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Effect of parameter mismatch on the mechanism of chaos synchronization loss
in coupled systems
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Using the example of two coupled logistic maps, we investigate the effect of nonidentical subsystems on the
bifurcations of saddle periodic orbits embedded in a symmetric chaotic attractor. These bifurcations determine
the process of loss of chaos synchronization. We show that if bifurcations conditioned by the symmetry of the
system take part in the synchronization loss process, nonidentity changes the bifurcation scenario of the
transition to a nonsynchronous regime. In this case, for example, the transition to the bubbling behavior is
determined not by bifurcation of an orbit embedded in the chaotic attractor but by the smooth shift of it and the
saddle-repeller bifurcation of the birth of new orbits in the vicinity of the quasisymmetric region.
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I. INTRODUCTION

Interacting identical systems may have completely ide
cal chaotic motions@1–9#. This regime of cooperative behav
ior is one kind of chaos synchronization@10–14#. The com-
plete synchronization regime corresponds to a cha
attractor that is located in the symmetric subspacex15x2 of
the whole phase space of the coupled systems. When
system exits the synchronous region, the chaotic attra
loses its stability in the direction that is normal to the sy
metric subspace. This occurs according to a determined
nario @15,16#. As a rule, the bubbling and the riddling tran
sitions accompany the loss of stability of the symmet
chaotic attractor@15–23#.

The loss of chaos synchronization is directly connec
with bifurcations of saddle periodic orbits embedded in
chaotic attractor@18,24–27#. In @26#, e.g., it was demon-
strated that the loss of phase synchronization begins wi
saddle-node bifurcation of an unstable periodic traject
embedded in the chaotic attractor. As a result, a specific
termittency regime~eyelet intermittency@26#! appears. In
@24# it was found that a subcritical pitchfork bifurcation o
the saddle point embedded in the symmetric chaotic attra
induces the riddling transition.

In @27# we investigated the bifurcation mechanism of t
loss of stability of synchronous chaotic motions in coup
logistic maps:

xn115l12xn
21e1~xn

22yn
2!, yn115l22yn

21e2~yn
22xn

2!
~1!

~wherexn ,yn are dynamic variables,l1,2 are controlling pa-
rameters of the partial systems, ande1,2 are coupling coeffi-
cients!. The following properties were proved for the sym
metric case (l15l25l ande15e25e).

In the system~1! the synchronization region has a fini
interval. The stability loss of the symmetric one-bound ch
otic attractorA0 in the normal direction occurs for both de
creasing and increasing coupling coefficiente. The synchro-
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nization loss is induced by bifurcations of saddle orb
2NC0 (2N is the period of the orbit,N50,1,2, . . . ) that are
embedded in the chaotic attractor and form its skeleton
the cases of coupling both increasing and decreasing the
of stability begins with a bifurcation of the saddle pointC0,
which induces the bubbling transition in the system.

At e decreasing the saddle pointC0 undergoes period-
doubling bifurcation. As a result it becomes a repeller a
the saddle period-2 orbit 2C1 appears in its vicinity outside
the symmetric subspace. This bifurcation induces the b
bling transition in the system. Fore decreasing further the
saddle orbits 2NC0 of higher periods undergo the same b
furcations. This enforces the bubbling phenomenon.

Then the saddle orbit 2C1 located outside the symmetri
subspace undergoes a bifurcation. It becomes stable a
pair of period-2 saddle orbits symmetric to each other
pears in its vicinity~for an inverse parameter change th
bifurcation is the subcritical pitchfork bifurcation!. The bi-
furcation of the orbit 2C1 induces the riddling transition in
the system. For a further decrease of the coupling the cha
attractor gradually ‘‘loses’’ its basins and transforms into
chaotic saddle.

In the case of the coupling increasing the pointC0 under-
goes a pitchfork bifurcation. As a result it becomes a repe
and in its vicinity a pair of saddle pointsC1

0 andC2
0 symmet-

ric to each other appear. This bifurcation induces the b
bling transition. For a further increase ofe other saddle or-
bits 2NC0 undergo period-doubling bifurcations similarly t
the case of coupling decreasing. The riddling phenomeno
the A0 basins is a result of the bifurcation of the sadd
pointsC1

0 andC2
0 . They become stable and in their vicinitie

saddle orbits of double period appear~for an inverse param-
eter change this bifurcation is the subcritical period-doubl
bifurcation!.

In the case of the coupling both decreasing and increa
the bifurcation scenarios of the synchronization loss are v
similar. The only difference is that at weak couplingC0 un-
dergoes a period-doubling bifurcation, but at strong coupl
5620 © 1998 The American Physical Society
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a pitchfork bifurcation. Other saddle orbits 2NC0 undergo
period-doubling bifurcations in both cases. For decreasine
the process of riddling basins ofA0 begins with the pitchfork
bifurcation of the orbit 2C1, but for increasinge with the
period-doubling bifurcations ofC1

0 andC2
0 .

For the investigation of the complete synchronizati
phenomenon identical interacting systems are usually use
mathematical models. Then, obtained in the framework
such an idealization, the results are applied to explain
behavior of real experimental systems. If the regime of s
chronization is stable and rough for the mathematical mo
it is observable in experiment. Intervals of synchronizat
on the coupling parameter are practically similar for identi
and slightly mismatched systems. In this sense the behav
of the identical and slightly mismatched systems corresp
to each other. However, when we investigate more ex
effects such as the mechanism of synchronization loss f
the point of view of bifurcations of saddle periodic orbi
embedded in the chaotic attractor, differences in the scen
for identical and slightly nonidentical systems can be o
served in some cases. This situation can take place whe
symmetry-breaking bifurcations take part in the process
synchronization loss. For example, this is the pitchfork bif
cation. From the bifurcation and catastrophe theory it is w
known ~see@28–30#! that the point of this bifurcation is the
cusp catastrophe. For a slight nonidentity between inter
ing systems the bifurcation is eliminated in certain wa
Nonidentity can qualitatively change the behavior of orb
depending on the parameters of the system.

According to the discussion above, we suppose that
very important to investigate the influence of the noniden
of coupled systems on the bifurcation scenario of the cha
synchronization loss. Some aspects connected with
asymmetry influence were discussed in@18,24,23#.

In this work we study the parameter mismatch effect
the bifurcation scenario of the synchronization loss of
system~1! with e15e25e and the detuning of the param
etersl1,2: l15dl and l25l ~where d is the detuning
parameter!. We consider the synchronization loss for bo
decreasing and increasing coupling coefficiente. For a small
value of d we investigate bifurcations of unstable period
orbits, which lead to breaking of the regime of nearly ide
tical chaotic oscillations of coupled systems. We dem
strate that for a slight nonidentity the elimination of bifurc
tions conditioned by the symmetry of the system leads t
change of the scenario of the transition from the regime
nearly identical chaotic oscillations to bubbling behavior.

For decreasinge a period-doubling bifurcation of the
saddle pointC0 induces the transition to the bubbling beha
ior. After this bifurcation a rebuilding of the phase spa
structure in the vicinity ofA0 occurs. Namely, in the quas
symmetric region the repellerC0 appears and outside th
region a saddle orbit 2C1 appears. Stable manifolds of th
saddle 2C1 lean on the repellerC0 and unstable manifolds
leave to the quasisymmetric region. The appearance of s
a structure changes the character of motions from ne
identical oscillations to the bubbling behavior.

For an increase of the coupling the scenario of the tra
tion to the bubbling behavior is different. With increasinge
first there is a gradual displacement of the saddleC0 in the
normal direction. It leaves the quasisymmetric region. Ot
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saddle orbits 2NC0 practically do not change their location
Then a saddle-repeller bifurcation takes place in the syst
In the vicinity of the quasisymmetric region a repellerCr

0

and a saddleCs
0 appear. For a further increase ofe the fixed

points diverge. The repellerCr
0 enters the quasisymmetri

region and the saddleCs
0 moves away from it. As a result th

structure of the phase space in the vicinity ofA0 is the same
as in the case of decreasing coupling. In the quasisymme
region there is the repellerCr

0 on which stable manifolds o
the saddlesC0 andCs

0 lean. Their unstable manifolds leav
the quasisymmetric region. This phase space structure
leads to the bubbling behavior. In the case of identical s
tems this structure appears as a result of the pitchfork bi
cation of the saddle pointC0.

In Sec. II we describe invariant and attracting sets of
system~1!. In Sec. III we demonstrate several regimes in t
vicinity of the synchronization region. An analysis of th
bifurcation of unstable periodic orbits that induce the loss
synchronization is considered in Sec. IV. In Sec. V we co
pare the results obtained with the symmetric case.

II. INVARIANT AND ATTRACTING SETS

We suppose that 0,l<2 and 0,d<1. Under these con-
ditions, it is easy to see that the square$(x,y)uuxu<l,
uyu<l% is invariant under the transformation~1!. In the fol-
lowing we shall restrict our dynamical system~1! to this
square.

Lemma 1.For the square$(x,y)uuxu<l,uyu<l% the in-
equality ux1yu<2l2ux2yu holds.

Proof. If x>y,

ux1yu5u2x2~x2y!u<2uxu2ux2yu<2l2ux2yu.

If y.x,

ux1yu5u2y2~y2x!u<2uyu2uy2xu<2l2ux2yu.

Theorem 1.If eP( 1
2 21/4l, 1

2 11/4l), the stripe

H ~x,y!Uux2yu<
122lu122eu

2u122eu

3S 211A11
4lud21uu122eu

~122lu122eu!2D J
~2!

is an attracting set. Ifd is close to 1, this is approximately th
stripe

H ~x,y!Uux2yu<
lud21u

122lu122euJ . ~3!

Proof. Subtracting the two equations of the system~1!
leads to

uxn112yn11u<ul12l2u1u122euuxn
22yn

2u

5lud21u1u122euuxn1ynuuxn2ynu.

Due to the lemma
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uxn112yn11u<lud21u1u122euz2l2uxn2ynuzuxn2ynu.
~4!

Thus

uxn112yn11u< f ~ uxn2ynu!, ~5!

where f (j)5lud21u1u122eu(2l2j)j for 0<j<2l.
The function is represented in Fig. 1 for the ca

u122eu2l<1. It is bounded by the increasing function

g~j!5H f ~j!, j<l

f ~l!, j.l,

which has the same fixed point asf in 0<j<l,

j̄5
122lu122eu

2u122eu S 211A11
4lud21uu122eu

~122lu122eu!2D .

~6!

From uxn112yn11u<g(uxn2ynu) and the monotonicity ofg
we get

uxn2ynu<g~n!~ ux02y0u!. ~7!

However, the iterates ofg converge toj̄ and thus

lim
n→`

supuxn2ynu<j̄, ~8!

which proves that the stripeux2yu<j̄ is an attracting set.
The detuning between parameters (dÞ1) destroys the

symmetry of the system~1!. However, Theorem 1 shows tha
in slightly nonidentical subsystems and suitable coupl
constants, the two systems approximately synchronize.

FIG. 1. Plot of the functionf (j).
g

III. DYNAMICS IN THE VICINITY OF
THE SYNCHRONIZATION REGION

In this section we present an ‘‘experimental’’ descriptio
of oscillating regimes in the asymmetric system~1! depend-
ing on the coupling coefficiente at l51.56. This value ofl
corresponds to the one-bound chaotic attractor in the in
vidual system. In the framework of the present descript
we shall call the chaotic regime synchronous ifuxn2ynu
,D at any moment of timen, whereD is a suitable given
value that is small with respect to the intensity of the chao
oscillation. In the following we shall taked>0.995 andD
50.01. This condition allows us to evaluate the interval
values of the parametere, where for the fixed value of the
detuningd the systems demonstrate nearly identical chao
oscillations. Figure 2 shows the plot of maximal valuesuxn
2ynu for n510 000 as a function ofe @curve ~a!#. The
straight line indicates the threshold valueD. The dashed line
@curve ~b!# gives the theoretical asymptotic bound onuxn
2ynu obtained using Theorem 1. It is quite good in th
middle of the synchronizing interval, but it fails at the e
tremities of this interval.

From Fig. 2 we can see that the coupled systems h
almost identical trajectories in the interval ofe values from
approximately 0.2 to 0.55. The difference between the s
variables does not exceed the given thresholdD50.01.
When e leaves this interval of values,uxn2ynu increases
rapidly. Figures 3 and 4 represent time series (xn2yn) when
e decreases and increases, respectively.

Decreasing the coupling constant, we observe a smo
transition from the synchronous chaotic oscillation@Fig.
3~a!# to the bubbling behavior@Fig. 3~b!#. With a further
decrease of the coupling the bubbling behavior becom
more developed. Then a period-2 out-of-phase oscillation
gime appears@Fig. 3~c!#. The time of the transient process
the stable period-2 orbit has a sensitive dependence on
initial condition and it can reach several 106 iterations.

Increasing the coupling, we observe an almost ident

FIG. 2. Plot of the maximum valuesuxn2ynu for n510 000 as a
function of the coupling parametere at l51.56 andd50.995 ~a!.
The straight line indicates the threshold valueD50.01. The dashed
line ~b! gives the theoretical asymptotic bound onuxn2ynu obtained
using theorem 1.
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FIG. 3. Time series (xn2yn) of the system
~1! at d50.995 andl51.56 for ~a! e50.22, ~b!
e50.157, and~c! e50.143.
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process of loss of chaos synchronization if it is estimated
phase portraits and time series (xn2yn) ~Fig. 4!. The bub-
bling behavior is also observed in the system, which is
tensified with increasinge. After this the transition to stable
fixed point outside the quasisymmetric region takes pl
@Fig. 4~c!#. The time of the transition process to the stab
fixed point has the same sensitive dependence on the in
conditions as in the case of weak coupling.

Comparing the behaviors of the system~1! at d50.995
and d51 @27#, we see a good qualitative corresponden
The regime of complete synchronization correspond
nearly identical chaotic oscillations. The bubbling transitio
in the symmetric system correspond to the appearance o
bubbling behavior in the system with mismatch. Furth
more, the parameter of coupling changing the same st
orbits appears in both the symmetric and asymmetric s
tems. In the asymmetric systems there are no riddled ba
but one can observe the sensitive dependence of the tr
tion process time on initial conditions.

However, comparing the results quantitatively, one ne
to take into account the following. For decreasing coupl
the value uxn2ynu exceeds the chosen threshold valueD
nearly at the same value ofe that corresponds to the bub
bling transition in the identical systems. For increasing c
pling the corresponding values ofe are very different. Below
we will show that this difference of changing of left and rig
boundaries of the synchronization interval is a result of
difference of behavior of unstable periodic orbits embedd
in the chaotic attractor, which takes place for decreasing
increasinge. This difference appears as a result of the elim
y
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nation of the bifurcation conditioned by the symmetry of t
system. Let us consider the behavior of some saddle peri
orbits embedded in the chaotic attractorA0 when chaos syn-
chronization is lost.

IV. BEHAVIOR OF UNSTABLE PERIODIC ORBITS
FOR A LOSS OF CHAOS SYNCHRONIZATION

As it was mentioned above, atd51 andl51.56 the one-
bound chaotic attractorA0 located in the symmetric subspac
xn5yn corresponds to the regime of chaos synchronizati
For coupling both increasing and decreasing the saddle o
2NC0 embedded inA0 undergo bifurcations that lead to
loss of chaotic synchronization. In the cases of coupling
creasing and decreasing the bubbling transition is determ
by different bifurcations of the saddle pointC0. For decreas-
ing e it undergoes a period-doubling bifurcation, but for i
creasinge the pitchfork bifurcation. Let us consider the in
fluence of the nonidentity on the bifurcation scenario
coupling both increasing and decreasing.

A small parameter mismatch (dÞ1) breaks the symmetry
of the system but does not lead to qualitative changes of
structure of the chaotic attractorA0. In the above-mentioned
interval of e ~0.2–0.55! the chaotic attractorA0 is slightly
deformed. The bound in which the phase point evolves
located near the symmetric subspace~we call this region the
quasisymmetric region!. In the interval of parameter value
considered the orbits embedded in the chaotic attractor
saddles.

Figure 5~a! shows saddle orbitsC0, 2C0, and 4C0 at the
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FIG. 4. Time series (xn2yn) of the system
~1! at d50.995 andl51.56 for ~a! e50.803,~b!
e50.843, and~c! e50.857.
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valuee50.22, which is within the region of chaos synchr
nization. We can see that they lie almost in the subsp
x15x2 .

Decreasing the coupling coefficient, the unstable perio
orbits do not leave the quasisymmetric region; their coo
nates are practically unchanged. Ate50.2038, 0.1648,
0.1599, 0.1615, and 0.1597 orbitsC0, 2C0, 4C0, 8C0, and
16C0, respectively, undergo period-doubling bifurcation
These bifurcations lead to a loss of chaos synchronizat
which begins with the bifurcation of the saddleC0. At e
50.2038 the saddle’s second eigenvalue is equal to21. As
a resultC0 transforms to a repeller. In the neighborhood
C0 a saddle periodic orbit 2C1 gradually appears. With the
decrease of coupling the orbit points smoothly go away fr
the quasisymmetric region. Now, in the quasisymmetric
gion, besides saddles there is a repeller. Outside this re
there is a saddle 2C1. In Fig. 5~b! stable (Ws) and unstable
(Wu) manifolds of the saddle 2C1 are built. As it is seen
from the figure, when the phase point enters a small ne
borhood ofC0 it is repelled from the quasisymmetric regio
along the stable manifoldWs. If the phase point reaches th
vicinity of the saddle 2C1 it returns along the unstable man
folds Wu to the quasisymmetric region. The appearance
such a structure of the repeller, the saddle, and its stable
unstable manifolds in the vicinity ofA0 changes the charac
ter of motions from nearly identical oscillations of systems
the bubbling behavior. After the bifurcation of the saddleC0

the regime of bubbling behavior appears in the system.
Then, at the above-mentioned values ofe saddle orbits

with higher periods (2C0, 4C0, 8C0, and 16C0) embedded
ce

ic
i-

.
n,

f

-
on

h-

f
nd

in the chaotic setA0 undergo period-doubling bifurcations
They transform to repellers and saddle orbits of double p
ods gradually appear in their respective neighborhoods@Fig.
5~c!#. These bifurcations intensify the bubbling phenomen

At e50.1483 a saddle-node bifurcation takes place. In
neighborhood of the saddle periodic orbit 2C1 the stable
periodic orbit 2CN

1 and the saddle periodic orbit 2Cs
1 appear

@Fig. 5~d!#. This bifurcation completes the process of the lo
of chaos synchronization. From any initial conditions ne
the chaotic setA0 the trajectory converges to 2CN

1 . How-
ever, the time of the transient process depends on the in
condition very sensitively and in a complicated way. T
transient process has the form of an on-off intermittency

Now let us consider the saddle periodic orbits embed
in A0 when the coupling coefficient increases. Whene ex-
ceeds the value 0.55 the saddle pointC0 exits the quasisym-
metric region. The other saddle periodic orbits stay the
Their coordinates remain practically unchanged. Figure 6~a!
shows the positions of the saddle periodic orbits. Con
quently, the attractor skeleton is deformed and protru
from the quasisymmetric region. This leads to an increas
the difference between the values of the dynamical variab
uxn2ynu for increasing e before the bifurcations of the
saddles. Ate50.8069 the saddle-repeller bifurcation~eigen-
value 11! takes place. The repellerCr

0 and the saddleCs
0

appear in the vicinity of the quasisymmetric region. As t
couplinge increases, these fixed points diverge. The repe
Cr

0 enters the quasisymmetric region and the saddle poinCs
0

moves away from it. From Fig. 6~b! one can see that as
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FIG. 5. Periodic orbits@C0 ~s!, 2C0 ~h!, 4C0 ~n!, 4C2 ~L!, 8C4 ~,!, 2C1 ~3!, 2Cs
1 ~1!, 2CN

1 ~d!# at l51.56 andd50.995 for~a!
e50.22,~b! e50.17 (Ws,Wu are stable and unstable manifolds of the saddle orbit 2C1), ~c! e50.157, and~d! e50.143. Dots inside symbols
indicate the precise location of the orbits. The dashed line is the symmetric subspacexn5yn .
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result, in the vicinity ofA0 the structure of the phase space
the same as in the case of decreasinge @see Fig. 5~b!#. The
quasisymmetric region contains the repellerCr

0 , on which
stable manifoldsW1

s andW2
s of the saddlesC0 andCs

0 lean.
Their unstable manifolds (W1

u andW2
u) lead to the quasisym

metric region. Formation of this structure leads to the b
bling behavior. With the change of the coupling ate
50.8353,0.8401,0.8386, and 0.8404 the saddle periodic
bits 2C0, 4C0, 8C0, and 16C0, respectively, undergo a
period-doubling bifurcation. They transform to repellers a
periodic orbits of double period appear in their neighborho
@Fig. 6~c!#. These bifurcations lead to a more developed b
bling behavior. Ate50.8448 the maximal eigenvalue of th
saddle fixed pointC0 becomes equal to21. As a resultC0

transforms to a stable fixed point and in its neighborhood
saddle orbit of doubled period 2C1

s gradually appears. For
reverse parameter change this bifurcation corresponds to
subcritical period-doubling bifurcation. Ate50.8494 the
fixed pointCs

0 undergoes a similar bifurcation. As a result
becomes a stable fixed point and in its vicinity the sad
periodic orbit 2C2

s gradually appears@Fig. 6~d!#. This bifur-
cation of the saddle fixed pointC0 completes the process o
the loss of chaos synchronization. From any initial con
-

r-

d
d
-

e

he

e

-

tions near the chaotic setA0 the trajectory converges to th
stable fixed pointC0. The time of the transient process d
pends on the initial condition very sensitively and in a co
plicated way.

V. COMPARISON WITH THE SYMMETRIC CASE

Let us consider the bifurcation diagrams on the base
the saddle pointC0 presented in Fig. 7. They show in deta
the similarities and differences of the main stages of
chaos synchronization loss process in the symmetric
nonsymmetric cases.

In the symmetric situation@d51, Fig. 7~a!#, for decreas-
ing coupling the saddle point undergoes a period-doub
bifurcation ate50.2043. As a resultC0 becomes a repelle
and in its vicinity the saddle orbit 2C1 appears. It is sym-
metric with respect to the coordinate transformati
(xn ,yn)↔(yn ,xn). At e50.1533 the maximal eigenvalue o
the saddle orbit 2C1 enters the unit circle through11. It
becomes stable and a pair of saddle symmetric orbits 2Cs

1

and 2Cs
2 gradually appear. The bifurcation of the sadd

point C0 induces the bubbling transition and the bifurcati
of the saddle orbit 2C1 induces the riddling transition@27#.
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FIG. 6. Periodic orbits@C0 ~s!, 2C0 ~h!, 4C0 ~n!, 4C2 ~L!, 8C4 ~,!, Cs ~3!, Cr ~1!, 2C1
s ~v!, 2C2

s ~x!, C0 node~d!# at l51.56
and d50.995 for ~a! e50.803, ~b! e50.83 (W1

s ,W1
u ,W2

s ,W2
u are stable and unstable manifolds of the saddlesC0 and Cs

0 , respectively!,
~c! e50.843, and~d! e50.857. Dots inside symbols indicate the precise location of the orbits. The dashed line is the symmetric su
xn5yn .
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In the asymmetric case@d50.995, Fig. 7~b!#, for decreas-
ing coupling the saddle pointC0 undergoes also a period
doubling bifurcation at almost the same valuee50.2038.
However, the saddle orbit 2C1 does not undergo any bifur
cation with a further decrease of the coupling. For we
asymmetry the loss of the chaos synchronization is te
nated at almost the same value of the coupling coeffic
~e50.1483! at which the riddling transition in the symmetr
system takes place, but as a result of another bifurcation
saddle-node bifurcation. The stable periodic orbit 2CN

1 and
the saddle orbit 2Cs

1 appear in the vicinity of the saddle orb
2C1. After this bifurcation the trajectory converges to 2CN

1

from any initial conditions near the chaotic setA0.
In the symmetric system@Fig. 7~a!#, for increasing cou-

pling the saddle pointC0 undergoes a symmetry-breakin
bifurcation. At e50.7957 its minimal eigenvalue becom
11. As a result the pointC0 transforms to a repeller in th
vicinity of which outside the symmetric subspace sad
fixed pointsC1

1 and C2
1 gradually appear. This bifurcatio

induces the bubbling transition in the system. Ate50.8467
the maximal eigenvalue of the saddle pointsC1

1 andC2
1 en-

ters the unit circle through21. They become stable fixe
k
i-
nt

he

e

points and in their vicinity saddle orbits of double perio
appear. This bifurcation of the saddle pointsC1

1 andC2
1 in-

duces the riddling transition in the system.
In the asymmetric system@Fig. 7~b!#, for increasing cou-

pling the saddle pointC0 smoothly exits the quasisymmetri
region. At e50.8069 ~at about this value the symmetry
breaking bifurcation takes place in the symmetric syste!
the saddle-repeller bifurcation~eigenvalue11! takes place.
The repellerCr

0 and the saddle pointCs
0 appear in the vicin-

ity of the quasisymmetric region. With a further increase
coupling the repeller enters the quasisymmetric region
the saddle point moves away from it. Then the bubbli
behavior appears. Ate50.8448 and 0.8494 the maximal e
genvalue of the saddle fixed pointsC0 andCs

0 , respectively,
is equal to21. C0 and Cs

0 become stable fixed points. I
their vicinity the saddle orbits of the double period 2C1

s and
2C2

s gradually appear. The bifurcation of the saddleC0 com-
pletes the process of chaos synchronization loss.

Thus, if the bubbling transition in the symmetric system
induced by ‘‘uneliminated’’ bifurcation~the period-doubling
bifurcation of the saddleC0 for a coupling decrease! weak
asymmetry does not influence the bifurcation scenario of
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transition to the bubbling behavior. If the bubbling transiti
is determined by the bifurcation conditioned by the symm
try of the system~the pitchfork bifurcation of the saddleC0

for the coupling increase! the weak nonidentity of the sub
systems eliminates it and the bubbling behavior appears
cording to another scenario. The determined structure of
phase space in the vicinity ofA0 forms not as a result of the

FIG. 7. Bifurcation diagrams of system~1! at l51.56 for~a! the
symmetry cased51.0 and~b! the nonsymmetric cased50.995.
,

E

-

c-
e

bifurcation of the saddleC0, but after the saddle-repelle
bifurcation of the birth of new unstable points, namely, t
repellerCr

0 and the saddleCs
0 . The completion of the pro-

cess of chaos synchronization loss occurs according to a
ferent scenario in the symmetric and nonsymmetric syste
For decreasing coupling a slight nonidentity eliminates
bifurcation of the saddle 2C1. In addition, the saddle-nod
bifurcation of the new stable period-2 orbit 2CN

1 takes place.
Starting from the vicinity ofA0, phase trajectories move t
this stable orbit. For increasing coupling the loss of synch
nization in the nonsymmetric system is completed by
bifurcation of the saddleC0. After the bifurcation the point
C0 becomes stable.

VI. CONCLUSIONS

In this work, using the example of two coupled logist
maps, we investigate the influence of nonidentity on
mechanism of the chaos synchronization loss from the p
of view of bifurcations of saddle orbits embedded in a ch
otic attractor. We demonstrate that if bifurcations con
tioned by the symmetry of the system take part in the s
chronization loss process, nonidentity changes
bifurcation scenario of the transition to a nonsynchrono
regime. In this case the transition to the bubbling behavio
determined not by the bifurcation of an orbit embedded
the chaotic attractor but by the saddle-repeller bifurcation
the new orbits in the vicinity of the quasisymmetric regio
The completion of the chaos synchronization loss can
conditioned also by the saddle-node bifurcation of appe
ance of a new stable orbit. We must note that on all stage
chaos synchronization loss a slight asymmetry of the sys
does not change qualitatively the structure of the ph
space, but the scenario of its formation becomes another
if at d51 bifurcations conditioned by the symmetry of th
system take place.
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