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Liquid dynamics theory of the velocity autocorrelation function and self-diffusion
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In equilibrium liquid dynamics theory, the potential energy surface is supposed to consist of a large number
of many-particle nearly harmonic random structural valleys. The passage of the system from one valley to
another is dransit, and the transit motion has to be accounted for in order to apply liquid dynamics theory to
nonequilibrium processes. The role of transits in liquid dynamics theory is equivalent to the role of collisions
in gas dynamics theory. In a classical monatomic liquid, transits are so frequent that each ion “sees” a rapidly
fluctuating well during one mean vibrational period. This condition is represented approximately by an inde-
pendent ion model, in which each ion moves in a smooth harmonic well of frequeramyd at each classical
turning point the ion enters a new well with probabilty or returns in its old well with probability + x. The
corresponding velocity autocorrelation function, which depends and a simple functiog(u), can be made
to fit previously published computer calculations. The frequendy close to the mean phonon frequency of
the crystalline state, confirming a prediction of equilibrium liquid dynamics theory, and the transit probability
Mis around%. Analysis of experimental diffusion data suggests thiatapproximately a universal function of
T/T,,. [S1063-651X98)08007-9

PACS numbdss): 66.10—x, 05.60+w, 66.30.Fq

[. INTRODUCTION In the present paper, we study the simplest nonequilib-
rium process in a classical monatomic liquid, self-diffusion.
The equilibrium theory of liquid dynamics was developed The statistical description of self-diffusion is conveniently
recently[1]. The key ideas are the followinga) The ions expressed in terms of the velocity autocorrelation function
move primarily within one or more macroscopically similar Z(t), and its integral, which is the self-diffusion coefficient
nearly harmonic random structural valleys in the potentialD [4]. In Sec. Il, from an examination of the ion motion in
energy surface(b) The number of such valleys is approxi- classical monatomic liquids, we are led to propose an inde-
mately the universal numbevN for an N-ion system. Prop- pendent ion model as the leading-order description of this
erty (a) gives the ion-motional specific heat of approximately motion. The velocity autocorrelation function for the inde-
3Nk for classical monatomic liquids, in agreement with ex- pendent ion model is worked out in Sec. Ill. This function is
periment [1]. Property (b) gives a universal contribution compared with previously published computer calculations
Nk In w to the entropy of melting at constant volume, also inin Sec. IV. The theoretical self-diffusion coefficient provides
agreement with experimefpg]. These contributions to spe- a basis in Sec. V for rationalizing experimental measure-
cific heat and entropy are the leadifguasiharmoniccon-  ments on normal melting elemental liquids. Our conclusions
tributions. Liquid dynamics theory also predicts correctionsare summarized and discussed in Sec. VI.
arising from anharmonic distortions of the potential energy Before proceeding, we should relate the present work to a
valleys, and from the presence of intersections of neighbomajor current program in describing the motion of particles
ing valleys. The high-temperature specific heat of classicain the liquid and supercooled liquid states. The description is
monatomic liquids has been rationalized in terms of thesdased on the instantaneous normal modsi¥/’s), which
two correctiond 3]. were introduced for an amorphous system by Rahman, Man-
In passing, we are using notation from electronic structuralell, and McTagué5], and for crystal and liquid systems by
theory, where each nucleus plus rigid electron core is calletlaViolette and Stillingef6]. The INM’s are the eigenvalues
an ion, and where the outéralence electrons are viewed as and eigenvectors of the potential energy curvature tensor,
continuously deforming when the ions move. The readeevaluated at the instantaneous configuration of the many-
may feel free to substitute the word nucleus, or atom, for ionparticle system. The INM spectrum contains a temperature-
throughout this paper. dependent lobe of negative eigenvalues, called the “un-
It is useful now to attempt an application of liquid dynam- stable” modes. Buchner, Ladanyi, and Strigtt expanded
ics theory to nonequilibrium processes. In contrast to equithe short-time dynamics of a many-particle system in terms
librium theory, where it is only necessary to recognize theof the instantaneous positions, velocities, forces, and the
intersections of neighboring valleys as a boundary conditiodnNM’s, and derived the corresponding short-time expansion
in the partition-function integration, in nonequilibrium of various autocorrelation functions. By intercomparison of
theory it is necessary to account for the actual motion of theomputer calculations, these authors concluded that the
ion system, when it crosses these intersections. The moticshort-time expansion is improved by omitting the contribu-
of the ion system at the instant of passing from one valley tdions from unstable modes. This procedure was subsequently
another is called a transit. The role of transits in liquid dy-applied to calculate the velocity autocorrelation function for
namics theory is equivalent to the role of collisions in gasliquid and glassy cesium by Vallauri and Bermggd. Keyes
dynamics theory. and co-worker$9,10] developed a different approach to the
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problem of extending the exact short-time dynamics into thdrom one many-particle valley to another. However, as we
longer-time regime appropriate for diffusive motion. They proceed along this line, we will discover that an entirely
argued that unstable modes are present because the maalfferent resolution is appropriate for the monatomic liquid
particle system crosses barriers, and they formulated a statistate.

tical description of the motion in terms of the distribution of | nonequilibrium statistical mechanics, one has to con-

barrier heights. The description was applied to calculate thetryct a statistical description which is local in space and
velocity autocorrelation function of supercooled[A0], and  time, that is, which applies to intervals of space and time
wprk on the barrier height distribution contllnu[a‘lsl]. In a macroscopically small, but still large enough to support a
still different procedure, Cao and Voffi2] introduced &  gaistical description. The reason for this is that the irrevers-

reference system consisting of effective harmonic oscillatorsyq processes which drive a many-particle system toward
and used a variational calculation based on the Gibbs;

) _ . i . equilibrium, and which arise directly from the Hamiltonian
Bogoliubov  inequality to find the self-consistent pqrign of the system, are local in space and tji@. Hence
temperqtu.re—dependen.t referenqe system, which they qallqﬁl liquid dynamics, as already observed in R@f, the tran-
the optimized quadratic approximation. To calculate timegjs motion which carries the entire system from one many-
correlation functions, Cao and Vofl13] replaced the true anicie valley to another must be local, involving only a
potential by the optimized quadratic potential at each inher

h deled th k ~"small local group of ions. The transit rate is then a local
ent structure, then modeled the decay of correlations whiclynciion, expressed as the number of transits per time per

resuIFs when the system moves from.s.tructur.e to structurg,ojume. Correspondingly, we have developed the following
The inherent structures are those originally introduced b¥)icture of a transit: a small group of ions, say two or three

Stillinger and Webef14,13. _ reaches a point in the ions’ motion where simultaneously, or
The present approach begins with the picture of the manygithin a very small interval of time, the ions’ restoring forces

particle potential surface as composed of a large number Qihange 50 as to direct them toward new, significantly dis-
nearly harmonic valleys. The motion of the system within ay|5ceq . equilibrium positions. The key to this process is cor-

single valley is approximately expressed in terms of the Origation among the positions and momenta of the transiting
dinary (stable normal modes of that valley. This approach jons anq their neighbors: the transit occurs only if the neces-
was satisfactory for evaluating the liquid partition function sary correlation is present.

[1], but now, when we attempt to follow the system motion, |, passing, let us note the analogy with the theory of a
we soon realize that the set of normal modes changes §Qute gas. For equilibrium statistical mechanics, with
rapidly, as the system moves from valley to valley, that theg, _ ¢ i the leading approximation, the configuration inte-
single-valley normal modes are not useful in describing the, -, is done by moving each particlé independently over the
motion. This is essentially the same problem as presented B ire yolume of the gas container, and no consideration of
the ever-changing m_stantgneous normal modes, in wh_|c ollisions is required17]. On the other hand, for nonequi-
context the problem is being addressed by the theoreticgy,;j,, statistical mechanics, the Boltzmann theory is con-
program.outlme above. Here we addres.s the problem Dy cteq at the outset in terms of the highly local collision
abandoning normal modes, and by starting over from theyqcess; and, for a collision to occur, two particles must have
opposite picture of nearly independent ion motion. Our aimy,, proper position and velocity correlatighg].

is to investigate whether or not this new starting point might Let us now consider a single ion, with a mean vibrational
be useful in describing the motion of particles in the liquid period of 7, in a monatomic liquid. F,rom analysis of experi-

state. mental data for self-diffusion in liquids, and data for bulk
and shear viscosities as well, we have reached the conclusion
that this single ion will participate in a transit on average
once in every time interval, very approximately. This

In equilibrium statistical mechanics, in calculating the means the ten or so near neighbors of an ion are involved in
partition function, one has to integrate the canonical weightransits many times during one vibrational period, and each
factor exp(-B®), whered(rq, ... ry) is the many-particle transit alters the eigenvectors of the normal modes of the
potential as function of the entire set of ion positians, local group of ions. Hence the normal modes cannot serve as
K=1,...N. The straightforward approach to this integral is to a useful basis for analyzing the motion of any single ion. The
expressb approximately as a sum over independent coordi-appropriate starting point is apparently to picture each ion as
nates. Hence, in liquid dynamics, we have expresBext a  oscillating in a fluctuating well. The obvious next step is to
set of approximately independent many-patrticle valleys, andeplace the fluctuating well by its average, as an approxima-
within each valley, as a set of approximately independention. Consistent with this picture, we suppose that each ion
many-particle normal modg4]. Then, in this quasiharmonic moves in a smooth harmonic well, and, when it reaches a
approximation, the integral of exp(B®) is trivial. To pro-  classical turning point, that it will transit to a new well with
ceed now to nonequilibrium statistical mechanics, we need ta certain probability, or otherwise will move back within its
make an approximate description of the motion of each sepgresent well.
rate ion in the system. Our first thought would be to resolve The strong correlations among the moving ions in the
the motion of a single ion into two contributions, in the fol- liquid state are built into this picture in two ways. First, the
lowing manneria) when the system is within a single many- correlation among ion positions, which prohibits them from
particle potential valley, express the motion of a single ion asipproaching one another closely in the liquid state, and
a sum over all normal modes; arfl) add the single ion which therefore supports the picture of many-particle poten-
motion which occurs each time the system makes a transtial energy valleyq1], is contained in the presence of a lo-

II. INDEPENDENT ION MODEL
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calizing well “seen” by each ion. Second, the correlation oot
required for a transit to occur is contained in the probability
factor, which expresses whether an ion at a turning point will 1 1
see a continuation of the same potential well it has moved in, Z(t)== w2< af coswt + — (ai_az. a)
or will see a new potential well to enter. Having constrained 6 77
the ion motion in these two ways, we neglect all further
correlations, and allow each ion to move independently. This X (sin wt— wt cos wt)> .
defines the present liquid dynamics independent ion model.

An important part of the above argument is the high rate
of occurrence of transits, specifically that each ion transits (n—1l)mr<otsnm:
approximately once in a time interval For simplicity of
argument here, we will take this as a hypothesis, to be con- 1
firmed shortly by our comparison of theory and experiment  Z(1)= w2<[nan- —(N—1)ay,1-a]cos wt
for the velocity autocorrelation function.

()

1
+— (8,81~ 8y1 1 81)(SIN wt— wt COSwt)> .
Ill. MODEL FOR THE VELOCITY ™

AUTOCORRELATION FUNCTION . .
We now analyze the angle averages involved in the scalar

Consider an ion with position(t) and velocity v(t), products of amplitude vectors. At the first turning poiat,
wheret is time. The ion moves in a sequence of harmonicgoes toa,. With probability u, 0< =<1, the ion transits to
wells, all having a common zero of energy, and a commora new well, havinga,-a;=a? cosf, where — 1<cos#<1.
angular frequencw. At each turning point, where=0, the = We expect the new well cent&, to lie roughly in the di-
ion can transit to a new well, or can remain in the old well.rectiona; from R, so thata, is roughly opposite in direc-
At the transit, the position and velocity are conserved, bution from a;, and cos#<0. Hence we expectcos6) to be
the new well has a location different from the old well. Sincearound —3, where the indicated average is over transits.
the ion enters a new well at a turning point, and accelerateBroceeding, with probability % w, the ion stays in its old
toward the well center, we collect the three Cartesian oscilwell, so thata,=a; and a,-a;=a®. Then, averaging over
lators into one vector oscillator which passes through theransits gives
well center. In a well centered atR, we write
r=R+a sin(wt+«@), andv=wa cost+«), wherea is the (ay-a)=pa%(cos @)+ (1—u)a?=a?{1—[1—(cos O) | u}.
amplitude vector, andv is the initial phase. The energy is 4
conserved, sa=|a| is a constant of the motion.

The ion oscillator starts with phaseatt=0, —7/2<a  Since we will have no way in this study of separating the
< /2. We divide the motion into sequential intervals called parametersu and (cos#), we put them together in a net
cycles, where each cycle ends at a turning point. The cycléransit paramete¢, defined by
time intervals are as follows.

(ap-ay)=a%(1—§). (5

a
Cycle 1. O<wts5—a, Formally, O< ¢<2. However, since we expe¢tos )~ —3,

(1) and we further expeci~3, then we anticipate finding

&~2 for the liquid state.

3 1 Now, at the second turning point, a complication arises.
Cycle m: (m— 5) 7T—a$wt$(m— 5) T a, The extension of Eq4) is
(ag-ay)=a’[ u?(cos 0 cos ¢)+2u(1— u){cos b)
=23,....

m=23 +(1-u?)], (®)
The position vector in cyclan is r=R,+a, sin(wt+a),  Whered and ¢ measure the change in direction of the ampli-
m=12,.... tude vector on two successive transits. The coupled average

The velocity autocorrelation function is in Eq. (6) depends on the unknown distribution of abs

However, the most important part @{t) is at smallt, say,
L L for wt=<27, and multiple transits have small effect here, so
Z(t)=5(v(t)-v(0))=30%(a(t)-a(0)cog wt + a)cos a). an approximation is acceptable for transits after the first. We
2 take the approximatior(cos 6 cos ¢)~(cos#)?. Extending
this to all multiple transits yields
This is a complete ensemble average. We will first do the
average of initial phases, over /2 to 7/2. ThenZ(t) is (ar-a)=~a*(1-9)" ', n=34,.... 7
written on intervals ofwt as follows, where each interval
contains contributions from two cycles: At this point, the results foEZ(t) become
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Osowt=s: 10 T T

0.8 —
’
06~ —

1.2

(1+£6)(1-§)coswt ' 11

1
coswt+ p &(sin wt— wt cos wt)

Z(t)= % w2< a?

Z(t)=% w2<a2

+ % &(1—€)(sin wt— wt coswt)

> ! (8) 0.2

and so on. 04}

From the arguments of Sec. Il, the remaining correlation
in Eq. (8), between the amplitude and the transit parameter 06~
¢, should be weak. We neglect this correlation, and collapse
the average tqa?). Classical statistical mechanics for a  -08;
three-dimensional harmonic oscillator gives

2n

FIG. 1. Reduced velocity autocorrelation functiéﬂth), for

2\ _ 2
(a%)=6kT/Mw®, ©) various values of the transit parametgrfor the independent ion
whereM is the oscillator mass. The reduced velocity auto-model
correlation functionZ(t) is defined by harmonic oscillators. For€ £<1, transits occur but are not
- highly probable, hence most ions move back in the same
Z(t)=2(0)Z(1), (100 well at the first turning point, an@(wt) dips negative. For
. §>1, the transits dominate, most ions move forward into a
and from Eqs(8) and (9) we find new well at the first turning point, and(wt) remains posi-
Z(0)=tw*Xa?)=kT/M. (11)  five. Two conclusions from Fig. 1 are noteworthy. The first

is that a wide range of nontrivial behavior emerges from our

Our final result forZ(t), for the independent ion model, with Simple model, already as a function of the single parameter
the two averaging approximations mentioned above, is aé The second is that transits are an essential process in order

follows: to achieve a physically realistic curve @fwt). We will
now compare our model with the available results from
(n—1l)mr<otsnw, n=12,...: molecular-dynamic computer calculations.
. It is fortunate that Mountain and Ha@h9] have given us
Z(t)=[1+(n—1)&I(1-§" ! coswt tables ofZ(t) for liquid Rb, calculated from a realistic po-

1 tential for metallic Rb, and at densities and temperatures
+ = E1- &))" Y(sin wt— ot coswt). (12)  Where Rbis in the liquid phase. The densities and tempera-
™ tures for the three Rb states calculated by Mountain and
Haan are listed in Table I. We fitted oid(t), [Eq. (12)] to
IV. COMPARISONS FOR THE VELOCITY these calculations, by adjusting the two parameteend &
AUTOCORRELATION FUNCTION to obtain agreement at the first minimumit). The fitted
N o and ¢ are listed in Table |, and the comparison £ft)
Figure 1 shows graphs &(wt) vs wt [Eq. (12)] for a  curves is shown in Fig. 2. The agreement between our model
selection of¢ values. For§=0, there are no transits, and and the accurate calculations of Mountain and Haan is excel-
Z(wt)=coswt, corresponding to a collection of independentlent from t=0 to the first minimum inZ(t): while Z(t)

TABLE I. Velocity autocorrelation function data. The first four columns represent computer calculations,
from references given in the text. Columns 5-7 represent the present model fitted to the first minimum in

i(t). The last column compares the fittedwith the measured crystal frequeney .

D(w,£)

T p D )

Simulation (K) (glcn?) (105 céfs)  (10%9s) £ (107 %cnfls) wlw,
Rb1l 345.1 1.501 2.4 0.69 0.69 3.26 1.17
Rb2 436.2 1.501 4.4 0.70 0.75 4.63 1.19
Rb3 606.4 1.348 - 0.64 0.86 8.85 1.23

Na 397 0.927 5.6 1.81 0.75 6.06 1.19

Ar 91 1.428 1.7 0.84 0.89 2.32 1.7
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1.0 T T of the above comparison for Rb.

For our final comparison, we refer back to Fig. 1, and note
that the curves fog just below 1, and fog just above 1, bear
resemblance to the velocity autocorrelation functions calcu-
lated for Ar, at two different temperatures, by Levesque and
0.6 - Verlet [22]. But those calculations were done for Ar at a
’ rather low density, where Ar is known to be somewhat gas-
like [23,24,1, and for this reason, the present liquid model
cannot be made to fit very well the results of Levesque and
Verlet. Nevertheless, for the low-temperature Ar state of
0.2} — Levesque and Verlet, we fitted E¢R5) to the calculated

2(t) at the first minimum, and obtained the valuesewoéind

0.8 —

0.4 .

0 T+w—+5b—f’m7_ . ¢ listed in Table I. The corresponding theoretid( w, &)
= \\/ compares favorably withD from accurate molecular-

<N AT~ . dynamic calculations, at the same density and temperature

0 /o ™ [25], also listed in Table I.

+
0.2 \\/ — V. ANALYSIS OF EXPERIMENTAL
SELF-DIFFUSION DATA
0 ROV e + Self-diffusion has been measured in several liquid metals,

Tt M K
at temperatures running to a few hundred K above the melt-

ing temperatureT,,,. The level of accuracy is such that

02 ] equivalent data sets for the self-diffusion coefficienusu-
ally agree within about 10%. Here we analyze representative
04, L y : : 5 = 14 experimental results for all the normal melting elements for
t(10-13 ) which we were able to find published measurements. In

A Table II, experimental quantities &, are listed, as well as
FIG. 2. Comparison o (wt) for the independent ion model the references for the experimenkalvs T data.
(lineg) with the molecular-dynamic calculations of Mountain and ~ Phenomenological accounts of self-diffusion were given
Haan (symbols. by Nachtried 33], Brown and March34], Lodding[35], and
Ozelton and Swalif36], who also gave a brief review of
early models. The notion that diffusive jumps of liquid atoms
varies over a range greater than 1, the error of our fittednight take place on the vibrational time scale was present
model is<0.02. The agreement is still quite good to the zeroalready in the work of Nachtrief83]. Here we want to in-
beyond the first minimum irZ(t). Obviously, the simple terpret the experimental self-diffusion in terms of the inde-
combination of harmonic oscillations, plus transits, con-Pendent ion model for liquid dynamics, whose velocity au-
tained in our model accurately captures this most importantocorrelation function was worked out and tested in Secs. Il
part of Z(t). Beyond the zero after the first minimum, our and IV. The integral formula fob is [4]
model retains the correct magnitude, but loses the phase of "
Z(t). A D=f Z(t)dt. (13
The processes controlling(t) at larget are complicated. 0
We hope the present model can at least serve as a starti

point for trying to evaluate these processes more realisticall e d(ilgg th%mtegral_ Ozg]) for ez';};:hw m(tjerva:tpflw_t, frng
Meanwhile, we have one more piece of information on our g. (12), and summing the results, and multiplying by Eq.

modelZ(t) at larget, namely, we have the time integral of ]Ecl)rlr)nfor Z(0), theindependent ion model yields the simple

Z(t). As specified in Sec. V, Eq$13) and(14), this integral
is related to the self diffusion coefficielt, and the values 4KT ( & )

for our modelZ(t) are listed aD(w,£) in Table I. These D(w,§)= —5— 2-¢

™ w (14)

data compare favorably with the values Dfcalculated by
Mountain [20] for Rb states 1 and 2, and also listed inwhere M is the atomic mass. This is the equation for
Table I. _ _ _ o D(w,£), whose values are listed in Table I.

The velocity autocorrelation function, and its integral, At this point, we have a two-parameter model, Ety),
was calculated by Rahmd@1] for liquid Na, again from a  for density- and temperature-dependent self-diffusion data.
physically realistic potential. Though Rahman provided onlyapart from the examples of Sec. IV, information on the ve-
a small graph oZ(t), an acceptable determination@fand  |ocity autocorrelation function is not available for calibrating
& can still be made, by fitting Eq12) to the first minimum, ¢ and & A universal estimate of the mean vibrational fre-
and these parameters for Na are listed in Table I. The comguency for monatomic liquids would be most helpful here.
parison of our modeE(t), and the correspondinD (w,£), Fortunately, liquid dynamics theory has given the prediction
to Rahman’s calculations, essentially duplicates the featurebat, for normal melting elements, the mean vibrational fre-
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TABLE Il. Experimental data for liquids, where the subscriptdenotes “at melt.” References provide
the experimentaD vs T used in our analysis 8t=T,,. Determination ofw, and¢,, is described in the text.

Tm Pm D, 0(pm)

Element (K) (g/cnT) (1075 cné/fs) Ref. (10'¥s) Em
Li 453.7 0.515 5.96 [26] 3.85 0.50
Na 371.0 0.925 4.23 [26] 1.52 0.55
K 336.4 0.829 3.70 [26] 0.93 0.55
Rb 312.6 1.479 2.72 [26] 0.58 0.58
Cu 1357 8.000 3.98 [27] 2.48 0.61
Ag 1234 9.346 2.55 [28] 1.59 0.50
Pb 600.6 10.68 1.74 [29] 0.76 0.60
Zn 692.7 6.58 2.03 [30] 1.94 0.52
In 429.8 7.02 1.68 [31] 1.21 0.68
Hg 234.3 13.69 0.97 [32] 1.10 0.92

guency should be about the same in both liquid and crystaimelt are listed in Table Il. Now consider E(.4). If we use
at the same densityl]. A representative mean vibrational the experimentaD for D(w,£), and if we use the experi-
frequency for a crystal is the rms frequensy [37], defined  mentalw, for w, we can solve Eq14) for the corresponding
by value of¢. The results for liquids at melt are listed in Table
II, where one finds,, lying in the fairly narrow range 0.50—
0=+ V(0?)gz, (19 0.68 for nine liquid metals, with an outlying value of 0.92 for
mercury.
Where(aﬂ)Bz is the Brillquin-zone average of the quasihar-  The éame analysis was used to fings T, with experi-
monic phonon frequencies squared. Heageis related 10 mentaID vs T data from the references listed in Table II.
the phonon characteristic temperatégd 2,24], according to  pare we used the measured liquid densitgT), from
sources given previouslyl,3], and we evaluated, at the
hwy= \/ga‘ez (16) liquid density as function of temperature. Our results§ais

] ) . function of T/T,, are shown in Fig. 3. Total errors i,
Extensive tables of highly accurate valuestpf based ulti-  incjyding sizable uncertainties in the density correctiomgf

mately on inelastic neutron-scattering measurements, havg high temperatures, and experimental error®jnare ex-
been listed for the crystalline elemeri,24]. Notice that  ected to be around 0.1. Within such errorst is essentially
6, and likewisew,, depend on density, and can be cor- g niversal function of/T,,, except for mercury, which lies

rected for small changes in density, by means of the experijgnificantly above the other metals in Fig. 3. The increase of
mental Grmeisen parameter, together with standard formula% with T/T,,, shown in Fig. 3, is consistent with the defini-
m: . 1

[2]. tion of £ through Eqgs(4) and(5), since one might expect the

We can test whether or not the crysi@) provides &  yansit probabilityw to increase weakly both asdecreases,
reasonable estimate of the liquil From the tabulated val- 5.4 4sT increases.

ues off, for bcc Rb and Na, at densities where the neutron-
scattering phonon measurements were perforfaezt], we
calculatedw,, at the densities of the liquid computer calcu-
lations given in Table |. The corresponding ratiosw, are
listed in Table I, wherav was determined in Sec. IV from
the calculated velocity autocorrelation functions. For the Rb
and Na examples of Table I, while varies by a factor of 3,
the ratiow/w, remains around 1.2. This is a striking confir-  og
mation that the mean vibrational frequency is about the same
in liquid and crystal, at the same density, at least for theE"
alkali metals. 06

The same ratiow/w, for Ar is listed in Table I, and =
should be considered only an estimate because of the ven
large density correction ab,, from the crystal to the liquid
density. Even for this somewhat gaslike state of Ar, the char-
acteristic time of the ionic vibration, as indicated by the ve- , | | ! ;
locity autocorrelation function, is within a factor of 2 of the ' 2. 4 16
characteristic vibration time in the crystal, at the same den-
sity. FIG. 3. The transit parametér determined by fitting the inde-

We now feel safe in using the crystal, as an estimate pendent ion model, using the crystal frequeney(p), to the ex-
for the liquid w. Values ofw, at the density of the liquid at perimentalD vs T data.

1.2

e ———
e —
—
—

O — |
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VI. CONCLUSIONS AND DISCUSSION D. Transit probability u

A. Velocity autocorrelation function From Eqgs.(4) and(5), ¢ is a combination of the probabil-

ity u that an ion at a turning point will transit to a new well,
and the change in directiof of the ion’s motion when the
transit occurs. Though we have not evaluated these factors

In the important range df, out to the first zero after the
first minimum, the independent ion model with two adjust-
able parameters, expressed by Etp), gives an excellent > ;
account ofZ(t) for the three Rb states calculated by Moun- separately, it is clear from our results f§rTable | and Fig.

. 1 . . .
tain and Haarj19], and for the Na state calculated by Rah- 3, thatu |s_around5 . This conﬂrms the hypqtheS|s of Sec.lll,
man[21]. that each ion transits approximately once in the mean vibra-

From long experience with pseudopotential theory fort?onal periodr,.and such fr'equent occurrence of transit mo-
simple metalg37,38, we are confident that these calcula- tion then provides the logical basis for the independent ion
tions [19,21] represent real liquid Rb and Na quite well. model, as argued in Sec. II.

Further, in view of the similarity of the interionic potentials ~ Equilibrium liquid dynamics theory expresses the ion-
given for different metals by pseudopotential theory, we aremotional specific heat of monatomic liquids [d

confident that the independent ion model will give a good

account ofi(t) for all nearly-free-electron metals. Still fur- Ci=ChtCatCe, 17
ther, there is no obvious reason to doubt that the independent

ion model will give a respectable account for liquid : o I

metals in genegral, with tﬁe probable exceZ;fitgn of t?mse exyvhere the quasiharmonic vibrational contributiop = 3Nk

hibiting unusual configurational order in the liquid state, as'S the dominant term, an@, and CIB are ahnharmonlc Ia”d
reflected in their pair correlation functiofig], for example ~ Poundary contributions, respectively. We have recently ana-

Sh, Bi, Si, and Ge. Finally, it is conceivable that the inde-YZed experimental data in terms of Ed.7), and found the

pendent ion model will agree with computer calculations ofMagnitudes and temperature dependences,oand Cg for
5 ligquid metals[3]. In comparison with the present study of

Z(t) for compressed Ar, at say 1 kbar or so, where Ar ap e -
pears to be more liquidliki3,23,4Q. nonequm_brlum processes, we n_ote the _bound_ary specific
heat Cg is precisely the equilibrium manifestation of the
presence of transit motion, and the magnitude and tempera-
ture dependence @y is in qualitative agreement with the

Liquid dynamics theory predicts, for normal melting ele- independent ion model having around?.
ments, that the central momeritee 0, 1, and 2 momentsf z

the normal mode spectrum should be about the same for the

!iquid and crystal phases, at the same o_ler[_ﬁi]yThe re_sult E. Zwanzig's model

in Table | for the alkali metals, that the liquid, determined

from the velocity autocorrelation function, is nearly the same Zwanzig[41] presented a model which, at a glance, looks
as the crystalw,, determined from inelastic-neutron- quite similar to the present self-diffusion model, but is dif-
scattering phonon measurements, is a striking confirmatioferent in two crucial aspects. Zwanzig supposed that the at-
of this prediction. Again, there is no obvious reason to doubpms in a subvolume undergo harmonic oscillations about
that w=~ w, will hold for the elements in general, as long as some equilibrium positions, then jump to new equilibrium
liguid and crystal phases have approximately the same elegositions, and that the net effect of the jump is to destroy

B. Liquid and crystal frequencies

tronic structure, i.e., for normal melting. coherence of the oscillations within the subvolume. The
atomic motion is then written as a sum over harmonic modes
C. Transit parameter & about a fixed equilibrium configuration, times a factor

exp(—t/r,) to account for decoherence from the diffusive

D(w,&). If we replacew by w,, and use experimental data jumps, Wher,eTW_iS a Wai.ting t_ime. Hence, in Zwanzig's
for w, and D, the resulting curve of vs T/T,, at atmo- model, the diffusive jump itself is not included as part of the

spheric pressure is roughly universal for nine liquid metals@tomic motion. In addition, Zwanzig noted that his dynami-
as shown in Fig. 3. The increase With T/T,, is expected, cal picture makes sense only if the waiting timgis much
since the transit probability. should increase weakly with onger than a Debye period.

T/T,. Its universality encourages us to imagine thas a By contrast, in our model, within the small volume of an
useful physical parameter, especially singg varies by a ion and its near neighbors, diffusive jumps take place many
factor of 6.6 for the liquid metals in Table IlI. Finally, among times within a single Debye period. Second, in our indepen-
the ten normal-melting liquid metals for which we found dent ion model, the transits, which represent the diffusive
sufficient data to analyze faf, mercury definitely falls out- jumps, are not omitted but are included as an essential part of
side the universal group in Fig. 3. the motion.

The independent ion model provides El4) for
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