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Adaptive annealing for chaotic optimization
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The chaotic simulated annealing algorithm for combinatorial optimization problems is examined in the light
of the global bifurcation structure of the chaotic neural networks. We show that the result of the chaotic
simulated annealing algorithm is primarily dependent upon the global bifurcation structure of the chaotic
neural networks and unlike the stochastic simulated annealinginfinitely slow chaotic annealing does not
necessarily provide an optimum result. As an improved algorithm, the adaptive chaotic simulated annealing
algorithm is introduced. Using several instances of 20- and 40-city traveling salesman problems, efficiency of
the adaptive algorithm is demonstrated.@S1063-651X~98!15510-1#

PACS number~s!: 05.45.1b, 07.05.Mh
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Due to the recent successful results in a variety of en
neering problems, application of chaotic neural networks@1#
to combinatorial optimization problems has received a gr
deal of attention@2–8#. The idea of optimization by chaoti
neural networks can be briefly summarized as follows. In
continuous state space of the chaotic neural network, e
possible solution of an optimization problem is embedd
By following a chaotic wandering orbit which visits a varie
of the solutions, chaotic dynamics continually searches
the optimum solution. In contrast with the convention
Hopfield-Tank neural network search@9#, the nonequilibrium
chaotic search overcomes the local minimum problem. Co
pared to the stochastic search system@10,11# whose search
space is essentially the same with the whole state spac
the search dynamical system, the chaotic search dynami
confined in a relatively low-dimensional fractal space, wh
seems to realize an efficient search for a variety of opti
zation problems such as the traveling salesman prob
~TSP! @2–7#.

For the chaotic neural network approach to optimizat
problems, it is natural to introduce the idea ofsimulated
annealing@10#. Technically, it is quite important to graduall
cool down the chaotic dynamics to a possibly optimum st
by simulated annealing, since the chaotic search is basic
everlasting.

Towards the simulated annealing in a chaotic neural n
work, the chaotic simulated annealing~CSA! algorithm has
been recently developed by Chen and Aihara@3#. In the CSA
algorithm, the chaotic dynamics is harnessed by a coo
algorithm of a bifurcation parameter. Gradual cooling of t
bifurcation parameter controls the chaotic search dynam
to converge to a stable equilibrium state with a possibly
timum or near-optimum solution. The experimental stud
in Ref. @3# demonstrate the efficiency of the CSA algorith
which obtains fairly good solutions of TSPs.

The aim of the present study is to reexamine the e
ciency of the CSA algorithm in the light of the global bifu
cation structure of the chaotic neural networks. On the b
of our bifurcation studies@6,7#, we argue that the result o
the chaotic annealing is primarily dependent upon the glo
bifurcation structure of the chaotic neural networks and sh
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that infinitely slow chaotic annealing does not necessar
provide an optimum result. As an improved algorithm,
adaptive chaotic simulated annealing algorithm is then in
duced.

As an example of a combinatorial optimization proble
we consider anN-city symmetric TSP@12#: ‘‘Given an N
3N symmetric matrix (di j ) of distances between a set ofN
cities (i , j 51,2,...,N), find a minimum-length tour that visits
each city exactly once.’’

The chaotic neural network which solves the TSP is
scribed in terms of an (N3N)-dimensional mapping@2,6#:

pik~n11!5rpik~n!1~12r !sS (
j 51

N

(
l 51

N

Tik, j l pj l ~n!1I ikD ,

~1!

where pik stands for an internal state of the~i,k! neuron
( i ,k51,...,N), r (0,r ,1) stands for a decay parameter, a
s(x)50.510.5 tanh(x/e). The synaptic connectionsTik, j l are
given by

Tik, j l 52A@d i j ~12dkl!1dkl~12d i j !#

2Bdi j ~d lk111d lk21!, ~2!

Tik,ik522vA, ~3!

I ik52aA, ~4!

where A and B are balancing parameters of the constra
term and the tour-length term of the TSP cost function@9#, a
is a control parameter for excitation level of neurons, andv
is a negative self-feedback parameter.

By wandering around a variety of temporal network firin
states @2# $r ik(n)5(1/w)( j 50

w21pik(n2 j )u i ,k51,...,N% ~w:
averaging duration!, which are coded into possible TSP s
lutions J(n)5$Jik(n)u i ,k51,...,N% by Jik(n)51@r ik(n)
2r* # „1@x#51 if x>0, 1@x#50 if x,0, r* : the Nth larg-
est among$r ik(n)%…, the chaotic neural network searches f
the optimum solution among a variety of TSP solutions
$J(n)%.
5157 © 1998 The American Physical Society
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On the basis of the numerical studies, we have obtai
the following global bifurcation scenario for the chaotic ne
ral networks which solve TSP@6# ~see Fig. 1!: We take the
decay parameterr as the bifurcation parameter. First, there
a bifurcation parameter region withr'1, where nonlinear
dynamics of the chaotic neural network~1! becomes similar
to that of the continuous-time Hopfield-Tank neural netwo
which exhibits ‘‘convergence’’ dynamics to the local min
mum solutions of the underlying Lyapunov function@4#.
With a decrease in the bifurcation parameterr, the local
minimum solutions bifurcate into chaotic attractors throug
period-doubling route. The chaotic attractors are initially
calized in the state space and eventually merge into a si
global attractor via a series of crises@13#. The merging pro-
cess gives rise to intermittent switch dynamics among

FIG. 1. Global bifurcation scenario for chaotic neural networ
~a! In a parameter region close tor 51, the chaotic neural network
exhibits Hopfield-Tank ‘‘convergence’’ dynamics to many loc
minima.~b! With a decrease in the bifurcation parameterr, the local
minima bifurcate into chaotic attractors through a period-doubl
route.~c! The coexisting chaotic attractors eventually merge int
single global attractor.
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previous localized chaotic attractors and the global ‘‘chao
search’’ dynamics for various TSP solutions takes place.

Our bifurcation scenario provides the following insight
~i! Crisis-induced intermittent switches among the ruins
the previous localized chaotic attractors are the dynam
bases of the ‘‘chaotic search.’’ This type of a dynamic
phenomenon is calledchaotic itinerancy@14–16#, and has
been observed in a variety of high-dimensional dynami
systems.~ii ! The bifurcation scenario provides a guidelin
for tuning the bifurcation parameter value which gives rise
an efficient ‘‘chaotic search.’’~iii ! The CSA algorithm is
primarily dependent upon the global bifurcation structure
the chaotic neural networks and the efficiency of the C
algorithm can be examined by our bifurcation scenario.

In the CSA algorithm@3#, in order to terminate the chaoti
search procedure and to obtain the final solution, the cha
dynamics is eventually controlled to converge to a sta
equilibrium state by a gradual cooling of the bifurcation p
rameter. On the basis of our bifurcation scenario, the C
algorithm for TSP can be formulated as the following d
namics:

pik~n11!5r ~n!pik~n!1@12r ~n!#

3sS (
j 51

N

(
l 51

N

Tik, j l pj l ~n!1I ikD , ~5!

r ~n11!5~12b!@r ~n!2r g#1r g , ~6!

whereb(0,b,1) stands for an annealing speed parame
and r g stands for a bifurcation parameter value which giv
rise to Hopfield-Tank ‘‘convergence’’ dynamics.

With an initial condition of randomp(0)P@0,1#N3N and
r (0)5r s , wherer s stands for a bifurcation parameter valu
which gives rise to ‘‘chaotic search’’ dynamics, at the fir
stage of the annealing, the network searches for TSP s
tions by chaotic wandering dynamics. As the annealing p
ceeds withr (n)→r g , the chaotic search dynamics event
ally converges to a single equilibrium solution.

Figure 2 shows the result of the CSA algorithm applied
a five-city TSP. As the annealing speedb is decreased, we
see that the convergence rate to the optimum solution is
creased. This phenomenon is due to the following bifurcat
mechanism.

As is illustrated in Fig. 3, for a bifurcation parameter r
gion close tor 51 which gives rise to the Hopfield-Tan
‘‘convergence’’ dynamics, there exist two local minimu
solutions, the optimum solutionQ(1) and the second-
optimum solutionQ(2). With a decrease in the bifurcatio
parameterr, the two solutions$Q(1),Q(2)% bifurcate into cha-
otic attractors through a period-doubling route. The two
tractors are initially localized in the state space and even
ally merge into a single attractor via crises. First, t
optimum solutionQ(1) touches the separatrix ofQ(1) and
Q(2) and loses its stability via a boundary crisis. Then, t
second-optimum solutionQ(2) merges with the ruin of the
optimum solutionQ(1) via an interior crisis. The merger o
Q(1) and Q(2) can be schematically illustrated in a bina
tree structure of Fig. 3. Notice that, in this merging proce
whereas the global minimum solutionQ(1) has an unstable
parameter region, the second minimum solutionQ(2) is con-

:

g
a



-

le
ra

rs
ry
ss,
lly
g
ual

re-
ive
tic
e

a
am
te

to

wo
e

t

c-

the
ary
f the

w
20

ts of
dap-

pa-

o

PRE 58 5159BRIEF REPORTS
tinually stable until the final merger. An infinitely slow an
nealing always provides the second minimum solutionQ(2),
because in the unstable parameter region ofQ(1) every slow
annealing is trapped in the second minimum solutionQ(2).

Let us consider a general case of annealing multip
attractor systems. As in the previous discussion, the hie

FIG. 2. The global optimization rate of the CSA algorithm for
five-city TSP is drawn with decreasing the annealing speed par
eterb. The city locations are given in two-dimensional coordina
as ~0.1768, 0.2233!, ~0.9348, 0.6305!, ~0.1561, 0.5661!, ~0.5793,
0.0830!, ~0.0358, 0.6269! and the system parameters are set
(A,B,v,a,e,r g ,r s)5(1.5,1.0,0.70,0.07,0.018,0.95,0.75).

FIG. 3. Schematic illustration of the merging process of t
solutions, Q(1) and Q(2). The continual solid line indicates th
branch of the stable solutionQ(2), the broken line indicates the
branch of the unstable solutionQ(1) which lost its stability via a
boundary crisis, and the node of the two branches indicates
merger ofQ(1) andQ(2).
-
r-
chical merging process of multiple chaotic attracto
$Q(1),Q(2),...% can be schematically represented in a bina
tree structure of Fig. 4. Notice that, in the merging proce
there is only a single chaotic attractor which is continua
stable until the final merger. An infinitely slow annealin
which traces only a stable solution provides such a contin
attractor as the final solution. This implies that aninfinitely
slow annealing does not necessarily provide an optimum
sult, since the optimum solution does not always surv
until the final merger. With an analogy from the stochas
simulated annealing@11#, it has been conjectured that th

-
s

he

FIG. 4. Schematic illustration of the hierarchical merging stru
ture of multiple TSP solutions$Q(1),Q(2),...%. The solid line indi-
cates the branch of a stable solution, the broken line indicates
branch of an unstable solution which lost its stability via a bound
crisis, and the node of the two branches indicates the merger o
two solutions.

TABLE I. Results of the adaptive CSA algorithm and the slo
CSA algorithm against 50 instances of random 20-city TSP and
instances of random 40-city TSP. For each instance, 100 se
random initial conditions are prepared. The parameters of the a
tive CSA algorithm are fixed to (A,B,v,a,e,r g ,r s ,b,w)
5(1.0, 1.0, 0.75, 0.1, 0.018, 0.95, 0.7, 0.04, 100), while the gap
rameter is set to«50.04 for 20-city TSP and«50.10 for 40-city
TSP. The annealing speed of the slow CSA algorithm is set tb
50.001 for 20-city TSP andb50.0005 for 40-city TSP where
other parameters are set the same as the adaptive algorithm.

Adaptive CSA Slow CSA

Average tour length
for random 20-city TSP 0.892 1.00
Averaged computation steps 1200.0 5 520.0
Averaged tour length
for random 40-city TSP 0.855 1.00
Averaged computation steps 9624.1 11 041.0
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CSA algorithm also provides an optimum result by infinite
slow annealing. The present result provides a counterex
ple for this conjecture.

In order to improve the conventional CSA algorithm, w
introduce the following adaptive chaotic simulated anneal
algorithm:

pik~n11!5r ~n!pik~n!1@12r ~n!#

3sS (
j 51

N

(
l 51

N

Tik, j l pj l ~n!1I ikD , ~7!

r ~n11!5~12b!@r ~n!2r g#1r g @ if E„J~n!…,Eth#,
~8!

r ~n11!5~12b!@r ~n!2r s#1r s @ if E„J~n!…>Eth#,
~9!

where the cost functionE( ) is defined with the tempora
network firing stateJ(n) as

E„J~n!…5
A

2 (
i 51

N S (
k51

N

Jik~n!21D 2

1
A

2 (
k51

N S (
i 51

N

Jik~n!21D 2

1
B

2 (
i 51

N

(
j 51

N

(
k51

N

di j Jik~n!$Jjk11~n!1Jjk21~n!%.

~10!

The adaptive CSA algorithm utilizes ‘‘chaotic search
dynamics to seek for a TSP solution which has a lower c
than the threshold valueEth . When such a solution is found
the algorithm promptly tunes the bifurcation parameterr to
the Hopfield-Tank ‘‘convergence’’ region and cools dow
the network dynamics to the equilibrium state.
n
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tio
er
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Table I shows the result of the adaptive CSA algorith
applied to random 20- and 40-city TSPs. The threshold va
is set asEth5(11«)CHK ~«: gap parameter! using the Held-
Karp lower boundCHK @17#. The adaptive CSA algorithm
provides much better solutions with fewer numbers of co
putation steps compared with the conventional slow C
algorithm.

In conclusion, we have analyzed the CSA algorithm in t
light of the global bifurcation structure of the chaotic neu
networks and reported the limitation of the convention
slowCSA algorithm. As an improved algorithm, an adapti
chaotic simulated annealing algorithm which finds much i
proved solutions by fast annealing is introduced.

Our present discussions have been based on the app
tion results to relatively small-scale TSPs. By studying t
dependence of the convergence time of the adaptive a
rithm to the size of the problem and by analyzing the scal
property of the algorithm, applicability of the present meth
to large-scale problems could be discussed in a further st
Validity of the present results to other combinatorial optim
zation problems should also be tested. By comparative s
ies with various other approximate algorithms such as
2-opt algorithm, the Tabu search algorithm, the genetic al
rithm, and many others@12,18#, disadvantages as well a
advantages of the present algorithm would be clarified.

We also note that, in the present study, chaotic annea
algorithms have been based on the controlling algorithm o
single bifurcation parameter. It is a challenging but wor
while investigation to develop an algorithm which direct
controls the asymptotic measure of the chaotic neural
works. Controlling the asymptotic measure of the chao
dynamics to eventually converge to the optimum state m
provide us with more natural annealing algorithm. Towar
this annealing, we have preliminary results based on
learning algorithm of chaotic neural networks@19#. The
learning algorithm approach seems to work quite effectiv
for TSP and the detailed result will be reported elsewher
ch.
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