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Using the example of two coupled logistic maps, we investigate the effect of nonidentical subsystems on the
bifurcations of saddle periodic orbits embedded in a symmetric chaotic attractor. These bifurcations determine
the process of loss of chaos synchronization. We show that if bifurcations conditioned by the symmetry of the
system take part in the synchronization loss process, nonidentity changes the bifurcation scenario of the
transition to a nonsynchronous regime. In this case, for example, the transition to the bubbling behavior is
determined not by bifurcation of an orbit embedded in the chaotic attractor but by the smooth shift of it and the
saddle-repeller bifurcation of the birth of new orbits in the vicinity of the quasisymmetric region.
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I. INTRODUCTION nization loss is induced by bifurcations of saddle orbits
2NCO (2N is the period of the orbitN=0,1,2 . . .) that are

Interacting identical systems may have completely identiembedded in the chaotic attractor and form its skeleton. In
cal chaotic motion$1-9]. This regime of cooperative behav- the cases of coupling both increasing and decreasing the loss
ior is one kind of chaos synchronizatiph0—-14. The com-  of stability begins with a bifurcation of the saddle po®#,
plete synchronization regime corresponds to a chaotighich induces the bubbling transition in the system.
attractor that is located in the symmetric subspacex, of At e decreasing the saddle poi® undergoes period-
the whole phase space of the coupled systems. When thg,pling bifurcation. As a result it becomes a repeller and
system exits the synchronous region, the chaotic attraCtqfe saddie period-2 orbit@ appears in its vicinity outside

loses its stability in the direction that is normal to the sym-,o oummetric subspace. This bifurcation induces the bub-
metric subspace. This occurs according to a determined SCBTing transition in the system. Far decreasing further the

nario[15,16.. As a rule, the bubbling and the riddling ran- (440 o irs BEO of higher periods undergo the same bi-
sitions accompany the loss of stability of the symmetric : ; .
furcations. This enforces the bubbling phenomenon.

chaotic attractof15—23. e} ) .
The loss of chaos synchronization is directly connected | Nen the saddle orbit@" located outside the symmetric

with bifurcations of saddle periodic orbits embedded in theSUPSpace undergoes a bifurcation. It becomes stable and a

chaotic attractof18,24—27. In [26], e.g., it was demon- pair of. pe.riodl-zl s_addle orb_its symmetric to each other ap-
strated that the loss of phase synchronization begins with B8&rs in its vicinity(for an inverse parameter change this
saddle-node bifurcation of an unstable periodic trajector)})'furc?‘t'on is the Sl_chrlltl_Ca| pitchfork bifurcatipnThe bi-
embedded in the chaotic attractor. As a result, a specific inlUrcation of the orbit £ induces the riddling transition in
termittency regime(eyelet intermittency[26]) appears. In the system. For aflirther (,:i’e_crease. of the coupling the _chaotlc
[24] it was found that a subcritical pitchfork bifurcation of attractor gradually “loses” its basins and transforms into a

the saddle point embedded in the symmetric chaotic attractd@otic saddle. o _
induces the riddling transition. In the case of the coupling increasing the pditunder-

In [27] we investigated the bifurcation mechanism of the90€s @ pitchfork bifurcation. As a regultgt beco[)nes arepeller
loss of stability of synchronous chaotic motions in coupled@nd in its vicinity a pair of saddle points,; andC; symmet-
logistic maps: ric to each other appear. This bifurcation induces the bub-

bling transition. For a further increase efother saddle or-
Xns1=N1— X2+ €103 =YD,  Yni1=Na— Y2+ ex(y2—x?) bits 2YC° undergo period-doubling bifurcations similarly to

(1)  the case of coupling decreasing. The riddling phenomenon of

the A° basins is a result of the bifurcation of the saddle
(wherex,,y, are dynamic variables,, , are controlling pa- pointsC? andCY. They become stable and in their vicinities
rameters of the partial systems, and, are coupling coeffi- saddle orbits of double period appééor an inverse param-
cientg. The following properties were proved for the sym- eter change this bifurcation is the subcritical period-doubling
metric case X1=A,=\ ande;=e€,=¢). bifurcation.

In the system(1) the synchronization region has a finite  In the case of the coupling both decreasing and increasing
interval. The stability loss of the symmetric one-bound cha-the bifurcation scenarios of the synchronization loss are very
otic attractorA° in the normal direction occurs for both de- similar. The only difference is that at weak coupli6§ un-
creasing and increasing coupling coefficienfThe synchro- dergoes a period-doubling bifurcation, but at strong coupling
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a pitchfork bifurcation. Other saddle orbit$'@° undergo  saddle orbits PC° practically do not change their locations.
period-doubling bifurcations in both cases. For decreasing Then a saddle-repeller bifurcation takes place in the system.
the process of riddling basins 8 begins with the pitchfork In the vicinity of the quasisymmetric region a repellef
bifurcation of the orbit £!, but for increasinge with the  and a saddlélg appear. For a further increase othe fixed
period-doubling bifurcations o9 and C9. points diverge. The repelleE’ enters the quasisymmetric
For the investigation of the complete synchronizationregion and the saddig? moves away from it. As a result the
phenomenon identical interacting systems are usually used &&ucture of the phase space in the vicinityASfis the same
mathematical models. Then, obtained in the framework ofs in the case of decreasing coupling. In the quasisymmetric
such an idealization, the results are applied to explain theegion there is the repelle€? on which stable manifolds of
behavior of real experimental systems. If the regime of synihe saddlec® and C2 lean. Their unstable manifolds leave
chronization is stable and rough for the mathematical modele guasisymmetric region. This phase space structure also
it is observable in experiment. Intervals of synchronizationieags to the bubbling behavior. In the case of identical sys-
on the coupling parameter are practically similar for identicaliams this structure appears as a result of the pitchfork bifur-
and slightly mismatched systems. In this sense the behaviofSiiion of the saddle pOIre’.
of the identical and slightly mismatched systems correspond |, gec. || we describe invariant and attracting sets of the
to each other. However, when we investigate more exaclystem(1). In Sec. Il we demonstrate several regimes in the
effects such as the mechanism of synchronization loss fromicinity of the synchronization region. An analysis of the

the point of view of bifurcations of saddle periodic orbits yif rcation of unstable periodic orbits that induce the loss of
embedded in the chaotic attractor, differences in the Sce”a”;‘&/nchronization is considered in Sec. IV. In Sec. V we com-

for identical and slightly pon.iden'tical systems can be Ob'pare the results obtained with the symmetric case.
served in some cases. This situation can take place when the
symmetry-breaking bifurcations take part in the process of
synchronization loss. For example, this is the pitchfork bifur-
cation. From the bifurcation and catastrophe theory it is well We suppose that@\ <2 and 0< §<1. Under these con-
known (see[28-30) that the point of this bifurcation is the ditions, it is easy to see that the squdre,y)||x|<\,
cusp catastrophe. For a slight nonidentity between interacty|<\} is invariant under the transformatigf). In the fol-
ing systems the bifurcation is eliminated in certain ways.Jowing we shall restrict our dynamical systefh) to this
Nonidentity can qualitatively change the behavior of orbitssquare.

depending on the parameters of the system. Lemma 1.For the squard(x,y)||x|<\,|y|<\} the in-

According to the discussion above, we suppose that it i%quality|x+ y|<2\—|x—y]| holds.
very important to investigate the influence of the nonidentity  proof. If x=v,
of coupled systems on the bifurcation scenario of the chaotic
synchronization loss. Some aspects connected with the [Xx+Yy|=|2x—(Xx—y)|<2|x|—|x—y|<2\—|x—Y]|.
asymmetry influence were discussed 18,24,23.

In this work we study the parameter mismatch effect onlf y>X,
the bifurcation scenario of the synchronization loss of the
system(1) with €;=e€,=¢€ and the detuning of the param-
etersh;,:  N;=06N and A,=\ (where § is the detuning
parameter We consider the synchronization loss for both
decreasing and increasing coupling coefficienFor a small
value of § we investigate bifurcations of unstable periodic
orbits, which lead to breaking of the regime of nearly iden-
tical chaotic oscillations of coupled systems. We demon-
strate that for a slight nonidentity the elimination of bifurca- 4N|6—1||1—2¢]
tions conditioned by the symmetry of the system leads to a x| =1+ T oA A2
change of the scenario of the transition from the regime of (1-2x[1-2¢])
nearly identical chaotic oscillations to bubbling behavior. 2

For decreasinge a period-doubling bifurcation of the _ ) o )
saddle poinC? induces the transition to the bubbling behav- iS an attracting set. b is close to 1, this is approximately the
ior. After this bifurcation a rebuilding of the phase spaceStripe
structure in the vicinity ofA° occurs. Namely, in the quasi-
symmetric region the repelle€® appears and outside this [(x,y)
region a saddle orbit @' appears. Stable manifolds of the
saddle ' lean on the repelle€® and unstable manifolds . .
leave to the quasisymmetric region. The appearance of such Proof. Subtracting the two equations of the systéin
a structure changes the character of motions from near'lif}""dS to
identical oscillations to the bubbling behavior.

For an increase of the coupling the scenario of the transi-
tion to the bubbling behavior is different. With increasiag =\|6—1]+|1—2€||Xn+ Ynl[Xn—Ynl-
first there is a gradual displacement of the sadeflein the
normal direction. It leaves the quasisymmetric region. Othebue to the lemma

II. INVARIANT AND ATTRACTING SETS

[x+y|=[2y—(y—x)|<2]y|-]y—x|<2\ = |x—y].
Theorem 1If ee (3—1/4\,3+ 1/4\), the stripe

1—2\|1-2¢|

XY= 5124

(x,y)

()

x=yl=

NS—1]
1-2\|1-2¢€|]"

|Xn+1= Yo 1l SIN1 =gl +]1—2€|[x2— V7|
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FIG. 2. Plot of the maximum valués,—Yy,| for n=10 000 as a
function of the coupling parameterat A\=1.56 and5=0.995(a).
X+ 1~ Yne 2| SN S 1| +]1—2€l|2N = [Xn = Yal[[Xn— Ynl- The straight line indicates the threshold valie0.01. The dashed
line (b) gives the theoretical asymptotic bound|an—y,| obtained
using theorem 1.

FIG. 1. Plot of the functiorf(£).

Thus
I1l. DYNAMICS IN THE VICINITY OF

THE SYNCHRONIZATION REGION

- < - : : : -
[Xn+1=Ynea| < F(Xa=Yal), ® In this section we present an “experimental” description

of oscillating regimes in the asymmetric systéi depend-
wheref(£§)=\|6—1|+|1-2¢|(2\~ £)§ for O<¢<2\. ing on the coupling coefficient at A = 1.56. This value of

The function is represented in Fig. 1 for the casecqrresponds to the one-bound chaotic attractor in the indi-
|1—2€[2A<1. Itis bounded by the increasing function vidual system. In the framework of the present description
we shall call the chaotic regime synchronous|xf,—y,|

f(&), &<\ <A at any moment of time, whereA is a suitable given
g(f):[ ' value that is small with respect to the intensity of the chaotic
f(N), &>\, oscillation. In the following we shall také=0.995 andA
=0.01. This condition allows us to evaluate the interval of
which has the same fixed point &sn 0<é¢<\, values of the parameter, where for the fixed value of the

detuningé the systems demonstrate nearly identical chaotic

oscillations. Figure 2 shows the plot of maximal valles

— 1-2)\|1-2€ 4AN|6—1||1—2¢€] —Y,l for n=10000 as a function of [curve (a@)]. The

- T21—24 | m : straight line indicates the threshold vale The dashed line
©6) [curve (b)].glves the theoretical asymptong bound bq
—vy,| obtained using Theorem 1. It is quite good in the

middle of the synchronizing interval, but it fails at the ex-

tremities of this interval.

From Fig. 2 we can see that the coupled systems have
almost identical trajectories in the interval efvalues from
approximately 0.2 to 0.55. The difference between the state
variables does not exceed the given threshale 0.01.

_ — When € leaves this interval of valuegx,—y,| increases
However, the iterates af converge tof and thus rapidly. Figures 3 and 4 represent time series<y,) when
e decreases and increases, respectively.
. — Decreasing the coupling constant, we observe a smooth
lim sugx,—yq| <, ®)  transition from the synchronous chaotic oscillatiffig.
= 3(a)] to the bubbling behaviofFig. 3b)]. With a further
_ decrease of the coupling the bubbling behavior becomes
which proves that the stripex—y|<¢ is an attracting set.  more developed. Then a period-2 out-of-phase oscillation re-

The detuning between parameter§+1) destroys the gime appearfFig. 3(c)]. The time of the transient process to
symmetry of the systerfl). However, Theorem 1 shows that the stable period-2 orbit has a sensitive dependence on the
in slightly nonidentical subsystems and suitable couplingnitial condition and it can reach several®liferations.
constants, the two systems approximately synchronize. Increasing the coupling, we observe an almost identical

From|X,+1— Yn+1/=<9(X,—Ya|) and the monotonicity of
we get

%0 = Yal <9 (IX0—Yol)- (7)
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FIG. 3. Time seriesX,—Y,) of the system
(1) at 5=0.995 and\=1.56 for (a) €=0.22, (b)
-0 1 €=0.157, andc) e=0.143.
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process of loss of chaos synchronization if it is estimated byation of the bifurcation conditioned by the symmetry of the
phase portraits and time series,{y,) (Fig. 4. The bub- system. Let us consider the behavior of some saddle periodic
bling behavior is also observed in the system, which is in-orbits embedded in the chaotic attracét when chaos syn-
tensified with increasing. After this the transition to stable chronization is lost.

fixed point outside the quasisymmetric region takes place

[Fig. 4(c)]. The time of the transition process to the stable |\, BEHAVIOR OF UNSTABLE PERIODIC ORBITS
flxed_pomt has the same sensitive depe_ndence on the initial  FoR A LOSS OF CHAOS SYNCHRONIZATION

conditions as in the case of weak coupling.

Comparing the behaviors of the systdf) at §=0.995 As it was mentioned above, &t=1 and\ =1.56 the one-
and §=1 [27], we see a good qualitative correspondencebound chaotic attractdX® located in the symmetric subspace
The regime of complete synchronization correspond toX,=Y, corresponds to the regime of chaos synchronization.
nearly identical chaotic oscillations. The bubbling transitionsFor coupling both increasing and decreasing the saddle orbits
in the symmetric system correspond to the appearance of tt&'C° embedded inA° undergo bifurcations that lead to a
bubbling behavior in the system with mismatch. Further-loss of chaotic synchronization. In the cases of coupling in-
more, the parameter of coupling changing the same stablgreasing and decreasing the bubbling transition is determined
orbits appears in both the symmetric and asymmetric syspy different bifurcations of the saddle poi@f. For decreas-
tems. In the asymmetric systems there are no riddled basingg € it undergoes a period-doubling bifurcation, but for in-
but one can observe the sensitive dependence of the transireasinge the pitchfork bifurcation. Let us consider the in-
tion process time on initial conditions. fluence of the nonidentity on the bifurcation scenario for

However, comparing the results quantitatively, one needsoupling both increasing and decreasing.
to take into account the following. For decreasing coupling A small parameter mismatcld¢ 1) breaks the symmetry
the value|x,—Yy,| exceeds the chosen threshold valie of the system but does not lead to qualitative changes of the
nearly at the same value efthat corresponds to the bub- structure of the chaotic attractd®. In the above-mentioned
bling transition in the identical systems. For increasing coudinterval of € (0.2—0.55 the chaotic attractoA° is slightly
pling the corresponding values efare very different. Below deformed. The bound in which the phase point evolves is
we will show that this difference of changing of left and right located near the symmetric subspaeae call this region the
boundaries of the synchronization interval is a result of thequasisymmetric regignIn the interval of parameter values
difference of behavior of unstable periodic orbits embeddedonsidered the orbits embedded in the chaotic attractor are
in the chaotic attractor, which takes place for decreasing ansaddles.
increasinge. This difference appears as a result of the elimi-  Figure 5a) shows saddle orbit€®, 2C°, and 4C° at the
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FIG. 4. Time seriesX,—Y,) of the system
(1) at 6=0.995 and\=1.56 for(a) e=0.803,(b)
-0 4 €=0.843, andc) e=0.857.
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value e=0.22, which is within the region of chaos synchro- in the chaotic seA® undergo period-doubling bifurcations.
nization. We can see that they lie almost in the subspac®hey transform to repellers and saddle orbits of double peri-
X1=X3. ods gradually appear in their respective neighborh¢&its
Decreasing the coupling coefficient, the unstable periodig(c)]. These bifurcations intensify the bubbling phenomenon.
orbits do not leave the quasisymmetric region; their coordi- At e=0.1483 a saddle-node bifurcation takes place. In the
nates are practically unchanged. kt§0.20038, 3-1648' neighborhood of the saddle periodic orbiC® the stable
0-15099, 0.1615, and 0.1597 orbtt§_’, 2C7, 4C7, 8C, and  pariodic orbit % and the saddle periodic orbit? appear
#ﬁc ’ rt)g?pectl_vely,l unddergo lperloc]ic—dﬁubllng b”;‘]”ca,t'on_s' Fig. 5(d)]. This bifurcation completes the process of the loss
ese |u_rcat|o_ns ea FO a l0ss ol chaos sync ronizationkt chaos synchronization. From any initial conditions near
which begins with the bifurcation of the sadd®®. At e : 0 :
o ) ) ; the chaotic sef the trajectory converges toC%,. How-
=0.2038 the saddle’s second eigenvalue is equat 10 As ) i I
ever, the time of the transient process depends on the initial

a resultC? transforms to a repeller. In the neighborhood of . . . :
CO a saddle periodic orbit@! gradually appears. With the condition very sensitively and in a complicated way. The

decrease of coupling the orbit points smoothly go away fronfransient process has the form of an on-off intermittency.
the quasisymmetric region. Now, in the quasisymmetric re- N(?W let us consider the saddle periodic orbits embedded
gion, besides saddles there is a repeller. Outside this regid A~ when the coupling coefficient increases. Wheex-
there is a saddle@!. In Fig. 5b) stable (V%) and unstable ceeds the value 0.55 the saddle p@itexits the quasisym-
(WY) manifolds of the saddle @ are built. As it is seen Metric region. The other saddle periodic orbits stay there.
from the figure, when the phase point enters a small neighTheir coordinates remain practically unchanged. Figueg 6
borhood ofCP it is repelled from the quasisymmetric region shows the positions of the saddle periodic orbits. Conse-
along the stable manifold/®. If the phase point reaches the quently, the attractor skeleton is deformed and protrudes
vicinity of the saddle £ it returns along the unstable mani- from the quasisymmetric region. This leads to an increase of
folds W' to the quasisymmetric region. The appearance othe difference between the values of the dynamical variables
such a structure of the repeller, the saddle, and its stable af.—Yn| for increasinge before the bifurcations of the
unstable manifolds in the vicinity oA° changes the charac- saddles. Ate=0.8069 the saddle-repeller bifurcaticeigen-
ter of motions from nearly identical oscillations of systems tovalue +1) takes place. The repelle; and the saddl€?
the bubbling behavior. After the bifurcation of the sad@fe  appear in the vicinity of the quasisymmetric region. As the
the regime of bubbling behavior appears in the system.  couplinge increases, these fixed points diverge. The repeller
Then, at the above-mentioned valueseobaddle orbits C? enters the quasisymmetric region and the saddle mﬁnt
with higher periods (2°, 4C°, 8C° and 1&€°) embedded moves away from it. From Fig.(B) one can see that as a
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FIG. 5. Periodic orbit§ C° (O), 2C° (1), 4C° (A), 4C? (<), 8C* (V), 2C* (X), 2Ct (+), 2C}, (@)] at \=1.56 and6=0.995 for(a)
€=0.22,(b) e=0.17 (WS,W" are stable and unstable manifolds of the saddle o®#)2(c) e=0.157, andd) e=0.143. Dots inside symbols
indicate the precise location of the orbits. The dashed line is the symmetric subspage.

result, in the vicinity ofA° the structure of the phase space istions near the chaotic sé the trajectory converges to the
the same as in the case of decreasirigee Fig. ¥)]. The  stable fixed pointC®. The time of the transient process de-
quasisymmetric region contains the repel@}, on which  pends on the initial condition very sensitively and in a com-
stable manifold&\V andW; of the saddle€® andC? lean.  plicated way.

Their unstable manifoldsW/; andW3) lead to the quasisym-
metric region. Formation of this structure leads to the bub-
bling behavior. With the change of the coupling at
=0.8353,0.8401,0.8386, and 0.8404 the saddle periodic or- Let us consider the bifurcation diagrams on the base of
bits 2C°, 4CP 8C° and 1&°, respectively, undergo a the saddle poin€° presented in Fig. 7. They show in detail
period-doubling bifurcation. They transform to repellers andthe similarities and differences of the main stages of the
periodic orbits of double period appear in their neighborhoocdthaos synchronization loss process in the symmetric and
[Fig. 6(c)]. These bifurcations lead to a more developed bubfnonsymmetric cases.

bling behavior. Ate=0.8448 the maximal eigenvalue of the  In the symmetric situatiohd= 1, Fig. 7a)], for decreas-
saddle fixed poin€° becomes equal te- 1. As a resultC® ing coupling the saddle point undergoes a period-doubling
transforms to a stable fixed point and in its neighborhood théifurcation ate=0.2043. As a resul€® becomes a repeller
saddle orbit of doubled period’, gradually appears. For a and in its vicinity the saddle orbit@* appears. It is sym-
reverse parameter change this bifurcation corresponds to theetric with respect to the coordinate transformation
subcritical period-doubling bifurcation. Ae=0.8494 the (Xn.Yn) < (Yn.Xn). At €=0.1533 the maximal eigenvalue of
fixed pointC? undergoes a similar bifurcation. As a result it the saddle orbit 2" enters the unit circle through-1. It
becomes a stable fixed point and in its vicinity the saddldecomes stable and a pair of saddle symmetric orl@} 2
periodic orbit Z5 gradually appearfFig. 6(d)]. This bifur-  and 22 gradually appear. The bifurcation of the saddle
cation of the saddle fixed poii@® completes the process of point C® induces the bubbling transition and the bifurcation
the loss of chaos synchronization. From any initial condi-of the saddle orbit € induces the riddling transitiof27].

V. COMPARISON WITH THE SYMMETRIC CASE
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and 6=0.995 for (a) €=0.803,(b) €=0.83 (W5, W}, W5, W} are stable and unstable manifolds of the sad@®sand C2, respectively,
(c) e=0.843, andd) €=0.857. Dots inside symbols indicate the precise location of the orbits. The dashed line is the symmetric subspace

Xn=Yn-

In the asymmetric cageb=0.995, Fig. Tb)], for decreas- points and in their vicinity saddle orbits of double period
ing coupling the saddle poir€® undergoes also a period- appear. This bifurcation of the saddle poikts and C} in-
doubling bifurcation at almost the same valae-0.2038.  duces the riddling transition in the system.

However, the saddle orbit@ does not undergo any bifur- In the asymmetric systeffrig. 7(b)], for increasing cou-
cation with a further decrease of the coupling. For weakpling the saddle poin€° smoothly exits the quasisymmetric
asymmetry the loss of the chaos synchronization is termiregion. At e=0.8069 (at about this value the symmetry-
nated at almost the same value of the coupling coefficienbreaking bifurcation takes place in the symmetric system
(e=0.1483 at which the riddling transition in the symmetric the saddle-repeller bifurcatiof@igenvalue+1) takes place.
system takes place, but as a result of another bifurcation, thiehe repellerC’ and the saddle poir€? appear in the vicin-
saddle-node bifurcation. The stable periodic orb@2and ity of the quasisymmetric region. With a further increase of
the saddle orbit 2; appear in the vicinity of the saddle orbit coupling the repeller enters the quasisymmetric region and
2C. After this bifurcation the trajectory converges t€®  the saddle point moves away from it. Then the bubbling
from any initial conditions near the chaotic #&t. behavior appears. At=0.8448 and 0.8494 the maximal ei-

In the symmetric systerfFig. 7(a)], for increasing cou- genvalue of the saddle fixed poir®d andcg, respectively,
pling the saddle poinC® undergoes a symmetry-breaking is equal to—1. C° and Cg become stable fixed points. In
bifurcation. At e=0.7957 its minimal eigenvalue becomes their vicinity the saddle orbits of the double perio@2and
+1. As a result the poin€° transforms to a repeller in the 2C$ gradually appear. The bifurcation of the sad@fcom-
vicinity of which outside the symmetric subspace saddlepletes the process of chaos synchronization loss.
fixed pointsCy and C; gradually appear. This bifurcation ~ Thus, if the bubbling transition in the symmetric system is
induces the bubbling transition in the system. ét0.8467  induced by “uneliminated” bifurcatiorithe period-doubling
the maximal eigenvalue of the saddle poi@t% and C% en-  bifurcation of the saddl€® for a coupling decreagaveak
ters the unit circle through-1. They become stable fixed asymmetry does not influence the bifurcation scenario of the
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bifurcation of the saddleC®, but after the saddle-repeller
bifurcation of the birth of new unstable points, namely, the
repellerC? and the saddl€?. The completion of the pro-
cess of chaos synchronization loss occurs according to a dif-
ferent scenario in the symmetric and nonsymmetric systems.
For decreasing coupling a slight nonidentity eliminates the
bifurcation of the saddle @*. In addition, the saddle-node
bifurcation of the new stable period-2 orbiCﬁ takes place.
Starting from the vicinity ofA°, phase trajectories move to
this stable orbit. For increasing coupling the loss of synchro-
nization in the nonsymmetric system is completed by the
bifurcation of the saddI€®. After the bifurcation the point

C° becomes stable.

VI. CONCLUSIONS

In this work, using the example of two coupled logistic
maps, we investigate the influence of nonidentity on the
mechanism of the chaos synchronization loss from the point
of view of bifurcations of saddle orbits embedded in a cha-
otic attractor. We demonstrate that if bifurcations condi-
tioned by the symmetry of the system take part in the syn-
chronization loss process, nonidentity changes the
bifurcation scenario of the transition to a nonsynchronous
regime. In this case the transition to the bubbling behavior is
determined not by the bifurcation of an orbit embedded in
the chaotic attractor but by the saddle-repeller bifurcation of
the new orbits in the vicinity of the quasisymmetric region.
The completion of the chaos synchronization loss can be
conditioned also by the saddle-node bifurcation of appear-
ance of a new stable orbit. We must note that on all stages of
chaos synchronization loss a slight asymmetry of the system
does not change qualitatively the structure of the phase
space, but the scenario of its formation becomes another one
if at =1 bifurcations conditioned by the symmetry of the
system take place.

FIG. 7. Bifurcation diagrams of systefth) at\=1.56 for(a) the
symmetry cas&=1.0 and(b) the nonsymmetric casé=0.995.
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