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Onsager crosses are hard nonconvex bodies formed by rigidly connecting three elongated rods, equally thick
but not necessarily equally long, to form perpendicular crosses. We study the phase behavior of systems of
such particles, focusing on their ability to form spatially homogeneous orientationally ordered phases with a
symmetry lower than that of the standard uniaxial nematic. We treat these systems in the Onsager, second virial
coefficient, approximation. We apply bifurcation analysis to build up a global picture of the phase diagram,
which is then refined using approximate numerical calculations. Finally, we generalize the Gaussian approxi-
mation for the nematic orientational distribution function, to deal with the more ordered phases encountered
here, and compare with the results from the previous techniques to see whether it is feasible to reliably predict
the phase diagrams from a computationally cheaper techni§a663-651X98)01211-3

PACS numbdps): 61.30.Cz, 64.70.Md, 83.70.Jr

I. INTRODUCTION is one of expediency rather than principle. Hard particle
models have the dual advantage of serving as reference sys-

allv h h i which the ori X p htems to which energetic interactions can be added perturba-
spatially homogeneous phase in which the orientations of t ﬁvely as well as being directly applicable to lyotropic liquid

nonspherical component particles are distributed in an anisQsysta|s formed by sterically stabilized colloidal suspensions.
tI’O'pIC' fashion aroun.d a pr'eferred' axis yielding a phase with\joreover the theory of hard particles in the Onsager ap-
uniaxial macroscopic optical anisotrofgymmetry group proximation is formally identical to the mean field approach
D..p). Is it possible to have orientationally ordered, but spasually applied to models for thermotropic liquid crystals. At
tially homogeneous phases with a symmetry other than tha technical level these two approaches pose similar problems
of the nematic phase? This is a question that has occupieshd their analysis is virtually identical.
both theorists and experimentalists since the early 1970s. The rest of the paper is organized as follows. In Sec. Il we
The most likely candidate is thought to be the so-called biintroduce the Helmholtz free energy as a functional of the
axial nematic phase, a phase with two mutually perpendicuene-particle orientational distribution function and derive
lar axes of symmetrysymmetry groupD,y,). It is assumed some basic results from the symmetries of our model. In Sec.
that this phase could be formed either by nonspherical pat!l we will analyze the behavior of our particles in three
ticles with a rectangular box-like geometflength greater different ways. First we will use a bifurcation analysis that
than width greater than deptf1-6] or by an (almosi gives a global idea of the phase diagram concerning the tran-
equimolar mixture of rod- and disklike particlgg—10]. De-  sition from an isotropic to an ordered phase. Second, we try
Spite theoretical and Computationa| evideﬁtm_la for the to find numerical solutions that minimize the free energy and
possibility of its existence, to date this phase still has noPYy analyzing the distribution functions we obtain the sym-
been demonstrated unambiguously experimenfaiy-20. metry of the phases and find sequences of transitions. As a
A few years ago FrenkéQl] argued that it is possib|e to third method we solve the model within a Gaussian apprOXi'
create a phase with cubic orientational anisotr(mrnmetry mation, which means that we assume that the distribution
groupOy,). To this end he suggested looking at highly non-functions will be sharply peaked. In Sec. IV we will summa-
convex hard particles obtained by gluing together highly'ize and combine our results obtained by the different meth-
elongated rodlike particles to form a perpendicular cros®ds. We will discuss the validity of some of our assumptions
with arms of equal lengtifsee Fig. 1 In an approximate and give a few suggestions for further research. In the Ap-
calculation he was able to show that the stable high-densitpendix we collect some technical background material on the
phase of such a system indeed would have cubic orient&onstruction of symmetry-adapted functions from the stan-
tional order, thus forming a phase that he called cubatic. Oufiard rotation matrices and prove some of their properties that
purpose here is to “give body” to these predictions and dis-aré used in the main text.
cuss the phase diagram of these crosslike particles in greater
detail, allowing also the lengths of the individual rods within Il. FORMULATION OF THE MODEL
each particle to differ. Collectively we will denote this class
of particles by the name Onsager crosses. This is appropriate
not only as a tribute to Onsager’'s seminal contributions to In order to study our system we will need an appropriate
the theory of lyotropic liquid crystals, but also because wefree-energy functional. Onsager showed that at least for a
will argue that Onsager crosses can in fact be reliably treatefiuid of very elongated rods, the excess free energy can be
within the Onsager second virial approximati@®], at least effectively be truncated at second virial coefficient level,
if the aspect ratio of the component rods is high enough. Yyielding a theory with the formal structure of a mean-field
The choice to model these effects in hard particle systemtheory. Even in the cases where the truncation isangtiori

The generic liquid crystalline phase is nematic. It is a

A. Free-energy functional
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justified, this approximation still contains the essential ingre-
dients of the physics of such systems, viz., the competition
between orientational and translational entropy. Though our
particles are no longer the elongated rods as in Onsager’s
original model, they do consist of three of these kind of
objects. Together, they form a very open structure. This
means that the probability of multiple overlaps between two
particles in general will be very small. As a consequence we
might expect that the rods act independently of each other,
which allows us to use reasoning similar to Onsager’'s and
truncate the free-energy expansion in virial coefficients after
the second virial coefficient. This leads to the free-energy
functional

Bf[ng]:f dQ (Q)In ¢(2)

1 -
+ Epf dﬂlf dQ, () h( Q) K(Q4,Q,)+ Bf. FIG. 1. Onsager cross fdar/D=10.

(1) that the probability for multiple overlaps between two
crosses will be small compared to that of a single overlap. As
Heref is the free energy per particle, which is a functional of 3 consequence of this assumption, one is not able to make a
¢ the orientational distribution functiofODF). This ODF is  (jstinction between crosses in which the rods are connected
a measure for the fraction of particles with an orientatidn gt different locations, e.g., at the ends of the rods.
in a fixed reference frame and is normalized to unisy. If we denote the lengths of the three rods pointing respec-
=(kgT) "%, the inverse temperature. tively in thex, y, andz directions of a particle fixed frame by
The first term of the free-energy functional is associated_, | |,, andL and take equal diameteBs for all rods, we
with the orientational entropy of the system. The seconcpptain for the leading term in the excluded volume of two
term takes into account the interaction between the particlegrosslike particles labeled with superscrifts and (2)
described byfC(Q4,(),), the excluded volume of two par-
ticles with given orientations. The last term is the ideal gas ) )
term and does not depend on the ODF. Ucross:izj: 2Li(1)LJ(2)D|S'”7iJ|:2L2Di§j: 12 siny; |,
In general we need three parameters to describe any ori- ' ’ (4)
entation (). For this we make use of the Euler angles
(a,B,v) describing an arbitrary rotation in three- wherel;=L;/L and the sum of the lengths of the rods is
dimensional space. given byL=L;+L,+Lj3. v; denotes the angle between the
A necessary condition for an equilibrium ODF of a sys-ith rod of particle 1 and th¢th rod of particle 2. It is con-
tem described by a free energy functional is that it satisfiegenient to express the densjyin terms of the second virial
the stationarity condition coefficient, which is half of the mean excluded volume in the
isotropic phase and, usirgsiny;|)=/4, this results in

o
M(Q)[f[w]—uf a0 w(m]=0. @

where the second term, via the Lagrange multipliertakes

care of the normalization of the ODF. To ensure that theNe now introduce a reduced densify=B,p. Since the ex-
solution is stable we need to check whether it is a minimuncluded volume interaction between two particles depends
of the free energy and, in the case of phase coexistence, tmly on their mutual orientatiof),,=Q,*Q,, we define
equate the chemical potentials and pressures of the differetiie reduced excluded volume interaction by

phases.

B,— = ~T12p 5
2 2<Ucross>l 4 . (5

K(Q4,0,

) 8 .
5(912)5 BZ :;Iz] ||(l)|}2)|S|n’y|J| (6)

B. Excluded volume
The main contribution to the excluded volume of two
elongated rods with lengths,; andL, and diameter®, and
D, is given by

In general, any function of) can be expanded in the
rotation matrix element@'m,n(ﬂ). (Throughout the rest of
this article we will use the conventions for these functions as

Vexe=L1Lo(D1+Dy)|sinyl, 3 can be found if23].) However, in this case it is convenient
to exploit the extra symmetries in our problem in order to
where y is the angle between the long axis of the particlesobtain a smaller subset of symmetry adapted functions. The
We assume that the excluded volume of two crosses can lgarticles, and therefore their interactions as well, are invari-
approximated by the sum of pairwise overlaps of the rodsant under rotations over an angte about any of the three
which form the crosses. This assumption is based on the faetxes in the particle fixed frame. Together with the identity,



PRE 58 PHASE DIAGRAM OF ONSAGER CROSSES 5875

these  three rotations form the groupD,  where&® is the unit vector pointing along the rdg of
={L.R«(m),Ry(7),R,(m)}. We now introduce the symme- particlek. This can be achieved by introducing the rotations

try adapted functions g; about the axes of the particle fixed frame
! "0a~ =R,(7/2
A'm,n(ﬂ)ET > Dha(g'0gh. (7) 41=Ry(7/2),
Ngg'ep,
. - . . . q2= Rx( —ml2), (14)
The normalization constaN is chosen in order to achieve
the orthogonality relation gs=1

’ 8’7T2 . . . .
| I -
f Am’n(Q)Am/yn/(Q)dQ_m5|,|,5m’m,5n’n,. (8) and_ using them(l?s co%t)jmate transfor_matlo_ns in order to
redirect the rods;™’ andl*’ along thez axis, which enables

If we work out the definition for these functions, we find that us to obtain a more convenient form for the integials)

both indicesm andn have to be even and the functions are

real and are of the form f dO[q;e! x q; 82| A, n(2)
1 2+5m,0+5n,0
Al = —= DL+ (=)D +(—)'D o
m,n \/E) { m,n ( ) m,—n ( ) m,n zj dQ|e(zl)><e§2)|A'm,n(qleqi)
+D ok 9

| =X | dojsinglAl (@ hHAl, (@Al (a)
Both m andn are chosen to be non-negative. In the case of m’.n’ ’ ’ ’

odd values fot, both indices need to be positive in order to
maintain a nonzero function, as can be seen directly form = > A%,m'(qfl)AL/,n(qi)f dQ|Sin13|A|m,’n,(Q)_
this definition[24]. m’,n’

To give an impression what these functions look like, we (15)
list here the four that havie=2, discussed by Stralga]:

After performing the coordinate transformation in the first
ASO(Q): }(3 codB—1), line we used the properti€s3) and(A4) of the A functions,
' 2 which state that they form a closed set under the symmetry
L operations of the cubic group.
2 . The integral in the last line of Eq15) can be calculated
Ao A= E‘E Siff 3 cos 2y, exactly and is nonzero only fon’=n’=0 and even values
(100  ofl (see[25] Eq. 7.132.1

2 1 m
AS Q)= E\/ﬁ sirf 8 cos 2, 20 (2w (m "
pa= | "de[ Ty [ "apsinplsinglagiya,s.)

1
2 _ - _ . . -
A Q)= 2(1+co§,8)c032a0052y €08 sin 2« sin 2y. =(27r)2j 4B SIBP(cosp)
0

We are now able to expand the excluded volume interaction

(6) in these symmetry adapted functions __ 2m® /2| ’ -0 (16)
(I+1)2—1)2%\ 1]+ Fam™

21+1

_ |
5(9)_%” 82 Ermnlm (), (1) Using the property of thA functions for the inverse rotation

(A2), this gives us the final result for the coefficiefsy, , ,
where the coefficientg, , , are formally given by

8
Eimn=— LAY () A (). 1
E|,m,n:J dﬂg(Q)Almn(Q) 12 I,m,n Wﬂlizj il O,m(q]) O,n(q|) (17)

and are symmetric im andn (E; n,=E ,m) because the In Table | the values of the most importam')’n(qi) are
interaction is invariant under interchanging the particles. Infisted.

order to calculate these coefficieris,, , we need to evalu- It is convenient to introduce some shorthand notation
ate integrals of the type ” analogous to that ifi26]. We define the inner product for

real functionsf andg of (),
[ doisingyla, @)= [ dojanxg?ah, (),
13 <f|g>zf f(2)g(Q)dQ. (18)
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TABLE I. The most important values O'i'o,n as a function of  with some constant coefficientg, ,,,. Intuitively, this

the three different rotations; . seems justified since a homogeneous phase with symmetry

| that is a subgroup of the symmetry group of the constituent
Aon da gz Js particles seems implausible. To our knowledge, however, no
A2 1 1 1 rigorous proof exists for this statement. Moreover, the sym-

0.0 2 2 metry of the phase need not be contained in that of the par-
AS, 33 -3\3 0 ticles: cut spheres, for instance, have uniaxial symmetry
N 3 3 . (D.p) but can form a cubatic pha$g7].

00 8 8 We are going to use three different methods to study the
AL, -15 15 0 behavior of our system. First, we will use a bifurcation

' analysis to study the possible transitions of the isotropic
Aga 35 5135 0 phase to orientationally ordered phases. This is a fast method

that gives a global description of the phase behavior and tells

) ) ) ) . us some of the symmetries of the phases we might expect.

We can also define a functional in this space of real f””Ct'O”ﬁowever, the method has its limitations: It is possible to

by obtain several phases with different symmetries and the
method does not tell us which is the thermodynamically most

f[g](ﬂ):f dQ'f(Q' " 10)g(Q’). (19 stable phase. Moreover, it disregards the possibility of a

strong first-order transition to a phase that does not bifurcate

If we apply this last definition t and use the fact that it T0M the isotropic phase. o

depends only on relative orientations, we obtain The second method we will use IS minimizing .the free-
energy functional by solving the stationarity conditi(2B)

. numerically. Due to the finite set of functions in which the
<f|5[g]>:f dQlf dQ2E(Q, " Q1) F(Q21)g(€22) ODF is expanded, we can only hope to do so properly if the
ODF is a not too strongly peaked function. Thus the results
=(&[f1]9). (200 are useful only for low densities when the phases are prob-

) . . ) ) ably not yet strongly ordered. For higher densities, the re-
With this notation we can write the free-energy functlonalsu“& though they might be an indication, are not reliable in

(1) in a more compact form as predicting the densities for phase transitions. For these den-
1 sities we will use a third method, which uses the so-called
B[ ¢]=(y|In ¢,>+§,7<¢|g[¢,]>+,3?_ (21) Gaussian approximation. We will assume that for higher

densities the ODF becomes strongly peaked and can be ap-

In order to understand the behavior of the excluded Volumgrommated by a combination of Gaussians.

as a functional, we apply E¢l1) to aA function. If we now

use Eq.(A7) we immediately obtain A. Bifurcation analysis
We used a bifurcation analysis to obtain an upper limit
A al=2 EjnpAhp- (22)  for the density at which the isotropic phagg=1/8mw2 be-
P comes unstable with respect to orientational ordering. This

. r _analysis also yields the possible symmetry breaking modes,
This means that the total spac, of the Ap,, is decom allowing a coarse picture of the phase diagram to be built.

posed i_nto invariant subspacé$n by the excludc_ad volume For a more detailed description we refer to R&B]; here we
interaction. Moreover, Eq(22) shows that for fixed the will only indicate the main results.

action of £ is represented by the same matri ), ,, in all We use the expansions
the subspaceS!, for m=0,2, ... J.
Y=ot e +eiPyt-,

lll. ANALYSIS OF THE PROBLEM (25
— 2
We now return to the stationarity equatié®). With our N=notEN T et
notation we can perform the functional derivative explicitly
and write it compactly as and the stationarity equatidi23) to obtain the set of bifur-
cation equations of which the first is given by
Iny+ €[] = Bu=0, (23

where the ODFRy satisfies the normalizatioft|)=1. Any ﬂ+ £[4]=0 26)
solution that minimizes the free energy must be a solution of Yo Mocl¥1 '

this equation. We assume that the ODF possesses the same
symmetryD, as that of our particles and hence can be expye to the special forril7), this eigenvalue problem can be

panded in thed functions solved completely. For each subspaigthere is only one
o141 nonzero eigenvaluk, and corresponding eigenfunctiq@.
W)= D —— iy maAl (D), (24) The bifurcation density is given by,= — 1/yp\, where
imn 872 \, is the negative eigenvalue with the largest absolute value.
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Since 7, # 0, the transition in general will be first order.
Only on the lines wherey; =0 could a continuous transition
be expected. For that reason, for particles outside the circle,
we plotted the curvédashed lingfor which the second term
7, in the density expansion is zero. Outside this cupgds
positive andzs turns out to be the first negative term. So if
possible at all, a continuous transition will occur near the
point where the lines and the boundary of the triangle meet.

B. Numerical calculations
1. Theory

We have seen that the bifurcation analysis gives us an
idea of what might happen for the first phase transition. It
shows possible symmetries of the phases and for which kind
of particle we might expect them and also gives an upper
limit to the transition densities. What it does not tell is
whether the predicted transitions are real and, if they are, at

FIG. 2. Phase diagram of the phase transition at lowest densitiyhich densities they occur. In this section we deal with this
according to the bifurcation analysi., andN_ correspond to a problem.
rodlike and a disklike nematic phase, respectively, whiles used Density functional theory tells us that if we have found
to denote the cubatic phase. The lines form the boundary betweeﬂ)]e ODF that gives the minimal free energ, it coincides
areas of rodlike and disklike behavior. Points on the dashed "n?/vith the equilibrium ODF and is the stable étate of the sys-
have »,=0; O.UtSide and insidey, has a negative and positive tem. Thus, what we ought to do is construct a trial function
value, respectively. that is characterized by a number of parameters and deter-

mine the parameter values that minimize the free energy.
A linear combination of corresponding eigenfunctions isSince the ODF is a probability distribution function, it is
used to obtain the unstable mode from the second-order bpositive; hence we take the ansatz
furcation equation.

The resulting qualitative phase diagram is shown in Fig.

2. Our phase diagram has a triangular form and is that part of lp(Q):exp( 2 AmnXma(Q) |, (27
the pland;+1,+153=1 for whichl,l,,l13=0, in which each lm.n
point describes a specific particle. For instance, at the top of _
the triangle we havé;=1 andl,=1,=0. This points there- Where we have expanded the ODF in the complete set of
other hand, the base of the triangle is a line for whigh tion. Theys ,, , can be seen as parameters of the funcifon
=0 and represents, except for the edges, particles effectiveWe assign them starting va_\lues _for fixed density ar_wd ca_lcu-
consisting of only two rods of nonzero length. All points late the free energy. At this point we employ an iterative
inside the triangle correspond to particles with three rodsProcess to optimize the coefficients to minimize the free en-
For simplicity, we have drawn only constant density planeserdy- The normalization is maintained by adjustigo,o-
of the phase diagram. _ Insteaq of minimizing the fre_e energy, however, we try to

The two relevant eigenvalues, and\ 4, which have the find solutl_or_ls of the stat|onar|ty_c_ond|t|o@3) and check
same value on the circle, form the boundary between the areterward if it corresponds to a minimum for the free energy.
outside, wherex, dominates, and inside, whebe, domi-  |f we use our trial function, we obtain
nates the bifurcation\, leads to a single unstable mode for
the isotropic phase with a uniaxial symmetry, generically
denoted byN, corresponding to a nematic phase. Inside the
circle there are two unstable modes, of which one has a
nematic symmetry while the other has a cubatic symmetry,
which we denote byD [29].

The six straight lines connecting the edges of the triang|
with the circle correspond to particles for which one of the
equals 1/3. They form the boundaries between the areas of

I=1

2 WX Q)+ 7ELY]=Bp. (28

if we now multiply this equation With»('m’n, integrate over
Q, and use Eq(20) and the orthogonality of the eigenfunc-
(?ions, we obtain a set of equations

. : 872
the two nematic phases, which we denoteNby andN_ . . - _ L e __ ry _
They differ in the sense that, in the first case, the longestrods 21 +1 Y1.mn= = 7l €091) = = (1€ Dxmn)
tend to align and, in the other case, the shortest rods align. (29)

On the lines the first-order term in the density expansion

7,=0. This leads to a trivial second-order bifurcation equa-From this result we can conclude immediately that we only
tion and we need to solve the bifurcation equation up to théave to use those eigenfunctiogls of the excluded volume
fourth order to obtain the form of the unstable mode, whichthat have a nonzero eigenvalue. Hence we can rewrite our
turns out to be identical to the one found for tRe region. trial function (27) as
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TABLE Il. For each of the isotropic, nematic, cubabx,, and

PY(Q)= ex;{ E ¢|,mX|m(Q)> , (30 D, phases, it is indicated whether the four chosen order parameters

hm are zero or nonzero. The order parameter are determined by evalu-
ating their average weighted by the OF For the nematicD,,
and D, phases there is one preferred direction for the particles. In
the case of the nematic phase the order is rotationally symmetric
21+1 A [ | ) (31) about that direction, while in the case of tbg or D, phase this
872 Xl & symmetry is broken and the rotational symmetry is discrete and is

four-fold or two-fold.

where the coefficientg , have to satisfy

I,m—

for even values of andm where 6= m=| and the coefficient

oo is determined by the normalization conditiqd|y) — Phase Ao A3, Ao Al

=1. From these equations the coefficients can, in principle,,sotropic 0 0 0 0

be calculated self-consistently. Nematic nonzero 0 honzero 0
Next we identify each phase by means of a set of orien—CubatiC 0 0 noNnZero nonzero

tational order parameters, for which we will take mgln,n). nonzero 0 nonzZero nonzero

If there are nonzergA? ), we first rotate our solution for D4 nonzero nonzero nonzero honzero

the ODF in such a way thdt\3 o has the absolute maximal

value. This is done by rotating the reference frame as well as

the initial orientation of the particle. volves a six-dimensional integral, but this can be avoided.
For the nematic phase, we could now take, for instanceSince the ODF satisfies E¢R8), an equation irf}, and the

the usual second-order Legendre polynomial as an order pgght-hand side is a constant, which equabnt 27, we can

rameter write the free energy as

N=(A5d ). (32

The problem, however, is that a nonzero nematic order pa-

rameter does not tell us whether we aCtua”y have a nematiﬁfter having checked whether the solution is indeed the

phase because it will also be nonzero for a biaxial phasq“inimum Of the free energy’ the pressure and Chemica' po_

Thus instead of determining whether a certain order paramential can easily be calculated by

eter is nonzero, it is more useful to look for order parameters

that are zero, which tell us which symmetry is not present in ) 7

the system. BP=p+pBy(¢h)= B
For the isotropic phase, we know that the ODF is a con-

stant. This implies that all order parameters vanish orand

equivalently, that if there is a nonzero order parameter, it is

not an isotropic phase. BG BP 2
For the nematic phase, tH2, phase and th®, phase ~ At 7=1+ Yoot 2+ B, (35

there is at least one of the rods of the particles that tends to

align and hencéAj o) #0. However, for the cubatic phase, where the last term is given b§f=In +const. If now for

the ODF should be invariant under rotations owé2 around  different densities we find equal pressure and chemical po-

any of the three frame axes, which means that there canneéntial, we have coexistence of different phases.

be any terms present with=2. Hence, if we find that

(Aﬁm)=0, and there are also nonzero order parameters for 2. Numerical results

| =4, we have a cublat|c phase. . _ We solve the set of self-consistency equations that we
If we find that(Ap ) Som, We have a solution that is gerived in the preceding subsection, where we only use the
invariant under rotations around thexis and hence a nem- f,nctions withl =2 and| =4. By using several starting val-
atic phase. Furthermore, if we determine which rod isyes we obtain, by means of an iterative process, different
aligned best with the nematic direction, we know whether we,ymerically stable solutions. Given a stable solution, we can
have a rodlike or plateletlike nematic phase. calculate the free energy and check that it is a minimum.
Finally, if (A7 ;) #0, the ODF is not invariant under rota- By taking more terms into account, the coefficients
tions overw/2 around thez axis, and the phase cannot be change as well as the densities for which the transitions oc-
D,; thus it has to be th®, phase. This leaves for the;  curs. However, since we are interested only in a qualitative
phase tha{A3 »)=0. In this case we can again determine thepicture, this is of no real importance because the symmetry
rod aligned best with theaxes and distinguish betweéx, ;. of the obtained phase remains the same. We use(@Bgto
andD,_ . calculate the free energy and in that way avoid the six-
We have summarized these results in Table Il, where welimensional integral. However, since we truncated the ex-
show which order parameters should be zero for each phaspansion of the ODF dt= 4, this means that we also truncate
We have chosen to us{é%Z) and(AjA}, but these choices the free energy. If we find solutions of the ODF with differ-
are arbitrary as long as they possess the right symmetry. ent symmetries, we use this approximated value for the free
Given a solution of the stationarity E(R8), we can cal- energy to determine the most stable phase. So we end up
culate the free energy. As can be seen in 89, this in- only with an estimate for the density at which the phase

1 1 n
Bf=5(uln )+ 5 ot 0+ BT, (33

1
1+§7/(¢|5[<//]>) (34
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FIG. 3. (Color Three constant
density planes of the phase dia-
gram. Diagrams on the left corre-
spond to the minimization
method, while those on the right
to the Gaussian approximation.
The lines correspond to the results
obtained from the bifurcation
theory. The scaled densities
shown are, from top to bottom,
7l 79=0.9, 1.0, and 1.5. There are
seven different phases: nematic
(N.), cubatic ©), biaxial (D),
and D, (D4.) phases. The sub-
script + refers to a rodlike behav-
ior and the subscript- to a disk-
like behavior.

oI N, @N. ®€O0 eD, ®D,_ @D,

transition will take place, though the right phase is deter- The lines represent the boundaries that we obtained from
mined. our bifurcation analysis and we see that they give a reason-
In Fig. 3, three cross sections of the phase diagram arable estimate of the real behavior. Around the points where a
depicted. They are drawn for rescaled densitigg,=0.9, straight line meets an edge, we still find an isotropic phase at
1.0, and 1.5. This scaling is used in order to compare th®0% of the bifurcation density. Though those regions be-
behavior of all particles around their densities of interestcome smaller when we approach the bifurcation density, it
This means, however, that due to the scaling the real densitgmains quite stable and it is possible that for a very small
in the middle is almost 14 times as high as at the vertices ofegion there is a continuous transition. Due to the approxi-
the triangle. Analogously to the distinction we made betweemmation of taking only functions with<4 into account, we
a rodlike nematidN, and plateletlike nematic phade , we  cannot tell if it is. As far as we know, all other transitions are
do the same for th®, phase. first order.
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As expected, the nematic phase is found mainly outside Bfi=Inp+ 7,
the circle. However, there is a part of the rodlike nematic
phase that extends into the circle and also in the regions BP,=(n+79)1(B,), (39
where we expected a plateletlike behavior. Apparently the
longest rod has a large influence on the system. Nhe Buy=Inn+27+1.

phase is found only in small regions and since a platelet is a
very crude approximation for these particles, it is not surprisfor a nematic phase whefk is the direction of the ordering
ing that it remains unstable at high densities. It disappears aixis of particle, the factor 82 reduces to 4. The trial

n~1.3n, by going to the phas®,_ where there is a dis- function in the original Onsager model is given by
crete orientational symmetry around thaxis.

Inside the circle, we could expect the nematic, the cubatic,

o
and theD, phases. The cubatic phase is found in the middle Q)= o costia cosd). (40)
for all particles that resemble the particle with three equal
rods. It is surrounded by thB, phase. For large values ofr this is a sharply peaked distribution

If we increase the density, thi2, phase appears along the with its main contribution around~0 andé~ , which we
boundaries between the phases for which the longest &fan approximate by Gaussians:

shortest rod is ordered. It starts at a densityzet1.27,,
around the points where both, phases and thBl, phase a 1, T
meet each other, which is near the points where the straight P(Q)= in eX[{ - Eaﬁ ) (Os o< E)’
lines and circle from the bifurcation analysis touch.

For very high densities, all particles with three rods of o
different length, end up in thB, phase in which rods with P(Q)=— exp{ —-a(f- 77)2}
the same length are aligned. The particles for which two rods
?h?flégeoﬁi?: s';?ﬁ:;;; r|1iEgts.g'?hzeggraiiﬁ:fgfhaseenaerrfati C'I' he orientational part of the entropy can easily be calculated

and cubatic phase are merely points at the vertices and in t Q this approximatior(a) =In(a)—1. The translational part
middle of the triangle. as three different type of contributions. The first is given by

the interaction of the ordering rods which we label Iy
and it is the longest one in case of a rodlike nematic phase
and the shortest one in case of a plateletlike nematic phase

(41)

C. Gaussian approximation
1. Nematic phase

2

We can obtain an approximate solution of the Onsager pada)~ 413 _
model describing the isotropic-nematic phase transition for ’ Jra
long thin rods if we use the assumption that in the ordered
phase the rods have a strongly peaked distribution around thEhis term is important for rodlike particles, while for
z axis, which can be approximated by a Gaussian distribuplateletlike particles it is negligible. The second type is the
tion. The same approximation can be used for the isotropicinteraction between onk; rod along the nematic axis and
cubatic transition for the symmetrical particle with three rodsone that is perpendicular to it, for instante;
(see Ref[21)).

(42)

It is possible to extend this approximation to our system 414154
for all phases. First we write the free energy pria)~— (43
Bi=pi+o(a)+np(a), (36)  The last type consists of the interaction between two rods in

the plane perpendicular to the nematic axis. Its main impor-
where the first term is from the ideal noninteracting systemtance is for plateletlike particles. This contribution, however,
which is given byBf=In n+const. The second part of the is not properly described by the first term of the expansion if
free energy describes the orientational entropy and is givewe use the Gaussian approximation, which is due to the fact
by that a typical value for in this region is 12, too small for a

qualitatively valid Gaussian approximation. For that reason,

B > we use the original Onsager trial function to obtain a fit of
o(a)= f dQ ¢(Q)In[877h()]. 37 this contribution, which we will denote by(a):
The last term in the free energy is related to the translational 4|§
entropy pra(@)~-——J(a)
4 _ 2
pla)= ;j dﬂf 4O Q) p(Q") D, 1l;lsiny, . _ MY eggr 145123 750 178)
i @8 ar @ a? ol at

(44)
In the isotropic phase, the ODF is a constagt(})
=1/8w2, which gives the exact results The total orientational entropy can now be written as
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2 g 4 If we combine these with the results for the isotropic phase
pla)= S —l3(1—13)+ —=(1—-13)2)(a) (45 _(39), we obtain the_ coexisting densitieg and 7y for 'ghg
vra T m isotropic and cubatic phases, and thparameter, describing

tehe ordering strength of the cubatic phase at coexistence

and depends only on the length of the ordering rod. Since th
proper value fora should minimize the free energy we dif- 7=48.43, 70=50.80, a=162.3. (53
ferentiate the expression with respectdcand equate it to
Z€ero: This large value ofx justifies the Gaussian approximation.

dgf 1 215 4

B =——7 3 ——(1-13)%(a) | =0. (46 3. The D, and D, phases
da « aJam _
In the case of &, phase, there is one four-fold degener-

Solving this equation results in the values of the pressure arf@€ @xis, which we take to be parallel to thaxis. Our trial
chemical potential of the nematic phase for any density. ~function has now two parametessand 8. « describes the
strength of ordering with respect to tteeaxis andg de-

2. Cubatic phase scribes the strength of ordering with respect to thendy

. . . .axes, which are equivalent in this phase. The trial function
In order to describe the cubatic phase by a Gaussian d|§]— 9 P

L . X ; as eight contributions of the form
tribution we switch over to th&,y,z convention of Eulerian
axes. In this convention, the general rotation is given by 5 V112
three subsequent rotations around three perpendicular axes W)= l a’p exd — E(a¢2+a20+,82¢2)
8 2 '

— a1y 103y a— 1] g’
D(Q)=e '"xe”Tve "z, (47) (54)
Thu§, fqr the cubatic phase, we can use as a Gaussian—lilﬁgain’ we find a simple equation far:
distribution
1 82 @ L, i 87?1 | a?B\ 3 55
I/I(Q)=ﬂz ex _E(d) +60°+y°)|. (48 o(a,B)=In 8 +§ n ﬁ 5 (55)

There are 24 such cont_ributions_ corrgsponding to 24 IC’OSS":’ligorp, however, we get an expression containing an elliptical
orientations for the particle to align with the three axes of th%&ltegral of the second kind

system. The orientational part is again easy to calculate an
is given by

()= AT
87%) 3 [a) 3 N e N -3 i
= —_— —_— —_— = — ﬂ
o(a) In( o4 + 5 In(27T) > (49 ,
For the translational contribution to the free energy we have + ;(1_|3)(1+3|3)' (56)

to add for all possible orientations the excluded volumes for

the aligned and perpendicular pairs of rods, which gives \ye minimize the free energy with respectdoand 8. For
I3>1/3, this results imx> B, which suggests a stronger or-
pla)= 4 T i (50) dering along the direction, while forl;<<1/3 the opposite,
3Jra 37 B> «a, is found. Therefore, there is a stronger ordering along
the x andy axes.
If we now minimize the expression for the free energy with  The treatment of th®, phase is similar to that of thB,

respect to the parameter of the Gaussiarwe obtain phase, except that there are now only four possible orienta-
5 tions of the particle and we need three parameters in our trial
. 167 51) function:
81w’
1/ ap 12 1
This gives us the free energy and hence the pressure and ()= _( _3’) ex;{ — Z(ad?+ B2o+ yzl//z)).
chemical potential of the cubatic phase in this approximation 4\ 8 2 -
5
w2 (2y2\3] 3 8y
Blo=4Inn+in—| o—| |+5+2, There is a simple equation far, depending now on three
parameters
8
BPo=| 47+ 5772) / (B2)1, (52 | gm?| 1 o @By| 3
o(a,,y)=In| ——|+35In 83 2 (58)
o | 72 (2y2\%] 11 169
Buo=4Inmy+in 3\ on * 2 37 and an expression fqgr, which is somewhat more complex
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100

8 | 13
(a,B8,7)= — —=E(V1—Bla)
pla,B,y 732 \/E B
80 |
15 12
+—=E(J1—9yla)+ —=E(J1—v/B)
Vy Vy 0 |
4 p<B,>,
2
+;(1—r ). (59 w0l
2077
4. Results
If we combine the Gaussian approximations of the differ- 0 ‘ , , \%
ent phases we can calculate the coexistence by equating pre 0.0 02 0.4 | 06 08 1.0
sure and chemical potential. In Fig. 3 the phase diagram for 8

several reduced density/ 77, are depicted. In case the over-  FiG. 4. Cross section of the phase diagram along the symmetry
all density, within our model, is not thermodynamically line (I,=1,) of the density vs the length of the remaining rod.
stable and hence leads to a phase separation, we have colored
it to correspond to the most ordered phase.

At the density /7=1 we have shown the isotropic
phase to be unstable, but there are still isotropic areas. This We have shown that the phase behavior of crosslike par-
artifact is a consequence of our model: The assumption adficles is surprisingly rich. Within a single phase diagram, we
strongly peaked distributions is not valid here. Furthermorefind, apart from the well-known rodlike and platelike nem-
we find that the boundaries between the cubatic Bnd  atic phasesN, andN_, the more elusive biaxial nematic
phases are straight lines. This seems somewhat surprising bpliase, here denoted Bs, as well as the nematic phase with
is merely a consequence of losing particle information in thea fourfold axisD, and the cubatic phag®. With respect to
approximation. This can be seen from the expression for thehe original suggestion for the cubatic phase, it is noteworthy
free energy, which depends only on the length of one rodthat our analysis predicts that at intermediate densities this
corresponding to the main axis of the particle. The only dif-phase could be realized even for particles that themselves do
ference for these particles is due to a different scaling benot possess perfe@,, symmetry. Even in the Onsager ap-
causen, also depends on the same rod length, but this effegbroximation the necessary calculations are not trivial, how-
is too small to be visible here. Some areas are very tiny andver, as all three orientational degrees of freedom need to be
cannot be seen in the diagram at all. For instance, betweaaken into account. We have shown that bifurcation analysis
the cubatic and, phases of both types there is a narrowprovides an effective tool to determine some of the important
strip of particles that have at this density coexistence beproperties of the phase diagram, at least in the density regime
tween the cubatic anB, phases. where the isotropic phase becomes unstable. The higher-

It is not observed and intuitively also not expected thatdensity regime requires much more work. Fortunately, our
there are particles that go from rodlike to plateletlike behavresults show that the generalized Gaussian approximation is
ior, for instance, via a transition from thd_ to a D, quite reliable in this regime, thus allowing the phase diagram
phase. Also, a phase transition from a cubatic phase to @ be approximated without unduly expensive calculations.
nematic phase, and thus to a phase with higher symmetry, is Of course, we need to pose the question whether our re-
not found. All data confirmed that phase transitions in thissults obtained in the Onsager limit have any bearing on the
model can only go to lower symmetries, i.e., a transitionbehavior of particles with finite aspect ratio parts at nonzero
from the isotropic phase to either a nematic or a cubatigpacking fractions. To this end, both the validity of the On-
phase, followed by a transition to tii®, and finally theD,  sager approximation itself, i.e., is it justified to neglect the
phase, although one or more phases can, in principle, biaird and higher virial contributions, and our retention of
surpassed. only the leading term in the pair excluded volufdg have to

In Fig. 4 we have plotted a cross section of the phasde checked. Preliminary result30] from direct evaluations
diagram along the symmetry ling=I,, where we multi- of the relevant Mayer diagrams in the isotropic phase, indi-
plied the density wittB,, the isotropic second virial coeffi- cate that the rods should have unrealistic aspect ratios of
cient. Since these particles are four-fold symmetric arounadrder 1§ for these assumptions to hold. Perhaps a more
thel; rod, they cannot go beyond tie, phase in which they important barrier to the formation of the phases described
all will end up with only two exceptions, the cubatic particle here are posed by kinetic effects. The amount of interdigita-
and the single rod particle. As was explained beforeNhe tion of these crosslike particles even at relatively low pack-
phase is very unstable and is found only in a very smaling fractions is so high that these systems might very well
region and will for somewhat higher densities already form aorm orientational glasses rather than phases with long-range
D, phase. TheN, phase is much more stable. The isotropic-orientational order. A hint of this behavior was found in
cubatic phase transition takes place at a density that is almobtonte Carlo(MC) simulations we performed in a system
14 times as high as the isotropic-nematic phase transition fowvith crosslike particles composed of three equally long
the single rod. spherocylinders of aspect ratio £51)]. In spite of a simula-

IV. CONCLUSIONS
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tion technique specially geared towards effectively samplinghe rotations over an angle/2 about thez axis (R,) and the
the phase space of glassy systefpeessure hopping MC y axis (R,). It is not difficult to prove that for both rotations
which is a variant of Hamiltonian hopping M{32]), we R, andR,

were not able to obtain an orientationally ordered phase. A

way out of this problem and at the same time a possible

experimental realization of a cubatic was suggested to us by [ _ [ [

Jullien [33]: Do not use particles with a fixed shape, but Amn(2R) pe%?O mp( D) 2pn(R) A3)
rather particles that can self-assemble into the required

shape. In this case the kinetic barriers may be circumvented

by the continuous disassociation and reasspciati_on_ of the Almn(RQ): 2 A:np(R)A' (D). (Ad)
parts. Examples of such systems that could in principle be ’ peven=0 ’

synthesized are cube-shaped organometallic complexes to

which elongated ligands can attach in a reversible MANNET-Tis will automatically be valid for all combinations of these

two rotations and hence for all elemei®®f the cubic group
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Dhy o[ Dhy 1 1(Q)= f dQ' D}, (Q'72Q)D}, . (Q).
APPENDIX: PROPERTIES OF THE A FUNCTIONS (A5)

In order to derive the symmetry adaptddfunctions as
defined by Eq(9), we make use of properties of the Wigner
matricesD'myn(Q) as can be found in23]. By reasons of
symmetryl has an integral value and the indicesandn are

Using the closure relation and the properties for an inverse
rotation, the integral ovef)’ results in

. T . 2
integers in the region-1, . . .I. ™ |
If we take the definition of ouA functions(?) use the mal P 1= 57577 917 O Prye - (A6)
closure relatloan n(Q1Q5)= Ep,_|D p(Ql)Dp n(Q5),
and rearrange the summations we obtain It is now a simple matter of checking that if we do the same
thing for theA functions this leads directly to
n(Q) \/—pq ( E D p(g )) " 87T2
o =Dz A:"n,nl:Am"n ] 2|+1 5| |’ n’A . (A7)

XD'p,q<m( > D'q,n<g-1>). (A1)
9D Finally we show the result for an the integral over thiee

: , functions. Again, the only way to obtain this result is by

Note that the elements of the groD are their own inverse. istinguishing the different combinations of zero and non-
The summations over the elements®f can be done ex- a4 indices
plicitly and are nonzero only if botm andn are even. This
leads to the final fornf9) of the symmetry adapted functions.
The normalization follows from distinguishing zero and non- j A'm’n(Q)A' (Q)Am,, a(2)dQ
zero values fom andn.

Since  Dp,(Q H=D, (Q)* and Dy, (Q)* _en? L
=(- 1)m‘”D'_m,_n(Q), theA functions are real valued and =8m 2 2

i
satisfy I I’ |" I "
m a,/ m/ O_!/m//) ( n 7_/ n/ 7.llnll> ! (A8)
where the matrices denote Wigner j 3symbols and
It is clear that we cannot find a closure relation on the set ofr’,0”,7',7" are =1 and chosen in such a way that
A functions. The reason is simply that a general rotation will+ o'm’ + ¢"m”=n+7'n’+ 7'n"=0. There is only one pos-
always break the symmetry of the groDp and hence intro-  sible restriction to this formula: In the case=0 orn=0 the
duce functions that are outside the setdofunctions. There o’s or 7's are not uniquely defined. This causes thgS8m-
is, however, a restricted set of rotations that leave our spadeols to differ if and only ifl+1'+1” is an odd integer, in
of functions invariant. This set consists of the elements of thavhich case the sign changes. To avoid this one should if

cubic groupO. In order to prove this we only need to show possible choose the andn to be nonzero by taking a suit-
that this is true for two generators of this group, which areable permutation of th& functions.

) 2— 5O,mm’ m'~ 50,mm’ m’

X

AL Q7 H=AL Q). (A2)
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