PHYSICAL REVIEW E VOLUME 58, NUMBER 5 NOVEMBER 1998

Quantum annealing in the transverse Ising model
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We introduce quantum fluctuations into the simulated annealing process of optimization problems, aiming at
faster convergence to the optimal state. Quantum fluctuations cause transitions between states and thus play the
same role as thermal fluctuations in the conventional approach. The idea is tested by the transverse Ising
model, in which the transverse field is a function of time similar to the temperature in the conventional method.
The goal is to find the ground state of the diagonal part of the Hamiltonian with high accuracy as quickly as
possible. We have solved the time-dependent Stihger equation numerically for small size systems with
various exchange interactions. Comparison with the results of the corresponding clébksicah) method
reveals that the quantum annealing leads to the ground state with much larger probability in almost all cases if
we use the same annealing sched[$4.063-651X98)02910-9

PACS numbds): 05.30—d, 75.10.Nr, 89.70:c

I. INTRODUCTION specific model system, rather than to develop a general argu-
ment, to gain insight into the role of quantum fluctuations in
The technique of simulated annealifA) was first pro-  the situation of optimization problem. Quantum effects have
posed by Kirkpatricket al. [1] as a general method to solve been found to play a very similar role to thermal fluctuations
optimization problems. The idea is to use thermal fluctuain the Hopfield model in a transverse field in thermal equi-
tions to allow the system to escape from local minima of thelibrium [5]. This observation motivates us to investigate dy-
cost function so that the system reaches the global minimumamical properties of the Ising model under quantum fluc-
under an appropriate annealing schedthe rate of decrease tuations in the form of a transverse field. We therefore
of temperaturg If the temperature is decreased too quickly, discuss in this paper the transverse Ising model with a vari-
the system may become trapped in a local minimum. Toety of exchange interactions. The transverse field controls the
slow annealing, on the other hand, is practically useless akate of transition between states and thus plays the same role
though such a process would certainly bring the system tas the temperature does in SA. We assume that the system
the global minimum. Geman and Geman proved a theorerhas no thermal fluctuations in the QA context and the term
on the annealing schedule for a generic problem of combi“ground state” refers to the lowest-energy state of the
natorial optimization[2]. They showed that any system Hamiltonian without the transverse field term.
reaches the global minimum of the cost function asymptoti- Static properties of the transverse Ising model have been
cally if the temperature is decreasedTasc/Int or slower, investigated quite extensively for many yed®|. There
where c is a constant determined by the system size andhave, however, been very few studies on the dynamical be-
other structures of the cost function. This bound on the anhavior of the Ising model with a transverse field. We refer to
nealing schedule may be the optimal one under generic corthe work by Satoet al. who carried out quantum Monte
ditions although a faster decrease of the temperature ofte@arlo simulations of the two-dimensional Gaussian spin
gives satisfactory results in practical applications for manyglass model in an infinitesimal transverse field, showing a
systems. reasonably fast approach to the ground st@ie
Thermal fluctuations were introduced in the optimization We present here a point of view that compares the effi-
problem so that transitions between states take place in th@ency of QA directly with that of classical SA in reaching
process of search for the global minimum among manythe ground state. We solve the time-dependent Sithger
states. Thus there seems to be no reason to avoid use of otlegyuation and the classical master equation numerically for
mechanisms for state transitions if these mechanisms magmall-size systems with the same exchange interactions un-
lead to better convergence properties. One such possibility der the same annealing schedules. Calculations of probabili-
the generalized transition probability of Tsall®], which is  ties that the system is in the ground state at each time for
a generalization of the conventional Boltzmann-type transiboth classical and quantum cases give important implications
tion probability appearing in the master equation and thusn the relative efficiency of the two approaches.
used in Monte Carlo simulatiorisee als¢4]). In the present In the next section we explain the model and define the
paper we seek another possibility of making use of quantunmeasure of closeness of the system in QA to the desired
tunneling processes for state transitions, which we call quarground state. This measure is compared with the correspond-
tum annealing(QA). In particular we would like to learn ing classical probability that the system is in the ground
how effectively quantum tunneling processes possibly leadtate, the definition of which is also given there. In Sec. IlI
to the global minimum in comparison to temperature-drivennumerical results for QA and SA are shown for various types
processes used in the conventional method of SA. of annealing schedules and interactions. The data suggest
In the virtual absence of previous studies along such a linthat QA generally gives a larger probability to lead to the
of consideration, it seems better to focus our attention on ground state than SA under the same conditions on the an-
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nealing schedule and interactions. Section IV deals with theigenstates of the classical pat}). By decreasing the am-
analytical solutions for the one-spin case, which turns out tgyjitudeI'(t) of the transverse field from a very large value to
be quite nontrivial. Explicit solutions yield very useful infor- zero, we hopefully drive the system into the optimal state,
mation to clarify several subtle aspects of the problem. Thehe ground state of,.
final section is devoted to summary and discussions. The natural dynamics of the present system is provided by
the Schrdinger equation
Il. TRANSVERSE ISING MODEL

|</f( )

Let us consider the following Ising model with longitudi-
nal and transverse fields:

=H(t)[(1)). ©)

, , « We solve this time-dependent ScHinger equation numeri-
H(t)= _Z Jijoio; —hEi O _F(t)2 Oi D cally for small-size systems. The representation to diagonal-
. ize Hy (the z representationwill be used throughout the
paper. The corresponding classical SA process is described
EHO—F(t)Z af, (2) by the master equation
I

where the types of interactions will be specified later. The dP (t)

term of longitudinal field was introduced to remove the
trivial degeneracy in the exchange interaction term coming
from the overall up-down symmetry that effectively reduceswhere P;(t) represents the probability that the system is in
the available phase space by half. THét) term causes theith state. We consider single-spin flip processes with the
guantum tunneling between various classical stdtke  transition matrix elements given as

—2 L;;P;(1), (4)

{1+exd (Ei— E]-)/T(t)]}‘1 (single-spin difference

= Ly (i=§) (5)

k#i

0 (otherwise.

In SA, the temperaturd (t) is first set to a very large QA andPgu(t)=P o(t) for SA, whereP(t) is the probabil-
value and then is gradually decreased to zero. The corréty to find the system in the ground state at timi@ SA and
sponding process in QA should be to chardy@) from a  |g) is the ground-state wave function &f,. Note that we
very large value to zero. The reason is that the highireat only small-size systemshe number of spindN=8)
temperature state in SA is a mixture of all possible statesind thus the ground state can be picked out explicitly. In the
with almost equal probabilities, and the corresponding statéleal situationPa(t) andPsa(t) will be very small initially
in QA is the linear combination of all states with equal am-and increase towards 1 &s: .
plitude in thez representation, which is the lowest eigenstate It is useful to introduce another set of quantitg,(T)
of the Hamiltonian(1) for very largel’. The low-temperature and PSQ‘A(F). The former is the Boltzmann factor of the
state after a successful SA is the ground stateé(gf which  ground state of{, at temperaturd while the latter is de-
should also be the eigenstatef{t) asI'(t) is reduced to fined as|(g|¢r)|%, where the wave functionyr is the
zero sufficiently slowly in QA. Another justification of iden- lowest-energy stationary state of the full Hamiltoniah for
tification of ' andT comes from the fact that tfe=0 phase @ given fixed value of . In the quasistatic limit, the system
diagram of the Hopfield model in a transverse field has alfollows equilibrium in SA and thUSPSA(t) PEAT(D)).
most the same structure as the equilibrium phase diagram &orrespondingly for QA,Pga(t) =Pa(I'(t)) when I'(t)
the conventional Hopfield model at finite temperature if wechanges sufficiently slowly. Thus the differences between
identify the temperature axis of the latter phase diagram wittpoth sides of these two equations give measures of how
the I' axis in the formef5]. We therefore changE(t) in closely the system follows quasistatic states during dynami-
QA and T(t) in SA from infinity to zero with the same €@l process of annealing.
functional formsT'(t)=T(t)=c/t,c/ \/t,c/In(t+1) (t:0—x)
or —ct (t:—»—0). The reason for choosing these func-
tional forms is that they allow either for analytical solutions
in the single-spin case as shown in Sec. IV or for comparison We now present numerical results &y, and Pga for
with the Geman-Geman bound mentioned in Sec. I. various types of exchange interactions and transverse fields.

To compare the performance of the two methods QA andhll calculations were performed with a constant longitudinal
SA, we calculate the probabilitieBoa(t)=[(g|y(t))[* for  field h=0.1 to remove trivial degeneracy.

[ll. NUMERICAL RESULTS
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FIG. 1. Time dependence of the overlaPsa(t), Poa(t), FIG. 3. Time dependence of-1Pg,(t) of the ferromagnetic
PEA(T(t)) and PEA(T(t)) of the ferromagnetic model witli(t) ~ model withI'(t)=3/\t. The dotted line represents® to guide the
=T(t)=3/n(t+1). eye.

A. Ferromagnetic model ence between QA and SA as shown in Fig. 2. The quantum

Let us first discuss the ferromagnetic Ising model with  method clearly gives better convergence to the ground state
= const for all pairs of spins. Figure 1 shows the overlaps foswvhile the classical counterpart gets stuck in a local minimum
the case ofl’(t)=T(t)=3/In(t+1). It is seen that both QA with a non-negligible probability. To see the rate of approach
and SA follow stationaryequilibrium) states during dynami- of Poa to 1, we have plotted 4 Pg, in a log-log scale in
cal processes rather accurately. In SA the theorem of Gemafig. 3. It is seen that  Poa behaves as constin the time
and Gemarj2] guarantees that the annealing schedu(® region between 100 and 1000.
=c/In(1+t) assures convergence to the ground st&tga( By a still faster annealing schedulgt) =T(t)=3#, the
—1 in our notation if ¢ is adjusted appropriately. Our system becomes trapped in intermediate states both in QA
choicec=3 is somewhat arbitrary but the tendency is clearand SA as seen in Fig. 4.
for Psp—1 ast—o, which is also clear from approximate
satisfaction of the quasiequilibrium conditioPgu(t) B. Frustrated model
— pSt . .
= Psa(T(1)). Although there are no mathematically rigorous We next analyze the interesting case of a frustrated sys-
arguments for QA corresponding to the Geman-Geman h in Eio. 5. The full lines indicate ferromaanetic
bound, the numerical data indicate convergence to thctaem shown mh'llg.h ' ken line is f i gnetic
ground state under the annealing schedie) = 3/In(t+1) interactions while the broken line is for an antiferromagnetic

interaction with the same absolute value as the ferromagnetic

at least for the ferromagnetic system. It should be remem- i C .
bered that the unit of time is arbitrary since we have SePnes. If the temperature is very high in the classical case, the

. - : . : spins 4 and 5 are changing their states very rapidly and hence
A=1 in the Schrdinger equation3) and the unit of time T . ; . .
7=1 in the master equatio). Thus the fact that the curves the effective interaction between spins 3 and 6 via spins 4

C : ; ; and 5 will be negligibly small. Thus the direct antiferromag-
for QA in Fig. 1 lie be'FJ_W th(_)se_ for SA at any given time netic interactions between spins 3 and 6 is expected to domi-
does not have any positive significance.

If we decrease the transverse field and the temperat rnate the correlation of these spins, which is clearly observed
W v ! 1€ lemperaturf Fig. 6 as the negative value of the thermodynamic corre-
faster,I'(t)=T(t) =3/\/t, there appears a qualitative differ-
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FIG. 2. Time dependence of the overlaps of the ferromagnetic FIG. 4. Time dependence of the overlaps of the ferromagnetic
model withT'(t) = T(t) = 3. model withIT'(t)=T(t) =3k.
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FIG. 5. The frustrated model where the solid lines denote ferro- , i
magnetic interactions and the broken line is for an antiferromag- ‘
netic interaction. 0.2 r P /
lation function{c50¢) in the high-temperature side. At low g L S eartii S ]
temperatures, on the other hand, the spins 4 and 5 tend to k 1 10 100 1000
fixed in some definite direction and consequently the effec- T

tive ferromagnetlc Interactions _betweer_l spins 3 an_d .6 A€ F1G. 7. Time dependence of the overlaps of the frustrated model
roughly twice as large as the direct antiferromagnetic 'nter'underr(t):T(t):Slﬁ. Here the time scale is normalized byl',

action. This argu_ment is justified by the posit_ive value of theanch (the points where the correlation functions vanish in Fig. 6
correlation function at low temperatures in Fig. 6. Therefore

the spins 3 and 6 must change their relative orientation at
some intermediate temperature. This means that the free-
energy landscape goes under significant restructuring as the The third and final example is the Sherrington-Kirkpatrick
temperature is decreased and therefore the annealing proc€SK) model of spin glassg$]. Interactions exist between alll
should be performed with sufficient care. pairs of spins and are chosen from a Gaussian distribution
If the transverse field in QA plays a similar role to the with vanishing mean and varianceNl/(N=8 in our casg
temperature in SA, we expect similar dependence of the colFigure 8 shows a typical result on the time evolution of the
relation function<a§<ré>q on the transverse field. Here the  probabilities under the annealing schedulgt)=T(t)
expectation value is evaluated by the stationary eigenfunc=3/\t. We have checked several realizations of exchange
tion of the full Hamiltonian(1) with the lowest eigenvalue at interactions under the same distribution function and have
a givenI'. The broken curve in Fig. 6 clearly supports this found that the results are qualitatively the same. Figure 8
idea. We therefore expect that the frustrated system of Fig. &gain suggests that QA is better suited than SA for the
is a good test ground for comparison of QA and SA in thepresent optimization problem.
situation with a significant change of spin configurations in

C. Random interaction model

the dynamical process of annealing. . IV. SOLUTION OF THE SINGLE-SPIN PROBLEM
The results are shown in Fig. 7 for the annealing schedule _ _ o
[(t)=T(t)=3/At. The time scaler is normalized asr It is possible to solve the time-dependent Sclimger

—1T2 in SA andr=tI'2 in QA. The valuesT, andT’,, are equation explicitly when the problem involves only a single
(o} [of . 1 ) . . . D
the points where the correlation functions vanish in Fig. 6SPin and the functional form of the transverse field i)

Thus both classical and quantum correlation functions vanisfr — Ct.c/t, orc/ V. We note that the single-spin problem is
at 7=1. The tendency is clear that QA is better suited fortfivial in SA because there are only two states involved
ground-state search in the present system. and down and thus there are no local minima. This does not

mean that the same single-spin problem is also trivial in the
1 < . ™ ]
#\ p ——— <0;0¢>,

guantum mechanical version. In QA with a single spin, the
i 1 P I i
I \ S <G30¢> :
0.6 03067 —Pa | g ]

0.2 f . = -----p% /,
- \ | A 0.4 F — - //

.° ——— 4

FIG. 6. Correlation functions of spins 3 and 6 in Fig. 5 for the 1 10 t 100 1000
classical and quantum cases. In the classical m@d#lline) the
correlation is shown as a function of temperature while the quantum FIG. 8. Time dependence of the overlaps for the SK model with
case(dotted ling is regarded as a function of the transverse field. I'(t)=T(t)=3//.
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transition between the two states is caused by a finite trans- We next present the solution fdr(t) =c/t with t chang-
verse field. The system goes through tunneling processes iag from 0 tos under the initial conditiora=b=1/\/2 (see
reach the other state, and an approximate annealing schedgpendix:

is essential to reach the ground state. On the other hand, in
SA, the transition from the higher state to the lower state
takes place even dt=0 and thus the system always reaches
the ground state.

Let us first discuss the caseloft) = —ct with t changing
from —o to 0. This is the well-known Landau-Zener model
and the explicit solution of the time-dependent Scdimger  where F is the confluent hypergeometric function. The
equation is available in the literatuf@—13. With the nota-  asymptotic form ob(t) ast—o is
tion a(t)=(+|¢(t)) and b(t)=(—|¢(t)) and the initial
condition a(—®)=b(—%)=1/\/2 (the lowest eigenstate _ .
the solution forb(t) is found to be(see the Appendix b(t)~ V2(2h) T (2ic)

I'(ic)

1 .
b(t):Ee'htt'clz(1+ic,1+2ic;—2iht), (11)

{efihtfﬂ'C/Z_i_ Ceiht+ 77C/2(2ht)71}'

(12

he‘”hz/gcj 2ct+h , . . .
b(t)= 2% l_ h D_,_i(—iz) The probability of finding the system in the target ground
c

state behaves asymptotically as

ih®+2¢c _, ,
T jzon & DT ©  Poat=]a(n)|? (13)
_ 2
whereD _, _1,D_, _, represent the parabolic cylinder func- =1-[b(1)] (14
tion (or Weber functionandz and\ are given as )
sinh(wc) | ccog2ht) . c’e™
, T sin2me) | © ht 4h2t2
z=\/2ce” ™, (7 (15
~1-e %™, (16)
A= in” 8
=%c (8)

the last approximation being valid fae>1 aftert—co. The

The final value ob(t) att=0 is system does not reach the ground state-as as long ax
is finite. Largerc gives a more accurate approach to the
ground state, which is reasonable because it takes a longer

b(0) h\/;2*ih2’4ce*”h2’gcj 1 time Ito reach a gil\_/en value &f(=c/t) for largerc, imply-
= ) ing slower annealing.
2\2¢ lF(l+|h 14c) The final example of the solvable model concerns the an-
Jee¥i(1+ih2/2c) nealing scheduld (t)=c/t. The solution forb(t) is de-
hC(3i2sinZae) | (9) rived in the Appendix under the initial conditioa=b
+ih®/Ac =1/2 as
The probability to find the system in the ground statd at (I O R | _
=0 is, whenh?/c>1, b(t)zﬁe' F z—l'y,i;—Zlht
c? el 2iht) 2 1y S —2int
PQA(0)=Ia(0)|2=1—|b(0)|2~1—rw- (10 Jh 2’ ’

17
Thus the probabilitPPa(t) does not approach 1 for finite  wherey=c?2h. The larget behavior is found to be

(5/4) i — (U4 mi
b(t)~ /—ﬂ_e—wczmh e~ht(2ht) =17 1 + \me . +elht(2nt)~Y2+y e + ¢ ,
1 cl(—iy) V2T (iy) 1
\/EF E—I‘y 2\/HF E-H'y

(18
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and the probabilityP ya() for c?/h>1 is obtained as

Pou(l)~1-T2), —— 20
h2 QA( ) I;) (Ego)_El(o))z ( )
Poa()=1—[b()[*~1— —. (19 o - .
64c whereE(? is the energy of théth state of the nonperturbed

) o ) . (classical system andEE,o) is the ground-state energy. If we
This equation indicates that the single-spin system does n%%trzc/\ﬁ we have

reach the ground state under the present annealing schedule

I'(t)=c/\t for which the numerical data in the previous c 2

section suggested an accurate approach. We therefore con- Poa(l)~1~ (W) . (22)

clude that the asymptotic value &foa(t) in the previous #0 \ Ey7 — E

section may not be exactly equal to 1 fB(t)=3/\ al- _ _ .

though it is very close to 1. Thus the approach to the asymptotic value is proportional to
The annealing schedul&(t) =c/ Jt has a feature that dis- 1t as Io_ng as the s_ystem stay_s in quasistatic states. The cor-

tinguishes this function from the other onest andc/t. As  résponding probability for SA is

we saw in the previous discussion, the final asymptotic value eyt

of Poa(t) is not 1 if the initial condition corresponds to the —(Ei—En)/T

grou%d state fof —o, a=b=1/\/2. However, as shown in Psa(T)~ e /T~1—i;) e &R (22

the Appendix, by an appropriate choice of the initial condi- zl e

tion, it is possible to drive the system to the ground state if

['(t)=c/\/t. This is not possible for any initial conditions in which shows absence of universal tclike) dependence on

—|

the case of'(t)=—ct or c/t. time.
The present method of QA bears some similarity to the
V. SUMMARY AND DISCUSSIONS approach by the generalized transition probability in which

. ) the dynamics is described by the master equation but the

We have proposed the idea of quantum anned@8) in  ransition probability has power-law dependence on the tem-
which quantum tunneling effects cause transitions betweeBerature in contrast to the usual exponential form of the Bolt-
states in th|m|;at|qn problem, in cqntrast to tht_a usual therymann factorf3]. This power-law dependence on the tem-
mal transitions in simulated annealit§A). The idea was perature allows the system to search for a wider region in the
tested in the transverse Ising model obeying the timepnhase space because of larger probabilities of transition to
dependent Schdinger equation. The transverse field term higher-energy states at a giv@igt), which may be the rea-
was controlled so that the system approaches the grounghy, for faster convergence to the optimal std@d]. The
state. The numerical results on the probability to find theyansyerse field terdi in our QA represents the rate of tran-
system in the ground state were compared with the corresjsion petween states which is larger than the transition rate
sponding probability derived from the numerical solution of;, ga [see Eq.(5)] at a given small value of the control

the master equation representing the SA processes. We haNgrametel (t)=T(t). This larger transition probability may
found that QA shows convergence to the opti@ound g5 to a more active search in wider regions of the phase

state with larger probability than SA in all cases if the saméspace |eading to better convergence similarly to the case of
annealing schedule is used. The system approaches thg, generalized transition probability.

ground state rather accurately in QA for the annealing sched- \ye have solved the Schiimger equation and the master
ule I'=c/ Jt but not for a faster decrease of the transversequation directly by numerical methods for the purpose of
field. ) . comparison of QA and SA. This method faces difficulties for

We have also solved the single-spin model exactly for QAzrger N because the number of states increases exponen-
in the cases of (t) = —ct,c/t, andc/\t. The results showed tially as 2V, The classical SA solves this problem by exploit-
that the ground state is not reached perfectly for all thesghg stochastic processes, Monte Carlo simulations, which
annealing schedules. Therefore the asymptotic values fave the computational complexity growing as a poweX of
Pqa(t) in numerical calculations are probably not exactly 1The corresponding reduction of the computational complex-
although they seem to be quite close to the optimal value ity js |acking in QA, and it is an important future problem in

The rate of approach to the asymptotic value close to lgractical implementation of the idea of QA. Another future
1—-Pqa(t), was found to be proportional totlih Fig. 3 for  problem is to devise implementations of QA in other optimi-
the ferromagnetic model. On the other hand, the single-spiRation problems such as the traveling salesman problem or
solution shows the existence of a term proportional tt/  the graph bipartitioning for which there seems to be no direct
see Eq(18). Probably the coefficient of the {f term is very  analog of the transverse field to cause quantum transitions.
small in the situation of Fig. 3 and the next-order contribu-
tion dominates in the time region shown in Fig. 3.

A simple argument using perturbation theory yields useful
information about the asymptotic form of the probability = We acknowledge useful discussions with Professor S. Mi-
function if we assume that the system follows quasistatioyashita who suggested the model and analysis in Sec. Il B.
states during dynamical processes. The probability to find th©ne of the authoréT.K.) is grateful for the financial support
system in the ground state is expressed using the perturbatiaf the Japan Society for the Promotion of Science for Japa-
in terms of'(<1) as nese Junior Scientists.
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2. Case ofl'(t)=c/t

In this Appendix we explain some technical aspects to We next consider the case bBft) =c/t. By eliminatinga
deriving the exact solution of the time-dependent Schrofrom the Schrdinger equation, we obtain
dinger equation for the transverse Ising model with a single

spin. The three cases &f(t)=—ct,c/t, and ¢/t will be
discussed.

1. Case ofl'(t) = —ct (Landau-Zener mode) [9-13]

Let us express the solution of the Soflimger equation at

time t by the parametera=(+|¢(t)) and b={—|¢(t)).
The Schrdinger equation3) with H=—ho*—T'¢* is ex-
pressed as a set of first order differential equationgfand
b. It is convenient to change the variables as

~ 1 ~ 1
a=-—=(a+b b=-—=(a—b), Al
\/E( ) \/5( ) (A1)
by which the Schrdinger equation is now
d%b(t ~
( )+(—ic+h2+c2t2)b(t)=0. (A2)
dt?
By using the notation
z=/2ce ™4, (A3)
= ih? A4
)\_ Ev ( )
we find
bt A L 12"6 =0 A5
472 + +§ ZZ (t)y=0. (A5)

The initial state is specified as=b=1/\2 orb=0 ast
— —o, The solution of Eq(A5) satisfying this condition is
the parabolic cylinder functio® _, _,(—iz) [14]. Thus, we
obtain the solution as

- 1 - db(t)
a(t)= H( —ctb(t)—i T) , (AB)
b(t)=CiD_, _4(i2), (A7)

whereC; is a constant. To fiXC;, we use the condition

2
_ 2C1C e7Th /8c

a(—»)|= =1. A8
la(—o)] hize (A8)
Then we have
h 2
Ci=—=e " (A9)
1 \/Z

The wave function of this system is given in HG).

d?b(t) 1 dI'(t) db(t)
dtz L(t) dt dt

+

h2+T2(t)

ih dF(t)) ~
~ T ar |PO=0

Substitutingl'(t) =c/t, we have

ih ¢c?
+| 2+ —+—
t2

(A10)

d?b(t) ~ 1db(t)

dt? t dt

" b(t)=0. (A1l)

The solutions of this equation are expressed by the confluent

P function[14]

P th 1 ic ¢

—th 0 —1c
00 0
=e"PL 70 144 0 —2ht ¢,

1 1ic  —2ic

(A12)

the right-hand side of which has two independent expres-

sions in terms of the confluent hypergeometric function
f(t)=e"t'°F(1+ic,1+ 2ic; —2iht), (A13)

g(t)=eMt’c(—2iht) "2°F(1—ic,1—2ic;— 2iht).
(A14)

The general solution i®(t)=C,f(t)+C,g(t). Using the
initial condition

1
b(0)=C,+Co=—, A15
(0)=C;+C; 5 (A15)
(0)=C,—-C ! (A16)

a = — :—,

YRR

we find
b(t):—1 eMi°F(1+ic,1+2ic;—2iht).  (A17)
V2 ' ’

The asymptotic forms olb(t) and|b(t)|? are then given as

J2(2h) eI (2ic)

b~ —F¢)

{e—iht—wc/2+ Ceiht+ 7-rc/2(2ht)—l}’

(A18)
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4h2t2|’
(A19)

sinh(7rc) ccog 2ht)

[b(®)]*~ sinr‘(27-rc)[ e ht

Case of ['(t) =c/\t

The final solvable model hab(t)=c/\t. The Schre
dinger equatior{A10) is then expressed as

d?b(t) 1 db(t) he 2c2+ih (D0, (A20
g2 2t dt T\ T (1)=0. (A20)
The solution is the confluer® function[14]
00 0
P th -;——z'y 0t
—ith iy :
00 0
g~ P —
=e¢™Pe 0 L—iy 0 -2iht |,
1 Y %

(A21)
where y=c?/2h. The two independent solutions are thus
[14]

f(t)=eMF 1—i E-—2iht (A22)

2 ’)/121 £

: ) .3 .
g(t)=e'ht(—2|ht)1’2F(1—|y,§;—2|ht). (A23)

The general solution of EqA20) is therefore the linear
combination of the above two functions
b(t)=C,f(t)+C,g(t). (A24)

The constant€; andC, are fixed by the requirement

b(0)=C,;=—, (A25)

il =

h .
a(0)= £e<5/4>mC2=_

V2¢ V2’

SubstitutingC,; andC, into Eq. (A24), we find

(A26)

1 . (1 1 c .
b(t)= Ee"“lr(i—iy,i;—ziht) + ﬁe(:‘”“)”'

: 3
xe'h‘(—Ziht)l’zF( 1—ivy, E;—2iht) . (A27)

The asymptotic form is
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b(t)w\/;efﬂ'CZMh efiht(th)fiy 1
\/EF(——iv)
2
/4) i — (L4 mi
VheSm iht —1U2+iy (wam
+ 2= | eht(2ny R
cl'(—ivy) V2L (iy)
c
r— | (A28)
2\hT Sy

The probability|b()|? that the system remains in the ex-
cited state can be calculated as the asymptotic form of Eq.
(A28) with the conditionc?/h>1

, me 7" 1 y~ U2g(5i4mi| 2
b()[*=— R (A29)
r E—l'y
oy _ ,
~ % ellz(%—i'y '7+ y 1/26(5/4)7Ti(_i,y)iy+1/2
(A30)
-y ) | 2 1 h2
~ i iy | — _
4 (=1) 8y| 256y g4t (A31)

3. Dependence of the final value on the initial condition

We show that we can choose the initial condition so that
the final state is the ground state wher-c/\t. This is not
possible fol'= —ct or c/t. From Eq.(A24), the asymptotic
form of the solution ag— is

Jme~ wc2/4h—iht(2ht) —ic?/2h
I'(1/2—ic?/2h)
i \/;h e n-c2/4h—iht(2ht) —ic2izh
c’I'(—ic?/2h)

b(t)~C,

+C,

(A32)

The coefficientsC; and C, are fixed under the conditions
b(ee)=0 and|a(0)|?+|b(0)|>=1 as

Clz[ 1+

ic2I’(—ic?/2h)
Co=——————C;. (A34)
hI'(1/2—ic?/2h)

sinh(7rc?/h)

~12
2sini( 7702/2h)] ' (A33

This solution is not the ground state of the Hamiltonian
H(0).

The reason one cannot obtain such a solution for the other
schedulesI{ =c/t, —ct) is the following: The general solu-
tion for I'=c/t also has two coefficients, and the initial state
is represented as the linear combination of two terms whose
phases are indefinite:
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a(0)=Cyt"°|;_,o—Cat ™', _o, (A35)

b(0)=Cyt|;_o+Cat"|;_o. (A36)

The lowest-energy state &=0 corresponds ta(0)=b(0)
=1/\/2 (times an arbitrary phase facipwhich is realized by

choosingC,=0 in Egs.(A35) and(A36). The indefiniteness

of t'® ast—0 is irrelevant because this is only the overall
phase factor. Such a situation does not happen for other val-
ues ofa(0) andb(0), leading to a serious difficulty in de-
termining the wave function dat=0. Thus we cannot choose
an initial condition other thaa(0)=b(0)=1/\2. A similar

fact exists in the case df= —ct.
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