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Phase diagram of Onsager crosses

Ronald Blaak and Bela M. Mulder
FOM Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands

~Received 11 February 1998!

Onsager crosses are hard nonconvex bodies formed by rigidly connecting three elongated rods, equally thick
but not necessarily equally long, to form perpendicular crosses. We study the phase behavior of systems of
such particles, focusing on their ability to form spatially homogeneous orientationally ordered phases with a
symmetry lower than that of the standard uniaxial nematic. We treat these systems in the Onsager, second virial
coefficient, approximation. We apply bifurcation analysis to build up a global picture of the phase diagram,
which is then refined using approximate numerical calculations. Finally, we generalize the Gaussian approxi-
mation for the nematic orientational distribution function, to deal with the more ordered phases encountered
here, and compare with the results from the previous techniques to see whether it is feasible to reliably predict
the phase diagrams from a computationally cheaper technique.@S1063-651X~98!01211-2#

PACS number~s!: 61.30.Cz, 64.70.Md, 83.70.Jr
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I. INTRODUCTION

The generic liquid crystalline phase is nematic. It is
spatially homogeneous phase in which the orientations of
nonspherical component particles are distributed in an an
tropic fashion around a preferred axis yielding a phase w
uniaxial macroscopic optical anisotropy~symmetry group
D`h). Is it possible to have orientationally ordered, but sp
tially homogeneous phases with a symmetry other than
of the nematic phase? This is a question that has occu
both theorists and experimentalists since the early 19
The most likely candidate is thought to be the so-called
axial nematic phase, a phase with two mutually perpend
lar axes of symmetry~symmetry groupD2h). It is assumed
that this phase could be formed either by nonspherical
ticles with a rectangular box-like geometry~length greater
than width greater than depth! @1–6# or by an ~almost!
equimolar mixture of rod- and disklike particles@7–10#. De-
spite theoretical and computational evidence@11–13# for the
possibility of its existence, to date this phase still has
been demonstrated unambiguously experimentally@14–20#.

A few years ago Frenkel@21# argued that it is possible to
create a phase with cubic orientational anisotropy~symmetry
groupOh). To this end he suggested looking at highly no
convex hard particles obtained by gluing together hig
elongated rodlike particles to form a perpendicular cr
with arms of equal length~see Fig. 1!. In an approximate
calculation he was able to show that the stable high-den
phase of such a system indeed would have cubic orie
tional order, thus forming a phase that he called cubatic.
purpose here is to ‘‘give body’’ to these predictions and d
cuss the phase diagram of these crosslike particles in gre
detail, allowing also the lengths of the individual rods with
each particle to differ. Collectively we will denote this cla
of particles by the name Onsager crosses. This is approp
not only as a tribute to Onsager’s seminal contributions
the theory of lyotropic liquid crystals, but also because
will argue that Onsager crosses can in fact be reliably trea
within the Onsager second virial approximation@22#, at least
if the aspect ratio of the component rods is high enough

The choice to model these effects in hard particle syste
PRE 581063-651X/98/58~5!/5873~12!/$15.00
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is one of expediency rather than principle. Hard parti
models have the dual advantage of serving as reference
tems to which energetic interactions can be added pertu
tively as well as being directly applicable to lyotropic liqu
crystals formed by sterically stabilized colloidal suspensio
Moreover the theory of hard particles in the Onsager
proximation is formally identical to the mean field approa
usually applied to models for thermotropic liquid crystals.
a technical level these two approaches pose similar probl
and their analysis is virtually identical.

The rest of the paper is organized as follows. In Sec. II
introduce the Helmholtz free energy as a functional of
one-particle orientational distribution function and deri
some basic results from the symmetries of our model. In S
III we will analyze the behavior of our particles in thre
different ways. First we will use a bifurcation analysis th
gives a global idea of the phase diagram concerning the t
sition from an isotropic to an ordered phase. Second, we
to find numerical solutions that minimize the free energy a
by analyzing the distribution functions we obtain the sy
metry of the phases and find sequences of transitions. A
third method we solve the model within a Gaussian appro
mation, which means that we assume that the distribu
functions will be sharply peaked. In Sec. IV we will summ
rize and combine our results obtained by the different me
ods. We will discuss the validity of some of our assumptio
and give a few suggestions for further research. In the A
pendix we collect some technical background material on
construction of symmetry-adapted functions from the st
dard rotation matrices and prove some of their properties
are used in the main text.

II. FORMULATION OF THE MODEL

A. Free-energy functional

In order to study our system we will need an appropri
free-energy functional. Onsager showed that at least fo
fluid of very elongated rods, the excess free energy can
effectively be truncated at second virial coefficient lev
yielding a theory with the formal structure of a mean-fie
theory. Even in the cases where the truncation is nota priori
5873 © 1998 The American Physical Society
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5874 PRE 58RONALD BLAAK AND BELA M. MULDER
justified, this approximation still contains the essential ing
dients of the physics of such systems, viz., the competi
between orientational and translational entropy. Though
particles are no longer the elongated rods as in Onsag
original model, they do consist of three of these kind
objects. Together, they form a very open structure. T
means that the probability of multiple overlaps between t
particles in general will be very small. As a consequence
might expect that the rods act independently of each ot
which allows us to use reasoning similar to Onsager’s
truncate the free-energy expansion in virial coefficients a
the second virial coefficient. This leads to the free-ene
functional

b f @c#5E dV c~V!ln c~V!

1
1

2
rE dV1E dV2c~V1!c~V2!K~V1 ,V2!1b f̂ .

~1!

Heref is the free energy per particle, which is a functional
c the orientational distribution function~ODF!. This ODF is
a measure for the fraction of particles with an orientationV
in a fixed reference frame and is normalized to unity.b
5(kBT)21, the inverse temperature.

The first term of the free-energy functional is associa
with the orientational entropy of the system. The seco
term takes into account the interaction between the partic
described byK(V1 ,V2), the excluded volume of two par
ticles with given orientations. The last term is the ideal g
term and does not depend on the ODF.

In general we need three parameters to describe any
entation V. For this we make use of the Euler angl
(a,b,g) describing an arbitrary rotation in three
dimensional space.

A necessary condition for an equilibrium ODF of a sy
tem described by a free energy functional is that it satis
the stationarity condition

d

dc~V!
H f @c#2mE dV c~V!J 50, ~2!

where the second term, via the Lagrange multiplierm, takes
care of the normalization of the ODF. To ensure that
solution is stable we need to check whether it is a minim
of the free energy and, in the case of phase coexistenc
equate the chemical potentials and pressures of the diffe
phases.

B. Excluded volume

The main contribution to the excluded volume of tw
elongated rods with lengthsL1 andL2 and diametersD1 and
D2 is given by

vexcl5L1L2~D11D2!usingu, ~3!

whereg is the angle between the long axis of the particl
We assume that the excluded volume of two crosses ca
approximated by the sum of pairwise overlaps of the ro
which form the crosses. This assumption is based on the
-
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that the probability for multiple overlaps between tw
crosses will be small compared to that of a single overlap.
a consequence of this assumption, one is not able to ma
distinction between crosses in which the rods are conne
at different locations, e.g., at the ends of the rods.

If we denote the lengths of the three rods pointing resp
tively in thex, y, andz directions of a particle fixed frame b
L1 , L2 , andL3 and take equal diametersD for all rods, we
obtain for the leading term in the excluded volume of tw
crosslike particles labeled with superscripts~1! and ~2!

vcross5(
i , j

2Li
~1!L j

~2!Dusing i j u52L2D(
i , j

l i
~1!l j

~2!using i j u,

~4!

where l i5Li /L and the sum of the lengths of the rods
given byL5L11L21L3 . g i j denotes the angle between th
i th rod of particle 1 and thej th rod of particle 2. It is con-
venient to express the densityr in terms of the second viria
coefficient, which is half of the mean excluded volume in t
isotropic phase and, using^usingij u&I5p/4 , this results in

B25
1

2
^vcross& I5

p

4
L2D. ~5!

We now introduce a reduced densityh[B2r. Since the ex-
cluded volume interaction between two particles depe
only on their mutual orientationV125V2

21V1 , we define
the reduced excluded volume interaction by

E~V12![
K~V1 ,V2!

B2
5

8

p(
i , j

l i
~1!l j

~2!using i j u. ~6!

In general, any function ofV can be expanded in th
rotation matrix elementsDm,n

l (V). ~Throughout the rest of
this article we will use the conventions for these functions
can be found in@23#.! However, in this case it is convenien
to exploit the extra symmetries in our problem in order
obtain a smaller subset of symmetry adapted functions.
particles, and therefore their interactions as well, are inv
ant under rotations over an anglep about any of the three
axes in the particle fixed frame. Together with the identi

FIG. 1. Onsager cross forL/D510.
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PRE 58 5875PHASE DIAGRAM OF ONSAGER CROSSES
these three rotations form the group D2
5$1,Rx(p),Ry(p),Rz(p)%. We now introduce the symme
try adapted functions

Dm,n
l ~V![

1

AN
(

g,g8PD2

Dm,n
l ~g8Vg21!. ~7!

The normalization constantN is chosen in order to achiev
the orthogonality relation

E Dm,n
l ~V!Dm8,n8

l 8 ~V!dV5
8p2

2l 11
d l ,l 8dm,m8dn,n8 . ~8!

If we work out the definition for these functions, we find th
both indicesm andn have to be even and the functions a
real and are of the form

Dm,n
l 5S 1

A2
D 21dm,01dn,0

$Dm,n
l 1~2 ! lDm,2n

l 1~2 ! lD2m,n
l

1D2m,2n
l %. ~9!

Both m andn are chosen to be non-negative. In the case
odd values forl , both indices need to be positive in order
maintain a nonzero function, as can be seen directly fo
this definition@24#.

To give an impression what these functions look like,
list here the four that havel 52, discussed by Straley@3#:

D0,0
2 ~V!5

1

2
~3 cos2b21!,

D0,2
2 ~V!5

1

2
A3 sin2b cos 2g,

~10!

D2,0
2 ~V!5

1

2
A3 sin2b cos 2a,

D2,2
2 ~V!5

1

2
~11cos2 b!cos 2a cos 2g2cosb sin 2a sin 2g.

We are now able to expand the excluded volume interac
~6! in these symmetry adaptedD functions

E~V!5 (
l ,m,n

2l 11

8p2
El ,m,nDm,n

l ~V!, ~11!

where the coefficientsEl ,m,n are formally given by

El ,m,n5E dVE~V!Dm,n
l ~V! ~12!

and are symmetric inm and n (El ,m,n5El ,n,m) because the
interaction is invariant under interchanging the particles.
order to calculate these coefficientsEl ,m,n we need to evalu-
ate integrals of the type

E dVusinu i j uDm,n
l ~V!5E dVuêi

~1!3êj
~2!uDm,n

l ~V!,

~13!
f

m

n

n

where êi
(k) is the unit vector pointing along the rodl i of

particlek. This can be achieved by introducing the rotatio
qi about the axes of the particle fixed frame

q15Ry~p/2!,

q25Rx~2p/2!, ~14!

q351

and using them as coordinate transformations in orde
redirect the rodsl i

(1) and l j
(2) along thez axis, which enables

us to obtain a more convenient form for the integrals~13!

E dVuqi êz
~1!3qj êz

~2!uDm,n
l ~V!

5E dVuêz
~1!3êz

~2!uDm,n
l ~qj

21Vqi !

5 (
m8,n8

E dVusinbuDm,m8
l

~qj
21!Dm8,n8

l
~V!Dn8,n

l
~qi !

5 (
m8,n8

Dm,m8
l

~qj
21!Dn8,n

l
~qi !E dVusinbuDm8,n8

l
~V!.

~15!

After performing the coordinate transformation in the fir
line we used the properties~A3! and~A4! of theD functions,
which state that they form a closed set under the symm
operations of the cubic groupO.

The integral in the last line of Eq.~15! can be calculated
exactly and is nonzero only form85n850 and even values
of l ~see@25# Eq. 7.132.1!

m2l5E
0

2p

daE
0

2p

dgE
0

p

db sinbusinbuD0,0
2l ~a,b,g!

5~2p!2E
0

p

db sin2bP2l~cosb!

52
2p3

~ l 11!~2l 21!24l S 2l

l D 2

, m2l 1150. ~16!

Using the property of theD functions for the inverse rotation
~A2!, this gives us the final result for the coefficientsEl ,m,n ,

El ,m,n5
8

p
m l(

i , j
l i l jD0,m

l ~qj !D0,n
l ~qi !. ~17!

In Table I the values of the most importantD0,n
l (qi) are

listed.
It is convenient to introduce some shorthand notat

analogous to that in@26#. We define the inner product fo
real functionsf andg of V,

^ f ug&[E f ~V!g~V!dV. ~18!
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5876 PRE 58RONALD BLAAK AND BELA M. MULDER
We can also define a functional in this space of real functi
by

f @g#~V!5E dV8 f ~V821V!g~V8!. ~19!

If we apply this last definition toE and use the fact that i
depends only on relative orientations, we obtain

^ f uE @g#&5E dV1E dV2E~V2
21V1! f ~V1!g~V2!

5^E @ f #ug&. ~20!

With this notation we can write the free-energy function
~1! in a more compact form as

b f @c#5^cu ln c&1
1

2
h^cuE @c#&1b f̂ . ~21!

In order to understand the behavior of the excluded volu
as a functional, we apply Eq.~11! to aD function. If we now
use Eq.~A7! we immediately obtain

E@Dm,n
l #5(

p
El ,n,pDm,p

l . ~22!

This means that the total spaceSV of the Dm,n
l is decom-

posed into invariant subspacesSm
l by the excluded volume

interaction. Moreover, Eq.~22! shows that for fixedl the
action ofE is represented by the same matrix (El)n,p , in all
the subspacesSm

l for m50,2, . . . ,l .

III. ANALYSIS OF THE PROBLEM

We now return to the stationarity equation~2!. With our
notation we can perform the functional derivative explici
and write it compactly as

ln c1hE @c#2bm50, ~23!

where the ODFc satisfies the normalization̂1uc&51. Any
solution that minimizes the free energy must be a solution
this equation. We assume that the ODF possesses the
symmetryD2 as that of our particles and hence can be
panded in theD functions

c~V!5 (
l ,m,n

2l 11

8p2
c l ,m,nDm,n

l ~V!, ~24!

TABLE I. The most important values ofD0,n
l as a function of

the three different rotationsqi .

D0n
l q1 q2 q3

D0,0
2 2

1
2 2

1
2 1

D0,2
2 1

2A3 2
1
2A3 0

D0,0
4 3

8
3
8 1

D0,2
4 2

1
4A5 1

4A5 0

D0,4
4 1

8A35 1
8A35 0
s

l

e

f
me
-

with some constant coefficientsc l ,m,n . Intuitively, this
seems justified since a homogeneous phase with symm
that is a subgroup of the symmetry group of the constitu
particles seems implausible. To our knowledge, however
rigorous proof exists for this statement. Moreover, the sy
metry of the phase need not be contained in that of the
ticles: cut spheres, for instance, have uniaxial symme
(D`h) but can form a cubatic phase@27#.

We are going to use three different methods to study
behavior of our system. First, we will use a bifurcatio
analysis to study the possible transitions of the isotro
phase to orientationally ordered phases. This is a fast me
that gives a global description of the phase behavior and
us some of the symmetries of the phases we might exp
However, the method has its limitations: It is possible
obtain several phases with different symmetries and
method does not tell us which is the thermodynamically m
stable phase. Moreover, it disregards the possibility o
strong first-order transition to a phase that does not bifurc
from the isotropic phase.

The second method we will use is minimizing the fre
energy functional by solving the stationarity condition~23!
numerically. Due to the finite set of functions in which th
ODF is expanded, we can only hope to do so properly if
ODF is a not too strongly peaked function. Thus the resu
are useful only for low densities when the phases are pr
ably not yet strongly ordered. For higher densities, the
sults, though they might be an indication, are not reliable
predicting the densities for phase transitions. For these d
sities we will use a third method, which uses the so-cal
Gaussian approximation. We will assume that for high
densities the ODF becomes strongly peaked and can be
proximated by a combination of Gaussians.

A. Bifurcation analysis

We used a bifurcation analysis to obtain an upper limith0
for the density at which the isotropic phasec051/8p2 be-
comes unstable with respect to orientational ordering. T
analysis also yields the possible symmetry breaking mod
allowing a coarse picture of the phase diagram to be bu
For a more detailed description we refer to Ref.@28#; here we
will only indicate the main results.

We use the expansions

c5c01«c11«2c21¯,
~25!

h5h01«h11«2h21¯

and the stationarity equation~23! to obtain the set of bifur-
cation equations of which the first is given by

c1

c0
1h0E @c1#50. ~26!

Due to the special form~17!, this eigenvalue problem can b
solved completely. For each subspaceSm

l there is only one
nonzero eigenvaluel l and corresponding eigenfunctionxm

l .
The bifurcation density is given byh052 1/c0l l , where

l l is the negative eigenvalue with the largest absolute va
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A linear combination of corresponding eigenfunctions
used to obtain the unstable mode from the second-orde
furcation equation.

The resulting qualitative phase diagram is shown in F
2. Our phase diagram has a triangular form and is that pa
the planel 11 l 21 l 351 for which l 1 ,l 2 ,l 3>0, in which each
point describes a specific particle. For instance, at the to
the triangle we havel 351 andl 15 l 250. This points there-
fore represents the particle formed by a single rod. On
other hand, the base of the triangle is a line for whichl 3
50 and represents, except for the edges, particles effecti
consisting of only two rods of nonzero length. All poin
inside the triangle correspond to particles with three ro
For simplicity, we have drawn only constant density plan
of the phase diagram.

The two relevant eigenvaluesl2 andl4 , which have the
same value on the circle, form the boundary between the
outside, wherel2 dominates, and inside, wherel4 domi-
nates the bifurcation.l2 leads to a single unstable mode f
the isotropic phase with a uniaxial symmetry, generica
denoted byN, corresponding to a nematic phase. Inside
circle there are two unstable modes, of which one ha
nematic symmetry while the other has a cubatic symme
which we denote byO @29#.

The six straight lines connecting the edges of the trian
with the circle correspond to particles for which one of thel i
equals 1/3. They form the boundaries between the area
the two nematic phases, which we denote byN1 and N2 .
They differ in the sense that, in the first case, the longest r
tend to align and, in the other case, the shortest rods a
On the lines the first-order term in the density expans
h150. This leads to a trivial second-order bifurcation equ
tion and we need to solve the bifurcation equation up to
fourth order to obtain the form of the unstable mode, wh
turns out to be identical to the one found for theN1 region.

FIG. 2. Phase diagram of the phase transition at lowest den
according to the bifurcation analysis.N1 and N2 correspond to a
rodlike and a disklike nematic phase, respectively, whileO is used
to denote the cubatic phase. The lines form the boundary betw
areas of rodlike and disklike behavior. Points on the dashed
have h250; outside and insideh2 has a negative and positiv
value, respectively.
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Sinceh1Þ0, the transition in general will be first orde
Only on the lines whereh150 could a continuous transition
be expected. For that reason, for particles outside the cir
we plotted the curve~dashed line! for which the second term
h2 in the density expansion is zero. Outside this curveh2 is
positive andh3 turns out to be the first negative term. So
possible at all, a continuous transition will occur near t
point where the lines and the boundary of the triangle me

B. Numerical calculations

1. Theory

We have seen that the bifurcation analysis gives us
idea of what might happen for the first phase transition
shows possible symmetries of the phases and for which k
of particle we might expect them and also gives an up
limit to the transition densities. What it does not tell
whether the predicted transitions are real and, if they are
which densities they occur. In this section we deal with t
problem.

Density functional theory tells us that if we have foun
the ODF that gives the minimal free energy~1!, it coincides
with the equilibrium ODF and is the stable state of the s
tem. Thus, what we ought to do is construct a trial functi
that is characterized by a number of parameters and de
mine the parameter values that minimize the free ene
Since the ODF is a probability distribution function, it
positive; hence we take the ansatz

c~V!5expS (
l ,m,n

c l ,m,nxm,n
l ~V! D , ~27!

where we have expanded the ODF in the complete se
orthogonal eigenfunctions of the excluded volume inter
tion. Thec l ,m,n can be seen as parameters of the functionc.
We assign them starting values for fixed density and ca
late the free energy. At this point we employ an iterati
process to optimize the coefficients to minimize the free
ergy. The normalization is maintained by adjustingc0,0,0.

Instead of minimizing the free energy, however, we try
find solutions of the stationarity condition~23! and check
afterward if it corresponds to a minimum for the free energ
If we use our trial function, we obtain

(
l ,m,n

c l ,m,nxm,n
l ~V!1hE @c#5bm. ~28!

If we now multiply this equation withxm,n
l , integrate over

V, and use Eq.~20! and the orthogonality of the eigenfunc
tions, we obtain a set of equations

8p2

2l 11
c l ,m,n52h^xm,n

l uE @c#&52h^cuE @xm,n
l #&.

~29!

From this result we can conclude immediately that we o
have to use those eigenfunctionsxm

l of the excluded volume
that have a nonzero eigenvalue. Hence we can rewrite
trial function ~27! as

ity

en
e
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5878 PRE 58RONALD BLAAK AND BELA M. MULDER
c~V!5expS (
l ,m

c l ,mxm
l ~V! D , ~30!

where the coefficientsc l ,m have to satisfy

c l ,m52
2l 11

8p2
hl l^xm

l uc& ~31!

for even values ofl andm where 0<m< l and the coefficient
c0,0 is determined by the normalization condition^1uc&
51. From these equations the coefficients can, in princi
be calculated self-consistently.

Next we identify each phase by means of a set of ori
tational order parameters, for which we will take the^Dm,n

l &.
If there are nonzerôDm,n

2 &, we first rotate our solution for
the ODF in such a way that^D0,0

2 & has the absolute maxima
value. This is done by rotating the reference frame as we
the initial orientation of the particle.

For the nematic phase, we could now take, for instan
the usual second-order Legendre polynomial as an order
rameter

N5^D0,0
2 uc&. ~32!

The problem, however, is that a nonzero nematic order
rameter does not tell us whether we actually have a nem
phase because it will also be nonzero for a biaxial pha
Thus instead of determining whether a certain order par
eter is nonzero, it is more useful to look for order paramet
that are zero, which tell us which symmetry is not presen
the system.

For the isotropic phase, we know that the ODF is a c
stant. This implies that all order parameters vanish
equivalently, that if there is a nonzero order parameter,
not an isotropic phase.

For the nematic phase, theD4 phase and theD2 phase
there is at least one of the rods of the particles that tend
align and hencêD0,0

2 &Þ0. However, for the cubatic phase
the ODF should be invariant under rotations overp/2 around
any of the three frame axes, which means that there ca
be any terms present withl 52. Hence, if we find that
^Dm,n

2 &50, and there are also nonzero order parameters
l 54, we have a cubatic phase.

If we find that ^Dm,n
l &}d0,m , we have a solution that is

invariant under rotations around thez axis and hence a nem
atic phase. Furthermore, if we determine which rod
aligned best with the nematic direction, we know whether
have a rodlike or plateletlike nematic phase.

Finally, if ^D2,2
2 &Þ0, the ODF is not invariant under rota

tions overp/2 around thez axis, and the phase cannot b
D4 ; thus it has to be theD2 phase. This leaves for theD4

phase that̂D2,2
2 &50. In this case we can again determine t

rod aligned best with thez axes and distinguish betweenD41

andD42 .
We have summarized these results in Table II, where

show which order parameters should be zero for each ph
We have chosen to use^D2,2

2 & and ^D4,4
4 &, but these choices

are arbitrary as long as they possess the right symmetry
Given a solution of the stationarity Eq.~28!, we can cal-

culate the free energy. As can be seen in Eq.~1!, this in-
e,
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e,
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s
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e
se.

volves a six-dimensional integral, but this can be avoid
Since the ODF satisfies Eq.~28!, an equation inV, and the
right-hand side is a constant, which equalsc0,012h, we can
write the free energy as

b f 5
1

2
^cu ln c&1

1

2
c0,01h1b f̂ . ~33!

After having checked whether the solution is indeed
minimum of the free energy, the pressure and chemical
tential can easily be calculated by

bP5r1r2B2~c!5
h

^B2& I
S 11

1

2
h^cuE @c#& D ~34!

and

bG

N
5b f 1

bP

r
511c0,012h1b f̂ , ~35!

where the last term is given byb f̂ 5 ln h1const. If now for
different densities we find equal pressure and chemical
tential, we have coexistence of different phases.

2. Numerical results

We solve the set of self-consistency equations that
derived in the preceding subsection, where we only use
functions withl 52 andl 54. By using several starting val
ues we obtain, by means of an iterative process, differ
numerically stable solutions. Given a stable solution, we
calculate the free energy and check that it is a minimum

By taking more terms into account, the coefficien
change as well as the densities for which the transitions
curs. However, since we are interested only in a qualita
picture, this is of no real importance because the symm
of the obtained phase remains the same. We used Eq.~33! to
calculate the free energy and in that way avoid the s
dimensional integral. However, since we truncated the
pansion of the ODF atl 54, this means that we also trunca
the free energy. If we find solutions of the ODF with diffe
ent symmetries, we use this approximated value for the
energy to determine the most stable phase. So we end
only with an estimate for the density at which the pha

TABLE II. For each of the isotropic, nematic, cubaticD4 , and
D2 phases, it is indicated whether the four chosen order parame
are zero or nonzero. The order parameter are determined by e
ating their average weighted by the ODFc. For the nematic,D4 ,
andD2 phases there is one preferred direction for the particles
the case of the nematic phase the order is rotationally symm
about that direction, while in the case of theD4 or D2 phase this
symmetry is broken and the rotational symmetry is discrete an
four-fold or two-fold.

Phase D0,0
2 D2,2

2 D0,0
4 D4,4

4

Isotropic 0 0 0 0
Nematic nonzero 0 nonzero 0
Cubatic 0 0 nonzero nonzero
D4 nonzero 0 nonzero nonzero
D2 nonzero nonzero nonzero nonzero
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FIG. 3. ~Color! Three constant
density planes of the phase dia
gram. Diagrams on the left corre
spond to the minimization
method, while those on the righ
to the Gaussian approximation
The lines correspond to the resul
obtained from the bifurcation
theory. The scaled densitie
shown are, from top to bottom
h/h050.9, 1.0, and 1.5. There ar
seven different phases: nemat
(N6), cubatic (O), biaxial (D2),
and D4 (D46) phases. The sub
script1 refers to a rodlike behav-
ior and the subscript2 to a disk-
like behavior.
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transition will take place, though the right phase is det
mined.

In Fig. 3, three cross sections of the phase diagram
depicted. They are drawn for rescaled densitiesh/h050.9,
1.0, and 1.5. This scaling is used in order to compare
behavior of all particles around their densities of intere
This means, however, that due to the scaling the real den
in the middle is almost 14 times as high as at the vertice
the triangle. Analogously to the distinction we made betwe
a rodlike nematicN1 and plateletlike nematic phaseN2 , we
do the same for theD4 phase.
-

re

e
t.
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n

The lines represent the boundaries that we obtained f
our bifurcation analysis and we see that they give a reas
able estimate of the real behavior. Around the points whe
straight line meets an edge, we still find an isotropic phas
90% of the bifurcation density. Though those regions b
come smaller when we approach the bifurcation density
remains quite stable and it is possible that for a very sm
region there is a continuous transition. Due to the appro
mation of taking only functions withl<4 into account, we
cannot tell if it is. As far as we know, all other transitions a
first order.
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As expected, the nematic phase is found mainly outs
the circle. However, there is a part of the rodlike nema
phase that extends into the circle and also in the reg
where we expected a plateletlike behavior. Apparently
longest rod has a large influence on the system. TheN2

phase is found only in small regions and since a platelet
very crude approximation for these particles, it is not surp
ing that it remains unstable at high densities. It disappear
h'1.3h0 by going to the phaseD42 where there is a dis
crete orientational symmetry around thez axis.

Inside the circle, we could expect the nematic, the cuba
and theD4 phases. The cubatic phase is found in the mid
for all particles that resemble the particle with three eq
rods. It is surrounded by theD4 phase.

If we increase the density, theD2 phase appears along th
boundaries between the phases for which the longes
shortest rod is ordered. It starts at a density ofh'1.2h0 ,
around the points where bothD4 phases and theN1 phase
meet each other, which is near the points where the stra
lines and circle from the bifurcation analysis touch.

For very high densities, all particles with three rods
different length, end up in theD2 phase in which rods with
the same length are aligned. The particles for which two r
have the same length cannot go beyond theD4 phase and
they lay on the symmetry lines. The domains of the nem
and cubatic phase are merely points at the vertices and in
middle of the triangle.

C. Gaussian approximation

1. Nematic phase

We can obtain an approximate solution of the Onsa
model describing the isotropic-nematic phase transition
long thin rods if we use the assumption that in the orde
phase the rods have a strongly peaked distribution around
z axis, which can be approximated by a Gaussian distri
tion. The same approximation can be used for the isotro
cubatic transition for the symmetrical particle with three ro
~see Ref.@21#!.

It is possible to extend this approximation to our syst
for all phases. First we write the free energy

b f 5b f̂ 1s~a!1hr~a!, ~36!

where the first term is from the ideal noninteracting syste
which is given byb f̂ 5 ln h1const. The second part of th
free energy describes the orientational entropy and is g
by

s~a!5E dV c~V!ln@8p2c~V!#. ~37!

The last term in the free energy is related to the translatio
entropy

r~a!5
4

pE dVE dV8c~V!c~V8!(
i , j

l i l j using i , j u.

~38!

In the isotropic phase, the ODF is a constant,c(V)
51/8p2, which gives the exact results
e
c
s

e

a
-
at

c,
e
l

or

ht

f

s

ic
he

r
r
d
he
-

c-
s

,

n

al

b f I5 lnh1h,

bPI5~h1h2!/^B2& I , ~39!

bm I5 ln h12h11.

For a nematic phase whereV is the direction of the ordering
axis of particle, the factor 8p2 reduces to 4p. The trial
function in the original Onsager model is given by

c~V!5
a

4p sinha
cosh~a cosu!. ~40!

For large values ofa this is a sharply peaked distributio
with its main contribution aroundu'0 andu'p, which we
can approximate by Gaussians:

c~V!5
a

4p
expS 2

1

2
au2D S 0<u<

p

2 D ,

~41!

c~V!5
a

4p
expF2

1

2
a~u2p!2G S p

2
<u<p D .

The orientational part of the entropy can easily be calcula
in this approximations(a)5 ln(a)21. The translational par
has three different type of contributions. The first is given
the interaction of the ordering rods which we label byl 3 ,
and it is the longest one in case of a rodlike nematic ph
and the shortest one in case of a plateletlike nematic ph

r3,3~a!'
4l 3

2

Apa
. ~42!

This term is important for rodlike particles, while fo
plateletlike particles it is negligible. The second type is t
interaction between onel 3 rod along the nematic axis an
one that is perpendicular to it, for instance,l 1 :

r1,3~a!'
4l 1l 3

p
. ~43!

The last type consists of the interaction between two rod
the plane perpendicular to the nematic axis. Its main imp
tance is for plateletlike particles. This contribution, howev
is not properly described by the first term of the expansio
we use the Gaussian approximation, which is due to the
that a typical value fora in this region is 12, too small for a
qualitatively valid Gaussian approximation. For that reas
we use the original Onsager trial function to obtain a fit
this contribution, which we will denote byJ(a):

r1,1~a!'
4l 1

2

p
J~a!

5
4l 1

2

p S 0.6391
1.45

a
2

12.3

a2
1

75.0

a3
2

178

a4 D .

~44!

The total orientational entropy can now be written as
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r~a!5
4l 3

2

Apa
1

8

p
l 3~12 l 3!1

4

p
~12 l 3!2J~a! ~45!

and depends only on the length of the ordering rod. Since
proper value fora should minimize the free energy we di
ferentiate the expression with respect toa and equate it to
zero:

db f

da
5

1

a
2hS 2l 3

2

aAap
2

4

p
~12 l 3!2J8~a!D 50. ~46!

Solving this equation results in the values of the pressure
chemical potential of the nematic phase for any density.

2. Cubatic phase

In order to describe the cubatic phase by a Gaussian
tribution we switch over to thex,y,z convention of Eulerian
axes. In this convention, the general rotation is given
three subsequent rotations around three perpendicular a

D~V!5e2ıfJxe2ıuJye2ıcJz. ~47!

Thus, for the cubatic phase, we can use as a Gaussian
distribution

c~V!5
1

24S a

2p D 3/2

expS 2
a

2
~f21u21c2! D . ~48!

There are 24 such contributions corresponding to 24 poss
orientations for the particle to align with the three axes of
system. The orientational part is again easy to calculate
is given by

s~a!5 lnS 8p2

24 D1
3

2
lnS a

2p D2
3

2
. ~49!

For the translational contribution to the free energy we h
to add for all possible orientations the excluded volumes
the aligned and perpendicular pairs of rods, which gives

r~a!5
4

3Apa
1

8

3p
. ~50!

If we now minimize the expression for the free energy w
respect to the parameter of the Gaussiana, we obtain

a5
16h2

81p
. ~51!

This gives us the free energy and hence the pressure
chemical potential of the cubatic phase in this approximat

b f O54 lnh1 lnFp2

3 S 2A2

9p D 3G1
3

2
1

8h

3p
,

bPO5S 4h1
8

3p
h2D Y ^B2& I , ~52!

bmO54 lnh1 lnFp2

3 S 2A2

9p D 3G1
11

2
1

16h

3p
.
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If we combine these with the results for the isotropic pha
~39!, we obtain the coexisting densitiesh I and hO for the
isotropic and cubatic phases, and thea parameter, describing
the ordering strength of the cubatic phase at coexistence

h I548.43, hO550.80, a5162.3. ~53!

This large value ofa justifies the Gaussian approximation

3. The D4 and D2 phases

In the case of aD4 phase, there is one four-fold degene
ate axis, which we take to be parallel to thez axis. Our trial
function has now two parametersa andb. a describes the
strength of ordering with respect to thez axis andb de-
scribes the strength of ordering with respect to thex and y
axes, which are equivalent in this phase. The trial funct
has eight contributions of the form

c~V!5
1

8S a2b

8p3D 1/2

expS 2
1

2
~af21a2u1b2c2! D .

~54!

Again, we find a simple equation fors:

s~a,b!5 lnS 8p2

8 D1
1

2
lnS a2b

8p3D 2
3

2
. ~55!

For r, however, we get an expression containing an ellipti
integral of the second kind

r~a,b!5
4l 3

2

Apa
1

4~12 l 3!2

Ap3b
E~A12b/a!

1
2

p
~12 l 3!~113l 3!. ~56!

We minimize the free energy with respect toa andb. For
l 3.1/3, this results ina.b, which suggests a stronger o
dering along thez direction, while forl 3,1/3 the opposite,
b.a, is found. Therefore, there is a stronger ordering alo
the x andy axes.

The treatment of theD2 phase is similar to that of theD4
phase, except that there are now only four possible orie
tions of the particle and we need three parameters in our
function:

c~V!5
1

4S abg

8p3 D 1/2

expS 2
1

2
~af21b2u1g2c2! D .

~57!

There is a simple equation fors, depending now on three
parameters

s~a,b,g!5 lnS 8p2

4 D1
1

2
lnS abg

8p3 D 2
3

2
, ~58!

and an expression forr, which is somewhat more complex
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r~a,b,g!5
8

p3/2F l 3
2

Ab
E~A12b/a!

1
l 2
2

Ag
E~A12g/a!1

l 1
2

Ag
E~A12g/b!G

1
4

p
~12r 2!. ~59!

4. Results

If we combine the Gaussian approximations of the diff
ent phases we can calculate the coexistence by equating
sure and chemical potential. In Fig. 3 the phase diagram
several reduced densityh/h0 are depicted. In case the ove
all density, within our model, is not thermodynamical
stable and hence leads to a phase separation, we have co
it to correspond to the most ordered phase.

At the density h/h051 we have shown the isotropi
phase to be unstable, but there are still isotropic areas.
artifact is a consequence of our model: The assumption
strongly peaked distributions is not valid here. Furthermo
we find that the boundaries between the cubatic andD4
phases are straight lines. This seems somewhat surprisin
is merely a consequence of losing particle information in
approximation. This can be seen from the expression for
free energy, which depends only on the length of one r
corresponding to the main axis of the particle. The only d
ference for these particles is due to a different scaling
causeh0 also depends on the same rod length, but this ef
is too small to be visible here. Some areas are very tiny
cannot be seen in the diagram at all. For instance, betw
the cubatic andD4 phases of both types there is a narro
strip of particles that have at this density coexistence
tween the cubatic andD2 phases.

It is not observed and intuitively also not expected th
there are particles that go from rodlike to plateletlike beh
ior, for instance, via a transition from theN2 to a D41

phase. Also, a phase transition from a cubatic phase
nematic phase, and thus to a phase with higher symmetr
not found. All data confirmed that phase transitions in t
model can only go to lower symmetries, i.e., a transit
from the isotropic phase to either a nematic or a cub
phase, followed by a transition to theD4 and finally theD2
phase, although one or more phases can, in principle
surpassed.

In Fig. 4 we have plotted a cross section of the ph
diagram along the symmetry linel 15 l 2 , where we multi-
plied the density withB2 , the isotropic second virial coeffi
cient. Since these particles are four-fold symmetric arou
the l 3 rod, they cannot go beyond theD4 phase in which they
all will end up with only two exceptions, the cubatic partic
and the single rod particle. As was explained before, theN2

phase is very unstable and is found only in a very sm
region and will for somewhat higher densities already form
D4 phase. TheN1 phase is much more stable. The isotrop
cubatic phase transition takes place at a density that is alm
14 times as high as the isotropic-nematic phase transition
the single rod.
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IV. CONCLUSIONS

We have shown that the phase behavior of crosslike p
ticles is surprisingly rich. Within a single phase diagram,
find, apart from the well-known rodlike and platelike nem
atic phasesN1 and N2 , the more elusive biaxial nemati
phase, here denoted asD2 , as well as the nematic phase wi
a fourfold axisD4 and the cubatic phaseO. With respect to
the original suggestion for the cubatic phase, it is notewor
that our analysis predicts that at intermediate densities
phase could be realized even for particles that themselve
not possess perfectOh symmetry. Even in the Onsager ap
proximation the necessary calculations are not trivial, ho
ever, as all three orientational degrees of freedom need t
taken into account. We have shown that bifurcation analy
provides an effective tool to determine some of the import
properties of the phase diagram, at least in the density reg
where the isotropic phase becomes unstable. The hig
density regime requires much more work. Fortunately,
results show that the generalized Gaussian approximatio
quite reliable in this regime, thus allowing the phase diagr
to be approximated without unduly expensive calculation

Of course, we need to pose the question whether our
sults obtained in the Onsager limit have any bearing on
behavior of particles with finite aspect ratio parts at nonz
packing fractions. To this end, both the validity of the O
sager approximation itself, i.e., is it justified to neglect t
third and higher virial contributions, and our retention
only the leading term in the pair excluded volume~4! have to
be checked. Preliminary results@30# from direct evaluations
of the relevant Mayer diagrams in the isotropic phase, in
cate that the rods should have unrealistic aspect ratio
order 103 for these assumptions to hold. Perhaps a m
important barrier to the formation of the phases describ
here are posed by kinetic effects. The amount of interdig
tion of these crosslike particles even at relatively low pa
ing fractions is so high that these systems might very w
form orientational glasses rather than phases with long-ra
orientational order. A hint of this behavior was found
Monte Carlo ~MC! simulations we performed in a syste
with crosslike particles composed of three equally lo
spherocylinders of aspect ratio 25@31#. In spite of a simula-

FIG. 4. Cross section of the phase diagram along the symm
line (l 15 l 2) of the density vs the length of the remaining rod.
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tion technique specially geared towards effectively samp
the phase space of glassy systems~pressure hopping MC
which is a variant of Hamiltonian hopping MC@32#!, we
were not able to obtain an orientationally ordered phase
way out of this problem and at the same time a poss
experimental realization of a cubatic was suggested to u
Jullien @33#: Do not use particles with a fixed shape, b
rather particles that can self-assemble into the requ
shape. In this case the kinetic barriers may be circumven
by the continuous disassociation and reassociation of
parts. Examples of such systems that could in principle
synthesized are cube-shaped organometallic complexe
which elongated ligands can attach in a reversible mann
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APPENDIX: PROPERTIES OF THE D FUNCTIONS

In order to derive the symmetry adaptedD functions as
defined by Eq.~9!, we make use of properties of the Wign
matricesDm,n

l (V) as can be found in@23#. By reasons of
symmetryl has an integral value and the indicesm andn are
integers in the region2 l , . . . l .

If we take the definition of ourD functions ~7!, use the
closure relationDm,n

l (V1V2)5(p52 l
l Dm,p

l (V1)D p,n
l (V2),

and rearrange the summations we obtain

Dm,n
l ~V!5

1

AN
(
p,q S (

g8PD2

Dm,p
l ~g8!D

3Dp,q
l ~V!S (

gPD2

Dq,n
l ~g21! D . ~A1!

Note that the elements of the groupD2 are their own inverse
The summations over the elements ofD2 can be done ex-
plicitly and are nonzero only if bothm andn are even. This
leads to the final form~9! of the symmetry adapted function
The normalization follows from distinguishing zero and no
zero values form andn.

Since Dm,n
l (V21)5D n,m

l (V)* and Dm,n
l (V)*

5(21)m2nD2m,2n
l (V), theD functions are real valued an

satisfy

Dm,n
l ~V21!5Dn,m

l ~V!. ~A2!

It is clear that we cannot find a closure relation on the se
D functions. The reason is simply that a general rotation w
always break the symmetry of the groupD2 and hence intro-
duce functions that are outside the set ofD functions. There
is, however, a restricted set of rotations that leave our sp
of functions invariant. This set consists of the elements of
cubic groupO. In order to prove this we only need to sho
that this is true for two generators of this group, which a
g

A
le
by
t
d

ed
e
e
to
.

l

le
r

-

f
ll
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e

e

the rotations over an anglep/2 about thez axis (Rz) and the
y axis (Ry). It is not difficult to prove that for both rotations
Rz andRy

Dm,n
l ~VR!5 (

p even>0
Dm,p

l ~V!Dp,n
l ~R!, ~A3!

Dm,n
l ~RV!5 (

p even>0
Dm,p

l ~R!Dp,n
l ~V!. ~A4!

This will automatically be valid for all combinations of thes
two rotations and hence for all elementsR of the cubic group
O.

In Eq. ~19! we have defined a functional on our space
real valued functions. If we first apply this definition direct
on the complex valued rotation matrix elements we obta

Dm,n
l @Dm8,n8

l 8 #~V!5E dV8Dm,n
l ~V821V!Dm8,n8

l 8 ~V8!.

~A5!

Using the closure relation and the properties for an inve
rotation, the integral overV8 results in

Dm,n
l @Dm8,n8

l 8 #5
8p2

2l 11
d l ,l 8dm,n8Dm8,n

l . ~A6!

It is now a simple matter of checking that if we do the sam
thing for theD functions this leads directly to

Dm,n
l @Dm8,n8

l 8 #5
8p2

2l 11
d l ,l 8dm,n8Dm8,n

l . ~A7!

Finally we show the result for an the integral over threeD
functions. Again, the only way to obtain this result is b
distinguishing the different combinations of zero and no
zero indices

E Dm,n
l ~V!Dm8,n8

l 8 ~V!Dm9,n9
l 9 ~V!dV

58p2S 1

2
A2D 22d0,mm8m92d0,mm8m9

3S l l 8 l 9

m s8m8 s9m9
D S l l 8 l 9

n t8n8 t9n9
D , ~A8!

where the matrices denote Wigner 3-j symbols and
s8,s9,t8,t9 are 61 and chosen in such a way thatm
1s8m81s9m95n1t8n81t9n950. There is only one pos
sible restriction to this formula: In the casem50 or n50 the
s ’s or t ’s are not uniquely defined. This causes the 3-j sym-
bols to differ if and only if l 1 l 81 l 9 is an odd integer, in
which case the sign changes. To avoid this one shoul
possible choose them andn to be nonzero by taking a suit
able permutation of theD functions.
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