ~34!

We retain the solution that keepsTc positive for anyJ and
G. These expressions coincide with Eq.~15! if qc50. The
cosine or sine components order depending on which of
two temperaturesTc

c or Tc
s is maximum. We have a phas

boundary between the two types of order forTc
c5Tc

s . This
equality is equivalent to Eq.~17!. ForqcÞ0, the same analy-
sis leads easily to Eq.~15!.

For a smallqc , we expandTc
c,s in powers ofqc

2 . Theqc
4

coefficient is negative. The boundary betweenqc50 and
qcÞ0 phases occurs when theqc

2 coefficient vanishes. We
have the relation

uJ6Gu5
22

A33
~2J22 1

4 !, ~35!

which defines the boundaries on Fig. 2~the dashed lines!.

5. Thermal phase diagrams

Below the critical temperature and forJ and G exactly
lying on theuGu52g(J,J2)J curve, both thec ands com-
ponents order. For the sameG andJ2 but for a higherJ, the
c components order first, followed at lower temperature
the s components and conversely for a lowerJ. Conse-
quently, a concomitant ordering of both thec ands compo-
nents exists for a range ofJ. From the equivalence of the
m51 andm52 columns, we have observed thatc15c2 and
s15s2 . Conversely, because of their mutual hindrance,c1
,c3 ands1,s3 .

We show in Fig. 5 the thermal phase diagrams for co
stant values ofG and J2521. The symmetry ofF with
respect toG↔2G allows us to consider onlyG>0. Each
diagram has a high-temperature disordered phase~denoted
d) and at lower temperatures ordered phases sin and cos
qÞ0, these phases are denotedM sin andM cos. Just below
the uGu52g(J,J2)J curve is a mixed sin1cos phase tha
transforms continuously from sin to cos when approach
this region from large positive and negativeJ. For qÞ0, the
region sin1cos is an elliptical phase denotedE.
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For high values ofuJu or uGu, q remains zero belowTc , as
shown in Fig. 5~a!. For smalluGu and increasinguJu, steep
boundaries between modulated and nonmodulated phase
crossed@see Fig. 5~c!#: q vanishes continuously fromM cos
to cos and fromM sin to sin. Inversely, for smalluJu and
increasinguGu, a reentrant boundary is crossed: A modula
elliptical phase reappears with increasing temperatures@see
Fig. 5~b!#. For high values ofuJu, below the critical tempera
ture, the disordered variables (c in the sin phase ands in the
cos phase! order at lower temperatures, forming sin1cos
phases. ForG51 @Fig. 5~c!#, we see the beginning of thi
phase foruJu*2. The phase boundaries are parallel to the
and cos boundaries with the disordered phase. These
temperature phases are not shown on Figs. 5~a! and 5~b!, but
they occur respectively foruJu*6 and 8. Because helicity
configurations have meaning only whencm , sm , andq are
nonzero, that is, forE phases, the diagrams of Fig. 5 do n
show the richness of Fig. 4. For the choice of parameters
centralE phases in Fig. 5 are (112) phases. For smalle
values ofuGu, it is expected that a phase boundary betweeE
phases having (112) and (111) configurations would
be observable.

FIG. 5. Thermal phase diagrams for strong transverse coupl
~see the text!. For ~a! G54 there are no modulated phases. For~b!
G53 the modulated phases are reentrant. The dotted lines ind
the limit of validity of the fourth-order free-energy expansion, b
low which at least one order parameter is greater than 0.5.
insets schematically illustrate the orientations of the three molec
in a plaquette for sin and cos phases.
are

d

n
w-

he

Indeed, the quasi-one-dimensional regime, wh
uJ1u,uJ2u@uJu,uGu, is interesting because it is more realist
for HHTT, with E phases having different helicity pattern
We show in Fig. 6 thermal phase diagrams forG from 0.1 to
0.5. Both theE(111) andE(112) phases exist and ar
sometimes adjacent. On theJ interval presented in Fig. 6, al
the ordered phases are modulated. The temperature ‘‘de
of theM sin andM cos phases is approximately proportion
to uGu and independent ofJ.

Figure 7 illustrates schematically the positions and ori
tations of the molecules for different phases encountere
the diagrams of Fig. 6, in the case whereG.0. Some are
also present in Fig. 5. The length of the tails represent
amplitude of ordering. TheM sin phase@Fig. 7~a!# shows
modulated order with uniform orientations along the c
umns and where column 3 is in phase opposition. ForG
.0, the M cos phase@Fig. 7~b!# is a modulated ferromag
neticlike state. The maximum lengths of the tails shows t
column 3 is more ordered than columns 1 and 2. The co
sponding sin and cos phases are illustrated in Fig. 5~a!. Fig-
ure 7~c! and 7~d! represent the various elliptical phasesE
encountered from left to right in Fig. 6.

IV. MONTE CARLO SIMULATIONS

A. Method and algorithm

We use the Metropolis algorithm~see @21# for general
Monte Carlo methods! to simulate a three-dimensional lattic
of XY variables. Our goal is to obtain the essential featu
of the thermal phase diagram of the system~4!, restricting

gs

te

e
es

FIG. 6. Thermal phase diagrams in the quasi-one-dimensio
regime ~see the text!. For ~a! G50.5 the E(112) and
E(111) are separated. For~b! G50.3 and~c! G50.1 the dashed
lines denote first-order helicity reversal transitions.
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ourselves to the quasi-one-dimensional regime. The ab
method has been implemented in conjunction with the ‘‘s
raling’’ algorithm @22,23#, which simulates incommensura
helical phases by relaxing the constraint associated with
finite size of the lattice. Outside the critical regime, the
sults are in principle independent of the lattice size. T
method is applied on each column ofN XY variables
$f1 , . . . ,fN%. We simulate the neighbors off1 and f2
with phantomsites ~denoted by a prime! related to sites of
the opposite extremity of the column:

fN218 5fN212ND, fN8 5fN2ND. ~36!

For the sitesfN21 andfN , we use the phantom neighbor

f185f11ND, f285f21ND. ~37!

The reader will note that forD50 simple periodic boundary
conditions are recovered.D is an effective field representin
an additional indefinite length of a lattice modulated with
constant pitch. For the system to select its own bound
conditions, we considerD as a thermodynamic variable
Each Monte Carlo step of the spiraling algorithm consists
N ordinary trial flips of thef variables, plus a single trial flip
of D. We modify D by a small random angledD. In order
for the newD to be compatible with the above equations
twist must be imposed on the lattice:

f i←f i1~ i 21!dD. ~38!

The new state has a new total energy and is then tested
acceptance with the Metropolis algorithm. We may comp
the spiraling algorithm to a high-order mean-field appro
mation, where the exact clusters have the size of the fi
lattice used in the simulation. Close to a transition, when

FIG. 7. Schematic illustration of the orientations of molecu
and the amplitudes of mean values withG.0 for ~a! the M sin
phase with column 3 in phase opposition,~b! the M cos phase with
column 3 in phase conjunction,~c! the E(111)(p,p) phase,~d!
the E(112)(0,p) phase, and~e! the E(111)(0,0) phase.
ve
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correlation length is large relative to the cluster size, t
approximation loses some validity.

We simulated a 636 triangular lattice of columns, that is
12 groups of three columns. We used periodic boundary c
ditions in the plane and the spiraling algorithm in the c
umns’ direction. Each column has its ownD variable.

For two neighboring columns with nonplanar interactio
(J8 andG8), the spiraling algorithm introduces some sm
energy discrepancies. This problem arises from the n
equivalence of some of the couplings at the edges of
lattice. Due to the relatively small energy involved in th
boundary effect~especially for a quasi-one-dimensional sy
tem!, it was neglected.

We identify the different phases with the nonzero valu
of the Fourier coefficients of wave vectorq̃ of the x and y
components defined by

am
c ~ q̃!5

2

12N (
~ i , j !PRm

(
k

cosf i jkcosq̃zk , ~39a!

bm
c ~ q̃!5

2

12N (
~ i , j !PRm

(
k

cosf i jksinq̃zk , ~39b!

am
s ~ q̃!5

2

12N (
~ i , j !PRm

(
k

sinf i jkcosq̃zk , ~39c!

bm
s ~ q̃!5

2

12N (
~ i , j !PRm

(
k

sinf i jksinq̃zk , ~39d!

with zk5k1 1
2 dm3 . Rm represents the sublattice ofm col-

umns andN is the number of sites in each column. Usin
these coefficients, we construct the order parameters

cm~ q̃!5Aam
c ~ q̃!21bm

c ~ q̃!2, ~40a!

sm~ q̃!5Aam
s ~ q̃!21bm

s ~ q̃!2. ~40b!

The ^cm(q̃)& and ^sm(q̃)& profiles show a maximum atq̃
5q0 and may show secondary peaks. Indeed, it has b
shown@24# that a third harmonic atq353q0 should appear
for linearly polarized columns. In our simulations, this thi
harmonic should be an indication of such a linear polari
tion. For each wave vectorq̃, we also construct the cosine
and sines of the relative phases of the columns defined

cos~fm
s 2fm

c !~ q̃!5
am

s ~ q̃!am
c ~ q̃!1bm

s ~ q̃!bm
c ~ q̃!

sm~ q̃!cm~ q̃!
,

~41a!

sin~fm
s 2fm

c !~ q̃!5
bm

s ~ q̃!am
c ~ q̃!2am

s ~ q̃!bm
c ~ q̃!

sm~ q̃!cm~ q̃!
,

~41b!

cos~fm11
c 2fm

c !~ q̃!5
am11

c ~ q̃!am
c ~ q̃!1bm11

c ~ q̃!bm
c ~ q̃!

cm11~ q̃!cm~ q̃!
,

~41c!
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sin~fm11
c 2fm

c !~ q̃!5
bm11

c ~ q̃!am
c ~ q̃!2am11

c ~ q̃!bm
c ~ q̃!

cm11~ q̃!cm~ q̃!
,

~41d!

cos~fm11
s 2fm

s !~ q̃!5
am11

s ~ q̃!am
s ~ q̃!1bm11

s ~ q̃!bm
s ~ q̃!

sm11~ q̃!sm~ q̃!
,

~41e!

sin~fm11
s 2fm

s !~ q̃!5
bm11

s ~ q̃!am
s ~ q̃!2am11

s ~ q̃!bm
s ~ q̃!

sm11~ q̃!sm~ q̃!
.

~41f!

We comparê cos(fm
s 2fm

c )(q0)& to the mean-field expressio
cos(fm

s 2fm
c ) and so on for each mean value.

The amplitudes~40! converge relatively fast, but the an
gular phases~41! converge much more slowly: They are r
tios of fluctuating quantities. For some simulations, we
only interested in thêcm(q̃)& and ^sm(q̃)& values and we
have simulated only 2000 Monte Carlo steps per site~MCS/
S!, including 1000 MCS/S for thermalization.N, the number
of sites per column, was set to 40. However, many m
steps were needed to obtain the relative angular ph
~25 000 MCS/S, including 5000 MCS/S to thermalize!. In
these cases,N was taken to be 12. To improve numeric
efficiency, we discretized thef and D variables into 256
values from 0 to 2p.

All simulations are done withG50.1 and J2521, a
quasi-one-dimensional limit. We perform the simulations
gradually decreasing the temperature for each value oJ.
This allows a greater numerical stability for low-temperatu
phases and retains the helicity sign@(117) or (226)#
for all temperatures.

Preliminary simulations on a single plaquette of three c
umns were done to compare the spiraling algorithm w
periodic boundaries conditions in some reasonable com
ing time. ForN540, simulations using periodic boundarie
along columns give very similar results compared to simu
tions with the spiraling algorithm, except for smaller me
values~because of higher fluctuations! and slightly displaced
peaks. However, the difference is pronounced forN512,
where the spiraling algorithm broadens the principal pe
while periodic boundaries conditions destroy the whole sp
trum.

B. Thermal phase diagrams

Figure 8 shows a typical result for the temperature p
files ^c1(q̃)& and ^s1(q̃)&, from which the thermal phas
diagram is reconstructed: Notice that bothq0 and q3 peaks
appear at specific temperatures (q3 is folded in the@0,p#

interval!. The ^cm(q̃)& and ^sm(q̃)& profiles show that, for
J520.15 a decreasing temperature drives the system f
thed phase to theM sin phase and finally to theE phase. The
critical temperatures are arbitrarily taken to be the points
which the amplitude of the peak is half its maximum valu

The thermal phase diagram is constructed by repea
the simulations for manyJ values. Figure 9 shows
the diagram forG50.1 and J2521. We always obtain
e

e
es

y

l-
h
t-

-

k,
c-

-

m

t
.
g

^cos(fm
s 2fm

c )(q0)&'0 and^sin(fm
s 2fm

c )(q0)&'61, with signs
corresponding to the mean-field helicity configuration
(112) or (221) for uJu,0.1 and (111) or (222)
for uJu.0.1. Some longer simulations were done to estab
clearly the phase differences, atJ520.15,20.05, 0.05, and
0.15. For high enough amplitudesu^cm(q0)&u andu^sm(q0)&u,
all relative phases are compatible with the mean-field ca
lations and with the results just cited. Moreover, many sh
simulations where done on a single plaquette of three

FIG. 8. ~a! ^c1(q)& and ~b! ^s1(q)& temperature profiles forJ
520.15, G50.1, andJ2521. The arrows indicate the first an
third harmonics. Theq0 peaks appear atT'0.4 for c1 andT'0.9
for s1 .

FIG. 9. Thermal phase diagram forG50.1 andJ2521 from
Monte Carlo simulations. The continuous line is a guide to the
@see Fig. 6~c! for the mean-field diagram#.
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umns (N540) and, although no phase transition is observ
~the system is one dimensional!, the phase differences are
excellent agreement with Fig. 4.

Contrary to the mean-field results@Fig. 6~c!#, theE phases
with different helicity configurations were not found to b
adjacent: A linearly polarized phase opens up betw
the E(111) and E(112) phases. On the diagram
for a given value ofJ, a dot atT50 means that no phas
transition was clearly identified when lowering the tempe
ture.

V. DISCUSSION AND CONCLUSION

X-ray measurements on HHTT have lead to the obse
tion of a sequence of phases as temperature is lowered.
neighboring phases (Dhd and H) at intermediate tempera
tures have a columnar structure. Entering theH phase from
theDhd phase involves a mutual and concomitant ordering
both the position and orientation of the molecules along
columns. However, we may assert that the positions of
molecules, being submitted to more stringent intermolecu
forces, are rapidly frozen with decreasing temperature
compared to their orientations. This is the main justificat
for restricting the model studied in this paper to orien
tional degrees of freedom. The results obtained and in
ticular the general trend of the thermal phase diagram sh
help in understanding the behavior of HHTT inside theH
phase.

The first result of interest is the existence of linearly p
larized phases atTc with a finite wave numberqc in the
columnar direction,qc decreasing with increasing values
the intermolecular couplings and eventually vanishes.
similar disappearance of the amplitude modulation has b
predicted@9# at T50, where it then shows up as an unwin
ing of the helical pitch. AtTc , for large uJu and uGu, a
boundary at a constant slope of magnitudeuGu/J52A33 is
predicted between two linearly polarized phases. This beh
ior is reminiscent of the two boundary structures predicted
T50 between linearly polarized phases. AtT50, the con-
stant slopes of the boundaries are respectively23 and25
@9#.

The frustration between ordered columns of molecu
with an octupolar moment on a triangular lattice is high. P
of this frustration is relaxed by freezing the positions of t
molecules and displacing one of every three columns by
a lattice spacing in the columnar direction. However, ev
under these conditions, substantial orientational frustra
remains for negative values of the interaction parameteJ.
At T50, with only fixed amplitude phases, a noncolline
distorted 120° phase was obtained with global relative
entation between the columns, which depends only on
pitch of the helical modulation of the columns@9#. In the
present case, allowing for a different amplitude on the d
placed column compared to the undisplaced ones, the re
ing configuration is collinear and the relative orientatio
~e.g., f32f1) are independent of the pitch. This angul
configuration, typical of unfrustrated systems, is achiev
d
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only through a larger amplitude of modulation for the d
placed columns as compared to the undisplaced ones
shown in Fig. 3.

For values ofG moderate compared to the intracolumn
couplings~Fig. 6! both the helicity patterns (111) and
(112) are predicted. Also, it is to be noted that the te
perature range over which the linearly polarized and mo
lated phases exist narrows with decreasing values ofG. Un-
der these conditions, it is expected that the elliptical pha
rapidly appear on lowering the temperature belowTc . In this
temperature range and foruGu.uJu, an elliptical phase
(112) is predicted. Recall that the (112) phase is the
one observed@5# for HHTT in theH phase. We are then in
position to reiterate that HHTT is a quasi-one-dimensio
system where the molecular orientations are determined
the nonrotationally invariant interaction between octupo
moments located on a distorted triangular lattice.

The finite-temperature Monte Carlo simulations on fini
size systems has confirmed the mean-field results. The
important difference is that the (112) and (111) con-
figurations are not seen to be adjacent in Monte Carlo sim
lations, whereas they have a common boundary in the me
field approximation. The hard-spin constraintcmm

2 1smm
2 51

is automatically satisfied in the Monte Carlo simulations.
low temperature and in the intermediate regimeuJu'uGu, the
system is ambivalent between (1,1,1) and (1,1,2)
configurations. A modulated linear phase generally impl
greater fluctuations in the orientation of each molecule si
the mean valuêS& is periodically zero. Because the Mon
Carlo method implements fluctuations more realistically
supresses elliptical phases over a finite range ofJ down to
T50, in contrast to the mean-field approximation. This m
explain why so few columnar liquid crystal materials ha
helical phases.

Regarding theDhd→H transition in HHTT, this work
raises the question of the detailed nature of the observeH
phase near the transition: Is there a linearly polarizedH
phase’’? The presence of a linearly polarized modula
phase, or even a noncircularly polarizedH phase, would be
an indication of the chiral octupolar nature of the molecu
~the G coupling!. Such a linearly polarized phase would a
tomatically have a third harmonic in the modulation of t
columns@24#, leading to x-ray satellites. The most importa
result of this paper is the higher amplitude of modulati
predicted for the displaced columns compared to the un
placed columns. This behavior would affect the x-rays
sults through the Debye-Waller factors, i.e., the relative a
plitude ~larger amplitude equals smaller fluctuations! of the
different Bragg peaks.
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@1# S. Chandrasekhar,Liquids Crystals, 2nd ed.~Cambridge Uni-
versity Press, Cambridge, 1992!.

@2# P.-G. de Gennes and J. Prost,The Physics of Liquid Crystals,
2nd ed.~Oxford University Press, New York, 1993!.

@3# E. F. Gramsbergen, H. J. Hoving, W. H. de Jeu, K. Praef
and B. Kohne, Liq. Cryst.1, 397 ~1986!.

@4# G. Yan and T. C. Lubensky, J. Phys. II7, 1023~1997!.
@5# E. Fontes, P. A. Heiney, and W. H. de Jeu, Phys. Rev. Lett.61,

1202 ~1988!.
@6# E. Fontes, Ph.D. dissertation, University of Pennsylvania, 1

~unpublished!.
@7# S. Idziak, Ph.D. dissertation, University of Pennsylvania, 19

~unpublished!.
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