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Spatiotemporal organization of coupled nonlinear pendula through impurities
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We study the effect of impurities introduced into a lattice and their ability to control the dynamical behavior
of arrays of coupled nonlinear chaotic oscillators. In particular we show that under certain conditions a single
impurity can produce simple spatiotemporal patterns in place of complex chaotic behavior for very long chains
of oscillators. Under the same conditions we also examine the effect of disorder in the lengths of the pendula
and explain the observed patterns and periodic behavior to be the result of inadvertent impurities.
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I. INTRODUCTION

In the past few years there has been a large numbe
studies focused on coupled nonlinear oscillators and t
properties. The most widely used model is the damp
Frenkel-Kontorova model in which a collection of oscillato
with a sine nonlinearity are diffusively coupled to their nea
est neighbors@1#. The relevance of such a system of equ
tions to condensed matter systems, such as charge-de
waves, and in Josephson junctions is well known. In parti
lar long Josephson junctions with an applied dc bias volt
are well described by a perturbed sine-Gordon equation@2#.
Thus one dimensional parallel arrays of Josephson junct
when biased by an external current should have the ph
difference between the two sides of thenth junction well
described by the equations of coupled pendula driven b
constant torque.

The problem of mutual synchronization or equivalen
the stability of the in-phase state has been examined b
number of investigators@3#. It was found that even thoug
there exists a broad range of parameters in which the
phase state is stable, nevertheless, there is also a broa
rameter regime in which it is unstable. Recent investigati
@4# have unveiled the unexpected result of significantly
creasing the synchronization of an array of Josephson ju
tions by introducing disorder. Indeed by allowing the critic
currents to be randomly distributed it was found that
certain realizations the array exhibited a sharp increase in
level of synchronization. A similar problem was investigat
recently by Wiesenfeldet al. @5# in a series array of junction
biased with a constant current and subject to a load. T
showed that as a function of disorder in the natural frequ
cies, the array first undergoes a transition to partial synch
nization followed by another that corresponds to compl
phase locking. Other studies in this area include the effec
natural frequency distribution on cluster synchronization
oscillator arrays@6#, the collective behavior of limit-cycle
oscillators @7#, the influence of quenched disorder on
coupled map model of earthquakes@8#, investigations on the
PRE 581063-651X/98/58~5!/5529~6!/$15.00
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issue of optimal disorder for taming spatiotemporal cha
@9#, and controlling localized spatiotemporal chaos
coupled map lattices@10#.

In this paper we investigate the effect of disorder in t
driven Frenkel-Kontorova model or equivalently in the d
fusively coupled Josephson junctions in which the appl
current at each junction is modulated by a common f
quency. Because of the additional degree of freedom, dri
oscillators can exhibit chaotic behavior and therefore the
ficulty of synchronization increases considerably. This pro
lem has been investigated recently by Braimanet al. @11# for
the case of a one-dimensional chaotic array of forc
damped nonlinear pendula, who have observed that by in
ducing a certain amount of disorder into the lengths of
pendula, complex but frequency locked spatiotemporal p
terns can emerge in which the chaotic behavior is comple
suppressed. We will investigate the same phenomenon
from a different viewpoint. Namely to what extent and f
how large an array may we induce synchronization, giv
that all the pendula are chaotic except a single impurity
troduced at a particular site of the array.

In the next sections we quickly outline the model that w
will use to investigate the possibility of self-organization
large arrays of oscillators. In Sec. III we present calculatio
and numerical results and discuss them in detail. Finally
Sec. IV we present a summary of this work and our conc
sions.

II. MODEL

To demonstrate our ideas more clearly we will use
model examined in Ref.@11#,

mln
2ün1gu̇n52mglnsin un1t81t sin vt

1k~un1122un1un21!, ~1!

wheren51,2,...,N and we will assume free boundary cond
tions, i.e.,u05u1 , uN5uN11 . The parameters used in th
calculations are the gravitational accelerationg51, the mass
5529 © 1998 The American Physical Society
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of the pendulumm51, the dc torquet850.7155, the ac
torquet50.4, the angular frequencyv50.25, and the damp
ing g50.75. Thus at each site there is an underdamped
cillator with a pendulum lengthl n . The parameterk denotes
the coupling between neighboring pendula and its value
nominally taken to be 0.5 as in Ref.@11#. One finds that each
isolated pendulum is chaotic for values ofl n;1.0 and it is
characterized by a single positive Lyapunov exponent.
values larger than one, the pendulum executes a libratio
which it oscillates about its equilibrium position withou
overturning, that is without the angleu increasing past 2p.
On the other hand for pendulum lengths shorter than one
pendulum executes a rotation where the combined torq
rotate the pendulum over the top and the angleu past 2p.

III. CALCULATIONS AND DISCUSSION

It is instructive first to examine the bifurcation diagram
a function of the length of a single isolated pendulum a
identify the possible chaotic regimes. All the calculatio
were done using a fourth order Runge-Kutta routine with
step size ofdt50.001. The defining parameter was the p
riod of the driving signal and not the frequency. Thus a st
boscopic Poincare´ cut was obtained without running into in
accurate representations because of accumulated error i
time definition at which the cut was done. Figure 1 shows
bifurcation diagram of the single isolated pendulum. The

locity u̇ is plotted as a function of the lengthl at each period
of the driving signal. We notice four regions in which th
pendulum exhibits chaotic behavior. There are three nar
chaotic regimes atl;1.0, l;0.84, l;0.52, and a broad on
for l ,0.35. We further examine carefully the region arou
l;1.0, and find, as shown in the inset of Fig. 1, that t
chaotic region has an extent of 0.998, l ,1.002, and it is
indeed quite a narrow region. Similar narrow bands app
also for the other chaotic regimes but they are not sho
here explicitly. This investigation then allows us to com
pletely characterize whether a given pendulum in the chai
chaotic or not.

FIG. 1. The bifurcation diagram of the single isolated pendulu

The velocityu̇ at each period of the driving frequency is plotted
a function of the lengthl. Inset shows an expanded version of t
region aboutl;1.0 and the abscissa is defined byx512 l .
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It was argued in Ref.@11# that one of the possible mecha
nisms by which disorder may stabilize a chaotic array i
volves the removal of some of the oscillators from their ch
otic band, thus creating distinctly different clusters o
oscillators. These periodic populations then force a lockin
of the remaining chaotic clusters to the external drive an
create periodic solutions to the equations of motion. Simil
effects have been seen by other authors@12# for identical
coupled He´non maps in which at appropriate couplings clus
tering may occur. One then finds that there are clusters
periodic solutions of various periods interspersed with ch
otic clusters.

This idea of small synchronized domains that have cry
tallized around nonchaotic impurities induced by disord

.

FIG. 2. ~a! The difference in velocity of thenth pendulum with
respect to the first oneDu̇n5 u̇n2 u̇1 , as a function forl n51.15 and
l imp51.0. The ordinate is defined as@D5( u̇n2 u̇1)31000#. ~b!

Gray scale evolution ofu̇n(T) for N5128, andl n50.8 and l imp

5 l 6451.0. The pattern is plotted for 50 periods of the drive (j
50 – 50).
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FIG. 3. ~a! Spatiotemporal pattern produced by anl imp50.8 impurity at site 64 in a 128 array of oscillators withl n51.0 and for 75
periods.~b! The measures(T) for the configuration examined in~a! plotted as a function of period numberj. ~c! Chaotic pattern produced
by an l imp51.2 impurity at site 64 in a 128 array of oscillators withl n51.0. The pattern is plotted for 100 periods.
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can be further extended. The underlying physical idea is b
rowed from the physics of disordered solids and already u
in some nonlinear studies@14#, where it is known that defect
create localized excitations in space around their positi
@15#. As a result we will focus on the problem of what are t
effects of a single impurity with lengthl imp , at siteM in a
chain of equal-length pendula.

The simplest configuration we examine first is that o
single chaotic pendulum in a sea of identical nonchaotic p
dula. Our numerical calculations indicate that in the abse
of the chaotic impurity the solution for the chain is a unifor
periodic solution with
r-
d

s

n-
e

u̇n~ t !5F~ t ! ~2!

independent of the site.
The inclusion of the chaotic impurity is to simply distort

small region around it in a symmetric manner in which to
large extent the rest of the lattice does not participate, h
ever, maintaining frequency synchronization. In Fig. 2~a! we
show a sample calculation of a chain of 32 oscillators hav
l n51.15 with an impurity ofl imp51.0 placed in the middle
of the chain at siten516. It plots the difference in velocity
of the nth pendulum with respect to the first oneDu̇n5 u̇n
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2u̇1, as a function of site number. Around the defect t
velocity difference is very small and symmetric. It broade
slightly and increases in value as the length difference
creases. Nevertheless synchronization of the array is m
tained as it is evident from a gray scale plot of the velocity
a function of site number shown in Fig. 2~b!. In the vertical
scale, time in integral multiples of the period of the drive a
depicted. This calculation was performed for 128 pendula
length l n50.8 and an impurityl imp51.0 at site 64. The
darker shading indicates higher velocity. Thus the velocity
the impurity in this case is very close to that of the rest of
array with the highest velocity mismatch of couple sit
away. Extensive numerical calculations with longer arra
have shown that the effects of the impurities are confined
its closest neighbors.

A more interesting avenue of investigation is the sin
nonchaotic impurity in a sea of identical chaotic pendula. F
simplicity we restrict the length of the chaotic pendula to
1.0 and investigate the effect of the length of a noncha
pendulum inserted at a convenient site, preferably in
middle of the chain, to the rest of the chain. Contrary to o
expectations, it appears that for a large range of the len
parameter of the impurity, a period one (P1) spatiotemporal
pattern emerges. This organization of the chain was obta
for quite large chains. Most of the calculations were p
formed for chains of oscillators as large as 128 and for v
ous lengths of the pendulum of the impurity. It appeared t
short length impurities, in general, produced periodic p
terns more often than impurities with large pendulum leng
for k50.5. This is quite evident in Fig. 3~a! where a spa-
tiotemporal pattern is produced by anl imp50.8 impurity in-
troduced at site 64 in a chain of 128 oscillators. A care
examination shows that after the transients have died
approximately after 50 periods, the majority of the oscillato
cluster into aP1 pattern except at the edges where it appe
that the last three oscillators at each side belong to aP12
pattern.

A very convenient measure that allows a quick visuali
tion of the average global spatiotemporal behavior of
chain and can ascertain its character, i.e., whether chaot
periodic, and in addition identify the maximum period of th
pattern, is the pattern average velocity:

s~ t !5
1

N (
n51

N

u̇n~ t !. ~3!

This is one of a number of possible definitions and at t
stage is the most useful and one of the quantities easie
compute. This measure is computed at each period, and
ted as a function ofjT, i.e., at each subsequent period. T
measures( jT) for the configuration examined in Fig. 3~a! is
plotted in Fig. 3~b!. Here the transients and the stabilizati
into a P12 cluster are immediately obvious. Modifying th
boundary conditions from free to fixedu05uN1150 leads to
the formation of different patterns, emphasizing the imp
tance of the edge effects. Moreover, changing to absorb
boundary conditions, i.e., the boundary oscillators are
driven, leads to complete elimination of the edge effects
this range of parameters. In fact it was found that in so
cases absorbing boundary conditions were themselves
sufficient to induce organization without the help of an im
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purity. In contrast, in Fig. 3~c! we show a chaotic pattern
obtained by simply changing the length of the impurity
l imp51.2.

In view of these observations we infer the following pla
sible explanation. We recognize as in Refs.@12,13# that for a
collection of coupled maps or coupled oscillators there
three important regimes of coupling strength to be dist
guished. For no coupling or for very weak coupling there a
N positive Lyapunov exponents, encompassing what R
@12# denotes as regime 1. In regime 2 of intermediate c
pling strength there exists an extreme sensitivity to init
conditions and parameters. The number of posit
Lyapunov exponents fluctuates wildly even for extreme
small changes of the coupling. Finally in regime 3 the syst
possesses a single positive Lyapunov exponent. We th
that in this coupling regime where there is only one posit
Lyapunov exponent the insertion of a single nonchaotic
cillator could effectively modify the system’s attractor an
thus produce spatiotemporal organization.

If we repeat the same calculation but use insteadl imp
50.52 for the length of the impurity we still obtain aP1
pattern formation, if one excludes edge effects, which tend
disappear after quite long transients. We note here that a
from the chaotic regime aroundl 51.0 that exists for the
isolated pendulum, there are also other chaotic regime
discussed previously. In particular if we use for the length
the impurity l imp50.52 then the isolated pendulum exhibi
chaotic dynamics. Nevertheless, there is clear s
organization. This seems to support our previous hypoth
and render our explanation plausible.

To obtain a more global bifurcation diagram of the effec
of the impurity as a function of the pendulum length at fix

FIG. 4. ~a! Bifurcation diagram ofs(T) as a functionl imp for
k50.5, andN532. ~b! Bifurcation diagram ofs(T) as a function
l imp for k55.0, andN532.
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coupling strength we use the measures( jT) to obtain a con-
venient representation of the bifurcation structure. The r
sults are shown in Fig. 4~a! in which we plot s( jT) as a
function of l imp for k50.5, andN532. For each length of the
impurity the calculation was carried out for a sufficient num
ber of periods to eliminate transients and the next 16 valu
of s( jT) were used as a representation of the attractor. Th
P16 attractors or attractors of higher periodicity are not re
ognized as such but rather as chaotic attractors. Neverthel
Fig. 4~a! shows the existence of aP1 attractor coexisting

FIG. 5. ~a! Uniform disorder of the pendula lengths in the inter
val @0.9, 1.1#, for n5128, andk50.5. Chaotic pendula are at sites
5, 26, 112. The pattern is plotted for 75 periods (j 50 – 75). ~b!
Uniform disorder of the pendula lengths in the interval@0.9, 1.1#,
but excluding the interval@0.998, 1.002# for n5128, andk50.5.
The pattern is plotted for 75 periods.
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with a P5 attractor for impurity lengths up tol imp50.6. We
were able to find more than oneP5 attractor, however, for
clarity only one is included in the bifurcation diagram. Th
P1 attractor is stable from very low values below 0.2 and
high as 0.83. Notice that this spans a large window in wh
the isolated impurity is in itself chaotic.

Figure 4~b! shows the bifurcation diagram as a function
the impurity length for the same conditions as before
now the coupling constant has been increased to 5.0. In
case theP1 behavior is predominant with a small chaot
region aroundl imp;1.0, which develops through a very cle
period doubling sequence. On the right hand side there
small portion of what seems to be twoP2 attractors, which
quickly bifurcate as the length of the pendulum is decreas
It appears that all the higher order coexisting attractors
associated with edge effects and that there could be a m
plicity of them. Indeed as the number of pendula increas
calculations show that edge effects involve only as few a
couple of extreme pendula.

Finally we examined the effect of disorder and in partic
lar the possibility of obtaining self-organization or frequen
locking. We introduced disorder in the lengths of the pend
but restricted the range to be in the region in which t
individual pendulum was chaotic, i.e., in the intervall
5@0.998,1.002# for a chain of 128 pendula. We found tha
the emerging pattern was always chaotic for a large num
of different realizations of the chain itself and of the initi
conditions. On the other hand, if we introduced a unifo
and symmetric disorder aroundl 51.0 of 10% so that the
pendula lengths are uniformly distributed in the interval@0.9,
1, 1#, self-organization was possible. Figure 5~a! shows one
such realization forN5128 pendula, three of which at site
5, 26, 112 are chaotic. Except for a few pendula at the ed
that executeP2 the rest of the pattern is aP1 pattern after
the rather long transients have settled down. This is not
ally surprising in view of our earlier results. If all of th
pendula were uniformly distributed in the same interval e
cluding the chaotic range, i.e., excluding the interval@0.998,
1.002# then the resulting pattern always exhibited spatiote
poral organization. Figure 5~b! shows such a realization an
one can see clusters ofP1, P2, andP10 corresponding to the
period of the pattern repetition.

It is also noted that longer chains can be easily synch
nized by including more than one impurity at selected si
and appropriate pendulum lengths. The temporal deve
ment remainsP1, however, the spatial pattern adjusts to
flect the new impurity. The particular spatial pattern pr
duced by the introduction of more than one impurity has
been investigated extensively and at this time it still rema
a problem for future studies.

IV. SUMMARY

In conclusion we have demonstrated that a chain of c
otic pendula can be frequency locked into a spatiotemp
pattern by introducing an appropriate impurity at a site in
lattice. In most cases a single impurity can tame chaos.
found that a single nonchaotic impurity with an appropria
pendulum length can control and self-organize the dynam
of a chain as long as 128, the limit to which our calculatio
were performed. Increasing the coupling constant it increa
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the domain of lengths of the impurity pendulum for whic
self-organization can be observed. Excluding edge effe
we found that the pattern has always a repetition per
equal to the period of the driving signal. Our results sugg
that in coupled systems with one positive Lyapunov ex
nent the introduction of a single impurity can alter the d
namics drastically.
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