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Liquid dynamics theory of the velocity autocorrelation function and self-diffusion

Duane C. Wallace
Los Alamos National Laboratory, Los Alamos, New Mexico 87545

~Received 15 September 1997!

In equilibrium liquid dynamics theory, the potential energy surface is supposed to consist of a large number
of many-particle nearly harmonic random structural valleys. The passage of the system from one valley to
another is atransit, and the transit motion has to be accounted for in order to apply liquid dynamics theory to
nonequilibrium processes. The role of transits in liquid dynamics theory is equivalent to the role of collisions
in gas dynamics theory. In a classical monatomic liquid, transits are so frequent that each ion ‘‘sees’’ a rapidly
fluctuating well during one mean vibrational period. This condition is represented approximately by an inde-
pendent ion model, in which each ion moves in a smooth harmonic well of frequencyv, and at each classical
turning point the ion enters a new well with probabilitym, or returns in its old well with probability 12m. The
corresponding velocity autocorrelation function, which depends onv and a simple functionj~m!, can be made
to fit previously published computer calculations. The frequencyv is close to the mean phonon frequency of
the crystalline state, confirming a prediction of equilibrium liquid dynamics theory, and the transit probability
m is around1

2 . Analysis of experimental diffusion data suggests thatj is approximately a universal function of
T/Tm . @S1063-651X~98!08007-6#

PACS number~s!: 66.10.2x, 05.60.1w, 66.30.Fq
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I. INTRODUCTION

The equilibrium theory of liquid dynamics was develop
recently @1#. The key ideas are the following:~a! The ions
move primarily within one or more macroscopically simil
nearly harmonic random structural valleys in the poten
energy surface.~b! The number of such valleys is approx
mately the universal numberwN for an N-ion system. Prop-
erty ~a! gives the ion-motional specific heat of approximate
3Nk for classical monatomic liquids, in agreement with e
periment @1#. Property ~b! gives a universal contribution
Nk ln w to the entropy of melting at constant volume, also
agreement with experiment@2#. These contributions to spe
cific heat and entropy are the leading~quasiharmonic! con-
tributions. Liquid dynamics theory also predicts correctio
arising from anharmonic distortions of the potential ene
valleys, and from the presence of intersections of neighb
ing valleys. The high-temperature specific heat of class
monatomic liquids has been rationalized in terms of th
two corrections@3#.

In passing, we are using notation from electronic struct
theory, where each nucleus plus rigid electron core is ca
an ion, and where the outer~valence! electrons are viewed a
continuously deforming when the ions move. The rea
may feel free to substitute the word nucleus, or atom, for i
throughout this paper.

It is useful now to attempt an application of liquid dynam
ics theory to nonequilibrium processes. In contrast to eq
librium theory, where it is only necessary to recognize
intersections of neighboring valleys as a boundary condi
in the partition-function integration, in nonequilibrium
theory it is necessary to account for the actual motion of
ion system, when it crosses these intersections. The mo
of the ion system at the instant of passing from one valley
another is called a transit. The role of transits in liquid d
namics theory is equivalent to the role of collisions in g
dynamics theory.
PRE 581063-651X/98/58~1!/538~8!/$15.00
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In the present paper, we study the simplest nonequi
rium process in a classical monatomic liquid, self-diffusio
The statistical description of self-diffusion is convenien
expressed in terms of the velocity autocorrelation funct
Z(t), and its integral, which is the self-diffusion coefficie
D @4#. In Sec. II, from an examination of the ion motion i
classical monatomic liquids, we are led to propose an in
pendent ion model as the leading-order description of
motion. The velocity autocorrelation function for the ind
pendent ion model is worked out in Sec. III. This function
compared with previously published computer calculatio
in Sec. IV. The theoretical self-diffusion coefficient provid
a basis in Sec. V for rationalizing experimental measu
ments on normal melting elemental liquids. Our conclusio
are summarized and discussed in Sec. VI.

Before proceeding, we should relate the present work
major current program in describing the motion of partic
in the liquid and supercooled liquid states. The description
based on the instantaneous normal modes~INM’s !, which
were introduced for an amorphous system by Rahman, M
dell, and McTague@5#, and for crystal and liquid systems b
LaViolette and Stillinger@6#. The INM’s are the eigenvalue
and eigenvectors of the potential energy curvature ten
evaluated at the instantaneous configuration of the ma
particle system. The INM spectrum contains a temperatu
dependent lobe of negative eigenvalues, called the ‘‘
stable’’ modes. Buchner, Ladanyi, and Stratt@7# expanded
the short-time dynamics of a many-particle system in ter
of the instantaneous positions, velocities, forces, and
INM’s, and derived the corresponding short-time expans
of various autocorrelation functions. By intercomparison
computer calculations, these authors concluded that
short-time expansion is improved by omitting the contrib
tions from unstable modes. This procedure was subseque
applied to calculate the velocity autocorrelation function
liquid and glassy cesium by Vallauri and Bermejo@8#. Keyes
and co-workers@9,10# developed a different approach to th
538 © 1998 The American Physical Society
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PRE 58 539LIQUID DYNAMICS THEORY OF THE VELOCITY . . .
problem of extending the exact short-time dynamics into
longer-time regime appropriate for diffusive motion. Th
argued that unstable modes are present because the m
particle system crosses barriers, and they formulated a st
tical description of the motion in terms of the distribution
barrier heights. The description was applied to calculate
velocity autocorrelation function of supercooled Ar@10#, and
work on the barrier height distribution continues@11#. In a
still different procedure, Cao and Voth@12# introduced a
reference system consisting of effective harmonic oscillat
and used a variational calculation based on the Gib
Bogoliubov inequality to find the self-consiste
temperature-dependent reference system, which they c
the optimized quadratic approximation. To calculate tim
correlation functions, Cao and Voth@13# replaced the true
potential by the optimized quadratic potential at each inh
ent structure, then modeled the decay of correlations wh
results when the system moves from structure to struct
The inherent structures are those originally introduced
Stillinger and Weber@14,15#.

The present approach begins with the picture of the ma
particle potential surface as composed of a large numbe
nearly harmonic valleys. The motion of the system within
single valley is approximately expressed in terms of the
dinary ~stable! normal modes of that valley. This approac
was satisfactory for evaluating the liquid partition functio
@1#, but now, when we attempt to follow the system motio
we soon realize that the set of normal modes change
rapidly, as the system moves from valley to valley, that
single-valley normal modes are not useful in describing
motion. This is essentially the same problem as presente
the ever-changing instantaneous normal modes, in wh
context the problem is being addressed by the theore
program outline above. Here we address the problem
abandoning normal modes, and by starting over from
opposite picture of nearly independent ion motion. Our a
is to investigate whether or not this new starting point mig
be useful in describing the motion of particles in the liqu
state.

II. INDEPENDENT ION MODEL

In equilibrium statistical mechanics, in calculating th
partition function, one has to integrate the canonical wei
factor exp(2bF), whereF(r1 , . . . ,rN) is the many-particle
potential as function of the entire set of ion positionsrK ,
K51,...,N. The straightforward approach to this integral is
expressF approximately as a sum over independent coo
nates. Hence, in liquid dynamics, we have expressedF as a
set of approximately independent many-particle valleys,
within each valley, as a set of approximately independ
many-particle normal modes@1#. Then, in this quasiharmoni
approximation, the integral of exp(2bF) is trivial. To pro-
ceed now to nonequilibrium statistical mechanics, we nee
make an approximate description of the motion of each se
rate ion in the system. Our first thought would be to reso
the motion of a single ion into two contributions, in the fo
lowing manner:~a! when the system is within a single man
particle potential valley, express the motion of a single ion
a sum over all normal modes; and~b! add the single ion
motion which occurs each time the system makes a tra
e
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from one many-particle valley to another. However, as
proceed along this line, we will discover that an entire
different resolution is appropriate for the monatomic liqu
state.

In nonequilibrium statistical mechanics, one has to co
struct a statistical description which is local in space a
time, that is, which applies to intervals of space and ti
macroscopically small, but still large enough to suppor
statistical description. The reason for this is that the irreve
ible processes which drive a many-particle system tow
equilibrium, and which arise directly from the Hamiltonia
motion of the system, are local in space and time@16#. Hence
in liquid dynamics, as already observed in Ref.@1#, the tran-
sit motion which carries the entire system from one ma
particle valley to another must be local, involving only
small local group of ions. The transit rate is then a loc
function, expressed as the number of transits per time
volume. Correspondingly, we have developed the follow
picture of a transit: a small group of ions, say two or thre
reaches a point in the ions’ motion where simultaneously
within a very small interval of time, the ions’ restoring force
change so as to direct them toward new, significantly d
placed, equilibrium positions. The key to this process is c
relation among the positions and momenta of the transi
ions and their neighbors: the transit occurs only if the nec
sary correlation is present.

In passing, let us note the analogy with the theory o
dilute gas. For equilibrium statistical mechanics, w
F50 in the leading approximation, the configuration int
gral is done by moving each particle independently over
entire volume of the gas container, and no consideration
collisions is required@17#. On the other hand, for nonequ
librium statistical mechanics, the Boltzmann theory is co
structed at the outset in terms of the highly local collisi
process, and, for a collision to occur, two particles must h
the proper position and velocity correlation@18#.

Let us now consider a single ion, with a mean vibration
period oft, in a monatomic liquid. From analysis of exper
mental data for self-diffusion in liquids, and data for bu
and shear viscosities as well, we have reached the conclu
that this single ion will participate in a transit on avera
once in every time intervalt, very approximately. This
means the ten or so near neighbors of an ion are involve
transits many times during one vibrational period, and e
transit alters the eigenvectors of the normal modes of
local group of ions. Hence the normal modes cannot serv
a useful basis for analyzing the motion of any single ion. T
appropriate starting point is apparently to picture each ion
oscillating in a fluctuating well. The obvious next step is
replace the fluctuating well by its average, as an approxim
tion. Consistent with this picture, we suppose that each
moves in a smooth harmonic well, and, when it reache
classical turning point, that it will transit to a new well wit
a certain probability, or otherwise will move back within i
present well.

The strong correlations among the moving ions in t
liquid state are built into this picture in two ways. First, th
correlation among ion positions, which prohibits them fro
approaching one another closely in the liquid state, a
which therefore supports the picture of many-particle pot
tial energy valleys@1#, is contained in the presence of a lo
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540 PRE 58DUANE C. WALLACE
calizing well ‘‘seen’’ by each ion. Second, the correlatio
required for a transit to occur is contained in the probabi
factor, which expresses whether an ion at a turning point
see a continuation of the same potential well it has moved
or will see a new potential well to enter. Having constrain
the ion motion in these two ways, we neglect all furth
correlations, and allow each ion to move independently. T
defines the present liquid dynamics independent ion mod

An important part of the above argument is the high r
of occurrence of transits, specifically that each ion tran
approximately once in a time intervalt. For simplicity of
argument here, we will take this as a hypothesis, to be c
firmed shortly by our comparison of theory and experim
for the velocity autocorrelation function.

III. MODEL FOR THE VELOCITY
AUTOCORRELATION FUNCTION

Consider an ion with positionr (t) and velocity v(t),
where t is time. The ion moves in a sequence of harmo
wells, all having a common zero of energy, and a comm
angular frequencyv. At each turning point, wherev50, the
ion can transit to a new well, or can remain in the old we
At the transit, the position and velocity are conserved,
the new well has a location different from the old well. Sin
the ion enters a new well at a turning point, and acceler
toward the well center, we collect the three Cartesian os
lators into one vector oscillator which passes through
well center. In a well centered atR, we write
r5R1a sin(vt1a), and v5va cos(vt1a), wherea is the
amplitude vector, anda is the initial phase. The energy i
conserved, soa5uau is a constant of the motion.

The ion oscillator starts with phasea at t50, 2p/2<a
<p/2. We divide the motion into sequential intervals call
cycles, where each cycle ends at a turning point. The c
time intervals are as follows.

Cycle 1: 0<vt<
p

2
2a,

~1!

Cycle m: S m2
3

2Dp2a<vt<S m2
1

2Dp2a,

m52,3, . . . .

The position vector in cyclem is r5Rm1am sin(vt1a),
m51,2, . . . .

The velocity autocorrelation function is

Z~ t !5 1
3 ^v~ t !•v~0!&5 1

3 v2^a~ t !•a~0!cos~vt1a!cosa&.
~2!

This is a complete ensemble average. We will first do
average of initial phases, over2p/2 to p/2. ThenZ(t) is
written on intervals ofvt as follows, where each interva
contains contributions from two cycles:
ll
n,
d
r
is
l.
e
ts

n-
t

c
n

.
t

es
il-
e

le

e

0<vt<p:

Z~ t !5
1

6
v2K a1

2 cosvt1
1

p
~a1

22a2•a1!

3~sin vt2vt cosvt !L .
~3!

~n21!p<vt<np:

Z~ t !5
1

6
v2K @nan•a12~n21!an11•a1#cosvt

1
1

p
~an•a12an11•a1!~sin vt2vt cosvt !L .

We now analyze the angle averages involved in the sc
products of amplitude vectors. At the first turning point,a1
goes toa2 . With probabilitym, 0<m<1, the ion transits to
a new well, havinga2•a15a2 cosu, where21<cosu<1.
We expect the new well centerR2 to lie roughly in the di-
rectiona1 from R1 , so thata2 is roughly opposite in direc-
tion from a1 , and cosu,0. Hence we expect̂cosu& to be
around 2 1

2 , where the indicated average is over trans
Proceeding, with probability 12m, the ion stays in its old
well, so thata25a1 and a2•a15a2. Then, averaging ove
transits gives

^a2•a1&5ma2^cosu&1~12m!a25a2$12@12^cosu&#m%.
~4!

Since we will have no way in this study of separating t
parametersm and ^cosu&, we put them together in a ne
transit parameterj, defined by

^a2•a1&5a2~12j!. ~5!

Formally, 0<j<2. However, since we expect^cosu&'21
2,

and we further expectm' 1
2 , then we anticipate finding

j' 3
4 for the liquid state.

Now, at the second turning point, a complication aris
The extension of Eq.~4! is

^a3•a1&5a2@m2^cosu cosf&12m~12m!^cosu&

1~12m2!#, ~6!

whereu andf measure the change in direction of the amp
tude vector on two successive transits. The coupled ave
in Eq. ~6! depends on the unknown distribution of cosu.
However, the most important part ofZ(t) is at smallt, say,
for vt&2p, and multiple transits have small effect here,
an approximation is acceptable for transits after the first.
take the approximation̂ cosu cosf&'^cosu&2. Extending
this to all multiple transits yields

^an•a1&'a2~12j!n21, n53,4, . . . . ~7!

At this point, the results forZ(t) become



io
r
ps
a

to

h
a

d
n

t
me

a

st
ur
ter
rder

m

-
res
era-
and

del
cel-

PRE 58 541LIQUID DYNAMICS THEORY OF THE VELOCITY . . .
0<vt<p:

Z~ t !5
1

6
v2K a2Fcosvt1

1

p
j~sin vt2vt cosvt !G L ,

p<vt<2p:

Z~ t !5
1

6
v2K a2F ~11j!~12j!cosvt

1
1

p
j~12j!~sin vt2vt cosvt !G L , ~8!

and so on.
From the arguments of Sec. II, the remaining correlat

in Eq. ~8!, between the amplitudea and the transit paramete
j, should be weak. We neglect this correlation, and colla
the average tô a2&. Classical statistical mechanics for
three-dimensional harmonic oscillator gives

^a2&56kT/Mv2, ~9!

whereM is the oscillator mass. The reduced velocity au
correlation functionẐ(t) is defined by

Z~ t !5Z~0!Ẑ~ t !, ~10!

and from Eqs.~8! and ~9! we find

Z~0!5 1
6 v2^a2&5kT/M . ~11!

Our final result forẐ(t), for the independent ion model, wit
the two averaging approximations mentioned above, is
follows:

~n21!p<vt<np, n51,2, . . . :

Ẑ~ t !5@11~n21!j#~12j!n21 cosvt

1
1

p
j~12j!n21~sin vt2vt cosvt !. ~12!

IV. COMPARISONS FOR THE VELOCITY
AUTOCORRELATION FUNCTION

Figure 1 shows graphs ofẐ(vt) vs vt @Eq. ~12!# for a
selection ofj values. Forj50, there are no transits, an
Ẑ(vt)5cosvt, corresponding to a collection of independe
n

e

-

s

t

harmonic oscillators. For 0,j,1, transits occur but are no
highly probable, hence most ions move back in the sa
well at the first turning point, andẐ(vt) dips negative. For
j.1, the transits dominate, most ions move forward into
new well at the first turning point, andẐ(vt) remains posi-
tive. Two conclusions from Fig. 1 are noteworthy. The fir
is that a wide range of nontrivial behavior emerges from o
simple model, already as a function of the single parame
j. The second is that transits are an essential process in o
to achieve a physically realistic curve ofẐ(vt). We will
now compare our model with the available results fro
molecular-dynamic computer calculations.

It is fortunate that Mountain and Haan@19# have given us
tables ofẐ(t) for liquid Rb, calculated from a realistic po
tential for metallic Rb, and at densities and temperatu
where Rb is in the liquid phase. The densities and temp
tures for the three Rb states calculated by Mountain
Haan are listed in Table I. We fitted ourẐ(t), @Eq. ~12!# to
these calculations, by adjusting the two parametersv andj
to obtain agreement at the first minimum inẐ(t). The fitted
v and j are listed in Table I, and the comparison ofẐ(t)
curves is shown in Fig. 2. The agreement between our mo
and the accurate calculations of Mountain and Haan is ex
lent from t50 to the first minimum inẐ(t): while Ẑ(t)

FIG. 1. Reduced velocity autocorrelation functionẐ(vt), for
various values of the transit parameterj, for the independent ion
model.
tions,
um in
TABLE I. Velocity autocorrelation function data. The first four columns represent computer calcula
from references given in the text. Columns 5–7 represent the present model fitted to the first minim
Ẑ(t). The last column compares the fittedv with the measured crystal frequencyv2 .

Simulation
T

~K!
r

(g/cm3)
D

(1025 cm2/s)
v

(1013/s) j
D(v,j)

(1025 cm2/s) v/v2

Rb1 345.1 1.501 2.4 0.69 0.69 3.26 1.17
Rb2 436.2 1.501 4.4 0.70 0.75 4.63 1.19
Rb3 606.4 1.348 - 0.64 0.86 8.85 1.23
Na 397 0.927 5.6 1.81 0.75 6.06 1.19
Ar 91 1.428 1.7 0.84 0.89 2.32 ~1.7!
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542 PRE 58DUANE C. WALLACE
varies over a range greater than 1, the error of our fit
model is&0.02. The agreement is still quite good to the ze
beyond the first minimum inẐ(t). Obviously, the simple
combination of harmonic oscillations, plus transits, co
tained in our model accurately captures this most impor
part of Ẑ(t). Beyond the zero after the first minimum, o
model retains the correct magnitude, but loses the phas
Ẑ(t).

The processes controllingẐ(t) at larget are complicated.
We hope the present model can at least serve as a sta
point for trying to evaluate these processes more realistica
Meanwhile, we have one more piece of information on o
model Ẑ(t) at larget, namely, we have the time integral o
Ẑ(t). As specified in Sec. V, Eqs.~13! and~14!, this integral
is related to the self diffusion coefficientD, and the values
for our modelẐ(t) are listed asD(v,j) in Table I. These
data compare favorably with the values ofD calculated by
Mountain @20# for Rb states 1 and 2, and also listed
Table I.

The velocity autocorrelation function, and its integr
was calculated by Rahman@21# for liquid Na, again from a
physically realistic potential. Though Rahman provided o
a small graph ofẐ(t), an acceptable determination ofv and
j can still be made, by fitting Eq.~12! to the first minimum,
and these parameters for Na are listed in Table I. The c
parison of our modelẐ(t), and the correspondingD(v,j),
to Rahman’s calculations, essentially duplicates the feat

FIG. 2. Comparison ofẐ(vt) for the independent ion mode
~lines! with the molecular-dynamic calculations of Mountain a
Haan~symbols!.
d

-
nt

of

ing
y.
r
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es

of the above comparison for Rb.
For our final comparison, we refer back to Fig. 1, and n

that the curves forj just below 1, and forj just above 1, bear
resemblance to the velocity autocorrelation functions cal
lated for Ar, at two different temperatures, by Levesque a
Verlet @22#. But those calculations were done for Ar at
rather low density, where Ar is known to be somewhat g
like @23,24,1#, and for this reason, the present liquid mod
cannot be made to fit very well the results of Levesque a
Verlet. Nevertheless, for the low-temperature Ar state
Levesque and Verlet, we fitted Eq.~25! to the calculated
Ẑ(t) at the first minimum, and obtained the values ofv and
j listed in Table I. The corresponding theoreticalD(v,j)
compares favorably withD from accurate molecular
dynamic calculations, at the same density and tempera
@25#, also listed in Table I.

V. ANALYSIS OF EXPERIMENTAL
SELF-DIFFUSION DATA

Self-diffusion has been measured in several liquid met
at temperatures running to a few hundred K above the m
ing temperatureTm . The level of accuracy is such tha
equivalent data sets for the self-diffusion coefficientD usu-
ally agree within about 10%. Here we analyze representa
experimental results for all the normal melting elements
which we were able to find published measurements.
Table II, experimental quantities atTm are listed, as well as
the references for the experimentalD vs T data.

Phenomenological accounts of self-diffusion were giv
by Nachtrieb@33#, Brown and March@34#, Lodding@35#, and
Ozelton and Swalin@36#, who also gave a brief review o
early models. The notion that diffusive jumps of liquid atom
might take place on the vibrational time scale was pres
already in the work of Nachtrieb@33#. Here we want to in-
terpret the experimental self-diffusion in terms of the ind
pendent ion model for liquid dynamics, whose velocity a
tocorrelation function was worked out and tested in Secs
and IV. The integral formula forD is @4#

D5E
0

`

Z~ t !dt. ~13!

By doing the integral ofẐ(t) for eachp interval ofvt, from
Eq. ~12!, and summing the results, and multiplying by E
~11! for Z(0), the independent ion model yields the simp
form

D~v,j!5
4kT

pMv S j

22j D , ~14!

where M is the atomic mass. This is the equation f
D(v,j), whose values are listed in Table I.

At this point, we have a two-parameter model, Eq.~14!,
for density- and temperature-dependent self-diffusion d
Apart from the examples of Sec. IV, information on the v
locity autocorrelation function is not available for calibratin
v and j. A universal estimate of the mean vibrational fr
quency for monatomic liquids would be most helpful he
Fortunately, liquid dynamics theory has given the predict
that, for normal melting elements, the mean vibrational f
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TABLE II. Experimental data for liquids, where the subscriptm denotes ‘‘at melt.’’ References provid
the experimentalD vs T used in our analysis atT>Tm . Determination ofv2 andjm is described in the text.

Element
Tm

~K!
rm

(g/cm3)
Dm

(1025 cm2/s) Ref.
v2(rm)
(1013/s) jm

Li 453.7 0.515 5.96 @26# 3.85 0.50
Na 371.0 0.925 4.23 @26# 1.52 0.55
K 336.4 0.829 3.70 @26# 0.93 0.55
Rb 312.6 1.479 2.72 @26# 0.58 0.58
Cu 1357 8.000 3.98 @27# 2.48 0.61
Ag 1234 9.346 2.55 @28# 1.59 0.50
Pb 600.6 10.68 1.74 @29# 0.76 0.60
Zn 692.7 6.58 2.03 @30# 1.94 0.52
In 429.8 7.02 1.68 @31# 1.21 0.68
Hg 234.3 13.69 0.97 @32# 1.10 0.92
ta
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quency should be about the same in both liquid and crys
at the same density@1#. A representative mean vibrationa
frequency for a crystal is the rms frequencyv2 @37#, defined
by

v251A^v2&BZ, ~15!

where^v2&BZ is the Brillouin-zone average of the quasiha
monic phonon frequencies squared. Hencev2 is related to
the phonon characteristic temperatureu2 @2,24#, according to

\v25A3/5ku2 . ~16!

Extensive tables of highly accurate values ofu2 , based ulti-
mately on inelastic neutron-scattering measurements, h
been listed for the crystalline elements@2,24#. Notice that
u2 , and likewisev2 , depend on density, and can be co
rected for small changes in density, by means of the exp
mental Gru¨neisen parameter, together with standard formu
@2#.

We can test whether or not the crystalv2 provides a
reasonable estimate of the liquidv. From the tabulated val
ues ofu2 for bcc Rb and Na, at densities where the neutr
scattering phonon measurements were performed@2,24#, we
calculatedv2 , at the densities of the liquid computer calc
lations given in Table I. The corresponding ratiosv/v2 are
listed in Table I, wherev was determined in Sec. IV from
the calculated velocity autocorrelation functions. For the
and Na examples of Table I, whilev varies by a factor of 3,
the ratiov/v2 remains around 1.2. This is a striking confi
mation that the mean vibrational frequency is about the sa
in liquid and crystal, at the same density, at least for
alkali metals.

The same ratiov/v2 for Ar is listed in Table I, and
should be considered only an estimate because of the
large density correction ofv2 , from the crystal to the liquid
density. Even for this somewhat gaslike state of Ar, the ch
acteristic time of the ionic vibration, as indicated by the v
locity autocorrelation function, is within a factor of 2 of th
characteristic vibration time in the crystal, at the same d
sity.

We now feel safe in using the crystalv2 as an estimate
for the liquid v. Values ofv2 at the density of the liquid a
l,
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melt are listed in Table II. Now consider Eq.~14!. If we use
the experimentalD for D(v,j), and if we use the experi
mentalv2 for v, we can solve Eq.~14! for the corresponding
value ofj. The results for liquids at melt are listed in Tab
II, where one findsjm lying in the fairly narrow range 0.50–
0.68 for nine liquid metals, with an outlying value of 0.92 fo
mercury.

The same analysis was used to findj vs T, with experi-
mentalD vs T data from the references listed in Table
Here we used the measured liquid densityr(T), from
sources given previously@1,3#, and we evaluatedv2 at the
liquid density as function of temperature. Our results forj as
function of T/Tm are shown in Fig. 3. Total errors inj,
including sizable uncertainties in the density correction ofv2
at high temperatures, and experimental errors inD, are ex-
pected to be around60.1. Within such errors,j is essentially
a universal function ofT/Tm , except for mercury, which lies
significantly above the other metals in Fig. 3. The increase
j with T/Tm , shown in Fig. 3, is consistent with the defin
tion of j through Eqs.~4! and~5!, since one might expect th
transit probabilitym to increase weakly both asr decreases,
and asT increases.

FIG. 3. The transit parameterj, determined by fitting the inde-
pendent ion model, using the crystal frequencyv2(r), to the ex-
perimentalD vs T data.
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VI. CONCLUSIONS AND DISCUSSION

A. Velocity autocorrelation function

In the important range oft, out to the first zero after the
first minimum, the independent ion model with two adju
able parameters, expressed by Eq.~12!, gives an excellent
account ofẐ(t) for the three Rb states calculated by Mou
tain and Haan@19#, and for the Na state calculated by Ra
man @21#.

From long experience with pseudopotential theory
simple metals@37,38#, we are confident that these calcul
tions @19,21# represent real liquid Rb and Na quite we
Further, in view of the similarity of the interionic potentia
given for different metals by pseudopotential theory, we
confident that the independent ion model will give a go
account ofẐ(t) for all nearly-free-electron metals. Still fur
ther, there is no obvious reason to doubt that the indepen
ion model will give a respectable account ofẐ(t) for liquid
metals in general, with the probable exception of those
hibiting unusual configurational order in the liquid state,
reflected in their pair correlation functions@39#, for example
Sb, Bi, Si, and Ge. Finally, it is conceivable that the ind
pendent ion model will agree with computer calculations
Ẑ(t) for compressed Ar, at say 1 kbar or so, where Ar a
pears to be more liquidlike@3,23,40#.

B. Liquid and crystal frequencies

Liquid dynamics theory predicts, for normal melting el
ments, that the central moments~the 0, 1, and 2 moments! of
the normal mode spectrum should be about the same fo
liquid and crystal phases, at the same density@1#. The result
in Table I for the alkali metals, that the liquidv, determined
from the velocity autocorrelation function, is nearly the sa
as the crystal v2 , determined from inelastic-neutron
scattering phonon measurements, is a striking confirma
of this prediction. Again, there is no obvious reason to do
that v'v2 will hold for the elements in general, as long
liquid and crystal phases have approximately the same e
tronic structure, i.e., for normal melting.

C. Transit parameter j

The independent ion model provides Eq.~14! for
D(v,j). If we replacev by v2 , and use experimental dat
for v2 and D, the resulting curve ofj vs T/Tm at atmo-
spheric pressure is roughly universal for nine liquid meta
as shown in Fig. 3. The increase ofj with T/Tm is expected,
since the transit probabilitym should increase weakly with
T/Tm . Its universality encourages us to imagine thatj is a
useful physical parameter, especially sincev2 varies by a
factor of 6.6 for the liquid metals in Table II. Finally, amon
the ten normal-melting liquid metals for which we foun
sufficient data to analyze forj, mercury definitely falls out-
side the universal group in Fig. 3.
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D. Transit probability m

From Eqs.~4! and~5!, j is a combination of the probabil
ity m that an ion at a turning point will transit to a new we
and the change in directionu of the ion’s motion when the
transit occurs. Though we have not evaluated these fac
separately, it is clear from our results forj, Table I and Fig.
3, thatm is around1

2 . This confirms the hypothesis of Sec. I
that each ion transits approximately once in the mean vib
tional periodt, and such frequent occurrence of transit m
tion then provides the logical basis for the independent
model, as argued in Sec. II.

Equilibrium liquid dynamics theory expresses the io
motional specific heat of monatomic liquids as@1#

CI5CH1CA1CB , ~17!

where the quasiharmonic vibrational contributionCH53Nk
is the dominant term, andCA and CB are anharmonic and
boundary contributions, respectively. We have recently a
lyzed experimental data in terms of Eq.~17!, and found the
magnitudes and temperature dependences ofCA andCB for
liquid metals@3#. In comparison with the present study o
nonequilibrium processes, we note the boundary spec
heat CB is precisely the equilibrium manifestation of th
presence of transit motion, and the magnitude and temp
ture dependence ofCB is in qualitative agreement with th
independent ion model havingm around1

2 .

E. Zwanzig’s model

Zwanzig@41# presented a model which, at a glance, loo
quite similar to the present self-diffusion model, but is d
ferent in two crucial aspects. Zwanzig supposed that the
oms in a subvolume undergo harmonic oscillations ab
some equilibrium positions, then jump to new equilibriu
positions, and that the net effect of the jump is to dest
coherence of the oscillations within the subvolume. T
atomic motion is then written as a sum over harmonic mo
about a fixed equilibrium configuration, times a fact
exp(2t/tw) to account for decoherence from the diffusiv
jumps, wheretw is a waiting time. Hence, in Zwanzig’s
model, the diffusive jump itself is not included as part of t
atomic motion. In addition, Zwanzig noted that his dynam
cal picture makes sense only if the waiting timetw is much
longer than a Debye period.

By contrast, in our model, within the small volume of a
ion and its near neighbors, diffusive jumps take place ma
times within a single Debye period. Second, in our indep
dent ion model, the transits, which represent the diffus
jumps, are not omitted but are included as an essential pa
the motion.
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