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Turbulent transport of a tracer: An electromagnetic formulation
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We present a formulation of the problem of advection and diffusion of a passive tracer by an arbitrary,
incompressible velocity field. A Wiener path integral is employed to prove that the probielenigcal to the
diffusive dynamics of a charged particle in electromagnetic fields constructed from the velocity field. The case
of zero diffusion has characteristics that coincide with the integral curves of the velocity field. This case is, of
course, structurally unstable, and the limit of small diffusion is correctly described by the Wenzel-Kramers-
Brillouin limit of our path-integral principle, wherein the tracer dynamics equals the orbits of point charges in
electromagnetic fields. To lowest order, diffusive effects are accounted for within a Hamiltonian framework,
and the limit of zero diffusion emerges as an unstable submanifold embedded in a six-dimensional phase space.
We illustrate these ideas by considering the simple case of tracer advection-diffusion in the flow field of a
time-independent, straight vortex line. We also briefly discuss generalization of the path-integral principle for
the case where tracer sources and/or sinks are included. When the velocity field obeys the Navier-Stokes
equation, the associated electromagnetic fields satisfy the equations of magnetohydrodynamics for a fluid with
resistivity that is equal to the viscosity of tlieea) fluid. [S1063-651X98)07507-2

PACS numbg(s): 47.27.Gs, 05.46:j, 05.60+w, 47.65+a

The transport and diffusion of a tracesuch as tempera- from the givenv(x,t), and formulate the ADE as a Wiener
ture fluctuations or concentration variations of a)dyea  path integral(WPI) for the diffusive dynamics of a point
turbulent fluid can often be modeled by assuming that theharge (=m=c=1). A and ¢ are the vector and scalar
tracer does not influence the dynamics of the turbulence itpotentials for the EM fields, and incompressibility translates
self [1]. In the simplest cases, the evolution of the concento working in the Coulomb gaug¥-A=0. The WPI has
tration of such a passive tracer(x,t), is described by the received considerable attention in the literature on Brownian
following advection-diffusion equatiofADE): motion[cf. Refs.[3(b)] and[4]], and we will develop analo-
gies, as well as point out differences as they arise. Below we
provide a brief sketch of the derivation of the ADE from the
WPI principle before discussing the nature of the EM fields,
as well as their action on the tracer. Of particular interest is

V.v=0, (1) the case wher(x,t) obeys the Navier-Stokes equation.
The electric and magnetic fields corresponding to equa-
wherev(x,t) is the given incompressible velocity field, and tion (2) are
x>0 is the tracer diffusivity. The ADE is linear im, and the

M iv.vn=Sy2
a7t V- n—2 n,

random character of the solutions arises from either random- v?

ness ofv(x,t) or from the initial distribution ofr. The mul- E=dv+V 3)’

tiplicative nature of the randomness, arising from the advec- ()
tive term, leads to intermittency in the statistical distribution B=— VX V= — w=— vorticity.

functions describing the tracg?].

We note that the ADE is identical to the Fokker-PlanckThe dynamics of théfictitious) charge in thefictitious) EM
equation describing the overdamped Brownian motion of gje|ds is governed by the usual equation of motion,
particle subject to an external force(x,t) (for unit

mobility)—cf. references i3] for a review of the latter. Xx=E+xXB, (4)
One difference is that the Fokker-Planck equation is only an

approximation in which the lowest two moments are re-The Galilean invariance of the ADEL) is reflected in the
tained, whereas the ADE is an “exact” equation in the con-invariance of Eqs(3) and (4) with respect to boosts. This
text of passive tracer advection. A more considerable differproperty might not be immediately obvious, but can be
ence is that we do not have to viexfx,t) as a given force readily verified by boosting to érimed frame that travels
field. In this paper we demonstrate that it is more fruitful towith uniform velocityu with respect to the laboratory frame.

construct electromagneti&M) potentials, The EM fields in the boosted frame arB'=[d, V'’
) +V'(v'?/2)] andB’=[—V'xV'], respectively. Applying

A=—v, o=— v @) the transformation lawsx(=x—ut,t’=t,v'=v—u), it can
' 2’ be verified thatE’=E+uXB and B’ =B, which are the

well-known (Galilean transformation laws for EM fields; it
hardly needs to be stressed that the Galilean invariance of
*Electronic address: sridhar@iucaa.ernet.in Eq. (4) follows automatically. There is also a basic differ-
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ence between potential flowsw&0), and vortical flows — Standard manipulations of Eq&) and (10) (cf. Ref. [5],
(w#0); the former produce no magnetic field, whereas theChap. 4 can be used to show tha({x,t) satisfies the ADE
magnetic fields of the latter have significant effect on particld Eq. (1)].

dynamics. Paths for whicls is minimum contribute most tG in Eq.

The above equation of motion may also be derived fromg). Thus the optimal patk=v(x,t) together with neighbor-
an action principle. For any patt(t) that goes fromX; ,t;)  ing paths lying inside a tube of width proportional k3’2

to (x;,ts), we define the action functional make the dominant contributions ®. The other classical
solutions of Eq.(4), for which S is an extremum but not a
S[x(t)]=f L(x,%t)dt, (5) minjmum, dq not direct_ly contribute t&. However, as ex-

periments with electronic devices show, these extremal paths

_ are not only real, but contribute fundamentally to large fluc-
where the Lagrangian tuations away from the optimal soluti¢8]. To explore their
significance, let us first cast our E¢) in Hamiltonian form.

X2 A2 1 o
L= = +A X+ —===|x+A|? ©6) The Hamiltonian
2 2 2
p2
S 2 H(x,p,t) = 5 +p-v(x,1) (12)
_X Y I . >
=5 VXt o= 2|x v|°. (7

gives rise to the equations of motion,
The equations of motiod) are obtained, as usual, by ex-
tremizing the action with respect to variations of the path ) ) |
x(t), keeping the end points fixed. Both Lagrangian and ac- Xi=pitvi, Pi= P (12)
tion are non-negative definite, and their minimum value of !

zero occurs for the special solutioxs=v(x,t) of the equa- \yhich are identical to Eqs(4); the optimal solution corre-
tions (4); borrowing a term from a related work on over- sponds tgp=0.

damped Brownian motion, we will refer to this solution as A plob of the tracer introduced into even a nonturbulent

the optimal solution. . _ fluid will be teased out into whorls and tendrils. The dynam-
Now we introduce the WPI principle: the relative prob- s of the strong variations of can be described in the

ability of going from (x;,t;) to (x;,tr) by pathx(t) is as-  \yenzel-Kramers-Brillouin(WKB) (or “eikonal”) limit of

sumed to be given by ekp S«], whereSis the action given  he ADE, wherein the physical significance p# 0 dynam-

by Eq.(5). Therefore, the probability of going fromx(;t)) t0 ics s clearly revealedc.f. Ref.[3(a)] for other applications

(x1,t;) by anypath is given by the Green function Let us writen=Fexd —W/«], where bothW andF have far
gentler spatial variations thamitself [9]. Substituting fom
G(X; by %, t) = z e S, (8) in the ADE, terms of ordek ™! give us the following equa-
paths tion for W:

where the sum over paths requires employment of the IW

Wiener measurécf. Ref.[5]) in the space of paths. We may TV VW3 |[VW[?=0. (13
write this explicitly using Feynman’s methdd.f. Ref.[6])

of splitting the time interval into a large numbeX ¢ 1) of

thin slices of equal sizeg=(t;—t;)/(N+1). At each inter- ThusW obeys the saméHamilton-Jacobi equation as the

action S. However, it is better to view Eq13) as the evo-

mediate time stept,,t,, ... ty, we choose spatial coordi- lution equation of a three-dimensional Laaranaian manifold
natesxs, ... Xy, and define the Green function as the limit | . quai) ol a three-dimensional Lagrangian ma .o '
71, defined k_)yp—_VW, in a S|x-d|men3|onal phaﬁe sp,e'loe[(),_
the Hamiltonian equationd 2) determine the “rays” of this
1 \3(N+D)R2 system. The meaning ¢f is evident from
G(Xf S0 X ,ti):'\tiinxj d3X1~ . -d3XN(m>

vn
p=VW=— K= 2 X (diffusion velocity) +O( k).
(14

cord <3 [

Kj=0

2 2
Xj+1_Xj| 1% (XJ)]

2 | 2
. If we are givenn(x,0) at some initial time=0, thenp(x,0)
ﬁ) ] (9) is also known, and this Lagrangian manifold can be evolved
2 forward in time using the Hamiltonian equatiofs?). The
. _ casex=0 corresponds tp=0. Rays with these initial con-
If we are givenn(x; ,t;), then the Green function propagates ditions always trace the integral curves of the velocity field.
this initial distribution to timet;, But this motion is unstable to small, diffusive fluctuations
when k is small. To lowest order i, the characteristics of
_ i the ADE are described by the dynamics of a point charge in
n(x¢ ’tf)_f Gxp texi tn(xi ). (10 the EM fields of Eqs(3); thus the effects of a small amount

1 N
+ — Xiy1—Xj)-V
Kj§=:0( j+1 J)
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of diffusion on larger advective motions can be described . |V |2
within a Hamiltonian framework, by constructing EM fields A=VX(42), ¢=——F—. 17
from the velocity field

A simple example to work out is the encounter betweencyen wheny is independent of time, charged particle orbits
the tracer and a time-independent, straight vortex tube of, the above EM potentials can be chaotic. The optimal paths
circular cross se_ctlon. The partlc_le dynamics is integrablesg|iow the isocontours ofy; an interesting unsolved problem
and we can readily solve the special case of a line vortex, f0fs o determine the conditions under which the optimal paths
which v=(I'/27R) 6§ and w=1"5(R)z, where R,6,z) are  are unstable to diffusive fluctuations. A related problem is to
cylindrical polar coordinated; is the circulation around the make a connection between the regular or chaotic dynamics
vortex, ands(R) is a Dirac é function in the plane perpen- of charged particles, and macroscopic transport coefficients.
dicular to the line. The canonical momenta gug= R, The general case of three-dimensional, turbulent flows re-
p,=2 and p,=(/—T/2m)—where /= R29 is the particle  QUires following the orblt; of charge_d particles in disordered
angular momentum—and the Hamiltonian is EM fields (Ref.[1] also d_lscusses this fmeal EM f|elds),_a

task that appears numerically less forbidding than solving the
ADE itself. Referencgl] reviews the extensive literature on
I'py tracer transport with emphasis on percolation properties of
o R2 (15 the networks formed by the channels.
7R .
When sources and sinks ofare also present, the follow-
ing source-and-sink ADESADE) describes advection and
Both p, and p, are conserved, so the dynamics reduces tqiiffusion of the tracer:

R=C/R3, where

on K
TV Vn= §V2n+ n,
r ’ 19
C=py| Pot+ — (16)
™ V.v=0,
is a constant that determines the sign of the force felt by thavherey(x,t) is the local rate of generation. If we generalize
particle. Eg. (2) to include a source fiela vy,
Optimal paths followv, going around in circles in the )
plane perpendicular tp (these paths have=0, from which A=—v, ¢=-— % + Ky, (19)

R=0, z=0, andp,=0, the latter implying tha€C=0). The
smallest of deviations away frop=0 makesC#0, and the 01 the Lagrangian of Ed6), with the above expressions
force is either attractive or replusivéhus the optimal solu- ¢ A ande, used in the WPI principle—Eq¢9) and (10—

tion Xx=v is unstable to diffusive fluctuationemuch like o545 to the SADE. The magnetic field remains unaffected,

what happens for large fluctuations in overdamped browniafyhereas the electric field picks up an additional term equal to
dynamlcs[8]),_|Ilustrat|ng the structural instability of the _ ¢ y. Charged particle dynamics now has an interesting

i ['Soupling to this extra electric field that combines both diffu-
. . . sion and source rate. The Peclet number may be defined as
particle spirals outward—the corresponding parts of theso_\/21/, whereVV and T are flow velocity and time

tracer are spun out to infinity. For smallpf|, C<0, the ~ scq165 The limit of large Pe is commonly encountered in
force is attractive, and those parts of the tracer for Wh'cnurbulent mixing, and when BeyT, we have v2> iy
|IR|<|C|/R are eventually captured by the vortex line. Thuswhich implies that the source field in E¢L9) is a small
the vortex line will shred the tracer, cloaking itself with the perturbation on the basic advective-diffusive dynamics.

low angular momentum parts and casting off the rest to the | et us return to general considerations of the EM fields
vorticity-free, straining velocity field outside. The physical themselves. From the definitions in Eq8), the EM fields

meaning of the point particle dynamics is as follows: aspbey the source-free Maxwell equations:
tracer particles go around in circles, following the velocity

field, they also diffuse. The diffusion in the radial directions B
brings some tracer particles to the center, whereas others V-B=0, VXE=-—. (20
drift outward.
In a turbulent fluid, vorticity appears to be concentrated init is interesting to see what constraints are imposed on the

filaments[10], so our fictitious charged particlee., a ray  EM fields whenv obeys the Navier-Stoke#S) equations,
will see magnetic ropes immersed in an electric sea. The

forward to verify thatC>0 when|/|>(I'/2m), so that the

particle dynamics of mutually noninteracting charges in such v 5

a disordered environment should reveal much about the be- i (v V)v=—VP+ vV,

havior of solutions to the ADE. An array of straight vortex (21)
tubes, all parallel to one another, is a two-dimensional prob- V.v=0.

lem. The velocity fieldv=V X (¢2), where (x,y,t) is a
stream function is not only independent pf but has N0 Here P is the sum of pressure and potential fordes.,
component along. In this case, gravitational potentialper unit mass, and is determined by
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the incompressibility condition om: V?P=—V-[(v-V)v]. In conclusion,(fictitious) EM fields associated with the
If we take the curl of the NS equation, we obtain an equatiorflow of an incompressible fluid—not necessarily obeying the
for the vorticity. Recalling thate= — B, we obtain NS equations—couple tdfictitious) charges, whose diffu-
sive dynamics is exactly equivalent to the dynamics of a
JB . TR . . e .
9B 2 passive tracer; “diffusive dynamics” refers to a Wiener path
ot =VX(vXB)+vV7B, (22 integral generalization of classical dynamics. Thend B

fields, together with the equations of motion of the charge
which is identical to the induction equation of magnetohy-are Galilean invariantand this is consistent with working in
drodynamics for a fluid with resistivity equal ta. Not all  the Coulomb gauge An advantage of this new formulation
solutions of Eq(22) are of interest; only the special solution, is that, to lowest order, diffusive effects are accounted for by
B=—w, noted by Batchelof11] is needed. Using the NS a Hamiltonian formulation of the dynamics of a point charge
equations in the expression f&rin Egs.(3), we obtain in EM fields. When the velocity obeys the NS equations, the

EM fields are carried around as if the fluid was a conducting

E=—-VvXB+vVXB-VP. (23 medium whose resistivity equals its viscosity.

of the fluid element, then Eq(23) bears resemblance t0 gtiention that EM fields, similar to E43), were earlier con-

Ohm’s law, wherev equals resistivity, (4) 'VxB=Jis  sidered by M. Bernf13] in the fascinating context of male

current density, and- VP is a “battery” term[12]. moths chasing female moths.
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