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Analysis of optimal velocity model with explicit delay
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We analyze the optimal velocity modéDVM) with explicit delay. The properties of congestion and the
delay time of car motion are investigated by analytical and numerical methods. It is shown that the small
explicit delay time has almost no effects. In the case of the large explicit delay time, a new phase of congestion
pattern of OVM seems to appe&51063-651X98)12410-9
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I. INTRODUCTION have no physically interesting solution because such equa-
tion can be integrated easily and be reduced to the following
In recent years, we proposed a car-following model calledzquation:
the “optimal velocity model”(OVM), based on a dynamical _
equation[1] Xn=V(Xn+1—Xn), 1.3

where V is a function of headway and/’(X,y1—X,)
=N(Xp+1—X,). In car-following models, therefore, the in-
troduction of “delay” is necessary and is essential to under-
wheret is time andx, is a position of thenth car. Cars are standing traffic dynamicg8,9]. The following equation is a
numbered so that then¢-1)th car precedes thah car. The typical one that is widely used in car-following models:
driver feels the headway, . 1(t) —X,(t) and determines an

optimal velocityV(x,,+1(t) —x,(t)). It is best to drive a car Xn(t+ 7) = V(X1 1(1) = Xn (1)), (1.9
with the optimal velocity but in general a deviation exists

between the optimal velocity and a real one. The driver rewhere is a delay time of the driver's response. The driver
sponds to the deviatioAV=\V(X,_ 1(t)—Xx,(t))—x,(t) and  senses headway at timi@nd changes the velocity of his car
diminishes it by giving an accelerati@\V to the car. The at later timet+ 7. This delay timer of response has been
coefficienta expresses the sensitivity of the driver. We call thought to be inevitable because it comes from the driver's
the functionV the “optimal velocity function” (OVF). In  physical delay of response to the stimulus together with the
previous papers, we have shown how the OVM can explairmechanical response time of a car. In this paper, thigll
behaviors of traffic flow, for example, the transition from a be called the “explicit delay time.”

free flow to a congested flow, a density-flow relationship, a The notion of explicit delay time is completely different

Xn() =a{V(Xp+1(1) = Xn(1) = Xp(D)}, (1.2)

kind of effective delay of car motiofil—4]. from that of the “delay time of car motion” introduced in
On the other hand, the prototype equation of motion ofour previous papef4]. Let us recall the definition of the
traditional car-following model is delay time of car motion. Consider a pair of cars, a leader

and a follower. Assume the leader changes the velocity ac-
- . . cording tov,;=v(t) and the follower duplicates the leader’s
Xn=NolXn+1 Xn}, (1.2 velocity but with some delay timél, that is, vi=wvg(t
—T). Under such a situation we can clearly define the delay
where Ao is a constan{5-7]. In this model, a driver is time of car motion byT. It is known that the observed delay
thought to react to the stimulus proportional to the relativetime T of car motion is of the order of 1 sec, but the known
velocity between the previous car and his own car. Equatiophysical or mechanical response timés of the order of 0.1
(1.2 may be generalized by changing the constefito a  sec. In the previous paper we confirmed that the @dl)
function A (X, 1—X,) of headway. However, these models really producesl of order 1 sec.
We clarified that the OVM can describe the properties of
traffic flows or the behaviors of cars fairly well without any

*Electronic address: bando@aichi-u.ac.jp explicit delay timer. However, there exists, for a fact, the
"Electronic address: hasebe@aichi-u.ac.jp delay time of the response of the driver. The explicit delay
*Electronic address: kenichi@yukawa.kyoto-u.ac.jp time 7 should be included in the dynamical equation in order
$Electronic address: g44153g@nucc.cc.nagoya-u.ac.jp to construct realistic models of traffic flow. It is a natural
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guestion what kind of effect appears in the traffic flow or in 1 F
the car motion if we introduce the explicit delay in Ed.1). [,
In this paper we investigate the following equation:

. . 05} ¢

Xn(t+ 1) =a{V(Xns 1() = Xn(D)) = Xp(D)}. (1.5
In order for our analysis be more concrete, we use the pa- 0 S
rametera= 2.0 (1/se¢ and the functior’/ which are phenom- e
enologically determined in previous papers by the observed A
data on Japanese motorwdy9-137. 05| 2

V(AX)=16.9tanh 0.0860Ax—25)+0.913, (1.6 i ;

in which the unit of length and time are meter and second, At . . .
respectively. - 05 0 0.5 1

The plan of this paper is as follows. In Sec. Il we discuss
the global properties of traffic flow in the OVM with the  FIG. 1. Critical curves in the polar coordinaté/4,«) plane.
explicit delay. In Sec. Il we investigate more microscopic The solid line, dashed line, and dotted line show critical curves for
property, that iS, the de'ay time of car motion. First we dis_aTZO, 0.2, and 0.4, respectively. A circle of diamond marks rep-
cuss within a linear approximation and next evaluate the de®€sents mode solutions féfa=0.75.
lay times of car motion in various cases by numerical simu-
lations. As a special case, the car motion under the traffid he condition Imo=0 gives “critical curves” for eachar
signal is also treated. In Sec. IV we show the new feature ol (f/a,a) plane, wheref/a is a radial coordinate ana is
the OVM with the explicit delay. The final section is devoted an angular coordinate. Mode solutiong(t) are represented

to summary and discussion. by a point ¢/a,«;) on a circlef/a=const.
Three critical curves foar=0, 0.2, and 0.4 are shown in
Il. PROPERTY OF TRAFFIC FLOW IN OVM Fig. 1, in which a reference circle represents mode solutions
WITH EXPLICIT DELAY for f/a=0.75. The modes staying outsi¢ieght-hand sidg
) _ of the critical curve are unstable. Figure 1 shows that a ho-
A. Linear analysis mogeneous flow state with a parametéa=0.75 is an un-
In this section we investigate the OVM with the explicit stable state. From Fig. 1, it is found that unstable modes
delay timer of the driver's response described by E#.5).  increase as the explicit delay time becomes large. This

First we analyze the linear stability of &kcar system on Situation looks similar to a case where the sensitiaitie-

a circular lane of length.. Obviously, the homogeneous comes small in the original OVM1]. There seems to be
flow solution of Eq.(1.5) is given by some relationship between the sensitivétyand the explicit

delay timer as indicated in Ref(13].
x\O(t)=V(b)t+nb, b=L/N. (2.1

. . B.N ical simulati
To see whether the solutig2.1) is stable or not, we add a umericat simuiations

small perturbation The effect of the explicit delay in the congestion forma-
tion can be evaluated by numerical simulations. In previous
Xa() =X (1) +yn(t). (2.2 paperd1,2], we investigated the property of traffic flows in a

. _ circuit. It is found that when the car density exceeds a critical
From Eq.(2.2 and Eq.(1.9, we can calculate a linearized value, a homogeneous traffic flow becomes unstable and

equation with respect tg;(t) makes a phase transition to a congested flow. After enough
; ) time, the congested flow becomes stationary and shows an
Ya(t+ 1) =a{fAy,(t) —yn(1)}, (2.3 alternating pattern of high-densitgongestion clustgrand

o _ low-density regions. Each velocity and headway inside high-
wheref=V’(b) andAy,=yn.1~Yn. A complete set of S0- (15.) density regions always take common values that are
lutions is given by determined only by the sensitivigzand OVF independently

Yin(D) =expliayn+iw;t), 2.4 of any other conditions. The motion of each car can be

@i

a

_ 4

aT

shown in a “phase space”Ax, x), and the trajectories draw
where aj=2mj/N for j=1,2,3,... N and w; satisfies the a single “hysteresis loop,” a kind of limit cycle. Figure 2
equation shows typical hysteresis loops for sensitivdty: 2.0 and 2.8.
Numerical simulations are carried out with the condition:
2 ) f - [ @ total car numbeN= 100 and circuit length. = 2500 m[14].
exp ! “la e -1} al” (2.9 These hysteresis loops are formed abpbutl000 sec typi-
cally. As stated above, the results are independent of these
In Eqg.(2.5), variables are combined to be dimensionless. Theonditions. Two turning pointsC=(Ax.,v;) and F
condition that each solutiory,(t) becomes marginally =(Ax;,v¢) correspond to the high- and low-density region
stable is Imw;=0. For convenience of explanation, we will for a=2.0 andC’ andF’ for a=2.8. We found the conges-
omit the mode index and treate as a continuous variable. tion pattern moves backward on the circuit with a constant
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headway Ax (m) The solid line and dashed line show critical curvesder0.6 and

FIG. 2. “Hysteresis loops” fora=2.0 anda=2.8. Each line ar=0.8, respectively. A circle of diamond marks represents mode

connects two turning points of each hysteresis loop. A tanh-typesOIthlons forf/a=0.75.

curve represents the OVEq. (1.6)]. . . . .
P MEg. (1.6)] casear>0.6, however, there exist various cases in which all

locit Ax— 0 Ax)/(Axe— A hich is i b modes become unstable or short-range modes only become
veloclly s e Ve )_(f) (Axq _XC)' WRICR 1S gIVEN BY nstable. In such cases, the instability starts from all modes
the intersection ok axis and the line connecting two turning or from short-range modes. It is interesting to see what kind

points C and F. Therefore the property of such congestedof phenomena emerge in such cases. An example shall be
flows is almost decided by two poin@andF of hysteresis  discussed in Sec. IV.

loop.
From numerical simulations, we recognize no qualitative IIl. DELAY TIME OF CAR MOTION
difference in the behavior of the traffic flow between the _ _
cases with and without the explicit delay sifis not so large. A. Linear analysis
Figure 3 shows hysteresis loops abdtt5000 sec forr In this section, we investigate the delay of car motion in

=0,0.1,and 0.2, thati®7=0, 0.2, and 0.4. The changes of grder to see the effect of the explicit delay from a more
hysteresis loops are similar to those for the case that thgicroscopic viewpoint. First, we analyze the delay of car
sensitivitya becomes small in the original OVI]. There-  motion with the linear approximation.

fore it seems that the explicit delay time which is not so Consider a pair of a leader and its follower where the
large, does not play any essential role in the congestion follzader moves with the velocity(t) and the follower repli-
mation. In other words, the effect of the explicit delay can becates the motion of the leader after the time intefvathat
almost compensated by the change of sensitiaity is, the follower’s velocity is given by (t—T). In this case

Obviously, this is not the case for a very lare. Figure e can define the delay time of car motionTs

4 shows examples far=0.6, 0.8, where critical curves are | et the position of the leader at tintdoe y(t) and that of
inside the referenced circléa=0.75. In the original OVM jts follower x(t), which obeys Eq(1.5), that is,

instability always comes from long-range modes~0),

that is, short-range modes { ) are always stable. In the x(t+ 1) =a{V(y(t) = x(t)) = x(t)}. 3.9
35 ———— Starting from the situation with headwdy and velocity
V(b),
30|
sl Yo(t)=V(b)t+b, xo(t)=V(b)t, (32
Q
E 2t} we investigate the response of the follongt) to a small
= change (t) of the leader:
8 15}
| YD) =yo(D+N(1), X()=xo(D)+£&1). (3.3
5 Inserting the above equations into E®.1) and taking a
linear approximation, we get
0

0 5 10 15 20 25 30 35 40 45 . )
headway (m) E(t+ ) +ag(t)+afé(t)=afl(t), (3.9
FIG. 3. Hysteresis loops for=0, 0.1, and 0.2. A tanh-type Wheref=V’(b) is again a derivative of the OVF at headway
curve represents the OMIEq. (1.6)]. b. If one takes\ (t)=¢€'“!, the solution is given by
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1 .
&(t)= e't. (3.5

1+iw/f—€e“ w?af

This is rewritten as

E(t)=|&letet D, (3.6)
where
1 an—wsinor
T= —tanflz—n(), 3.7
w af—wcoqwr)
_I1 w)\? 5 w2 o
|&l=]1+ 1] ~2| 37|\ coswTt Fsinwr
w2\ 2]~ (W2
+ a7 (3.9

First let us consider the cage| is sufficiently small @/f
<l,w/a<l). It will be discussed later whether this condi-
tion is satisfied or not in the realistic situation used in Eq.
(1.6). Then we have

1
|§|=1, TZ?. (39)

Here we take the general expression)dt), which is
expressed as follows:

A(t)zfX(w)eiw‘dw. (3.10

X\ (w) is assumed to be nonzero only fer small enough.
Then we find that the follower’s response becomes

&)= J Mw)e T Dde=\(t-T), (3.11)

that is,

X()=V(b)+ &) =V(b)+A(t—T)=y(t—T),
(3.12

with T of Eq. (3.9).

As a result we conclude that for sufficiently slow and
small change of leader’s velocity, the delay timef motion
of the follower becomes 1/(the inverse of derivative of the
OVF at corresponding headwayindependently of the ex-
plicit delay time 7 of the driver's response.

B. Simulations for homogeneous flows

Next we will carry out numerical simulations to investi-

gate the effect of the explicit delay in homogeneous traffic

flows. The validity of the conditions&<a,f can be checked
also. We make simulations starting from homogeneous flow

SHI, AND NAKAYAMA PRE 58

TABLE I. Delay times of car motions in homogeneous flows.

Ax (m) (s T.—0 (9 T—01(9 T,—02(9

10 2.6427 2.6 2.6 2.6
15 1.3434 1.35 1.35 1.35
20 0.8282 0.95 0.95 0.95
25 0.6921 0.85 0.87 0.89
30 0.8282 0.95 0.95 0.95
35 1.3434 1.35 1.35 1.35
40 2.6427 2.6 2.6 2.6
50 13.101 13 13 13

cedes the first car. The delay time of car motion is estimated
between the 10th car and 11th car when the disturbance
propagates there.

In Table I, we summarize the results of humerical simu-
lation. In the cases where the homogeneous flow is stable,
the delay timeT of car motion is almost equal tofland the
explicit delay has no effect. The caség=20,25,30 corre-
spond to the unstable situation. The measurement of the de-
lay time T is carried out before the disturbance becomes
large. The results show that the assumptioa,f is not
valid. Even in such cases the explicit delay does not affect

C. Simulation for congested flows

In this subsection, we treat the car motion in a stationary
congested flow, where linear analysis is no more valid obvi-
ously. In the previous papd#] we have shown that the
delay timeT of car motion is the inverse of the gradient of
lines that connect two turning point<(and F in Fig. 2).
This is a natural extension of the statement obtained by the
linear analysis: “The delay time of car motion is the inverse
of derivative of the OVF at corresponding headway.”

Our task here is to carry out similar numerical simulations
with the explicit delay. After the congestion pattern becomes
stable, all cars behave in the same manner expressed in Fig.
3. We can estimate the delay tifidrom the time interval of
the motion of two successive cars, which is equivalent to the
gradient of line connecting two turning points of the hyster-
esis loop. Table Il shows the results of simulations for
=0, 0.1, 0.2.

The table clearly shows that the changeTois rather
small compared to the change af Therefore the main con-
tribution of the delay of car motion comes from the structure
of OVM itself and not from the explicit delay. Thedepen-
dence ofT appears only through the change of turning points
of the hysteresis loop. In other words, the effect of the ex-
plicit delay is similar to the change of the sensitivityand is
not essential in the same as the previous section.

TABLE Il. Delay times of car motions in congested flows.

S

with various headways and add a small disturbance to a car 7 T simulation
In order to set the homogeneous flow condition, the circuit 0.0 0.94
length L is taken to beNXx (headway. In this simulation 0.1 0.96
also, we takeN =100 for convenience. We suppose the dis- 0.2 0.99

turbed car to be the first car. Therefore the 100th car pre
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35 T T T T T T T TABLE lIl. Delay times of car motions in queues starting from
a traffic signal.

7 (9 T for a 7-m headways) T for a 3-m headways)

g 0.0 1.10 1.26
> 0.1 1.10 1.26
g 0.2 111 1.25
9 0.3 112 1.26

lll, which again show obviously a small dependenceTof
on 7.
AN A S Hitherto we concerned the definition of delay time of car
0 2 4 6 8 10 12 14 motion given in Sec. I: if velocities of two successive cars
time (s) are given by (t) andv (t—T) respectively, the delay time of
car motion isT. This definition is valid only for the case that
the motions of two cars are similar. As is seen from Figs. 5
and 6, the first several cars move in the different manner,
because the headway of the first car is infinite but that of
D. Simulations for car motion under a traffic signal other cars are relatively small. In order to explore the delay
time of car motion in such a case we will propose another
In this subsection we study the delay of motion of carsdefinition. For example, we can define the delay time as the
starting from a traffic signal. Though this may be a speciainterval between the time when the preceding car starts and
case compared to previous subsections, experiments to othe time when the next car starts. Though there are many
serve the delay time have often been done in this situationother possibilities, the above definition looks rather natural.
Numerical simulations are carried out as follows. First a Figure 7 shows the delay time of car motion by the new
traffic signal is red and all cars are waiting with a headway ofdefinition. Obviously the data approach to a certain value as
7 m, at which the OVR1.6) becomes zero. At time=0, the  the car number becomes large. The limits of the delay times
signal changes to green and cars start. in t_hl_s_deflmnon are the same values as those_m the previous
Figures 5 and 6 show the velocities of several cars in &Igflnmon. It should be mentloneq that the eXp|.ICIt delay time
queue for the cases o¥=0 andr=0.2 sec, respectively. It 7 is simply added to the.dellay time of car motion for first
can be seen that cars with large car numfmaventh or a fiw carﬁ. This eﬁ;ect dissipates alft((ejr 5ﬁverﬁl carsl_s'ga;lt.l
more behave almost in the same manner as its preceding romt eseresu t.s’ We can concld et_att e explicit elay
car. me 7 contributes directly to the delay time of car motion

. . . only for such a restricted case as for the motion of first a few
lw‘? can efstlhma;eht hi(()j (;Iay twffe_‘rrog] thlﬁ bihaworhof tgel cars starting from the traffic signal. In general case, the con-
velocities of the 7th—10th cars. Table Il shows the delayyp, iion of 7 to T is rather small and is similar to the con-
time of car motion for variousr. Again we find that the

. - tribution from the change of the sensitivity
delay timeT has a small dependence on the explicit delay

time 7. To see whether this is general or not, we carried out
another simulation with the initial headway, 3 m. For this

purpose, the OVHEQ. (1.6)] is changed to take zero for In this section we show new features which exist only in
Ax<7 m. We show the results in the third column of Table the OVM with the explicit delay.

FIG. 5. Motions of cars 1-11 for=0. Each curve shows the
velocity of each car.

IV. NEW FEATURES OF OVM WITH EXPLICIT DELAY

1.2
35
1}
30 |
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0 2 4 6 8 10 12 14
time (s)

car number

FIG. 7. Solid line connects delay timésme intervalg of 2nd—
FIG. 6. Motions of cars 1-11 for=0.2. Each curve shows the 11th cars forr=0. Dashed, dotted, and dashed-dotted lines connect
velocity of each car. those forr=0.1, 0.2, and 0.3, respectively.
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FIG. 9. A snapshot of velocities at=10000 sec. Diamond
FIG. 8. Motions of cars 1-11 for=0.3. Each curve shows the marks represent the velocities of the cars.

velocity of each car.
in the OVM with abovea and f, the car cannot follow the
A. Overshoot phenomenon constant velocity motion of the leader. Thug should be
We investigated the motion of cars controlled by a trafficunderstood as the upper bound of the explicit delay time in
signal in the previous section. For smallthe motions of order that the OVM is meaningful as a model of traffic flow.
cars are not so different from those fe=0. For larger,
however, we can see a transitional overshoot of velocity, that C. New congestion pattern
is, an excess and a gradual decrease of velocity. As a typical
case, the motions of cars fer= 0.3 are shown in Fig. 8. We
have carried out many numerical simulations by changing
and found that the overshoot phenomenon beginsr at
=0.19 sec.

Inside the above upper bound of the explicit delay time,
some curious phenomena emerge in traffic flow as the ex-
plicit delay time becomes large. If such phenomena should
be regarded as unrealistic, the upper bound will be taken at a
smaller value.

Figure 9 shows a snapshot of headway-atl0 000 sec,

B. Upper bound of 7 which is enough simulation time to settle congestion pat-

First we note that the explicit delay timeis understood terns. The conditions of the simulation are as follows: total
as the summarized effect coming from delays of physical angar numbemMN =100, circuit lengthL =2500 m and explicit
mechanical response. Therefore a too large value will not bgelay timer=0.22 sec. There we can see small congestion

permitted from observations. There exists, however, moré&lusters or rapid change of velocity between the 15th and
restrictive bound, which has an origin in the equation of60th cars. This pattern looks like an intermediate pattern be-

motion (1.1) of the OVM. fore the congestion is formed completely. However, in con-
We consider a homogeneous equation of the linearizetfast to the case af=0.20 sec, where such a pattern of small
equation(3.4) in the leader-follower system: congestions disappears as time goes, the pattern has very
long life and may never disappear in the cases10.22 sec.
Et+7)+ag(t)+afé(t)=0. (4.1)  This pattern occupies a larger regionasicreases.

Next we taker to be a larger value 0.4 sec. Figure 10
&(t) gives a perturbative motion of the follower when the shows the hysteresis loops far=0 at approximatelyt
leader moves in a constant velocity. In order that the two- 1000 sec and 0.4 at approximatehy 10° sec. Here we
body system is stablg(t) must vanish as time develops. We note that the OVAEQq. (1.6)] takes negative value continu-
see thai(t)=e'*" is a solution of Eq(4.1), with w satisfy-  ously for Ax<7 m and therefore cars can move backward
Ing (without collisions. Because such behaviors of vehicles are
obviously unrealistic, it seems natural to set the upper bound

24T —
w'e* +iaw+af=0. 4.2 of 7 to the transition point at which this hysteresis loop ap-
The marginally stable condition In@ = 0 becomes pears. o _ .
ginatly As shown in Fig. 10, the profiles of hysteresis loops are
ar=«ksin(x), fr=«kcot(x), 4.3 qualitatively different. Moreover, the hysteresis loop for

=2.8 is larger than that foa=2.0 in the case 0f=0.4 in

wherek=Rewr. By eliminating k, we can find the upper contrast to the case ef=0. We also note that the relaxation
bound ofr for givena andf. Though we could not solve Eq. time for 7=0.4 is of the order of 19-10* times that forr
(4.3) analytically, the upper bount}, is found to be a mono- <0.2. The differences of hysteresis loops and relaxation
tonic decreasing function of bo#nandf. times seem to suggest an existence of a new phase. However,

The value ofr,, can be evaluated numerically. For the there exists another possibility: the stationary state indicated
sensitivity a=2.0sec? and the maximum value off by this hysteresis loop is artificial due to finite size effects
=1.441 sec?, which is read off from the OVFEQ. (1.6)], and a new phase does not exist. The congestion pattern
the corresponding upper boung, is 0.44 sec. Ifr>r7,, sec  changes continuously around-0.22 sec and we cannot find
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motion of the traditional car-following model becomes
trivial, if the delay time is zero.

For large explicit delay time, the traffic flow behaves in
a different manner. 1#<0.2 sec, the properties of conges-
tion clusters are similar to that far=0. For 7>0.2 sec, the
stationary pattern of the traffic flow does not consist of only
such congestion clusters but confused patterns. 75e0.3
sec, the traffic flow becomes stationary but congestion clus-
ters are never formed.

In the OVM, there is an upper bound of the explicit delay
time, which comes from the condition that the equation of
motion is meaningful. The upper bound, however, becomes
small, if we require the existence of stable congestion clus-
ters.

From this work, we can obtain an indication on a phe-
. . . . . nomenological study. In this paper we clarified the notions of
10 0 10 20 30 40 50 60 the delay timer of driver's response and the delay tifef
car motion. However, the meaning of the delay time of re-
sponse and its effect are model dependent. In traditional car-

FIG. 10. Hysteresis loops for=0 andr=0.4. As a reference, following models, the delay time seems to be merely a
two casesa=2.0 anda=2.8, are shown. A tanh-type curve repre- fitting parameter and so we can take any valuerfoMore-
sents the OVHE(. (1.6)]. over, the delay time often takes different value in each term.
In the OVM, the delay timer is not free and the observed
value decided by experiments will give a criterion whether
vywe OVM with the optimal velocity functiorl.6) is valid or
not. Here we note that the contribution of the delay of driv-
er's response to the delay of car motion is very small. The
delay of car motion, therefore, has its root just in the dynami-
cal equation itself. This fact suggests the difficulty in deter-

In this paper we investigated the properties of the OVMmining the delay timer of driver's response by measuring
with the explicit delay of the driver's response. The effectsthe delay timeT of car motion. Therefore- must be mea-
of the explicit delay are very small, if the delay time is small: sured directly by other experiments.
7<0.2 sec. The effects are similar to the chageluction
of the sensitivitya, and therefore the explicit delay does not
play an essential role. This fact should be compared to the
traditional car-following models, in which the delay of driv-  The authors are grateful to Y. Sugiyama for helpful dis-
er's response has played a significant role. The equation afussions.

velocity (m/s)

headway (m)

a definite transition point. It is left to future work to deter-
mine whether this pattern indicates the existence of ne
phase or not.

V. SUMMARY AND DISCUSSION
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