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Adaptive annealing for chaotic optimization
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The chaotic simulated annealing algorithm for combinatorial optimization problems is examined in the light
of the global bifurcation structure of the chaotic neural networks. We show that the result of the chaotic
simulated annealing algorithm is primarily dependent upon the global bifurcation structure of the chaotic
neural networks and unlike the stochastic simulated annedatifigitely slow chaotic annealing does not
necessarily provide an optimum result. As an improved algorithm, the adaptive chaotic simulated annealing
algorithm is introduced. Using several instances of 20- and 40-city traveling salesman problems, efficiency of
the adaptive algorithm is demonstrat¢81063-651X98)15510-1

PACS numbgs): 05.45:+b, 07.05.Mh

Due to the recent successful results in a variety of engithat infinitely slow chaotic annealing does not necessarily
neering problems, application of chaotic neural netw¢igs provide an optimum result. As an improved algorithm, an
to combinatorial optimization problems has received a greagdaptive chaotic simulated annealing algorithm is then intro-
deal of attentiorf2—8]. The idea of optimization by chaotic duced.
neural networks can be briefly summarized as follows. In the As an example of a combinatorial optimization problem,
continuous state space of the chaotic neural network, eveye consider arN-city symmetric TSF{12]: “Given an N
possible solution of an optimization problem is embedded XN symmetric matrix ¢;;) of distances between a set f
By following a chaotic wandering orbit which visits a variety Cities (,j=1,2,...N), find a minimum-length tour that visits
of the solutions, chaotic dynamics continually searches fofach city exactly once.”
the optimum solution. In contrast with the conventional The chaotic neural network which solves the TSP is de-
Hopfield-Tank neural network searf®y, the nonequilibrium  scribed in terms of anNx N)-dimensional mappiné?,6:
chaotic search overcomes the local minimum problem. Com- NN

ared to the stochastic search sysfd,11] whose search
I[stace is essentially the same wi)t/h the whole state space diik(NT1)=rPi(M+(1-r)o ]2::1 2’1 Tikji Py (n)+ i |
the search dynamical system, the chaotic search dynamics is (1
confined in a relatively low-dimensional fractal space, which
seems to realize an efficient search for a variety of optimiwhere p;, stands for an internal state of thgk) neuron
zation problems such as the traveling salesman problerfi k=1,...N), r(0<r<1) stands for a decay parameter, and
(TSP [2-7]. o(x)=0.5+0.5 tanh/e). The synaptic connectior®, ; are

For the chaotic neural network approach to optimizationgiven by
problems, it is natural to introduce the idea simulated

annealing[10]. Technically, it is quite important to gradually Tik,ji=—AL8;(1— )+ d(1— ;)]
cool down the chaotic dynamics to a possibly optimum state
by simulated annealing, since the chaotic search is basically —Bdij(Sik+ 17t dik-1) @)
everlasting.

Towards the simulated annealing in a chaotic neural net- Tik,ik=—20A, ()
work, the chaotic simulated annealit@SA) algorithm has
been recently developed by Chen and Ail&@h In the CSA lik=2aA, 4)

algorithm, the chaotic dynamics is harnessed by a cooling

algorithm of a bifurcation parameter. Gradual cooling of thewhere A and B are balancing parameters of the constraint

bifurcation parameter controls the chaotic search dynamicterm and the tour-length term of the TSP cost funcf@h

to converge to a stable equilibrium state with a possibly opis & control parameter for excitation level of neurons, and

timum or near-optimum solution. The experimental studieds @ negative self-feedback parameter.

in Ref.[3] demonstrate the efficiency of the CSA algorithm By wandering around a variety of temporal network firing

which obtains fairly good solutions of TSPs. states [2] {pi(n)=(1M) =5 pi(n—§)|i,k=1,..N} (w:
The aim of the present study is to reexamine the effi-averaging duration which are coded into possible TSP so-

ciency of the CSA algorithm in the light of the global bifur- lutions J(n)={Ji(n)|i,k=1,..N} by J(n)=1[py(n)

cation structure of the chaotic neural networks. On the basis- p*] (1[x]=1 if x=0, 1[x]=0 if x<0, p*: the Nth larg-

of our bifurcation studie$6,7], we argue that the result of est amondp;.(n)}), the chaotic neural network searches for

the chaotic annealing is primarily dependent upon the globathe optimum solution among a variety of TSP solutions of

bifurcation structure of the chaotic neural networks and showJ(n)}.
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previous localized chaotic attractors and the global “chaotic

1
\\\ ': i N\ ¥ search” dynamics for various TSP solutions takes place.
P .k /,L\ -~ - B Our bifurcation scenario provides the following insights.
el T NN T (i) Crisis-induced intermittent switches among the ruins of
. \ p ! \\\ S N the previous localized chaotic attractors are the dynamical
(a) P L ~ | P ® <« Lo~ e = bases of the “chaotic search.” This type of a dynamical
A L f A . > phenomenon is calledhaotic itinerancy[14—-16, and has
-------- Yo/ A been observed in a variety of high-dimensional dynamical
’\./t // “ ' Y - "¢ N systems.(ii) The bifurcation scenario provides a guideline
y J o~ \ ¢ \ for tuning the bifurcation parameter value which gives rise to
nad VR an efficient “chaotic search.’(iii) The CSA algorithm is
! primarily dependent upon the global bifurcation structure of
the chaotic neural networks and the efficiency of the CSA
algorithm can be examined by our bifurcation scenario.
;\\\\ In the CSA algorithnj 3], in order to terminate the chaotic
- 3’;\\ F search procedure and to obtain the final solution, the chaotic
o /\\\@ -/ dynamics is eventually controlled to converge to a stable
3 ’_i// AR /,’ equilibrium state by a gradual cooling of the bifurcation pa-
\L’} N \\ /4 \,f’ \r rameter. On the basis of our bifurcation scenario, the CSA
(b) @ “ /@* V- @ - algorithm for TSP can be formulated as the following dy-
M T N AN namics:
e PN T
NS i\ﬁ@ﬂ pi(n+1)=r(M)py(m)+[1-r(n)]
> - l@‘ BN N N
i L Xo 121 |21 TijiPj (N +1i | 5
. r(n+1)=(1-p)[r(n)—rgl+rg, (6)
3?‘ N whereB(0< B<1) stands for an annealing speed parameter
i TN andr stands for a bifurcation parameter value which gives
//1 - \ rise to Hopfield-Tank “convergence” dynamics.
TV A .- With an initial condition of randonp(0) €[0,1]N*N and
© A SR - r(0)=rg, whererg stands for a bifurcation parameter value
P N which gives rise to “chaotic search” dynamics, at the first
e \\ -~ stage of the annealing, the network searches for TSP solu-
‘;@ \/@/’ tions by chaotic wandering dynamics. As the annealing pro-
e ceeds withr(n)—r,, the chaotic search dynamics eventu-

ally converges to a single equilibrium solution.

Figure 2 shows the result of the CSA algorithm applied to
a five-city TSP. As the annealing spegds decreased, we
see that the convergence rate to the optimum solution is de-

minima. (k.’) With a.decrease.'n the bifurcation parametqhe local . creased. This phenomenon is due to the following bifurcation
minima bifurcate into chaotic attractors through a perIOd-dOUblmgmechanism

rgute.(c) The coexisting chaotic attractors eventually merge into a As is illustrated in Fig. 3, for a bifurcation parameter re-
single global attractor. . . ! . .
gion close tor=1 which gives rise to the Hopfield-Tank

On the basis of the numerical studies, we have obtainedcOnvergence” dynamics, there e>§|13)t two local minimum
the following global bifurcation scenario for the chaotic neu-Solutions, the optl(rzr;um _solutiorQ™ and the second-
ral networks which solve TSF6] (see Fig. 1: We take the optimum solutionQ'<’. W|th a cliecrezaselln the p|furcat|on
decay parameteras the bifurcation parameter. First, there is Parameter, the two solution§ Q™",Q®)} bifurcate into cha-

a bifurcation parameter region with~1, where nonlinear otic attractors _t_hrough a_perlqd-doubllng route. The two at-
dynamics of the chaotic neural netwaf¥ becomes similar tractors are |_n|t|aIIy Io_callzed in the sta_te space an(_j eventu-
to that of the continuous-time Hopfield-Tank neural network@!y merge info a single attractor via crises. First, the
which exhibits “convergence” dynamics to the local mini- OPtmum 30'““9”Q( ) touches the separatrix @( ) and
mum solutions of the underlying Lyapunov functiga]. Q 2) and loses its stability via a boundary crisis. Then, the
With a decrease in the bifurcation parameterthe local ~Second-optimum solutio@® merges with the ruin of the
minimum solutions bifurcate into chaotic attractors through aeptimum solutionQ™ via an interior crisis. The merger of
period-doubling route. The chaotic attractors are initially lo-Q‘® and Q® can be schematically illustrated in a binary
calized in the state space and eventually merge into a singkee structure of Fig. 3. Notice that, in this merging process,
global attractor via a series of crisgk3]. The merging pro- Whereas the global minimum soluti@®®) has an unstable
cess gives rise to intermittent switch dynamics among th@arameter region, the second minimum solut@?’ is con-

FIG. 1. Global bifurcation scenario for chaotic neural networks:
(a) In a parameter region close te= 1, the chaotic neural network
exhibits Hopfield-Tank “convergence” dynamics to many local
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FIG. 2. The global optimization rate of the CSA algorithm for a
five-city TSP is drawn with decreasing the annealing speed param-
eter 8. The city locations are given in two-dimensional coordinates

as (0.1768, 0.223B (0.9348, 0.630p (0.1561, 0.566) (0.5793,

0.0830, (0.0358, 0.626P and the system parameters are set to

(AB,w,a,€r4,r)=(1.5,1.0,0.70,0.07,0.018,0.95,0.75).
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Global Chaotic Search Dynamics
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FIG. 4. Schematic illustration of the hierarchical merging struc-

tinually stable until the final merger. An infinitely slow an- ture of multiple TSP solution§Q®,Q,...}. The solid line indi-

nealing always provides the second minimum solut@®,
because in the unstable parameter regio®@d? every slow
annealing is trapped in the second minimum solu@R.

Let us consider a general case of annealing multiple
attractor systems. As in the previous discussion, the hieraré

Merger of Q(l) and Q(z)

Period-Doubling Bifurcation
Route to Chaos |
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Q(Z)

Two Local Minima in
the Hopfield-Tank Region

Q(l)

cates the branch of a stable solution, the broken line indicates the
branch of an unstable solution which lost its stability via a boundary
crisis, and the node of the two branches indicates the merger of the
two solutions.

hical merging process of multiple chaotic attractors
{QM,Q®, ..} can be schematically represented in a binary
tree structure of Fig. 4. Notice that, in the merging process,
there is only a single chaotic attractor which is continually
stable until the final merger. An infinitely slow annealing
which traces only a stable solution provides such a continual
attractor as the final solution. This implies that iafinitely
slow annealing does not necessarily provide an optimum re-
sult, since the optimum solution does not always survive
until the final merger. With an analogy from the stochastic
simulated annealing11], it has been conjectured that the

TABLE |. Results of the adaptive CSA algorithm and the slow
CSA algorithm against 50 instances of random 20-city TSP and 20
instances of random 40-city TSP. For each instance, 100 sets of
random initial conditions are prepared. The parameters of the adap-
tive CSA algorithm are fixed to A,B,w,a,€,rg,rs,B8,w)
=(1.0,1.0,0.75,0.1, 0.018, 0.95, 0.7, 0.04, 100), while the gap pa-
rameter is set t@=0.04 for 20-city TSP and=0.10 for 40-city
TSP. The annealing speed of the slow CSA algorithm is sg to
=0.001 for 20-city TSP ang3=0.0005 for 40-city TSP where
other parameters are set the same as the adaptive algorithm.

FIG. 3. Schematic illustration of the merging process of two
solutions, Q™ and Q?. The continual solid line indicates the
branch of the stable solutio@(z), the broken line indicates the
branch of the unstable solutic@™ which lost its stability via a

Adaptive CSA  Slow CSA
Average tour length
for random 20-city TSP 0.892 1.00
Averaged computation steps 1200.0 5520.0
Averaged tour length
for random 40-city TSP 0.855 1.00
9624.1 11 041.0

boundary crisis, and the node of the two branches indicates the Averaged computation steps

merger ofQ) and Q.
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CSA algorithm also provides an optimum result by infinitely ~ Table | shows the result of the adaptive CSA algorithm
slow annealing. The present result provides a counterexanapplied to random 20- and 40-city TSPs. The threshold value
ple for this conjecture. is set aEy,=(1+¢)Cyk (e: gap parametemsing the Held-

In order to improve the conventional CSA algorithm, we Karp lower boundCyx [17]. The adaptive CSA algorithm
introduce the following adaptive chaotic simulated annealinq;,rovides much better solutions with fewer numbers of com-

algorithm: putation steps compared with the conventional slow CSA
algorithm.

Pi(n+1)= r(n)pik(n) +H1-r(n)] In conclusion, we have analyzed the CSA algorithm in the

N light of the global bifurcation structure of the chaotic neural

o z E Ti P () + i | (7)  networks and reported the limitation of the conventional

slow CSA algorithm. As an improved algorithm, an adaptive
, chaotic simulated annealing algorithm which finds much im-
r(n+1)=(1-p)[r(n)—rqgl+ry [if EQ(N)<Eunl, proved solutions by fast annealing is introduced.
®) Our present discussions have been based on the applica-
_ . tion results to relatively small-scale TSPs. By studying the
rin+1)=QA=pr(n=rs+rs [if E(‘](n))ZE”‘]’(g) dependence of the convergence time of the adaptive algo-
rithm to the size of the problem and by analyzing the scaling
where the cost functiofE( ) is defined with the temporal Pproperty of the algorithm, applicability of the present method
network firing stateJ(n) as to large-scale problems could be discussed in a further study.
Validity of the present results to other combinatorial optimi-
N 2 zation problems should also be tested. By comparative stud-
21 kZl Jik(n)—1 ies with various other approximate algorithms such as the
2-opt algorithm, the Tabu search algorithm, the genetic algo-
( N )2 rithm, and many other$12,18, disadvantages as well as
|k(n) 1

EJ(n))

N |

M z

advantages of the present algorithm would be clarified.
We also note that, in the present study, chaotic annealing
N N N algorithms have been based on the controlling algorithm of a
> DD dij I (M{ i 1(M) + Jji— 2 (M)} single bifurcation parameter. It is a challenging but worth-
j=1k=1 while investigation to develop an algorithm which directly
(10) controls the asymptotic measure of the chaotic neural net-
works. Controlling the asymptotic measure of the chaotic
The adaptive CSA algorithm utilizes “chaotic search” dynamics to eventually converge to the optimum state may
dynamics to seek for a TSP solution which has a lower cosprovide us with more natural annealing algorithm. Towards
than the threshold valug,,. When such a solution is found, this annealing, we have preliminary results based on the
the algorithm promptly tunes the bifurcation parametéo  learning algorithm of chaotic neural network49]. The
the Hopfield-Tank “convergence” region and cools down learning algorithm approach seems to work quite effectively
the network dynamics to the equilibrium state. for TSP and the detailed result will be reported elsewhere.
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