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Quantum annealing in the transverse Ising model

Tadashi Kadowaki and Hidetoshi Nishimori
Department of Physics, Tokyo Institute of Technology, Oh-okayama, Meguro-ku, Tokyo 152-8551, Japan

~Received 30 April 1998!

We introduce quantum fluctuations into the simulated annealing process of optimization problems, aiming at
faster convergence to the optimal state. Quantum fluctuations cause transitions between states and thus play the
same role as thermal fluctuations in the conventional approach. The idea is tested by the transverse Ising
model, in which the transverse field is a function of time similar to the temperature in the conventional method.
The goal is to find the ground state of the diagonal part of the Hamiltonian with high accuracy as quickly as
possible. We have solved the time-dependent Schro¨dinger equation numerically for small size systems with
various exchange interactions. Comparison with the results of the corresponding classical~thermal! method
reveals that the quantum annealing leads to the ground state with much larger probability in almost all cases if
we use the same annealing schedule.@S1063-651X~98!02910-9#

PACS number~s!: 05.30.2d, 75.10.Nr, 89.70.1c
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I. INTRODUCTION

The technique of simulated annealing~SA! was first pro-
posed by Kirkpatricket al. @1# as a general method to solv
optimization problems. The idea is to use thermal fluct
tions to allow the system to escape from local minima of
cost function so that the system reaches the global minim
under an appropriate annealing schedule~the rate of decreas
of temperature!. If the temperature is decreased too quick
the system may become trapped in a local minimum. T
slow annealing, on the other hand, is practically useless
though such a process would certainly bring the system
the global minimum. Geman and Geman proved a theo
on the annealing schedule for a generic problem of com
natorial optimization @2#. They showed that any system
reaches the global minimum of the cost function asympt
cally if the temperature is decreased asT5c/ ln t or slower,
where c is a constant determined by the system size
other structures of the cost function. This bound on the
nealing schedule may be the optimal one under generic
ditions although a faster decrease of the temperature o
gives satisfactory results in practical applications for ma
systems.

Thermal fluctuations were introduced in the optimizati
problem so that transitions between states take place in
process of search for the global minimum among ma
states. Thus there seems to be no reason to avoid use of
mechanisms for state transitions if these mechanisms
lead to better convergence properties. One such possibili
the generalized transition probability of Tsallis@3#, which is
a generalization of the conventional Boltzmann-type tran
tion probability appearing in the master equation and t
used in Monte Carlo simulations~see also@4#!. In the present
paper we seek another possibility of making use of quan
tunneling processes for state transitions, which we call qu
tum annealing~QA!. In particular we would like to learn
how effectively quantum tunneling processes possibly l
to the global minimum in comparison to temperature-driv
processes used in the conventional method of SA.

In the virtual absence of previous studies along such a
of consideration, it seems better to focus our attention o
PRE 581063-651X/98/58~5!/5355~9!/$15.00
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specific model system, rather than to develop a general a
ment, to gain insight into the role of quantum fluctuations
the situation of optimization problem. Quantum effects ha
been found to play a very similar role to thermal fluctuatio
in the Hopfield model in a transverse field in thermal eq
librium @5#. This observation motivates us to investigate d
namical properties of the Ising model under quantum fl
tuations in the form of a transverse field. We therefo
discuss in this paper the transverse Ising model with a v
ety of exchange interactions. The transverse field controls
rate of transition between states and thus plays the same
as the temperature does in SA. We assume that the sy
has no thermal fluctuations in the QA context and the te
‘‘ground state’’ refers to the lowest-energy state of t
Hamiltonian without the transverse field term.

Static properties of the transverse Ising model have b
investigated quite extensively for many years@6#. There
have, however, been very few studies on the dynamical
havior of the Ising model with a transverse field. We refer
the work by Satoet al. who carried out quantum Monte
Carlo simulations of the two-dimensional Gaussian s
glass model in an infinitesimal transverse field, showing
reasonably fast approach to the ground state@7#.

We present here a point of view that compares the e
ciency of QA directly with that of classical SA in reachin
the ground state. We solve the time-dependent Schro¨dinger
equation and the classical master equation numerically
small-size systems with the same exchange interactions
der the same annealing schedules. Calculations of proba
ties that the system is in the ground state at each time
both classical and quantum cases give important implicati
on the relative efficiency of the two approaches.

In the next section we explain the model and define
measure of closeness of the system in QA to the des
ground state. This measure is compared with the corresp
ing classical probability that the system is in the grou
state, the definition of which is also given there. In Sec.
numerical results for QA and SA are shown for various typ
of annealing schedules and interactions. The data sug
that QA generally gives a larger probability to lead to t
ground state than SA under the same conditions on the
5355 © 1998 The American Physical Society
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nealing schedule and interactions. Section IV deals with
analytical solutions for the one-spin case, which turns ou
be quite nontrivial. Explicit solutions yield very useful info
mation to clarify several subtle aspects of the problem. T
final section is devoted to summary and discussions.

II. TRANSVERSE ISING MODEL

Let us consider the following Ising model with longitud
nal and transverse fields:

H~ t !52(
i j

Ji j s i
zs j

z2h(
i

s i
z2G~ t !(

i
s i

x ~1!

[H02G~ t !(
i

s i
x , ~2!

where the types of interactions will be specified later. T
term of longitudinal field was introduced to remove t
trivial degeneracy in the exchange interaction term com
from the overall up-down symmetry that effectively reduc
the available phase space by half. TheG(t) term causes
quantum tunneling between various classical states~the
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eigenstates of the classical partH0). By decreasing the am
plitudeG(t) of the transverse field from a very large value
zero, we hopefully drive the system into the optimal sta
the ground state ofH0 .

The natural dynamics of the present system is provided
the Schro¨dinger equation

i
]uc~ t !&

]t
5H~ t !uc~ t !&. ~3!

We solve this time-dependent Schro¨dinger equation numeri-
cally for small-size systems. The representation to diago
ize H0 ~the z representation! will be used throughout the
paper. The corresponding classical SA process is descr
by the master equation

dPi~ t !

dt
5(

j
Li j Pj~ t !, ~4!

wherePi(t) represents the probability that the system is
the i th state. We consider single-spin flip processes with
transition matrix elements given as
Li j 55
$11exp@~Ei2Ej !/T~ t !#%21 ~single-spin difference!

2(
kÞ i
Lki ~ i 5 j !

0 ~otherwise!.

~5!
the
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In SA, the temperatureT(t) is first set to a very large
value and then is gradually decreased to zero. The co
sponding process in QA should be to changeG(t) from a
very large value to zero. The reason is that the hi
temperature state in SA is a mixture of all possible sta
with almost equal probabilities, and the corresponding s
in QA is the linear combination of all states with equal a
plitude in thez representation, which is the lowest eigenst
of the Hamiltonian~1! for very largeG. The low-temperature
state after a successful SA is the ground state ofH0 , which
should also be the eigenstate ofH(t) asG(t) is reduced to
zero sufficiently slowly in QA. Another justification of iden
tification of G andT comes from the fact that theT50 phase
diagram of the Hopfield model in a transverse field has
most the same structure as the equilibrium phase diagra
the conventional Hopfield model at finite temperature if
identify the temperature axis of the latter phase diagram w
the G axis in the former@5#. We therefore changeG(t) in
QA and T(t) in SA from infinity to zero with the same
functional forms G(t)5T(t)5c/t,c/At,c/ ln(t11) (t:0→`)
or 2ct (t:2`→0). The reason for choosing these fun
tional forms is that they allow either for analytical solutio
in the single-spin case as shown in Sec. IV or for compari
with the Geman-Geman bound mentioned in Sec. I.

To compare the performance of the two methods QA a
SA, we calculate the probabilitiesPQA(t)5 z^guc(t)& z2 for
e-
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s
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QA andPSA(t)5Pg(t) for SA, wherePg(t) is the probabil-
ity to find the system in the ground state at timet in SA and
ug& is the ground-state wave function ofH0 . Note that we
treat only small-size systems~the number of spinsN58)
and thus the ground state can be picked out explicitly. In
ideal situationPQA(t) andPSA(t) will be very small initially
and increase towards 1 ast→`.

It is useful to introduce another set of quantitiesPSA
st (T)

and PQA
st (G). The former is the Boltzmann factor of th

ground state ofH0 at temperatureT while the latter is de-
fined as u^gucG&u2, where the wave functioncG is the
lowest-energy stationary state of the full Hamiltonian~1! for
a given fixed value ofG. In the quasistatic limit, the system
follows equilibrium in SA and thusPSA(t)5PSA

st
„T(t)….

Correspondingly for QA,PQA(t)5PQA
st

„G(t)… when G(t)
changes sufficiently slowly. Thus the differences betwe
both sides of these two equations give measures of h
closely the system follows quasistatic states during dyna
cal process of annealing.

III. NUMERICAL RESULTS

We now present numerical results onPSA and PQA for
various types of exchange interactions and transverse fie
All calculations were performed with a constant longitudin
field h50.1 to remove trivial degeneracy.
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A. Ferromagnetic model

Let us first discuss the ferromagnetic Ising model withJ
5const for all pairs of spins. Figure 1 shows the overlaps
the case ofG(t)5T(t)53/ln(t11). It is seen that both QA
and SA follow stationary~equilibrium! states during dynami
cal processes rather accurately. In SA the theorem of Ge
and Geman@2# guarantees that the annealing scheduleT(t)
5c/ ln(11t) assures convergence to the ground state (PSA
→1 in our notation! if c is adjusted appropriately. Ou
choicec53 is somewhat arbitrary but the tendency is cle
for PSA→1 ast→`, which is also clear from approximat
satisfaction of the quasiequilibrium conditionPSA(t)
5PSA

st
„T(t)…. Although there are no mathematically rigoro

arguments for QA corresponding to the Geman-Gem
bound, the numerical data indicate convergence to
ground state under the annealing scheduleG(t)53/ln(t11)
at least for the ferromagnetic system. It should be reme
bered that the unit of time is arbitrary since we have
\51 in the Schro¨dinger equation~3! and the unit of time
t51 in the master equation~4!. Thus the fact that the curve
for QA in Fig. 1 lie below those for SA at any given tim
does not have any positive significance.

If we decrease the transverse field and the tempera
faster,G(t)5T(t)53/At, there appears a qualitative diffe

FIG. 1. Time dependence of the overlapsPSA(t), PQA(t),
PSA

st
„T(t)… and PQA

st
„G(t)… of the ferromagnetic model withG(t)

5T(t)53/ln(t11).

FIG. 2. Time dependence of the overlaps of the ferromagn
model withG(t)5T(t)53/At.
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ence between QA and SA as shown in Fig. 2. The quan
method clearly gives better convergence to the ground s
while the classical counterpart gets stuck in a local minim
with a non-negligible probability. To see the rate of approa
of PQA to 1, we have plotted 12PQA in a log-log scale in
Fig. 3. It is seen that 12PQA behaves as const/t in the time
region between 100 and 1000.

By a still faster annealing scheduleG(t)5T(t)53/t, the
system becomes trapped in intermediate states both in
and SA as seen in Fig. 4.

B. Frustrated model

We next analyze the interesting case of a frustrated s
tem shown in Fig. 5. The full lines indicate ferromagne
interactions while the broken line is for an antiferromagne
interaction with the same absolute value as the ferromagn
ones. If the temperature is very high in the classical case,
spins 4 and 5 are changing their states very rapidly and he
the effective interaction between spins 3 and 6 via spin
and 5 will be negligibly small. Thus the direct antiferroma
netic interactions between spins 3 and 6 is expected to do
nate the correlation of these spins, which is clearly obser
in Fig. 6 as the negative value of the thermodynamic cor

ic

FIG. 3. Time dependence of 12PQA(t) of the ferromagnetic
model withG(t)53/At. The dotted line representst21 to guide the
eye.

FIG. 4. Time dependence of the overlaps of the ferromagn
model withG(t)5T(t)53/t.
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lation function^s3
zs6

z&c in the high-temperature side. At low
temperatures, on the other hand, the spins 4 and 5 tend
fixed in some definite direction and consequently the eff
tive ferromagnetic interactions between spins 3 and 6
roughly twice as large as the direct antiferromagnetic in
action. This argument is justified by the positive value of t
correlation function at low temperatures in Fig. 6. Therefo
the spins 3 and 6 must change their relative orientation
some intermediate temperature. This means that the f
energy landscape goes under significant restructuring as
temperature is decreased and therefore the annealing pr
should be performed with sufficient care.

If the transverse field in QA plays a similar role to th
temperature in SA, we expect similar dependence of the
relation function̂ s3

zs6
z&q on the transverse fieldG. Here the

expectation value is evaluated by the stationary eigenfu
tion of the full Hamiltonian~1! with the lowest eigenvalue a
a givenG. The broken curve in Fig. 6 clearly supports th
idea. We therefore expect that the frustrated system of Fi
is a good test ground for comparison of QA and SA in t
situation with a significant change of spin configurations
the dynamical process of annealing.

The results are shown in Fig. 7 for the annealing sched
G(t)5T(t)53/At. The time scalet is normalized ast
5tTc

2 in SA andt5tGc
2 in QA. The values,Tc andGc , are

the points where the correlation functions vanish in Fig.
Thus both classical and quantum correlation functions van
at t51. The tendency is clear that QA is better suited
ground-state search in the present system.

FIG. 5. The frustrated model where the solid lines denote fe
magnetic interactions and the broken line is for an antiferrom
netic interaction.

FIG. 6. Correlation functions of spins 3 and 6 in Fig. 5 for t
classical and quantum cases. In the classical model~full line! the
correlation is shown as a function of temperature while the quan
case~dotted line! is regarded as a function of the transverse fiel
be
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C. Random interaction model

The third and final example is the Sherrington-Kirkpatri
~SK! model of spin glasses@8#. Interactions exist between a
pairs of spins and are chosen from a Gaussian distribu
with vanishing mean and variance 1/N (N58 in our case!.
Figure 8 shows a typical result on the time evolution of t
probabilities under the annealing scheduleG(t)5T(t)
53/At. We have checked several realizations of excha
interactions under the same distribution function and h
found that the results are qualitatively the same. Figur
again suggests that QA is better suited than SA for
present optimization problem.

IV. SOLUTION OF THE SINGLE-SPIN PROBLEM

It is possible to solve the time-dependent Schro¨dinger
equation explicitly when the problem involves only a sing
spin and the functional form of the transverse field isG(t)
52ct,c/t, or c/At. We note that the single-spin problem
trivial in SA because there are only two states involved~up
and down! and thus there are no local minima. This does n
mean that the same single-spin problem is also trivial in
quantum mechanical version. In QA with a single spin, t

-
-

m

FIG. 7. Time dependence of the overlaps of the frustrated mo
underG(t)5T(t)53/At. Here the time scalet is normalized byGc

andTc ~the points where the correlation functions vanish in Fig.!.

FIG. 8. Time dependence of the overlaps for the SK model w
G(t)5T(t)53/At.



an
s
d

d,
at
e

el

c-

t

e

nd

he
nger

an-
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transition between the two states is caused by a finite tr
verse field. The system goes through tunneling processe
reach the other state, and an approximate annealing sche
is essential to reach the ground state. On the other han
SA, the transition from the higher state to the lower st
takes place even atT50 and thus the system always reach
the ground state.

Let us first discuss the case ofG(t)52ct with t changing
from 2` to 0. This is the well-known Landau-Zener mod
and the explicit solution of the time-dependent Schro¨dinger
equation is available in the literature@9–13#. With the nota-
tion a(t)5^1uc(t)& and b(t)5^2uc(t)& and the initial
condition a(2`)5b(2`)51/A2 ~the lowest eigenstate!,
the solution forb(t) is found to be~see the Appendix!

b~ t !5
he2ph2/8c

2Ac
H 2

2ct1h

h
D2l21~2 iz!

2
ih212c

A2ch
e3/4p iD2l22~2 iz!J , ~6!

whereD2l21 ,D2l22 represent the parabolic cylinder fun
tion ~or Weber function! andz andl are given as

z5A2ce2p i /4t, ~7!

l5
ih2

2c
. ~8!

The final value ofb(t) at t50 is

b~0!52
hAp22 ih2/4ce2ph2/8c

2A2c
H 1

G~11 ih2/4c!

1
Ace3/4p i~11 ih2/2c!

hG~3/21 ih2/4c!
J . ~9!

The probability to find the system in the ground state at
50 is, whenh2/c@1,

PQA~0!5ua~0!u2512ub~0!u2;12
c2

16h4
. ~10!

Thus the probabilityPQA(t) does not approach 1 for finitec.
s-
to
ule
in

e
s

We next present the solution forG(t)5c/t with t chang-
ing from 0 to` under the initial conditiona5b51/A2 ~see
Appendix!:

b~ t !5
1

A2
eihtt icF~11 ic,112ic;22iht !, ~11!

where F is the confluent hypergeometric function. Th
asymptotic form ofb(t) as t→` is

b~ t !;
A2~2h!2 icG~2ic !

G~ ic !
$e2 iht2pc/21ceiht1pc/2~2ht!21%.

~12!

The probability of finding the system in the target grou
state behaves asymptotically as

PQA~ t !5ua~ t !u2 ~13!

512ub~ t !u2 ~14!

;12
sinh~pc!

sinh~2pc! H e2pc1
ccos~2ht!

ht
1

c2epc

4h2t2J
~15!

;12e22pc, ~16!

the last approximation being valid forc@1 after t→`. The
system does not reach the ground state ast→` as long asc
is finite. Largerc gives a more accurate approach to t
ground state, which is reasonable because it takes a lo
time to reach a given value ofG(5c/t) for largerc, imply-
ing slower annealing.

The final example of the solvable model concerns the
nealing scheduleG(t)5c/At. The solution forb(t) is de-
rived in the Appendix under the initial conditiona5b
51/A2 as

b~ t !5
1

A2
eihtFS 1

2
2 ig,

1

2
;22iht D

1
c

Ah
e~3/4!p ieiht~22iht !1/2FS 12 ig,

3

2
;22iht D ,

~17!

whereg5c2/2h. The large-t behavior is found to be
b~ t !;Ape2pc2/4hF e2 iht~2ht!2 igH 1

A2GS 1

2
2 ig D 1

Ahe~5/4!p i

cG~2 ig!J 1eiht~2ht!21/21 igH e2~1/4!p i

A2G~ ig!
1

c

2AhGS 1

2
1 ig D J G ,

~18!
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and the probabilityPQA(`) for c2/h@1 is obtained as

PQA~`!512ub~`!u2;12
h2

64c4
. ~19!

This equation indicates that the single-spin system does
reach the ground state under the present annealing sch
G(t)5c/At for which the numerical data in the previou
section suggested an accurate approach. We therefore
clude that the asymptotic value ofPQA(t) in the previous
section may not be exactly equal to 1 forG(t)53/At al-
though it is very close to 1.

The annealing scheduleG(t)5c/At has a feature that dis
tinguishes this function from the other ones2ct andc/t. As
we saw in the previous discussion, the final asymptotic va
of PQA(t) is not 1 if the initial condition corresponds to th
ground state forG→`, a5b51/A2. However, as shown in
the Appendix, by an appropriate choice of the initial con
tion, it is possible to drive the system to the ground stat
G(t)5c/At. This is not possible for any initial conditions i
the case ofG(t)52ct or c/t.

V. SUMMARY AND DISCUSSIONS

We have proposed the idea of quantum annealing~QA! in
which quantum tunneling effects cause transitions betw
states in optimization problem, in contrast to the usual th
mal transitions in simulated annealing~SA!. The idea was
tested in the transverse Ising model obeying the tim
dependent Schro¨dinger equation. The transverse field ter
was controlled so that the system approaches the gro
state. The numerical results on the probability to find
system in the ground state were compared with the co
sponding probability derived from the numerical solution
the master equation representing the SA processes. We
found that QA shows convergence to the optimal~ground!
state with larger probability than SA in all cases if the sa
annealing schedule is used. The system approaches
ground state rather accurately in QA for the annealing sch
ule G5c/At but not for a faster decrease of the transve
field.

We have also solved the single-spin model exactly for Q
in the cases ofG(t)52ct,c/t, andc/At. The results showed
that the ground state is not reached perfectly for all th
annealing schedules. Therefore the asymptotic values
PQA(t) in numerical calculations are probably not exactly
although they seem to be quite close to the optimal valu

The rate of approach to the asymptotic value close to
12PQA(t), was found to be proportional to 1/t in Fig. 3 for
the ferromagnetic model. On the other hand, the single-s
solution shows the existence of a term proportional to 1/At;
see Eq.~18!. Probably the coefficient of the 1/At term is very
small in the situation of Fig. 3 and the next-order contrib
tion dominates in the time region shown in Fig. 3.

A simple argument using perturbation theory yields use
information about the asymptotic form of the probabili
function if we assume that the system follows quasista
states during dynamical processes. The probability to find
system in the ground state is expressed using the perturb
in terms ofG(!1) as
ot
ule

on-

e

-
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PQA~G!;12G2(
iÞ0

1

~E0
~0!2Ei

~0!!2
, ~20!

whereEi
(0) is the energy of thei th state of the nonperturbe

~classical! system andE0
(0) is the ground-state energy. If w

setG5c/At, we have

PQA~G!;12
1

t (iÞ0
S c

E0
~0!2Ei

~0!D 2

. ~21!

Thus the approach to the asymptotic value is proportiona
1/t as long as the system stays in quasistatic states. The
responding probability for SA is

PSA~T!;
e2E0 /T

(
i

e2Ei /T

;12(
iÞ0

e2~Ei2E0!/T, ~22!

which shows absence of universal (1/t-like! dependence on
time.

The present method of QA bears some similarity to
approach by the generalized transition probability in wh
the dynamics is described by the master equation but
transition probability has power-law dependence on the te
perature in contrast to the usual exponential form of the B
zmann factor@3#. This power-law dependence on the tem
perature allows the system to search for a wider region in
phase space because of larger probabilities of transitio
higher-energy states at a givenT(t), which may be the rea-
son for faster convergence to the optimal states@3,4#. The
transverse field termG in our QA represents the rate of tran
sition between states which is larger than the transition
in SA @see Eq.~5!# at a given small value of the contro
parameterG(t)5T(t). This larger transition probability may
lead to a more active search in wider regions of the ph
space, leading to better convergence similarly to the cas
the generalized transition probability.

We have solved the Schro¨dinger equation and the maste
equation directly by numerical methods for the purpose
comparison of QA and SA. This method faces difficulties f
larger N because the number of states increases expo
tially as 2N. The classical SA solves this problem by explo
ing stochastic processes, Monte Carlo simulations, wh
have the computational complexity growing as a power ofN.
The corresponding reduction of the computational compl
ity is lacking in QA, and it is an important future problem i
practical implementation of the idea of QA. Another futu
problem is to devise implementations of QA in other optim
zation problems such as the traveling salesman problem
the graph bipartitioning for which there seems to be no dir
analog of the transverse field to cause quantum transitio
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APPENDIX: SINGLE-SPIN PROBLEM

In this Appendix we explain some technical aspects
deriving the exact solution of the time-dependent Sch¨-
dinger equation for the transverse Ising model with a sin
spin. The three cases ofG(t)52ct,c/t, and c/At will be
discussed.

1. Case ofG„t…52ct „Landau-Zener model… †9–13‡

Let us express the solution of the Schro¨dinger equation at
time t by the parametersa5^1uc(t)& and b5^2uc(t)&.
The Schro¨dinger equation~3! with H52hsz2Gsx is ex-
pressed as a set of first order differential equations fora and
b. It is convenient to change the variables as

ã5
1

A2
~a1b!, b̃5

1

A2
~a2b!, ~A1!

by which the Schro¨dinger equation is now

d2b̃~ t !

dt2
1~2 ic1h21c2t2!b̃~ t !50. ~A2!

By using the notation

z5A2ce2p i /4t, ~A3!

l5
ih2

2c
, ~A4!

we find

d2b̃~ t !

dz2
1S l1

1

2
2

1

4
z2D b̃~ t !50. ~A5!

The initial state is specified asa5b51/A2 or b̃50 ast
→2`. The solution of Eq.~A5! satisfying this condition is
the parabolic cylinder functionD2l21(2 iz) @14#. Thus, we
obtain the solution as

ã~ t !5
1

h
S 2ctb̃~ t !2 i

db̃~ t !

dt
D , ~A6!

b̃~ t !5C1D2l21~ iz!, ~A7!

whereC1 is a constant. To fixC1 , we use the condition

uã~2`!u5
2C1ceph2/8c

hA2c
51. ~A8!

Then we have

C15
h

A2c
e2ph2/8c. ~A9!

The wave function of this system is given in Eq.~6!.
o

e

2. Case ofG„t…5c/t

We next consider the case ofG(t)5c/t. By eliminatinga
from the Schro¨dinger equation, we obtain

d2b~ t !

dt2
2

1

G~ t !

dG~ t !

dt

db~ t !

dt
1S h21G2~ t !

2
ih

G~ t !

dG~ t !

dt Db~ t !50. ~A10!

SubstitutingG(t)5c/t, we have

d2b~ t !

dt2
2

1

t

db~ t !

dt
1S h21

ih

t
1

c2

t2 D b~ t !50. ~A11!

The solutions of this equation are expressed by the conflu
P function @14#

~A12!

the right-hand side of which has two independent expr
sions in terms of the confluent hypergeometric function

f ~ t !5eihtt icF~11 ic,112ic;22iht !, ~A13!

g~ t !5eihtt ic~22iht !22icF~12 ic,122ic;22iht !.
~A14!

The general solution isb(t)5C1f (t)1C2g(t). Using the
initial condition

b~0!5C11C25
1

A2
, ~A15!

a~0!5C12C25
1

A2
, ~A16!

we find

b~ t !5
1

A2
eihtt icF~11 ic,112ic;22iht !. ~A17!

The asymptotic forms ofb(t) and ub(t)u2 are then given as

b~ t !;
A2~2h!2 icG~2ic !

G~ ic !
$e2 iht2pc/21ceiht1pc/2~2ht!21%,

~A18!
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ub~ t !u2;
sinh~pc!

sinh~2pc!H e2pc1
ccos~2ht!

ht
1

c2epc

4h2t2J .

~A19!

Case ofG„t…5c/At

The final solvable model hasG(t)5c/At. The Schro¨-
dinger equation~A10! is then expressed as

d2b~ t !

dt2
2

1

2t

db~ t !

dt
1S h21

2c21 ih

2t Db~ t !50. ~A20!

The solution is the confluentP function @14#

~A21!

where g5c2/2h. The two independent solutions are th
@14#

f ~ t !5eihtFS 1

2
2 ig,

1

2
;22iht D , ~A22!

g~ t !5eiht~22iht !1/2FS 12 ig,
3

2
;22iht D . ~A23!

The general solution of Eq.~A20! is therefore the linear
combination of the above two functions

b~ t !5C1f ~ t !1C2g~ t !. ~A24!

The constantsC1 andC2 are fixed by the requirement

b~0!5C15
1

A2
, ~A25!

a~0!5
Ah

A2c
e~5/4!p iC25

1

A2
. ~A26!

SubstitutingC1 andC2 into Eq. ~A24!, we find

b~ t !5
1

A2
eihtFS 1

2
2 ig,

1

2
;22iht D1

c

Ah
e~3/4!p i

3eiht~22iht !1/2FS 12 ig,
3

2
;22iht D . ~A27!

The asymptotic form is
b~ t !;Ape2pc2/4hF e2 iht~2ht!2 igH 1

A2GS 1

2
2 ig D

1
Ahe~5/4!p i

cG~2 ig!J 1eiht~2ht!21/21 igH e2~1/4!p i

A2G~ ig!

1
c

2AhGS 1

2
1 ig D J G . ~A28!

The probabilityub(`)u2 that the system remains in the e
cited state can be calculated as the asymptotic form of
~A28! with the conditionc2/h@1

ub~`!u25
pe2gp

2 U 1

GS 1

2
2 ig D 1

g21/2e~5/4!p i

G~2 ig! U2

~A29!

;
e2gp

4 Ue1/2S 1

2
2 ig D ig

1g21/2e~5/4!p i~2 ig! ig11/2U2

~A30!

;
e2gp

4 U~2 ig! ig
i

8gU
2

5
1

256g
5

h2

64c4
. ~A31!

3. Dependence of the final value on the initial condition

We show that we can choose the initial condition so t
the final state is the ground state whenG5c/At. This is not
possible forG52ct or c/t. From Eq.~A24!, the asymptotic
form of the solution ast→` is

b~ t !;C1

Ape2pc2/4h2 iht~2ht!2 ic2/2h

G~1/22 ic2/2h!

1C2

iAphe2pc2/4h2 iht~2ht!2 ic2/2h

c2G~2 ic2/2h!
. ~A32!

The coefficientsC1 and C2 are fixed under the condition
b(`)50 andua(0)u21ub(0)u251 as

C15H 11
sinh~pc2/h!

2sinh2~pc2/2h!
J 21/2

, ~A33!

C25
ic2G~2 ic2/2h!

hG~1/22 ic2/2h!
C1 . ~A34!

This solution is not the ground state of the Hamiltoni
H(0).

The reason one cannot obtain such a solution for the o
schedules (G5c/t,2ct) is the following: The general solu
tion for G5c/t also has two coefficients, and the initial sta
is represented as the linear combination of two terms wh
phases are indefinite:



all
val-
-
e

PRE 58 5363QUANTUM ANNEALING IN THE TRANSVERSE ISING MODEL
a~0!5C1t icu t→02C2t2 icu t→0 , ~A35!

b~0!5C1t icu t→01C2t2 icu t→0 . ~A36!

The lowest-energy state att50 corresponds toa(0)5b(0)
51/A2 ~times an arbitrary phase factor!, which is realized by
c

choosingC250 in Eqs.~A35! and~A36!. The indefiniteness
of t ic as t→0 is irrelevant because this is only the over
phase factor. Such a situation does not happen for other
ues ofa(0) andb(0), leading to a serious difficulty in de
termining the wave function att50. Thus we cannot choos
an initial condition other thana(0)5b(0)51/A2. A similar
fact exists in the case ofG52ct.
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