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Spatiotemporal organization of coupled nonlinear pendula through impurities
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We study the effect of impurities introduced into a lattice and their ability to control the dynamical behavior
of arrays of coupled nonlinear chaotic oscillators. In particular we show that under certain conditions a single
impurity can produce simple spatiotemporal patterns in place of complex chaotic behavior for very long chains
of oscillators. Under the same conditions we also examine the effect of disorder in the lengths of the pendula
and explain the observed patterns and periodic behavior to be the result of inadvertent impurities.
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PACS numbgs): 05.30:—d, 05.40+j, 73.20.Dx

I. INTRODUCTION issue of optimal disorder for taming spatiotemporal chaos

[9], and controlling localized spatiotemporal chaos in

In the past few years there has been a large number @foupled map latticeg10].

studies focused on coupled nonlinear oscillators and their In this paper we investigate the effect of disorder in the

properties. The most widely used model is the dampediriven Frenkel-Kontorova model or equivalently in the dif-
Frenkel-Kontorova model in which a collection of oscillators fusively coupled Josephson junctions in which the applied
with a sine nonlinearity are diffusively coupled to their near-current at each junction is modulated by a common fre-
est neighborg1]. The relevance of such a system of equa-duency- Because of the additional degree of freedom, driven

tions to condensed matter systems, such as charge-densﬂ cillators can exhibit chaotic behavior and therefore the dif-
waves, and in Josephson junctions is well known. In particulcl u“ﬁ’ of;ynchromztf_:ltlotn c;ncreasttlas tc):onBs@i;:blly. 1Tlh|fs prob-
lar long Josephson junctions with an applied dc bias voltag °m has been investigated recently by bra al. [11] for

e case of a one-dimensional chaotic array of forced

are well degcnbeq by a perturbed sine-Gordon equa.iﬂdm. damped nonlinear pendula, who have observed that by intro-
Thus one dimensional parallel arrays of Josephson junction

. Gucing a certain amount of disorder into the lengths of the
when biased by an external current should have the pha g g

. ; X . Speendula, complex but frequency locked spatiotemporal pat-
difference between the two sides of théh junction well  toq can emerge in which the chaotic behavior is completely

described by the equations of coupled pendula driven by &,ynressed. We will investigate the same phenomenon but

constant torque. o . from a different viewpoint. Namely to what extent and for
The problem of mutual synchronization or equivalently how large an array may we induce synchronization, given

the stability of the in-phase state has been examined by @at all the pendula are chaotic except a single impurity in-

number of investigator§3]. It was found that even though troduced at a particular site of the array.

there exists a broad range of parameters in which the in- |n the next sections we quickly outline the model that we

phase state is stable, nevertheless, there is also a broad péH use to investigate the possibility of self-organization of

rameter regime in which it is unstable. Recent investigationgarge arrays of oscillators. In Sec. Ill we present calculations

[4] have unveiled the unexpected result of significantly in-and numerical results and discuss them in detail. Finally in

creasing the synchronization of an array of Josephson juné&ec. IV we present a summary of this work and our conclu-

tions by introducing disorder. Indeed by allowing the critical Sions.

currents to be randomly distributed it was found that for

certain realizations the array exhibited a sharp increase in the Il. MODEL

level of synchronization. A similar problem was investigated

recently by Wiesenfelét al.[5] in a series array of junctions ~ To demonstrate our ideas more clearly we will use the

biased with a constant current and subject to a load. Thejnodel examined in Ref11],

showed that as a function of disorder in the natural frequen-

cies, the array first undergoes a transition to partial synchro- mlﬁbrﬁr yén: —mgl,sin 6,+ 7' + 7 sin wt
nization followed by another that corresponds to complete
phase locking. Other studies in this area include the effect of TK(Ons1—=260+ On-1), 1)

natural frequency distribution on cluster synchronization in

oscillator arrayg6], the collective behavior of limit-cycle wheren=1,2,...N and we will assume free boundary condi-
oscillators [7], the influence of quenched disorder on ations, i.e.,6p=601, 6y=6n+1. The parameters used in the
coupled map model of earthquakés, investigations on the calculations are the gravitational acceleratipnl, the mass
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FIG. 1. The bifurcation diagram of the single isolated pendulum.
The velocity 6 at each period of the driving frequency is plotted as T
a function of the length. Inset shows an expanded version of the J
region aboul ~1.0 and the abscissa is defined>y 1—1.

of the pendulumm=1, the dc torquer’'=0.7155, the ac
torquer= 0.4, the angular frequeney=0.25, and the damp-
ing y=0.75. Thus at each site there is an underdamped o
cillator with a pendulum length,. The parametek denotes
the coupling between neighboring pendula and its value i
nominally taken to be 0.5 as in R¢.1]. One finds that each
isolated pendulum is chaotic for valueslgf~1.0 and it is
characterized by a single positive Lyapunov exponent. Fo
values larger than one, the pendulum executes a libration i
which it oscillates about its equilibrium position without
overturning, that is without the angkincreasing past 2.

On the other hand for pendulum lengths shorter than one, tr
pendulum executes a rotation where the combined torque
rotate the pendulum over the top and the argjfmst 2r.

rr 1t 1t 1T 1 17T 17 1T 17 T 1T 1T 11 ’
I1l. CALCULATIONS AND DISCUSSION (b) 0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 IZON

It is instructive first to examine the bifurcation diagram as
a function of the length of a single isolated pendulum and FIG. 2. (a) The difference in velocity of thath pendulum with
identify the possible chaotic regimes. All the calculationsrespect to the first on& ,= 6,— 6,, as a function fot,=1.15 and
were done using a fourth order Runge-Kutta routine with dimp=1.0. The ordinate is defined d&\=(6,— 6,)x1000. (b)
step size ofdt=0.001. The defining parameter was the pe-Gray scale evolution oB,(T) for N=128, andl,=0.8 andly,
riod of the driving signal and not the frequency. Thus a stro-=1l¢,=1.0. The pattern is plotted for 50 periods of the drie (
boscopic Poincareut was obtained without running into in- =0-50).
accurate representations because of accumulated error in the
time definitiqn at which the qut was done. Figure 1 shows the | \yas argued in Ref.11] that one of the possible mecha-
b|furc§1t|on diagram of the single isolated pendulum. The veyisms by which disorder may stabilize a chaotic array in-
locity 6 is plotted as a function of the lengttat each period volves the removal of some of the oscillators from their cha-
of the driving signal. We notice four regions in which the otic band, thus creating distinctly different clusters of
pendulum exhibits chaotic behavior. There are three narrowscillators. These periodic populations then force a locking
chaotic regimes dt~1.0,1~0.84,1~0.52, and a broad one of the remaining chaotic clusters to the external drive and
for 1<0.35. We further examine carefully the region aroundcreate periodic solutions to the equations of motion. Similar
I~1.0, and find, as shown in the inset of Fig. 1, that theeffects have been seen by other authdr| for identical
chaotic region has an extent of 0.99B<1.002, and it is coupled Heon maps in which at appropriate couplings clus-
indeed quite a narrow region. Similar narrow bands appeatering may occur. One then finds that there are clusters of
also for the other chaotic regimes but they are not showmperiodic solutions of various periods interspersed with cha-
here explicitly. This investigation then allows us to com- otic clusters.
pletely characterize whether a given pendulum in the chain is This idea of small synchronized domains that have crys-
chaotic or not. tallized around nonchaotic impurities induced by disorder
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FIG. 3. (a) Spatiotemporal pattern produced by lap,=0.8 impurity at site 64 in a 128 array of oscillators witf=1.0 and for 75
periods.(b) The measurer(T) for the configuration examined i@ plotted as a function of period numbjer(c) Chaotic pattern produced
by anlin,=1.2 impurity at site 64 in a 128 array of oscillators with=1.0. The pattern is plotted for 100 periods.

can be further extended. The underlying physical idea is bor- 0,(H)=D(1) )

rowed from the physics of disordered solids and already used

in some nonlinear studi¢44], where it is known that defects

create localized excitations in space around their position#§idependent of the site.

[15]. As a result we will focus on the problem of what are the ~ The inclusion of the chaotic impurity is to simply distort a

effects of a single impurity with length,,, at siteM in a small region around it in a symmetric manner in \_Nhlch to a

chain of equal-length pendula. large extent the rest of the lattice does not participate, how-
The simplest configuration we examine first is that of aéver, maintaining frequency synchronization. In Fitg)2ve

single chaotic pendulum in a sea of identical nonchaotic penshow a sample calculation of a chain of 32 oscillators having

dula. Our numerical calculations indicate that in the absenck=1.15 with an impurity ofl;,,=1.0 placed in the middle

of the chaotic impurity the solution for the chain is a uniform of the chain at siten=16. It plots the difference in velocity

periodic solution with of the nth pendulum with respect to the first oded,= 6,
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—6,, as a function of site number. Around the defect the 047 ' ' T
velocity difference is very small and symmetric. It broadens @ s
slightly and increases in value as the length difference in-
creases. Nevertheless synchronization of the array is main-
tained as it is evident from a gray scale plot of the velocity as
a function of site number shown in Fig(l2. In the vertical
scale, time in integral multiples of the period of the drive are
depicted. This calculation was performed for 128 pendula of
length 1,=0.8 and an impurityl;,,=1.0 at site 64. The
darker shading indicates higher velocity. Thus the velocity of
the impurity in this case is very close to that of the rest of the )
array with the highest velocity mismatch of couple sites L
away. Extensive numerical calculations with longer arrays

o(T)

have shown that the effects of the impurities are confined to 061 (b)' T T
its closest neighbors.
A more interesting avenue of investigation is the single 0.4 #1 - ]

nonchaotic impurity in a sea of identical chaotic pendula. For i, %

T ; ; i
simplicity we restrict the length of the chaotic pendula to be o (T) o2} Y oo
1.0 and investigate the effect of the length of a nonchaotic ' ___/\/ié
pendulum inserted at a convenient site, preferably in the '-_,;-i'\———-
middle of the chain, to the rest of the chain. Contrary to our 0.0r 1?: 7
expectations, it appears that for a large range of the length
parameter of the impurity, a period onBX) spatiotemporal ook ]
pattern emerges. This organization of the chain was obtained 02 04 06 08 1.0 12 14 16
for quite large chains. Most of the calculations were per- limp

formed for chains of oscillators as large as 128 and for vari- ) . _ .
ous lengths of the pendulum of the impurity. It appeared that F!G- 4. (a)_B'f“rCst'OT} d'ag_ramd‘_)f‘f(T) ano-a f””Ct'Oriimp for
short length impurities, in general, produced periodic pat—k_?;OSr' EE%NO_zﬁaf\l)_g'zurca“O” lagram ofr(T) as a function

terns more often than impurities with large pendulum Iengthéimp

for k=0.5. This is quite evident in Fig.(8) where a spa- purity. In contrast, in Fig. &) we show a chaotic pattern

tiotemporal pattern is produced by &p,=0.8 impurity in-  obtained by simply changing the length of the impurity to
troduced at site 64 in a chain of 128 oscillators. A careful| imp=1.2.

examination shows that after the transients have died out, |n view of these observations we infer the following plau-

approximately after 50 periods, the majority of the oscillatorssjp|e explanation. We recognize as in R¢f2,13 that for a
cluster into aP1 pattern except at the edges where it appeargollection of coupled maps or coupled oscillators there are
that the last three oscillators at each side belong (JED three important regimes of Coup"ng strength to be distin-
pattern. guished. For no coupling or for very weak coupling there are
A very convenient measure that allows a quick visualizaN positive Lyapunov exponents, encompassing what Ref.
tion of the average global spatiotemporal behavior of thg12] denotes as regime 1. In regime 2 of intermediate cou-
chain and can ascertain its character, i.e., whether chaotic @ling strength there exists an extreme sensitivity to initial
periodic, and in addition identify the maximum period of the conditions and parameters. The number of positive

pattern, is the pattern average velocity: Lyapunov exponents fluctuates wildly even for extremely
N small changes of the coupling. Finally in regime 3 the system
0(t)=1 E b (t) 3) possesses a single positive Lyapunov exponent. We think

Nz ™7 that in this coupling regime where there is only one positive

Lyapunov exponent the insertion of a single nonchaotic os-
This is one of a number of possible definitions and at thiscillator could effectively modify the system'’s attractor and
stage is the most useful and one of the quantities easiest thus produce spatiotemporal organization.
compute. This measure is computed at each period, and plot- If we repeat the same calculation but use instégag
ted as a function ofT, i.e., at each subsequent period. The=0.52 for the length of the impurity we still obtain R1
measurer(jT) for the configuration examined in Fig(é88is  pattern formation, if one excludes edge effects, which tend to
plotted in Fig. 3b). Here the transients and the stabilization disappear after quite long transients. We note here that apart
into a P12 cluster are immediately obvious. Modifying the from the chaotic regime arounid=1.0 that exists for the
boundary conditions from free to fixety= 0y ,,=0 leadsto isolated pendulum, there are also other chaotic regimes as
the formation of different patterns, emphasizing the impor-discussed previously. In particular if we use for the length of
tance of the edge effects. Moreover, changing to absorbinthe impurity I;,,=0.52 then the isolated pendulum exhibits
boundary conditions, i.e., the boundary oscillators are nothaotic dynamics. Nevertheless, there is clear self-
driven, leads to complete elimination of the edge effects folorganization. This seems to support our previous hypothesis
this range of parameters. In fact it was found that in somend render our explanation plausible.
cases absorbing boundary conditions were themselves quite To obtain a more global bifurcation diagram of the effects
sufficient to induce organization without the help of an im- of the impurity as a function of the pendulum length at fixed
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with a P5 attractor for impurity lengths up tg,,,=0.6. We

were able to find more than orie5 attractor, however, for
clarity only one is included in the bifurcation diagram. The
P1 attractor is stable from very low values below 0.2 and as
high as 0.83. Notice that this spans a large window in which
the isolated impurity is in itself chaotic.

Figure 4b) shows the bifurcation diagram as a function of
the impurity length for the same conditions as before but
now the coupling constant has been increased to 5.0. In this
case theP1 behavior is predominant with a small chaotic
region around;,,,~ 1.0, which develops through a very clear
period doubling sequence. On the right hand side there is a
small portion of what seems to be tvR®2 attractors, which
quickly bifurcate as the length of the pendulum is decreased.
It appears that all the higher order coexisting attractors are
associated with edge effects and that there could be a multi-
plicity of them. Indeed as the number of pendula increases,
calculations show that edge effects involve only as few as a
couple of extreme pendula.

7T 1T 17T 17T 17T 17T 1T T 1T T T T T T Finally we examined the effect of disorder and in particu-
(@ © 8 1624 3240 48 56 64 72 80 88 9 104112120N g the possibility of obtaining self-organization or frequency
locking. We introduced disorder in the lengths of the pendula
but restricted the range to be in the region in which the
individual pendulum was chaotic, i.e., in the interval
=[0.998,1.002 for a chain of 128 pendula. We found that
the emerging pattern was always chaotic for a large number
of different realizations of the chain itself and of the initial
conditions. On the other hand, if we introduced a uniform
and symmetric disorder arourliég=1.0 of 10% so that the
pendula lengths are uniformly distributed in the intef\ab,
1, 1], self-organization was possible. Figur@)sshows one
such realization foN=128 pendula, three of which at sites
5, 26, 112 are chaotic. Except for a few pendula at the edges
that executeP2 the rest of the pattern isR1 pattern after
the rather long transients have settled down. This is not re-
ally surprising in view of our earlier results. If all of the
pendula were uniformly distributed in the same interval ex-
cluding the chaotic range, i.e., excluding the intef\ab98,
1.007 then the resulting pattern always exhibited spatiotem-
poral organization. Figure(b) shows such a realization and
one can see clusters BfL, P2, andP10 corresponding to the
period of the pattern repetition.

It is also noted that longer chains can be easily synchro-
nized by including more than one impurity at selected sites

FIG. 5. (a) Uniform disorder of the pendula lengths in the inter- and appropriate pendulum lengths. The temporal develop-
val [0.9, 1.1, for n=128, andk=0.5. Chaotic pendula are at sites ment remaind1, however, the spatial pattern adjusts to re-
5, 26, 112. The pattern is plotted for 75 periods=0—75). (b)  flect the new impurity. The particular spatial pattern pro-
Uniform disorder of the pendula lengths in the interf@9, 1.1, duced by the introduction of more than one impurity has not

but excluding the interval0.998, 1.002 for n=128, andk=0.5.  peen investigated extensively and at this time it still remains
The pattern is plotted for 75 periods. a problem for future studies.

1T T T T 177 T T T T7
(b) 0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120N

coupling strength we use the measuigT) to obtain a con-
venient representation of the bifurcation structure. The re-
sults are shown in Fig.(d) in which we ploto(jT) as a In conclusion we have demonstrated that a chain of cha-
function ofl;,, for k=0.5, andN=32. For each length of the otic pendula can be frequency locked into a spatiotemporal
impurity the calculation was carried out for a sufficient num- pattern by introducing an appropriate impurity at a site in the
ber of periods to eliminate transients and the next 16 valuekttice. In most cases a single impurity can tame chaos. We
of o(jT) were used as a representation of the attractor. Thufund that a single nonchaotic impurity with an appropriate
P16 attractors or attractors of higher periodicity are not recypendulum length can control and self-organize the dynamics
ognized as such but rather as chaotic attractors. Nevertheless,a chain as long as 128, the limit to which our calculations
Fig. 4@ shows the existence of B1 attractor coexisting were performed. Increasing the coupling constant it increases

IV. SUMMARY
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