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We consider a two-spin model, representéassicallyby a nonlinear autonomous Hamiltonian system with
two degrees of freedom and a nontrivial integrability condition, gmaintum mechanicallyy a real symmetric
Hamiltonian matrix with invariant blocks of dimensionalitigs= %I (I+1),1=1,2,... . In the six-dimensional
parameter space of this model, classical integrability is satisfied on a five-dimensional hypersurface, and level
crossings occur on four-dimensional manifolds that are completely embedded in the integrability hypersurface
except for some lower-dimensional submanifolds. Under mild assumptions, the classical integrability condition
can be reconstructed from a purely quantum mechanical study of level degeneracies in finite-dimensional
invariant blocks of the Hamiltonian matrix. Our conclusions are based on rigorous resul{s=fdrand on
numerical results foK =6,10.[S1063-651X98)13711-X]

PACS numbds): 05.45+b, 75.10.Hk, 75.10.Jm

I. INTRODUCTION reIations[S“,Sﬁ]zih&ulEyeaMqu. Their time evolution
is governed by the Heisenberg equation
One of the most widely studied indicators of quantum
chaos can be obtained via the statistical analysis of energy .
level spacings. Generically, the level spacings of quantized d_S: I—[H S], 1=1,2 @)
integrable systems tend to be well described by an exponen- dat #- "7 o
tial distribution (Poisson statistigs whereas quantized non-
integrable systems tend to have a distribution in which the ¢ poin spins have the same quantum mechanical length
probability of very small spacings is suppres$@tigner sta- Jo(o+1) (e=3%,12,...), thediscrete symmetry group of
tistics due to the phenomenon of level repulsion. The levely Hamiltoniari(,l)ﬁi’s D éSz whereD.. contains all the
turbulence such as exists in quantized nonintegrable systerﬂv%fold rotationsCe a=2X y z about th2e coordinate axes
can be simulated by the eigenvalues of random matrices WitandSz(E P) is the2 ,ermut,at,ion rouD of the tWo SpIns Th,e
specific distributions of elementg.g., Gaussian orthogonal characteré of this grpoup are disp?laye% in Tabls] pIns.
ensemblg[1,2]. : .
The statistical nature of this indicator precludes its use for T_he use of s_ymmetry-adapt_ed basis vectors V.V'th tran_sfor-
mapping out the regions of integrability in the paramete mation properties corresponding to the eight different irre-

r, . . o
space of Hamiltonian systems. However, determining théjUCIble representatiorfs of D,®S, brings the Hamiltonian

conditions for the occurrence of level degeneracies, on whichnamx into block-diagonal form:

the outcome of the statistical analysis depends, proves to be

useful for precisely that purpose. H= @ Hg. 3)
Here we show for a specific model system how the Ro

(known) classical integrability condition in a six-dimensional

(6D) parameter space can be reconstructed, under mild agtqre exist invariant subspaces with dimensionalities
sumptions, from a purely quantum mechanical study of the_ 1 35 10, . in 16 different realizations for four different
manifolds(in the same parameter spasehere at least tWo \51es of the spin quantum numberas illustrated in Table
energy levels are degenerate. Il. The caseK =1 is exceptional.

Practical considerations dictate that we use a model sys-
tem where the Hilbert space splits into finite-dimensional TABLE I. The characters of the irreducible representatiBref
invariant subspaces. However, the significance of the result[ﬁ rou D'®52 P
presented here transcends this restriction and suggests that 9rouP=2%=2-
the concept of integrability remains meaningful albeit more s, E Cc. c, CcC P pcZ pPCl PC
subtle for quantum systems with few degrees of freedom > 2 2 2 2 2 2

[3,4]. Al1S 1 1 1 1 1 1 1 1
We consider two quantum spit%, S, in biaxial orien-  A1A 1 1 1 1 -1 -1 -1 -1
tational potentials interacting via a biaxial exchange couBi1S 1 1 -1 -1 1 1 -1 -1
pling. The Hamiltonian reads B1A 1 1 -1 -1 -1 -1 1 1
1 B2S 1 -1 1 -1 1 -1 1 -1

— Qe a2 ) 2 B2A 1 -1 1 -1 -1 1 -1 1

3 a=§>;yz SIS+ R ALSHHS)T) @ gog 1 -1 -1 1 1 -1 -1 1

B3A 1 -1 -1 1 -1 1 1 -1

The spin operator§ =(S,5/,S) satisfy the commutation
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.'I"ABLE I plmen3|onalltlesK of the invariant subspa.ces per- Ua=Ja(Jat I+ 3) + (A= AR J,+ (A~ A

taining to the eight symmetry classRf eigenstates for spin quan-

tum numbersr<4. —(A,—Ap)(A,—A,), aBy=cycl(xy2). 9

R\a 3 1 3 2 3 3 3 4 Hence, in the 6D parameter space of this two-spin model

A1S 3 1 6 3 10 6 15 the classical integrability cpndition ?s satisfied on a 5D mapi-

ALA 1 3 1 6 3 10 6 fold. Integrals of the motion of higher-degree polynor_nl_al

B1S 1 1 3 3 5 5 10 10 form or of nonpolynomial form cannot be_ ruled out, but it is

B1A 1 1 3 3 6 5 10 unlikely that any other hypersurfgce of mtegrablhty would
have escaped the numerical studies of this mpdd&]. Ad-

B2S 1 1 3 3 6 6 10 10 ditional integrability manifolds of dimensionalities four or

B2A 1 1 3 3 6 6 10 less remain an intriguing possibility but do not interfere with

B3S 1 1 3 3 6 6 10 10 any conclusions reached in this study.

B3A 1 1 3 3 6 6 10

lll. LEVEL-CROSSING MANIFOLDS

Il. CLASSICAL INTEGRABILITY MANIFOLD Does the integrability conditioi7) of the classical two-

In the limit #—0, c—=, i\/o(o+1)=s, the operators SPIN model(1) have any bearing on the presence or absence
S* become the components of the classical spin vector witl9f level degeneracies in low-dimensional invariant subspaces

fixed lengths [6], of the corresponding quantum two-spin model? The sub-
spaces with a single energy levéd € 1), which are realized
S=(S',S,S) =s(sin 9, cos g, ,sin 9, sin ¢ ,cos ), for o=<2, are uninteresting in this context. The next lowest

(4) subspace dimensionality i§=3. The occurrence of level
degeneracies for the parametric Hamiltoni@nwill now be
and Eq.(2) turns into Hamilton’s equation, analyzed on a rigorous basis for all 16 invariant subspaces
with K= 3. Their entries are highlighted in Table II.
95 _ M H =1,2 5
dt -5 Xﬁ_{ Sk =1 © A. Parametric representation for K=3
o B ) _ The most general real symmetricx®3 matrix has six in-
where {S", S} =~ 62 €45, are the Poisson brackets gependent elements. For the purpose of studying level de-

for spin variables. Each classical sy is expressible in  generacies, it is sufficient to consider matrices with zero
terms of two canonical coordinates trace:

pi=scosd,, q=¢, =12 (6) 2h b d

<
Il
o
i
>
o

The Hamiltonian(1), now interpreted as a classical en- (10

ergy function, thus specifies an autonomous system with two d c —e-h

degrees of freedom. Integrability of that system requires the

existence of a second integral of the motion, i.e., an analytidhat leaves five independent elemebtg,d,e,h and thus
function | of the spin componentS| with the property simplifies the analysis because the characteristic polynomial

{1,H}=0. now has a vanishing quadratic term:
A systematic search for a second invariant in the form of
a degree-two polynomial yielded two distinct nontrivial so- M —xE|=x3—Bx+C=0. (11

lutions, provided the six parameters satisfy the condifion

The discriminant has the form
A—A)(A—A)(A,—A,)+ J2(A;—A.)=0.
(A AN A=A (A=Al aﬁy:CEyd(xyz) A=Ay - D=4B%-27C?, (12)

If there is no single-site anisotropp,=A,=A,, then the
second integral of motion reads

with coefficients

B=b%+c2+d?+e?+3h?,

1 2 2 2 (13)
== 2 1SSy 2 JA(SDP+(S5)%, C=h(2e?+2¢2—b?—d?—2h?) + e(d?—b?) — 2bcd.
aBy=cycl(xyz) a=Xyz
8
® The zeros oD coincide with the points of level degeneracy
otherwise it has the form in M. This is evident in the product form
I= > 0g.5'S;, D:H (Xi —Xp)? (14
a=Xyz i<k
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of the discriminant in terms of the roats of Eq. (11). Since TABLE Ill. 2D intersections of the 3D level-crossing manifold
D is non-negative and depends smoothlylpo,d,e,h, its 7 wit_h the 4D coordinate hyperplane_s. The two elements of Eq.
partial derivatives must also vanish at all points of level de-(10 which play the role of parameters in each case are marked by

generacy: asterisks.
oD b c d e h
—=12B22b—54C(—2bh—2eb—2cd)=0,
b 26— d?
0 O * *
6e
oD 1 [ 2.2
— =12B22¢—54C(4hc—2bd) =0, 0 * 0 * *3vettc
o bh?—2e?
* 0 0 *
JD 6e
— =12B%2d—54C(—2dh+2ed—2cb)=0, (15 b2— 2
ad * * +b 0 +
3c
dD vabd 1 b2-d?
— =12B?2e—54C(4eh+d?—b?)=0, * —_— ¥ +— 0
oe ( : VoZ+d? V2 b2+ d?
£=12826h—54C(2e2+ 2c2—b?—d?-6h?)=0
odh : where
These additional conditions simplify the search for zeros of 4 [e(b%+d?) b2—d?
D. C=0 impliesB=0 and vice versa. This case describes =3 2 + Ze | (19

the threefold level degeneracytat c=d=e=h=0. Hence-
forth we assum@&+0 andC+ 0 with no loss of generality. o )
The five relationg15) can then be written in the more com- If £€>0 (§<<0) then it is the highestiowes) level that re-

pact form mains nondegenerate. A threefold degeneraey®) occurs
only at the pointbo=c=d=e=h=0.
2B2 —bh—be—cd 2hc—bd —dh+ed—bc Do the points withé>0 and the points witlé<0 form
9C b = c = d connected regions on the level crossing manifold? To inves-
tigate this issue we consider the map described by(Eq.
4eh+d?—b? 2e?+2c?—b2—d?—6h? between thel§,d,e) space and the 3D level crossing mani-
= = - (18 fold in (b,c,d,e,h i is si
2e 6h old in (b,c,d,e,h) space. This map is singular on the three

planese=0, b+d=0, b—d=0, which divide the b,d,e)
Inspection shows that only two of the relatiofi6) are  Space into octants. Octants which share a face quadrant
independent, and th@ =0 holds wherever Eq16) is sat- ©Of @ coordinate planehave ¢ values of opposite sign, and
isfied. The points of level crossing are thus confined to a 3¥ctants which share only an edgealf a coordinate axjs
manifold in (b,c,d,e,h) space. This manifold can be param- have¢ values of equal sign.

etrized by three of the five elements. Fo£ 0 andb+ +d For a point p,d,e) approaching any one of the three
we have planes that separate octants, the imagebiie,d,e,h) space

diverges, but for a pointk(,d,e) approaching a line where
any two of the three separating planes intersect, the image
=@ " ee (17 may or may not diverge.
Consider smooth trajectories of points,d,e) that con-
Viewed on any of the five 4D coordinate hyperplanes,N€Ct two octants across one of these special lines. Inspection
where one of the elementsc,d,e,h is equal to zero, the shows that any trajectory connecting octants with a common
level-crossing manifold reduces to two or three 2D surfaced@ce has a divergent image. However, there do exist trajec-

Parametric representations of all eight such surfaces af@Mi€s with nondivergent and continuous images between any
given in Table Ill. two octants that have only an edge in common.

For example, seb+d>0 and consider trajectories
—0, b—d—0 with e/(b—d)=u+#0 toward the edge of four
octants. Along such a trajectory we have

In a three-level system, any twofold degeneracy either
involves the upper two levels or the lower two levels. How b  bu 4bu  2b
does this distinction manifest itself in the structure of the c=buy,
level crossing manifold? The eigenvalues of the malvix
for points on the level crossing manifold can be written in
the form Octants that are diagonally across the edge have either both

u>0 oru<0. Hence they are connected by trajectories with
(%o X Xa) = | £— Eg B Eg (19  finite ¢,h and with no change of sign i& No such trajecto-
1:72,73 ro2% 2% ries exist between adjacent octants.

_ 2bde _ b*—d? 2e?(b2+d?)

(b2_d2)2

B. Level crossing labels

hzﬁ—?, &= 3 +@. (20)
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TABLE IV. Dependence okg=Tr Hg and of the five indepen- 15
dent matrix elements dl=HZ—\g on the six parameters of Eq. X
(2) for four invariant blocks of Eq(3) with K= 3. 1t

AN=2(A+A,+A)I3 05

Hiis b=—(J,+J,)IV2 c=(A—A))/2
d=Jy—J)V2 e=-], ey of
h=(A+A))/6—A,/3
N=4(A+A+A) 0%
H31A b=—3(J+J,)/V2 c=3(A—A))2 a4l
d=3QJ,—J)/vV2 e=3],
h=(A+A)2—A, 15 . . . . . . .
2 415 1 05 0 0.5 1 1.5 2
A=11(A+A)/6+7A,/3—5],/3 Jy
Hais b=—v3(J,+J,) c=V3(A—A))/2
d=J,—J, e=(A+A))2—A,+2], FIG. 1. The dashed curves are level crossing lines in the reduced
h=(A+A,)/3—2A,/3+3,/3 parar_neter spacel{,J,,A) prOJected ongo the_ly,JZ) planezfor
two invariant blocksHE with K=3: Hj;, (circles and Hg;g
A=11(A+A))I6+TA,I3+53,/3 (squares The solid lines represent the integrability hyperboloid at
H21a b=v3(Jy—J,) c=vV3(A—A))/2 |A|=0,0.3,0.5,0.6,0.7,#2,0.9,1.1,1.4. The pentagons mark sym-
d=—J3—J, e=(A+A))2—-A,—2], metry points ofH.

h=(A+A,)/3—2A,/3- 3,13

23307 (I5+3)) 32
JdyJ;

A+A—2A,=
All this demonstrates that the 3D level crossing manifold
consists of one sheet fg<0 and one sheet fof>0, con-

Either relation can be replaced by the classical integrabilit
nected only at the poirti=c=d=e=h=0. I ! P y ical integrabiity

condition (7).
We have determined that in all 16 invariant subspaces
C. Embedment in classical integrability manifold with K=3 the conditiong17) for the occurrence of a level

These results can now be used to locate all level Crossinq%egeneracy imply that the classical integrability condin

in the invariant blocks of Eq3) with K =3. Table 11 iden- S satisfied. Geometrically speaking, the classical integrabil-

tifies 16 such blocks, two for each symmetry class. The thre{aty condition is satisfied on a 5D hypersurface in 6D param-

eigenvalues of% on the level crossing manifold are then €ter space. In each of the 16 invari&it 3 subspaces d,
9 R 9 level crossings occur on a distinct 4D manifold. The result of

our calculation is that all 16 4Bevel-crossing manifoldare
+2\g&, (21) embedded in the 5@lassical integrability hypersurfacef
the 6D parameter space.

1 1
(ElaE21E3)=<§,_§§,_§§

with & given in Eq.(19). Table IV expressesg=Tr Hg and D. Shape fork=3
the matrix elements,b,c,d,e,h in terms of the six Hamil-

tonian parameters for four of the 16 invariant subspaces of FOr @ graphical representation of the level crossing mani-
Eq. (3) with K=3. folds embedded in the integrability manifold we use the re-

duced 3D parameter space spanned oy, ,A,— A, =2A at
=1, A+A,=0,A,=0 [9]. Here the integrability condi-
tion (7) reads

Consider, for example, the matrit3, , pertaining to the
symmetry clas®\1A for spin quantum numbes= 3. If we
take one of the relation€l6) which must be satisfied at all

points of level crossing, A(1+J§—2J§_2Az):0 (24)

c(2e’+2¢?—b?~d*~6h%)=6h(2ch—bd), (220  and is satisfied on two intersecting 2D surfaces—the plane
A=0 and a hyperboloid. In any plan&+0, integrability

and express the matrix elements in terms of the Hamiltoniaihus holds on a pair of hyperbolic curves. Several such lines
parameters foH3,,, we find that it is equivalent to the are shown in Fig. 1. The two intersecting straight lines per-
classical integrability conditiofi7). Hence no level crossings tain toA=+1V2. . _ .
occur inH3, 4 if the classical system is nonintegrable. In the  The level-crossing manifolds are lines iny(J;,A)
6D parameter space of EL), the points of level degeneracy SPace, embedded in the 2D integrability manif(2e). Table
pertaining tOH/a.\lA are thus confined to a 4D manifold which V gives parametric representations of the level-crossing lines

is determined, according to E€L7), by the two relations in (Jy,J;,A) space for four of the 1643 blocks with K

=3.
The dashed curves in Fig. 1 represent projections onto the
(J2-37)J2 - ing i ini
A 1 Tx Yy)vz (Jy,J;) plane of the pairs of level-crossing lines pertaining
SRR AR N [V F to the invariant blocksH3,, and H3,5 of Eq. (3). In
(23
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TABLE V. Level crossing lines withé>0 (upper sign and & C,, in the characteristic polynomial
<0 (lower sign in the reduced parameter spadg (J,,A) of four

invariant blocks of Eq(3) with K=3. | % ‘
B—\E|= Cih 25
=2 C (25
Hi 12 A +(1-32)
ALS & Vi+J5 B V2(1+32) vanish[11]. They are sums of products of up K and K
—1 matrix elements, respectively. This condition is equiva-
, V2, +(1-32) lent to thezK(K— 1) conditions that all minorkm;;| vanish.
Haia = > A= ——= The equivalence of the two alternative criteria alerts us to the
V14 N " .
1+3y 2(1+3y) fact that the condition€;=C;=0 are compound condi-
tions, each one equivalent to multiple conditions of the kind
2 2 ’
H2, e L) o =200 m|=0[12]
V10+163,+ 1OJ§ V10+163,+ 10]§ In the context of the two-spin model, all matrix elements
are functions of six Hamiltonian parameters. Not 2 (K
T (1-43+ D) B t2(1—J§) —1)—1 relations which determine the level-crossing mani-
H31a JZ:—VVZ A= 10— 16)1 1002 fold are independent any more. All evidence suggests that
v10-16J,+10J) oy there remain exactly two independent relations, which then

describe a 4D manifold on the 5D integrability surface in 6D
parameter space, no matter what the matrix dimensionlity
(Jy.J;,A) space, the two lines of each pair wrap around thds.

integrability hyperboloid in such a way that one is the reflec- It is expected that the level crossing manifold of a system
tion image of the other with respect to thg axis. Points of ~ with K levels (E;<E,=<---<E) consists ofk —1 distinct
intersection of the level crossing lines with planes const 4D sheets where levels andk+1 are degenerate. In the

are marked as fulfopen symbols forA>0 (A<O0). caseK =3 we have indeed identified two sheets and labeled
We have investigated the level crossing manifolds for alithem by the sign of the energy parameger
16 invariant blocks oHg with K=3 in the reduced param-  The two independent relations among the Hamiltonian pa-

eter space. There exists exactly one level crossing line withemeters which determine the 4D level crossing manifolds
£>0 and one with¢<0 in each case. All lines are infinite involve polynomials of degreegsK. The shape of the level
and different from each other. Each line crosses the plangrossing manifolds thus becomes increasingly convoluted as
A=0 at two of the four symmetry pointsl{,J;)=(*1, K grows Iarge_r. Any randomly picked path on the integrabil-
+1),(+1,¥1). These are the only points with=0 where Ity manifold will thus intersect a given 4D sheet of a level-
degenerate levels exist. Each level crossing line thus reprérossing manifold more and more frequently. As a conse-
sents the 1D slice in,,J,,A) space of the sheet witi ~ duence, the number of level crossing lines in the reduced

>0 or £&<0 of one of the 16 4D level crossing manifolds for Parameter space will increase more rapidly than the numbers
K=3. of levels present.

E. Dimensionality for arbitrary K F. Shape forK=6,10

Higher-dimensional Hamiltonian matrices exist in the Figure 2 depicts the level crossing manifold for the invari-
two-spin model(1) as invariant blocks of Eq(3) for K ant bIockHj‘\lA of Eq. (3) with K=6 levels in the reduced
=6,10,15,... in 16 different realizations each. A real sym-parameter spacel(,J,,A). The representation is similar to
metricK X K matrix B has3K (K + 1) independent elements. that used in Fig. 1 foK =3. The data shown here are mainly
On the level crossing manifold of dimensionalityd, (to be  the results of a numerical search for level crossings, but
determinegl two or more of theK eigenvalues are degener- some of the level degeneracies thus identified can be cor-
ate. The manifold. maps onto a manifol@ of dimension-  roborated analytically. The configuration of level crossing
ality d,=d, —1, where at least two eigenvalues are zero. lines is reflection symmetric with respect to the lings= A

Two vanishing eigenvalues imply that all mindrs;;| of =0 andJ,=A=0.
the determinantiB| are zero, which yieldK? relations Among the six levels with energieB;<E,<---<Eg,
among the matrix elemenk; that must be satisfied. Not all any occurrence of a level crossing can be characterized by
relations are independent. The requiremlemf|=|m;;| ren-  the position[k,k+1] of the two degenerate levels in the
ders K(K—1) relations redundant. Fd¢>2 anotherK level sequencgl3]. This label thus distinguishes five differ-
relations are redundant because of the conditiorent kinds of level crossings. All level crossing lines shown in
3iBjj(—1)""1|m;;|=|B|=0[10]. That leavegK(K—1) in-  Fig. 2 are labeled accordingly. In the integrability plae
dependent relations for a guaranteed pair of zero-energy lew=0, level crossings occur at the four symmetry points
els. Consequently, we hawy=K, i.e.,d, =K+1. ForK (Jy,J)=(£1,%£1),(x1,+1) as was already the case for
=3 we thus recover the results of the explicit calculation,K=3, and along the twddot-dashe lines J,=0 andJ,
namely, a 4D level crossing manifold in a 6D space of inde-=0.
pendent matrix elements. Both dimensionalities are reduced On the integrability hyperboloid we have identified ten
by one if we impose the condition of zero trace. level crossing linegdashed curvgsas compared to just two

In an alternative approach, the matBxhas two vanish- lines forK=3. All ten lines are infinite. Eight of them inter-
ing eigenvalues if the two lowest-order coefficierfs, and  sect the integrability plane at the four symmetry points men-
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FIG. 2. The dashed curves are level crossing lineslinJ, ,A) FIG. 3. Level crossing lines inl( ,J,,A) space for the invariant
space projected onto thd(,J,) plane for the invariant bIockI4A1A block HilA with K=10. The solid(dashed lines are projections
with K=6: The solid lines represent the integrability hyperboloid atonto the J,,J,) plane of 30 level crossing lines At>0 (A<0) on
A=0,0.5,1#2,0.9,1.4. The fulllopen symbols mark degeneracies the integrability hyperboloid. The dot-dashed lines are ten level
between levelk andk+1 (see legendat A>0 (A<O0). Level- crossing lines in the integrability plank=0. The thick lines out-
crossing lineg3,4] in the integrability planeA=0 are shown dot- line the projected hyperboloid. The pentagons mark the positions of
dashed. The pentagons mark the positions of two anomalous linga/o anomalous lines of level degeneracy perpendicular to the
of [3,4] degeneracy perpendicular to th, (J,) plane. (Jy.J,) plane.

tioned previously, where multiple degeneracies occur and are IV. QUANTUM INTEGRABILITY MANIFOLD
well understood[14]. The intersection pointgJ,=0, J, ) )
=+ 1A/72) for the remaining two lines do not involve mul- 1 he picture that emerges from this study of level degen-
tiple level degeneracies. eracies in a quantum Hamiltonian system with a nontrivial
Thus far the structure of the observed Ievel-crossin%dass'qal integrability condition may be summarlze_d as fol-
manifold is in full accord with the scenario outlined in Sec. 1OWs. (i) In the 6D parameter space of the two-spin model
Il E. However, there also exist two straight lines of level (1) lével degeneracies occur predominantly on smooth 4D
degeneracy oriented perpendicular to tt,0,) plane at structures(ii) For any given invariant blocklg with K lev-
(Jy==*1,3,=0). These two level crossing lines are not con- €ls of the Hamiltonian matrix3), this 4D structure consists
fined to the integrability manifold. They involve a degen- ©f K—1 sheets, where each sheet represents onef fir
eracy[3,4] at energyE=0 [5,15. Most important in the +1] of degenerate levels in the sequenBe<E,=--
context of our study is the dimensionality of this anomalous<S Ex - (iii) In addition to these 4D level crossing sheets there
level crossing submanifold. Unlike the other level crossing2lS0 exist lower-D structures in the 6D phase space on which
lines in the reduced parameter space, which are slices of 4l§vel degeneracies take pladgv) Level degeneracies in-
structures in the full 6D parameter space, they remain loweY0lVing more than two states, likewise, occur only on
dimensional. lower-D structures. For the most part they are observed at
The data for the invariant blocki3,, of Eq. (3), which ~ Symmetry points of the Hamiltoniaitv) All K—1 4D level
hasK =10 levels, confirm all the essential features that weCrossing sheets pertaining to any invariant bideg are
have already identified for the casks=3,6. New features Completely embedded in the 5D hypersurface on which the
that would necessitate any change in interpretation have néfassical integrability conditiof?) is satisfied. Only lower-D
been observed. Figure 3 shows that the number of levejtructures of the level crossing manifold exist elsewhere in
crossing lines has increased to ten on the integrability planBarameter space. _
A=0 (dot-dashed lingésand to 30 on the integrability hyper- These observations are remarkable in the context of the
boloid (solid lines atA>0, dashed lines ah<0). As pre-  elusive concept of quantum integrability. One might argue
dicted, this increase exceeds the increase in the number 8fat integrability in the sense of analytic solvability has no
levels significantly. meaning for any matribHg because algorithms that diago-
Every level crossing line on the hyperboloid intersects thehalize real symmetric X K matrices operate without any
p|ane A=0 at least once, either at one of the Symmetryrestrlctlons. The fact IS, however, that a universal switch is
points or at the intersection with a level crossing line in theencoded in allHg matrices that permits an abundance of
plane. The two anomalous level crossing lines observed fdevel degeneracies on a smooth 5D hypersurface in 6D pa-
K=6 at(J,=*1, J,=0) are present again. All level cross- rameter space and prohibits them almost everywhere else,
ing lines except the anomalous ones represent slices of whie., strictly everywhere else fd(=3 and everywhere else
must beK —1=9 distinct sheets that make up the 4D level except on lower-D submanifolds fé¢>3. As we carry out
crossing manifold in 6D parameter space. This manifold rethe analysis for more and more invariant blodig, the
mains fully embedded in the 5D classical integrability hyper-shape of this 5D hypersurface emerges with growing defini-
surface(7). Only the anomalous submanifold sticks out into tion as the smooth interpolation of an ever increasing set of
the classically nonintegrable region. 4D level crossing sheets.
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There is noa priori reason why the classical integrability thus the only degree-three polynomial that can accommodate
condition (7) should have any such clear-cut bearing on theall 16 level crossing manifolds fdk =3. When we add the
spectral properties of low-dimensional irreducible quantunpolynomial level crossing manifolds fd¢€=6,10,... to the
representations of the two-spin modgJ. On the basis of the  set of embedded manifolds, the uniqueness of the integrabil-
correspondence principle, one might surmise that the 5ty manifold applies to polynomials of higher and higher
classical integrability hypersurface is only relevant quantunyegree.
mechanically in an asymptotic sense, i.e., for systems with The relation(7) among the six Hamiltonian parameters is
o—. The fact is, however, that in some representationgy s ng less relevant for the quantum mechanical properties
with as few asK =3 levels the classical integrability condi- hap it is for the classical mechanical properties of the two-
tion results naturally as one of two conditions that, in COM-gpin model(1). It plays the role of aguantum integrability

bination, guarantee a level degeneracy. Another fact is thghanifold as much as it represents the classical integrability
(under mild assumptionshe classical integrability condition 5nifold.

(7) can be reconstructed analytically from the quantum me- e fact that almost all level crossings are confined to this
chanical condition for the occurrence of level degeneraciegp hypersurface in 6D parameter space is a compelling in-
within low-K invariant subspaces. _ dicator thatquantum integrabilityis a meaningful concept
If the level crossing manifolds are described by polyno-o systems with few degrees of freedom. However, its es-
mial equations among the Hamiltonian parameters as is thgance has yet to be elucidated. A different indicator of quan-
case here, then their compatibility with an integrability con-y,m integrability and nonintegrability, which is based on
dition that is also described by a polynomial is restricted racking individual eigenvectors along closed paths through
Bezout's theorenj16] states(effectively) that the maximum parameter space, is the subject of a study currently in

number of independent 4D manifolds which are _embEdde%rogress and promises to shed further light on this if&dk
simultaneously in two different 5D degreepolynomial hy-

persurfaces in projective spacen& Hence, the 16 indepen-
dent 4D level-crossing manifolds in 6D parameter space that
we have determined analytically f&r=3 representations in
Eq. (3) uniquely determine the 5D integrability manifold if it The work at URI was supported by NSF Grant No. DMR-
is described by a polynomial of degree less thd6=4. For ~ 93-12252. We are grateful to J. Stolze for useful comments
the situation at hand, the classical integrability manifold ison the manuscript.
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