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A quadratically convergent Newton-Raphson algorithm for a relativistic multiconfiguration Dirac-Fock self-
consistent-field calculations is developed and implemented with analytic basis sets of Gaussian spinors. A
procedure to perform second-order energy optimization for a general class of multiconfiguration wave func-
tions constructed from one-particle Dirac spinors is described. We report the results of relativistic multicon-
figuration Dirac-Fock self-consistent-field calculations and relativistic multireference configuration-interaction
calculations based on the multiconfiguration Dirac-Fock wave functions for the loiegst P, and 3P,
states of oxygenlike iron (E&"), groundJ=0 and excitedl=1 states of beryllium, and ground-state beryl-
liumlike neon (N&"), species that exhibit the near degeneracy characteristic of a manifold of strongly inter-
acting configurationd.S1063-651X98)11309-0

PACS numbegps): 02.70—c, 31.15-p, 31.25.Eb, 31.25.Jf

[. INTRODUCTION electron system§8]. State-specific many-body perturbation

theory involves a full implementation of generalized
The importance of electron correlation in the accurate deM#ller-Plesset perturbation theory applied to general open-
scription of light elements and molecules that contain lightShell reference wave functions, and, in low order, yields a

elements is well established. In heavy-atom systems anigrge .fraction of th.e.dynamic correlatid@1]. T.he spinors
highly ionized highZ ions, the effects of relativity become used in these relativistic many-body perturbation theory cal-

important in addition to electron correlation. Further, the ef_culations were obtained in single-configuration DF SCF cal-
P ' ' culations, and most contemporary implementations rely on a

fects of relati_vity and electron corrglation in thesg syStem%ingle-configuration reference.

are strongly intertwined. Thus, an intense effort in the last Single-reference many-body perturbation theory is effec-
decade has been directed toward developing relativistigve in describing dynamic correlation, but fails to account
many-body theories to accurately account for both relativisfor nondynamic correlatior(i.e., near-degeneracy effegts

tic and electron correlation effects in heavy-atom system®ynamic correlation is a short-range effect that arises from
and highly ionized highz ions. Among the relativistic electron-electron interaction and is the major correction to
many-body techniques developed recently are numericdhe Dirac-Fock independent particle model, while nondy-
finite-difference and matrix multiconfiguratioiMC) Dirac-  namic correlation is a consequence of the existence of nearly
Fock self-consistent fiel(DF SCH theory[1-3], relativistic ~ degenerate excited states that _interact st_rongly with the ref-
many-body perturbation theorjd—9], relativistic coupled erence stat¢21,22. Nondynamic correlation is accounted
cluster theoryf10—13, and relativistic configuration interac- for by including in the reference state sufficient configuration
tion (Cl) [14—17. Discrete basis sets of both “local” State functions(CSF'S to describe all near degeneracies.
[4,5,10,12,15 and “global” functions [3,6-8,11,14,1pas Systems in which only_dynam|c porrelatlon is important are
well as numerical finite-difference algorithni,2,9,13,17 well represented by single-configuration Dirac-Fock wave

have been used. Implementations based on expansion in ar{g_nc;tions, whereas systems in which nondy_namic corrgelation
lytic basis functiond3-8,10-12,14—1have an advantage IS Important - cannot be correctly _descnbed by single-

' o : configuration Dirac-Fock wave functions. Near degeneracy
over those based on numerical finite-difference algorithm

. - i df the valence spinors gives rise to a manifold of strongly
E)lle%egDﬁ?z;(r:] SF’F;Z\C’L?SE a compact representation of the COm'interacting configurations, i.e., strong configuration mixing

) _ within a relativistic complex due to asymptotic degeneracy
We recently{ 18] employed the generalized coupling op- [22] and makes a relativistic multiconfiguration treatment

erator method 19] to construct a single Fock operator for mandatory. The classic examples are the near-degeneracy ef-
open-shell DF SCF theory, and showed that with such afects in the beryllium and carbon isoelectronic sequences,
operator all closed- and open-shell four-component Diragnd in general all open-shell atoms with two or more valence
spinors can be determined. We reported a state-specific relatectrons. For most reactive and excited-state energy surfaces
tivistic many-body perturbation theory for open-shell sys-of molecules, single-configuration self-consistent field theory
tems in which our single Fock operator method is employedilso fails to properly describe the separated fragments be-
to obtain a Mgller-Plesset-type separation of the relativisticcause of the near degeneracy involved in those processes.
many-electron Hamiltoniaf8]. Calculations which have em- While slow convergence in iterative first-order MC DF SCF
ployed “global” basis sets o6 spinors G for “Gaussian”  procedures has been a significant barrier, it can be practically
after Grant[20]) have been done on a number of many-solved in many cases by employing the quadratically conver-
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gent Newton-Raphson technigL28]. Once near-degeneracy Z

effects are accounted for by relativistic MC DF SCF theory, ) for r>R

the remaining dynamic correlation may be treated by multi- Vv . 3
reference generalized Mgller-Plesset perturbation thigtiry nud1) = 7 r2 C)

or relativistic multireference Cl based on the MC DF SCF - == for r=R.
reference wave functiofil7].
In the present study, we extend our single-configuration o
open-shell DF SCF18] to a general MC DF SCF inorderto ~ 1he total projection operator L,
treat the systems with significant nondynamic correlation ef=L+(1)L+(2)---L(n), whereL . (i) is the projection op-
fects. Numerical finite-difference and matrix MC DF SCF €rator onto the space spanned by the positive- eigenfunctions
algorithms based on a first-order energy variation define onlf the MC DF SCF equatiof8,29 for the individual elec-
a stationary point on the energy surface, and thus their iterdlOnS. The operataf . formally takes into account the field-
tive solutions often exhibit slow convergence for the groundtheoretic condition that the negative-energy states are filled
states of atoms and molecules, and are often nonconvergdii®:23. The eigenfunctions of the matrix DF SCF equations
for excited states. To optimize even relatively simple Mcclearly separate into two discrete manifolds 9_f positive- and
wave functions with respect to spinor variations, it is necesegative-energy states. As a result, the positive-energy pro-
sary to know the curvature of the energy surface with respedgction operators can be accommodated easily in many-body
to variations in spinors and Cl coefficients. This requiresc@lculations. The formal conditions on the projection are au-
knowing the second derivatives. Second-order optimizatiofomatically satisfied when only the positive-energy spinors
of Dirac four-spinors and CI mixing coefficients in MC DF are employed. . o .
SCF theory is thus mandatory in order to guarantee well- Adding the frequency-independent Breit interaction,
controlled convergence in relatively few iterations. The es- N >
sential feature of MC DF SCF theory is the multireference Bio=—zlarazt(ay-r12)(az-rp)/rllr, - (4)
approach to treating nondynamic correlation. . ) ,
Here we report a successful implementation by expansiof‘\o the instantaneous electrqn—electron Coulomb_ interaction,
in G spinor basis sets of the second-order MC DF SCF andf! Coulomb gauge, resuzlts in the Coulomb-Breit potential,
multireference configuration interaction with single andWhich is correct to ordea” (a being the fine-structure con-
double excitationgCI-SD) formalisms. We develop the MC Stan} [24]. Addition of the Breit term yields the no-pair
variational energy up to second order in the unitary rotatiorPirac-Coulomb-BreiDCB) Hamiltonian[24,29
parameters, and seek an energy extremum by employing a
guadratic approximation on the energy surface. The ap- HSCBZE ho(i)+ L.
proach parallels the second-order algorithms developed in i
nonrelativistic multiconfiguration Hartree-Fock calculations
[23], and provides excellent convergence once a quadratighich is covariant to first order and increases the accuracy of
basin on the energy surface is entered. In Sec. Il, the quasalculated fine-structure splittings and inner-shell binding
dratically convergent relativistic MC DF SCF and multiref- energies. Higher-order QED effects appear first in oer
erence CI-SD algorithms are formulated. In Sec. lll, the re-Studies have appeared that go beyond the no-pair approxi-
sults of matrix MC DF SCF and multireference CI-SD mation where negative-energy states are needed to evaluate
calculations on the the lowesP,, 3P, and 3P, states of the higher-order QED effec{®6,27.
oxygenlike iron (F&"), ground J=0 and excitedJ=1 Eigenfunctions of the no-pair DC Hamiltonian are ap-
states of beryllium, and the groudd=0 state of beryllium- proximated by a linear combination dfelectron CSF’s.
like neon (N&%) are presented.

R

1
Z (r—+B|J
ij

i>]

)‘C+ ’ (5)

Nesr

Il. THEORY W vcord YIm) = Z ClI™d (v, J). (6)

The effectiveN-electron Hamiltoniarin atomic unit$ for ) . .
the development of our matrix MC DF SCF algorithm is Here the MC DlracTFock—Coqumb ;elf-congstent—ﬂeld
taken to be the relativistic “no-pair” Dirac-CoulomidC)  (PFC SCH wave function¥ycpec( y77) is an eigenfunc-

Hamiltonian[24,25, tion of the angular momentum gnd parity operators with total
angular momentum7 and parity =, and ®,(y,Jm) the
N ) 1 CSF’s.y denotes a set of quantum numbers other tifamd

HDCZEi hp(i)+ L, Z>J _” Ly, D 7 necessary to specify the state uniquely. In the following,

C}’™ is abbreviated a€; .

wherehp(i) is the Dirac one-electron Hamiltonian, The total DC energy of the general electronic state
V¥ vcorc( yJm) can be expressed as
hp(i)=caipi+(B—1)c%+Vndr). v ; .
yJm —
Herea and B are the 4x4 Dirac vector and scalar matrices, E (Wweorc( 77m)IHocl ¥ ueord 77m))
respectively. V,,{r) is the nuclear attraction term. The Nese
nucleus is modeled as a sphere of uniform proton-charge = IZJ CICH® (N Tm) | Hpc| P o(y3Tm)) (2= §13)-

distribution (Z is the nuclear charge, aRlthe radius of the
spherg, (7)
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Here it is assumed tha¥ ycpec(vJm) and @ (y;J7) are andK denote CI coefficients; and the indicas b, c, d,
normalized, and the hermiticity of the Hamiltonian has beerand v are reserved for the sets and 8 describing unique
employed to reduce the number of terms in the summatiorradial integrals.

The total energy can be conveniently expressed in terms of

the unique elements of the one- and two-particle radial inte- A. Second-order MC DFC SCF energy optimization

grals, by spinor rotations

N Ny Given a trial orthonormal set of one-electron radial
E*7" = t,l(a,b,)+ >, VgR"B(aghg,cedg), (8) spinors{¢npr(r)}, the optimum occupied radial spinors
o« Aot {¢nh,} can be found by a unitary transformatith=1+T
where N; and Ny, are the numbers of nonzetg andV, via

coefficients. The short notation for the radial integrals has oot
been used: 1( PnEKe(r)) 2N,
r

ont (1| =2 Prpe,(NUpe
|(@h) =1 (Nakaois) = (b, (N[Np(1)| Gy, (1), (©) e (1)) T

NeKe
2N,
R”(ab,cd)=R"(naxaNpky ,NeicNgky) ZE bn o (N(Tpet S20). (13)

D p"p

14

r

<
v+l
>

Here, the summation extends over both negative and positive
energy spinorsP,(r) and Q,.(r) are the large I{) and
small (S) radial components and are expanded in, N
><¢nCKC(r1)<;/>nde(r2)>, (100  Gaussian-type functiong,x;} and {x3}, that satisfy the
boundary conditions associated with the finite nucleus
[7,18,28:

= < ¢naKa( r 1) ¢anb( r 2)

r

where{é;_._(r)} is an orthonormal set of Dirac one-electron
radial spinors of symmetrg. The symmetryx is related to
spinor angular momentu by k=% (j+3) for |=j*%, PnK(r)=Ei Xrini (14)
wherel is orbital angular momentum quantum number of the
large component spinor. The generalized coefficieptand s s
V; are expressed in terms of nonzero angular coefficights Qni(r)= Z Xei Enui - (15
andVy :
Here{¢: .} and{&5 .} are linear variation parameters.
3 , Yy In terms of the powers of the spinor variation parameters
ty 8(a,a’){2—6,},C/C], (1) T={T,4, the energyE?’" in Eq. (8) can be expanded in the
following way:

\[>/j_;€

t =

o

a'=1

Vo EYT=EQ+AED(T)+AEP(T)+--- . (16
Ve= 2 V888 {2-8,)C/CY. (12 | | |
B'=1 Here AEC)(T)=EM(T)—E~1)(T) is theith-order energy
correction proportional to the ternT§' . The energye?’™ is
a fourth-order function of rotation matrix elemenftg,. In-
serting the optimum spinor expressi@iB) into Eqg. (8) and
collecting the terms of the same power 6f the energy

The angular coefficients; andV}] account for the symme-
tries of the radial integral$(a,b,) and R*(aghg,czdg),
and the notationsy={a,b,} andB={vz,asbgcsds} have

been used. ; 2) ; . .
Throughout the section, the following notations are used®Xpression to second-ord&f?)(T) in Tpe is obtained,
The indicese andf denote occupied spinors; the indiges EQ(T)=EO+AED(T)+AE?(T), (17)

g, r, ands denote any of the occupied or virtual spinors
(both positive and negative energy spinotse indiced, J,  whereE© is given in Eq.(8),

Ny 2N, N Ny

AE<1>(T)=;l p; Tpd azl t {1(pb,)d(e,a,)+I (aap)ﬁ(e,ba)}+ﬁzl V4{R¥(pby,cadg) 8(€,a5)

+R"8(agp,cadg) 8(e,bg) + R76(aghz,pds) 5(e,cp) + R8(agbs,Ccop) 5(€,dpg)} (18

and
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Nw Ny 2N, 2N, N; Ny
AEPM=2 2 2 X ToTa| 2, tal (PAS(@a) 810+ 3 Vo[R'4(pa.csdy) o(e,a)O(T,Dg)

=1
+R"(pbg,qdg) d(e,ap) o(f,cp) +R"(phg,cpq) 8(e,ag) 5(f,dg) +R"(azp,qdg) 5(e,bg) 5(f,cp)
+R"8(agp,cq) d(e,bg) 5(f,dg) +R"(agbs,pa) d(e,cg) 6(f,dg)} |- (19
Here the indexN,, represents the number of occupied electronic shells.

Variation of the approximate enerdsf?(T) with respect to parametei’,. leads to the Newton-Raphson equations,

JEPN(T)

T gge+% h924Tqr=0, (20)

where the gradient with respect 1q is

, GAED(M) Y W
gpe=?pe=;1 ta[|(pba)5(e,aa)+I(aap)ﬁ(e,ba)]JrBZ1 V{R"8(pbg,cpdg) d(e,ap)
+R"B(agp,cadg) 8(e,bg) +R7A(agh,,pdg) 5(e,cz) + R¥A(aghg,cop) 5(e,dg)}, (22)

and the Hessian matrix with respectTg is

24 E(2) Ni Ny

oo O°AE'(T)

o0 ai=—m—=— = 2 tll(pa)8(e,a,)8(f,b,)+1(ap)(eb,)8(f,a,)]+ 2 Va{R"8(pa,cedy) d(e,as)8(f,by)
ﬁTpeﬂqu a=1 B=1
+R"8(pbg,qds) d(e,ag) 8(f,c5) +R8(pbg,csq) 8(e,a5) 8(f,dg) + R"8(agp,qdg) 8(e,bg) 8(f,cp)
+R"(agp,cpq) d(e,bg) 8(f,dg) + R"B(agbs,pq)d(e,cg) o(f,dg) + R"E(qp,cgdg) 8(f,ag) o(e,bg)
+R"8(qbg,pdg) 8(f,as) d(e,cp) +RE(qbg,csp) 6(f,a5) 6(e,dg) + R"E(azq,pdg) 6(f,bg) 6(e,cp)

+R"8(agq,cgp) 5(f,bg) d(e,dg) +R"6(agbg,qp) o(f,cp) d(e,dg)}. (22

To account for the orthogonality constraints, terms in-and the new Hessian is

volving Lagrange multipliers must be added to the energy

functional: ~
\ hpe’quhpe’qf—ZwefSquhpe’qf—Zwe@pq. (26)
w

W=E@(T)+ 2, wef(Ser—Ser) (23 | o _ _
ef B. Simultaneous optimization of the spinor rotations
and CI coefficients

where Sg=( ¢neke(r)|¢>anf(r)> is the overlap between

spinorse andf. {w¢s} are the Lagrange multipliers and the

diagonal elements, are related to the fractional occupa-

tions qe. and orbital energieg, by wee=(ecc€e. Since an

orthonormal trial set of radial spinors was assumed,

The CI coefficientsC/ [Eq. (7)] are not constant, and
variations over them must also be incorporated in the
second-order energy. Consider two sets of Cl coefficients—
C” = {C}} (optimum andC(®7 = {C(9?}(approximate A
Taylor expansion of the energy yields

Sef=S;fL+ S§f5= Ogf - EY(T,CY=CO7+AC?)

Finally, the variation of the total energy functional leads to JEYT(T,CY)
the equation =EY(T,CO7) + > —y AC)
! J9C, cOy

W - ~

——=0%+ >, 192, T4=0, (24) 1« PEWT(T,CY)

ITpe a +5 —————=  ACJAC}+--- .

293 4CyoCy
S coy

where the new gradient is @

9%.=0%.—2 Sip=Ype— 2Wep, 25 /
9pe™ Gpe Ef: @erSrp= Jpe™ “@ep @9 AC} may be expanded in terms of the CI vectp&{®” }:
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ACY=Cl—-C{97= > A, C{O" —C(07
y'=1

= (A ’

_ (0)y'
b 57’y)cl 7

(28)
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AECD=2% CO"H AC)=22 X C{'H,,Cc{9”'B,,
1J 1J ¥

— 0)y' — 0
=22 E97B,4,,=2E"8B,.
Y

(31)

Second-order energy correction is more complex and it
includes mixed terms:

Now the second-order energy can be expressed in terms of

AC/ or B,/ . Inserting the expression f&E?’™ [Eq. (16)]

into Eq.(27) and collecting terms with up to second order in

AC” andT, we obtain:

JED(T)

ACY
acy

c(0)y

E®(T,AC")=E@(T)+ >,
|

S2E©

1
+5 ACYACY, (29

c0)y

7 9CyaCy

where the abbreviated notatioB®(T,C©7")=g(T) is
used. After collecting terms in Eq29) order by order in
bothAC” andT , we obtain

E@(T,AC)=EQ+AEM(T,ACY)+AE?(T,ACY),
(30
whereAE®)(T,AC?) is given by
AEM(T,AC?)=AE*D +AED

AE°® s defined in equatiofi8), and upper indices ando
represent the ClI and orbital variations, respectively:

IAES?

Toe 5

JPAED(T)
IC] T pe

>

cO)y
Ny

’

Y

+R(agp,cadp) S(e,bg) + R"(agh s, pdg) S(,cp) + R*A(agbg,cop) S(e,dg)} | CIV7'B,,

If we define

Nese [ Nt
co _ ,0C _
hv’,pe_hpe,v’_ Z,

+R"B(aghg,pdg) 8(e,c5) + RE(aghy,chp) 8(e,dg)} [CIOY

with

AE®(T,ACY)=AE®? + AE®? + AE?

where
1o PEO(T
AECP =2 % ACYAC)=2, H,;AC}ACY
7 9C/C] 0y 1J
=2 EOVB? (32

’)’,

(1)
AESD = AEoi2_ S JAEM(T)

ACY
[ acy

c(0)y

CEW) B, . (33
0y

The terms with the upper indew arise only from
E@)(T). There are additional terms in the self-consistent
field procedure due to changes in CI coefficients. Inserting
JAEN(T)/JT e from Eq. (21) gives us

Ny

E. [2 tL{I(pbam(e,aaHl(aap>6<e,ba)}+/;l V5{R"8(pbp,cadp) 8(e,ap)

(39

Ny

E t'a{l (pb,)d(e,a,)+1 (aap)é(e,ba)}+,321 Vlg{R”ﬂ(pbB,cﬁdﬁ)ﬁ(e,aﬂ) +Rs(agp,cpdg) o(e,by)

(39
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As with the spinor orthogonality constraints, the normal-

ata . . e
th= ” ization condition>,/A,/A,, =1 of the CI vectors must be
ICK | oy incorporated:
Ni
= >t 8(a,a){CP78(1,K)+C278(3,K)}, W= E<2)(T,AC’)+§, Wef( Ser— Ser)
a'=1
(36)
M1-2 ALA, (46)
K ‘?Vﬁ ’
Vi=—"- . . . .
B ICY| o The orthogonality constraints contribute to the Cl gradient
| o and Hessian matrix in the following wa§§,=g°y,—2>\ and
\VJ T CC __|CcC ’ " _di H _
_ V';,é(ﬁ,ﬁ’){cgo”ﬁ(l,K)+C§0>75(J,K)}, hy p h —2\8(v',v"). The off dlagqnal mixed Hes
g =1 sian matnx elementbnm V. andhy g¢ Femain the same. Us-
37) ing Egs. (44)—(46), we obtain the second-order Newton-
Raphson equation
then ~ ~ oc
gge gg,qf hpe,y” qu 0
co(2) N¢ ~c | T 2 o ~cc = . (47
7AE Z ho¢ (39 9y ) afy hv’,qf hy’ Y’ By 0
ane pey : '

The Hessian matrix possesdds positive andN, nega-
The minimum ofE®(T,AC”) with respect td.,, can be tive eigenvalues corresponding to a minimum and a maxi-

obtained easily using Eq¢31) and ( 32): mum, respectively, in the space of large and small compo-
nent parameters. Therefore, the energy functional is
JAESD) minimized with respect to spinor rotations between the oc-
g —2E(°)“/5 (399  cupied electronic spinors and the positive-energy virtual
= spinors, and it is maximized with respect to spinor rotations
between the occupied electronic spinors and the negative-
JAECC(2) energy spinors.
———=2e07"'B,, (40)
9By C. Relativistic multireference configuration interaction
JAEC?) In Sec. Il B, we derived a Newton-Raphson equation to
[ ,,:2E7' 8y (41) determine optimum MC DFC SCF wave functions based on
B, B, 7 the DC Hamiltonian. The effects of the frequency-
independent Breit interaction may be excluded or included in
JAEC2) the multireference CI-SD step. These correspond to multiref-
—_—= h‘;‘f qf Taf- (42 erence CI-SD calculations based, respectively, on the no-pair
IBy af ’ DC and DCB Hamiltonians. In the following, they will be
) referred to as the DC multireference CI-SD and DCB multi-
Finally, reference CI-SD schemes. In our DC and DCB multirefer-

ence CI-SD schemes, the eigenfunctions of the DC and DCB

Hamiltonians are constructed as linear combinations of

qfl CSF'’s generated by single and double excitations out of the
(43) reference CSF'®D,(y,Jw) involved in Eq.(6),

JE@(T,AC?)

5, =2E"(6,,+B,, )+§‘, he?

s
n

<I>|<y.Jw>+E Cl5®|.o( v Tm)

. . N
The mixed terms are more complicated, because here the &F

variations of spinors and ClI coefficients mix. In order to WelyIm) = Z
have a quadratically convergent MC method we must in-

clude these terms. ny
If we addB,,, to our set of variational parameters, +Ei C,’iD I oef(YiTm) |, (48
gpe+2 hpequ f+2 hpe B, =0 (44) wherenI (nP) is the total number of singly excited CSF's

. (doubly excited®;?;) constructed by smgleédouble
excnauons from the reference CSHl5 . C}° andC}° are
CI-SD coefficients, which are determlned variationally.
Since multiconfiguration self-consistent-field calculations
g°,+2 ; qf+2 he¢ . ”By,,:o_ (45) provide only occupied and virtual spinors of the same sym-
LT 7 q metries, virtual spinors of other symmetries are generated via

and
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a Fock operatof21] with fractionally occupied multicon- =11. An even-tempered 830p G-spinor basis set was used.
figuration self-consistent-field spinors. The parametera and B for the even-tempered basis set are,
In expansion(48), some of the CSF's coming from dif- respectively, 0.021 967 and 2.140. For comparison, the re-
ferent reference stateB, may be identical. For example,  sults of numerical finite-difference three-configuration MC
DFC SCF calculations made withrAasP [2] are included.
The GRASP results were obtained in the point nucleus ap-
Broximation. The results of our second-order three-

ars ey _ P configuration MC DFC calculations are in excellent agree-
(CA'.(I)A?ef+CBIq)Bie.)’ a_md replaced by GaitC)) P ment with thecrAsPresults. The discrepancies between the
leading to summation in Eq48) only over nonredundant

CSF's. If the reference MC DFC SCF wave function in- ']Ewoltcalcglatlt%ns are onlthel (:_rder of_tﬁ@hzfi_rtree. I?. the <t:1_e-
cludes the most important double excitations from the domjiau’t MOde, theRASP calculations with a tive-contiguration
nant CSF's, the multireference CI-SD wave function will MC DFC failed to converge, although our second-order MC
contain important triple and quadruple excitations. D_FC calculations converged s.moothly. Nu.m(_ancal finite-
difference code§l,2], based on first-order variation, tend to
experience convergence difficulties as the number of CSF’s
_ _ _ _ increases, and also for heavy atoms in which there are many
All G'Sp|n0r basis set expansion calculations were donﬁccupied Spinors to be treated se'f-consiste[ﬁ@_

with a finite nucleus of uniform proton charge distribution.  For the five-, nine-, and 11-configuration MC DFC SCF
The atomic masses used for Be,Ng and Fé®* are, re-  caicylations, the Cl coefficient,; 2p<ss

Cis2 , and
spectively, 9.0, 20.0, and 55.847 amu. The large radial comx are small but nonzero Thagrfglgpgzinors
ponents of the Dirac spinors of symmeteyare expanded in  ~1572Py23P3? ' P

R =Pg, for A#B.

In such a case, the expansion coefficients may be factorize

D. Computational method

sets of Gaussian-type functions are not uniquely determined because we have included all
' three CSF”s that arise from the electronic configurations,
x5 =Nhrexp( — £,4r2), (490  1s?2s?, 1s?2s3s, and 1s?3s? and the total MC DFC en-

ergy is invariant to unitary rotations between the @d 3

with n,=— k for k<0, andn,=«+1 for k>0. Nki isthe spinors. The pairs of spinors 25, 3piyn) and
normalization constant. The small component basi§gg}  (2P32, 3pPs), are not uniquely defined for the same rea-
is constructed to satisfy the boundary conditions associate8Pn. Thus, upon convergence of the Newton-Raphson itera-
with the finite nucleug28] . The basis sets were composedtive process, the first-order density matrix was diagonalized
of even-tempered Gaussian-type functions. The basis set ef@ obtain natural spinors. In Table I, the Cl coefficients in the
ponents{{,;}in even-tempered Gaussian-type functions ardhatural spinor representation are presented. The nonzero Cl
given in terms of the parametessand 8 by the geometric ~ Coefficients in parentheses are those for nonunique spinors at
series ¢ ;=aB "Li=1,2,...N,. The speed of light is convergence. Our nine- and 11-configuration MC DFC SCF
taken to be 137.035 989 5 a.u. throughout this study. wave functions account for, respectively,0.04533 and

The Gaussian-type functions that satisfy the boundary0.04575 a.u., of DC correlation energy, both dynamic and
conditions associated with the finite nucleus automaticallyiondynamic.
satisfy the so-called kinetic balance condit[@9]. Basis sets Lindroth et al. [33] combined several experimental and
of G and S spinors & for Slate) that satisfy the boundary theoretical studieg35-4Q to estimate nonrelativistic and
conditions have been shown to possess a minimum in th@laUVlSth energies as well as higher—order QED effects for
electronic energy surface in the basis set exponent spad&’” and B€. Based on their study, the best “experimen-
[30] Dya” and Faegri recenﬂy argud@l] that, using ki- tal” estimate of the DC correlation energy of Be is
netic balance to define the small component basis set i 0.09433 a.u[33]. Thus our nine- and 11-configuration
terms of the large component set implies that there is onifMC DFC SCF calculations recover roughly 50% of the over-
one exponent parameter space for both components. Impogi! DC correlation energy of the system. The remaining dy-
tion of relativistic boundary conditions at the origikinetic ~ namic correlation energy may be accounted for by multiref-
balance in more restricted termis an |mp||C|t projection erence CI-SD based on the MC DFC wave functions. The CI
onto the positive-energy states in exponent space. Th@oefficients dlsplayed in Table | Clearly indicate that multi-
energy-minimum property and positive definiteness of theconfiguration treatment is needed to account for nondynamic
Hessian matrix in the exponent space of a kinetically balcorrelation in Be. Three configurations contribute signifi-

anced basis was demonstrated earlier in single-configuratigfgntly to the wave function.
matrix DF SCF calculationg30]. The convergence pattern of our second-order three-

configuration MC DFC SCF energy for ground-state Be is
demonstrated in Table Il. In the tabld,+ B| represents the
norm of spinor and CI rotation parameters akg the en-
Single-configuration DFC SCF and MC DFC SCF calcu-ergy difference between successive Newton-Raphson itera-
lations, employing the no-pair DC Hamiltonian, were per-tions. The spinor variation parametérsand the off-diagonal
formed on ground-state Be. In the MC DFC SCF calcula-elements of the unitary rotation matrix for Cl coefficiels
tions, the 1s spinors are kept doubly occupied, and théave been introduced, respectively, in E¢s) and (28).
remaining two electrons are distributed in thee2 and 3  Nonscreened hydrogenic spinors were used as initial guesses.
shells to generate various CSF'’s. Table | contains the resullthough the initial guesses are very poor, quadratic conver-
in increasing number of configurationdlésp, up toNcge  gence with respect to spinor rotation and CI rotation param-

Ill. RESULTS AND DISCUSSION



PRE 58 QUADRATICALLY CONVERGENT MULTICONFIGURATION . .. 5103

TABLE I. Computed MC DFC energieEycpec (a.u.) and configuration mixing coefficien@ for
ground-state Bein increasing CSF expansion length. The values in square brackets represent factors of
powers of 10. The CI coefficients in parentheses are for nonunique spinors at MC DFC convergence.

Nesr 1 3 5 9 11
this work this work GRASP this work this work this work
Emcpre —14.575892 —14.619547 —14.619563 —14.621145 —14.621223 —14.621 644
Cig2os2 1.0 0.94994 0.949 95 0.950 80 0.951 09 0.95304

(0.95073 (0.95099 (0.95299

ClSZZPi/z 0.18040 0.18039 0.17733 0.176 82 0.17298
(0.177 33 (0.176 80 (0.17293

C1322p§/2 0.25508 0.25507 0.25073 0.250 02 0.244 59
(0.25073 (0.25015 (0.244 57

01522535 00 00 OO
(—0.01152 (—0.01134 (—0.01132

Cis3e —~0.04084 —0.04028 —0.04022
(—0.04078 (—0.04020 (—0.04017

C1322p1/23p1/2 0.0 0.0
(6.6 -5 (1.9-5)
Cis23p2 0.003 60 0.003 52
$°3P1
(0.00354 (0.00345
ClSZZp3/23p3/2 00 00
(2.3-4) (9.9-5))
C1s23p2 0.00511 0.004 98
1s°3p3),
(0.005 32 (0.004 90
Cieac2, -0.01108
(-0.01108
Cioag2, —0.01357
(—0.01357

#The single-configuration DFB energy is14.575189 a.u.

TABLE Il. Convergence of the three-configuration MC DFC SCF endfgy-pec (a.u.), and nine-
configuration complete active space DFC SCF en&gys (a.u.), forJ=0 ground state Be Nonscreened
hydrogenic spinors were used as initial guesses. The values in square brackets represent factors of powers

of 10.

Iteration |T+B| AE Emcore |T+B| AE Ecas
0 —13.765 211 —13.766 510
1 261-1] -409-1] -14.170616 9.75-1] -6.63-1] —14.429424
2 3.87-1] -3.1-1] —14.486122 6.16-1] —1.89-1] —14.617453
3 42q-1] -1.37-1] -14.618161 1.36-1] -2.25-3] —14.619703
4 513-2] -1.39-3] -14.619545 1.32-2] -140-5] -14.619717
5 2.01-3] -219-6] —14.619547 8.7M0-4] —6.49-8] —14.619717
6 1.74—4] —254-9] —14.619547
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TABLE Ill. Computed MC DFC energie€,,cprc (a.u.) and TABLE IV. Convergence of the 14-configuration MC DFC SCF
configuration mixing coefficient<C for the lowest odd-parityd energyEycpre (a.u.) for the lowest odd-parity=1 state of B&,
=1 state of B& in increasing CSF expansion length. The values inNonscreened hydrogenic spinors were used as initial guesses. The

square brackets represent factors of powers of 10. values in square brackets represent factors of powers of 10.
NCS'-: 1 NCS'-: 2 NCS'-: 8 NCS'-: 14 NR |terat|on |T+ B| AE EMCDFC
Emcore —14.337 744—14.514 307—14.515871—14.521 093 0 —14.393733
Coo 1.0 0.81654 0.81574 0.81215 1 558 —-1] -1.14-1] —14.505729
P12
2 1.130] -1.14-2] —14.517135
Caszpy, -057729 -057673 —0.57348 3 5.57-1] —3.50 3] —14.520 639
4 1.15-1] — 459 —4] —14.521 091
Casspy, 1.9-4] -3.7-4] 5 1.57-2] —1.6§4-6] —14.521 093
6 2.57-3] —4.44 8] —14.521093
Casapy, 54-5] 29-3]
Copy s -5§-5] 1.3-4] cients of the strongly interacting s2p,, 3P, and
v 2s2ps, 'P; CSF's are, respectively, 0.81215 and
Cop. a4 ~0.03949 —0.573 48, for the expansion lengige=14.
Pusarz The convergence pattern of the second-order 14-
_Eo_ 70— configuration MC DFC SCF is demonstrated in Table IV.
Cap, 35 5.9 -5] 7.0-6] ST .
o Nonscreened hydrogenic spinors were used as initial guesses.
c 0.07052 Although the initial guesses are very poor, quadratic conver-
2pg3d3, ' i i i i
3 gence with respect to spinor rotation and CI rotation
c 0.05 281 parameters becomes apparent after the first few Newton-
2P33d52 ' Raphson iterations. In iteration 0, a number of CSF's

4 possess configuration mixing coefficients comparable
Casapy, —003605 —0.03468  j magnitude C,pepp. . =—0.438 50,C,epp. . =0.310 06,
S2P1/2 S2P3/2

Casap,,=0.465 66,Cog, = —0.329 21, etc) due to

the poor trial spinors. In the next iteration, however, the co-
—0.00715 efficients of only the two strongly interacting CSF's,
2s2py, 2Py and 22pg, P; become dominant and nearly
convergent,CzSzpm: 0.812 62 C252p3/2= —0.574 98. Con-

vergence to the lowest odd-paritl=1 state is nearly as
Cap, 34 0.011 22 rapid as to the ground=0 state primarily because the

S second-order energy variation, in which all active and core
electrons are simultaneously subjected to unitary mikiEmgy
eters becomes apparent in the valued Bfafter the first few  (13)], induces quadratic convergence even when the gradient
Newton-Raphson iterations. In the table, the convergencsorm is large.
pattern of the second-order complete active space DFC SCF Table V displays the energy separation between the
energy Ecas is also demonstrated. The nine-configurationgroundJ=0 and excitedl=1 states computed by taking the
complete active space DFC SCF wave function contains aMifference in MC DFC SCF energies. The energy interval
the CSF’s generated by distributing the four electrons ove?1 976 cm?! computed by 11-configurational MC DFC
the spinor sef1s,2s,2p1,,,2p42t. Here again, we observe SCF for the ground=0 state and 14-configurational MC
quadratic convergence in the valuesAdE after the first few DFC SCF for the odd-parityy=1 state agrees well with
Newton-Raphson iterations, even though the initial guessesxperimen{34] (21 979 cm'?), although the remaining dy-
nonscreened hydrogenic spinors, are poor. namical correlation is not recovered.

Single-configuration DFC SCF and MC DFC SCF calcu- MC DF SCF effectively describes nondynamic correlation
lations were also performed on the lowest odd-palityl ~ due to near degeneracy, but fails to account for a large frac-
state of beryllium. To our knowledge, relativistic multicon- tion of dynamic correlation. To account for the remaining
figuration self-consistent-field calculations have never beedynamic correlation, DC and DCB multireference CI-SD
reported on the odd-parity=1 state of beryllium, presum- calculations based on an 11-configuration MC DFC wave-
ably owing to convergence difficulties in first-order multi-
configurational self-consistent-field methods. In the MC TABLE V. MC DFC energy separationE (in cm™ ') between
DFC SCF calculations, 1s spinors are kept doubly occupiedhe groundJ=0 and odd-parityJ=1 states of B2in increasing
and the remaining two electrons are distributed inrilke2 ~ CSF expansion length.
and 3 shells to generate various CSF’s. Table Il contains therO - :
results in increasing number of configurations upNgge ~ Nesr—Nese 1-1 3-2 9-8  11-14  Experimefit
=14. The lowest odd—_parit§]=1 state exhibits_ the near de- AE 52267 17651 23122 21976 21979
generacy characteristic of several strongly interacting con-
figurations. For example, the configuration mixing coeffi- *Referencd 34].

Casap,, 0.02548 0.024 54

c3p1/23d3/2

Cap,,30a, ~0.01504
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TABLE VI. DC multireference Cl energieBgr, and DCB multireference Cl energi&® ® (a.u), based

on an eleven-configuration MC DFC wave function &fgnit DC and DCB correlation energid‘ﬂﬁg(l) and

E2CB(1) for ground-state Be

f limit g limit h limit extrapolated — 2@
E2C —14.669 402 —14.669 763 —14.669 921 —-14.670127
ECS(I) —0.093510 —0.093871 —0.094 029 —0.094 237
ESCB —14.668 884 —14.669 254 —14.669411 —14.669 623
ECCB(1) —0.093 695 —0.094 065 —0.094 222 —0.094 434

8xtrapolation was carried out using the formdl&(1)=E(I)—E(I—1)=A(l+1/2)"B.

function were performed on ground-state Be in increasingng the frequency-independent Breit interaction in the effec-
order of partial-wave expansion. The results are displayed itive electron-electron interaction. A moderately large
Table VI. All electrons were included in the calculations. G-spinor basis set of 220p17d16f14g14h functions was
The total DC E2F) and DCB E21®) energies of the ground used. The total DC energy; 14.669 921 a.u., obtained by
state were calculated, respectively, by excluding and includrelativistic multireference CI-SD calculations based on the

TABLE VII. MC DFC energiesEycprc (a.u.) and configuration mixing coefficien®&for ground-state
Ne®* in increasing CSF expansion length. The values in square brackets represent factors of powers of 10.
The CI coefficients in parentheses are for nonunique spinors at MC DFC energy convergence.

Nsce 1 3 5 9 11
this work this work GRASP this work this work this work
Emcorc —110.255974 —110.377196—110.378145—-110.378671—110.378614—110.380 100
Cig20¢2 1.0 0.967 59 0.967 71 0.967 80 0.967 86 0.968 56

(0.96780  (0.96786  (0.96856

ClszZpi/z 0.146 83 0.146 54 0.146 25 0.14611 0.144 44
(0.146 25 (0.146 12 (0.144 44

Cierzp2, 0.205 47 0.205 10 0.204 65 0.204 47 0.202 12
(0.20465  (0.20447  (0.20212

Cis22s3s 0.0 0.0 0.0
(4.1—-4) (4.1-5) (4.1-5])

Cierae? ~0.00962 —0.00957 —0.00956
(—0.00963 (—0.00957 (—0.00956

Cis22p,,3p,, 0.0 0.0
(1.2-5) (1.3-5)
C1e23p2 0.001 24 0.001 22
1s°3p3),
(0.00124 (0.00122
C:1322p3/23p3,2 0.0 0.0
(1.9-5) (1.71-5)
C1s23p2 0.00175 0.00173
P3r2
(0.00175 (0.00173
C1523d§/2 —0.00597
(—0.00597%
C1323dg/2 —0.007 34
(—0.007 34

#The single-configuration DFB energy s110.242 103 a.u.
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TABLE VIIIl. DC multireference Cl energieE2" and DCB multireference Cl energi&g® (a.u), based
on a five-configuration MC DFC wave function ahdimit DC and DCB correlation energidSCDéfH(I) and
ECB(1) for ground-state N& .

f limit g limit h limit extrapolated (— ) @
ESC —110.433605 —110.434187  —110.434443 —110.434789
ECC(1) —0.177 631 —0.178213 —0.178 469 —0.178814
ESCB —110.421239 —110.421862 —110.422143 —110.422540
Eoee(l) —-0.179136 —0.179 759 —0.180 040 —0.180437

8 xtrapolation was carried out using the formWl&(1)=E(1)—E(l—1)=A(l +1/2)"B.

11-configuration MC DFC SCF wave function in a partial- larger nuclear attraction in berylliumlike neon. However, as
wave expansion df,,= 5, yields a DC correlation energy of the nuclear charge Z increases further in the beryllium iso-
—0.094 03 a.u. The computed DC correlation energy thuglectronic sequence, thesg, and 2, states become as-
accounts for 99.7% of the “experimental” estimate of ymptotically degeneratf22]. The degeneracy is thus relativ-
—0.094 31 a.u.. The total energies computed in increasingstic in origin. At least a two-configuration MC DFC SCF
order of partial-wave expansion, up kg..=5 (h spinors,  treatment (32,22, and 1s3,2p2, CSF’s, is necessary in

have been extrapolated 1g,,,—. The extrapolated DC o Be jsoelectronic sequence because of this asymptotic de-
correlation energy—0.094 24 a.u. accounts for 99.93% of generacy.

the estimated DC correlation energy. The total extrapolated +_p1 v/ displays the results of DC and DCB multiref-

D(,:, energy is—14.670 127 a.u., whereas the EXPENMEN- o once CI-SD calculations on Rie in increasing order of
tal” estimate of the relativistic DC and nonrelativistic ener- artial-wave expansion. A moderately largespinor basis
gies of Be are, respectively;14.670 20 and—14.667 35 P P : y P

a.u[33]. The total DCB energy-14.669 623 a.u. obtained set of 2622p18d16f 14g14h functions was-used. The tptal
by extrapolating td .. yields a correction due to the DC €nergyEpcci=—110.434 443 a.u. obtained by multiref-
Breit interaction of+0.000 504 a.u., in good agreement with €'€Nceé CI-SD based on a five-configuration MC DFC SCF
+0.000 490 a.u. estimated by Lindroth et [g3]. wave function in a partial-wave expansionlgf,,=5, yields
Table VII contains the results of single-configuration anda DC correlation energy dEgy,=—0.178 47 a.u. The total
MC DFC SCF calculations on berylliumlike neon (N@ energies computed in increasing order of partial-wave expan-
with as many as 11 configuration®{se=11). An even- sion, up tol =5, are extrapolated th,,— . Although
tempered basis set of 882p G spinors was used. The pa- no experimental estimate is available for the berylliumlike
rameters« and B for the even-tempered basis set areion, we believe that the extrapolated DC correlation energy
0.592 446 and 1.955 56, respectively. Comparison of the Be-0.178 82 a.u. accounts for at least 99.9% of the overall
and Né* results shows that the Cl coefficients for the domi-DC correlation energy of N& based on the accuracy ob-
nant 1s22s? CSF (Cis2,¢2) in Ne®™ is slightly larger than tained with neutral beryllium. The total DC energy obtained
that in Be in every instance. The difference arises from théyy extrapolation is—110.434 789 a.u. The difference be-
fact that the g, spinor energy in N& is farther from the tween the extrapolated total DC and DCB energies,
2sy, energy than in Be, an increase which is due to the).012 249 a.u., represents the relativistic many-body shift

TABLE IX. Computed total MC DFC and MC DFB energiéa.u) for the lowestJ=0, 1, and 2 states of E& in increasing CSF
expansion length.

28°2p512p5,  +2572p122p3,s +2522p3, +2p32p3s (+3s) (+3s3py) (+3s3p123p31)

J=2

Nesr 1 2 11 45 232

DFC —1052.185501 —1052.252 739 —1052.259307 —1052.267952 —1052.284373
DFB —1051.797 145 —1051.866 694 —1051.873403 —1051.882125 -—1051.898743
J=0

Nesr 1 2 3 10 29 109

DFC —1051.562 777 —1051.886 361 —1051.917272 —1051.923587 —1051.934197 —1051.948194
DFB —1051.163 890 —1051.498691 —1051.528368 —1051.534810 —1051.545390 —1051.559561
J=1

Nesr 1 9 43 208

DFC —1051.841571 —1051.848576 —1051.852567 —1051.873536

DFB —1051.461 367 —1051.468438 —1051.472482 —1051.493674
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TABLE X. The DC correlation energfls, and DCB correlation energlee (a.u), for Fe'®* in
increasing CSF expansion length.

+25%2p12p3,  +25°2pg,  +2pi2ps, (+3s9) (+3s3py)  (+3s3p123pap)

J=2
DC —0.067 238 —0.067238 —0.067238 —0.073806 —0.082451 —0.098872
DCB —0.069 549 —0.069549 -0.069549 -0.076258 —0.084950 —0.101 598
J=0
DC —0.323584 —0.354495 -0.360810 —0.371420 —0.385417
DCB —0.334801 —-0.364478 -—0.370920 —0.381500 —0.395671
J=1
DC —0.007005 —0.010996 —0.031962
DCB —0.007071 -0.011115 —0.032 307

due to inclusion of the frequency-independent Breit interac-CSF’s yield configuration mixing coefficients of 0.9565 and
tion in the effective electron-electron interaction. The level0.2917. Then=2 complex gives rise to only one CSF for the
shift in berylliumlike N€* due to the Breit interaction is J=1, even-parity state, which arises from the electronic con-
over 20 times larger in magnitude than that in neutral Be. Fofiguration 25229%/22@/2- Thus thelJ=1 state has no near
highly ionized systems, the Breit interaction significantly gegeneracy. On the other hand, each of the electronic con-
modifies the relativistic many-body effects. figurations 322% 22p§,2, 2322p§/2, and ZDi, 2293/2 gives

As with berylliumlike ions, oxygenlike ions exhibit the rise to aJ=0 state, and they interact strongly. Three-

near degeneracy characteristic of a manifold of strongly in-_~"_. . .
teracting configurations. Table IX displays the computed MCconﬂgurann MC DFC SCF calculations for the thrae

- _ =0 CSF'’s in then=2 complex yield the configuration mix-
DFC SCF energies of the lowestJ=0 (°Py), J | > :
=1 (3P,) andg.JI:ZEM(C?’DFEZC)) even-par\?;y states E)f giygen- ing coefficients 0.8865;-0.4604, and 0.0603, showing near

like iron F&8* in an increasing number of configurations. In dégeneracy with especially strong interaction between the

each entry in the table, the number of CSFNcL) that  tWo CSF's arising from 8°2p7;,2p3, and &72p3,.
arises from the electronic configurations displayed on the top  The MC DFC and DFB SCF calculations displayed in the
row is given. MC Dirac-Fock-BreitDFB) SCF calculations last three columns of Table IX include CSF’s arising from
including the Breit interaction in the configuration-mixing then=3 complex. The largest MC DFC and DFB SCF cal-
step of the MC SCF algorithm have also been performed teulations include 232, 109, and 208 CSF’s, respectively, for
study the effect of the Breit interaction on fine-structure termJ=2, 0, and 1 even-parity states. Table X displays DC and
energies. The computed MC DFB SCF energiEgdpeg) DCB correlation energies for the=2, 0, and 1 states com-
for theJ=0, 1, and 2 states are also displayed in the tableputed in increasing CSF expansion lengths. The (@€
An even-tempered basis set ofs2@pG spinors was used. DCB) correlation energies were computed by subtracting the
The parametera and 8 for the even-tempered basis set aresingle-configuration DFGor DFB) SCF energies from the
0.035 944 and 2.205 10, respectively. In the MC DF SCRVC DFC (or DFB) SCF energies. Because of near degen-
calculations, the 4 spinor was kept doubly occupied eracy and strong configuration mixing of CSF’s, the 0
throughout and the remaining six electrons were treated astate yields the largest correlation energy in each MC expan-
active electrons to generate various CSF's. sion. At Neg=3 (within then=2 compley, the J=0 state
Within then=2 complex, each of the electronic configu- yields a DC correlation energy of 0.354 495 a.u., the bulk
rations %22p?,2p3, and 22p},2p3, gives rise to al  of which is nondynamic correlation energy. Table X! dis-
=2, even-parity CSF, and these interact strongly. Two-plays the MC DFC and DFB SCF energiesbf0 and 1
configuration MC DFC SCF calculations for the twe- 2 states relative to the grourdd=2 state, i.e., the fine-structure

TABLE XI. MC DFC and MC DFB energiega.u) of J=0 and 1 states relative to tlle=2 ground state
for Fe'®* in increasing CSF expansion length.

2s72p3,2p5, +25%2p12pY, +2572p%, +2pT2p%, (+3s)  (+3s3pyy) (+3s3py3ps)

DC 0.622724 0.689 962 0.366378 0.335467 0.335720 0.333755 0.336 179
DCB 0.633255 0.702 804 0.368003 0.338326 0.338593 0.336735 0.339182

DC 0.411168 0.410731 0.415385 0.410837
DCB 0.405 327 0.404965 0.409643 0.405 069
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TABLE XII. |-limit and extrapolated|¢,,,—) DC and DCB multireference Cl energiés.u), for theJ=2, 0, and 1 states of E&
based, respectively, on two-, three-, and one-reference configuration MC DFC wave functions.

J=2 J=0 J=1
DC DCB DC DCB DC DCB
d-limit & —1052.422699 —1052.038799 —1052.082711 —1051.696386 —1052.010543 —1051.632509
f limit ° —1052.450525 —1052.067057 —1052.110280 —1051.724465 —1052.038054 —1051.660463
g limit © —1052.458548 —1052.075206 —1052.118564 —1051.732959 —1052.046013 —1051.668 633
h limit 9 —1052.461445 —1052.078295 —1052.121597 —1051.736107 —1052.048922 —1051.671624
I max— © € —1052.466466 —1052.083507 —1052.126760 —1051.741411 —1052.053943 —1051.676763

3Basis set 2420p16d.

PBasis set 2420p16d14f.

‘Basis set 2420p16d14f14g.

Basis set 2420p16d14f14g14h.

®Extrapolation was carried out using the formWl&(1)=E(1)—E(I—1)=A(l +1/2)"B.

term energies, in increasing CSF expansion lengths. Th&he DCB multireference CI-SD calculations, which include
bulk of the experimentally determined fine-structure term enthe Breit interaction in the effective electron-electron inter-
ergies are reproduced by the MC DFC or DFB SCF calculaaction, result in close agreement between the calculated and
tions within then=2 complex:J=0 and 1 state energies experimental term energy separations, while the DC multi-
computed by the three-configuration MC DFB SCF and onereference CI-SD calculation does not. The relativistic many-
configuration DFB SCF calculations are 0.338 326 a.u. andbody shift due to the Breit interaction is essential in predict-
0.405 327 a.u., respectively, above the grourd2 state, ing the fine-structure separations.
while experimental values are 0.34268.00047 and Table XIV summarizes the fine-structure splittinga
0.40752-0.00002 a.u., respectively. However, the agreecm™?!) relative to the ground)=2 (3P,) state computed
ment of the computed and experimental fine-structure splitwith our MC DF SCF and DCB multireference CI-SD meth-
tings betweerd=1 and 2 states deteriorates when the size obds. The table also contains the term splittings obtained by
MC DF SCF is increased by adding CSF’s generated fronprevious relativistic correlated methods and by experiment
then=3 complex. Partially accounting for dynamic correla- for comparison. Critical compilations of the available experi-
tion by including then=3 complex in multiconfiguration mental data along the oxygen isoelectronic sequence have
self-consistent-field calculations simply causes an imbalanceeen carried out by Edig41,42 . The most extensive cor-
in the recovery of dynamic correlation for eatlstate. More  related calculations on oxygenlike iron were done by finite-
accurate treatment of dynamic correlation is necessary to catlifference multiconfiguration Hartree-Fock and relativistic
culate the fine-structure separations accurately. MC DF SCF. Froese Fischer and S44&] applied the non-

To account accurately for dynamic correlation, DC andrelativistic multiconfiguration Hartree-Fock method to calcu-
DCB multireference CI-SD calculations were performed forlate correlation corrections for the=2 complex, as well as
all three fine-structure states in increasing partial-wave exthen=3 and 4 complexes. Relativistic corrections were in-
pansion up td,,,=5. ForJ=2, 0, and 1 even-parity states, cluded via the Breit-Pauli approximation. Th&P,- 3P,
the numbers of reference CSF’'s for multireference CI-SDsplitting they obtained agrees well with experiment, the dis-
calculations were 2, 3, and 1, respectively; these account farepancy between the computed value and experiment being
all the CSF’s arising from the=a2 complex. The &, elec- ~ 200 cm !. Cheng, Kim, and Desclaupd4] performed
trons were excludetfrozen, and the remaining six electrons MC DF calculations with the CSF's generated within the
were correlated in the multireference CI-SD calculations.=2 complex. The remaining correlation correction from out-
The results are displayed in Table XlI. Thdimit (1<5) side then=2 complex was estimatgd5] using an expan-
results were extrapolated th,.,—> using the formula sion of the nonrelativistic limit of the MC DF energy in
AE(I)=A(1+1/2)" B, whereA andB are fitting parameters. powers of Z and the hydrogenic perturbation theory
The extrapolated energies for the three states were used Zoexpansion. As with our MC DFB SCF results in Table XI,
calculate the term energies of the=0 and 1 states relative the bulk of the fine-structure splittings are reproduced in
to theJ=2 state. The results are summarized in Table Xlll.their MC DF calculations by employing a small number of

TABLE XIII. Fine-structure term energig®.u) relative to thel=2 ground state of F&" computed by DC multireference Cl and DCB
multireference Cl in increasing partial-wave expansion.

f limit g limit h limit Extrapolated
DC DCB DC DCB DC DCB DC DCB Experimerit
J=0 0.34025 0.34259 0.33998 0.34225 0.33985 0.34219 0.33970 0.34209 0(3%R 68
J=1 0.412 47 0.406 59 0.41254 0.406 57 0.41252 0.406 67 0.41253 0.406 74 0(2p7 52

8Referencd42]. The values in parentheses are experimental errors.
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TABLE XIV. Comparison of the fine-structure term splittings (chy in Fe'®".

Method 3p,-3P, 3p,.3p,
MC DFB SCF?2 (this work) 74 442 88902
MCDF (n=2)° 74232 88950
MC Hartree-Fock = 2)° 73827 87476
MC Hartree-Fock (= 2,3,4)d 75428 90 486
MCDF+HPT® 76106 89033
DC multireference Cl(this work) 75080 89269
DC multireference CHL.S9 (this work) 75087 89484
Experiment 75209104 89 44G4)

/alues taken from Table XI.

bReferencd44], n=2 complex MCDF calculations.

‘Froese Fischer and Saf48], n=2 complex multiconfiguration Hartree-Fock calculations.

dFroese Fischer and Saf48], n=2, 3, and 4 complex multiconfiguration Hartree-Fock calculations.

®Referencq45], MCDF calculations with second-order hydrogenic many-body perturbation theory correc-
tions.

fExtrapolated values taken from Table XIII.

9Lamb shift(L.S.) estimated bycrAspP[2] is added to the DC multireference Cl value.

hReference$41,43. The values in parentheses are experimental errors.

CSFs generated within the=2 complex. Our’P,-3P, and  analytic basis sets @b spinors. Relativistic multiconfigura-
3p,-3p, DCB multireference ClI splittings are 130 and tion Dirac-Fock self-consistent-field calculations, followed
170 Cm_l Shy of experimenta| values, respective|y_ To ac-by multireference ConfigUration'interaction calculations
count for higher-order QED effects, the Lamb shift for eachbased on multiconfiguration self-consistent-field wave func-
fine-structure level was estimated &masP[2] calculations.  tions, have been applied to beryllium, berylliumlike neon,
When the Lamb shift for each fine-structure level is ac-and oxygenlike iron, species which exhibit the near degen-
counted for, the discrepancies between the computed aretacy characteristic of a manifold of strongly interacting con-
experimental values are further reduced, respectively, tfigurations. The present formalism treats the electrons rela-
~120 and 40 cm?. tivistically, and treats the effects of relativity and electron
correlation(both dynamic and nondynamiwariationally.

IV. CONCLUSIONS

Here we have reported on the successful implementation ACKNOWLEDGMENTS
and application of a second-order relativistic multiconfigura-
tion Dirac-Fock self-consistent-field method for relativistic . . . .
guantum mechanical calculations on many-electron systems. This vyork was supported in part by the Natllonal Science
A quadratically convergent Newton-Raphson algorithm for"oundation. The authors thank Dr. H. M. Quiney, Oxford
multiconfiguration Dirac-Fock self-consistent-field calcula- University, and Dr. Y.-K. Kim, National Institute of Stan-
tions has been successfully developed and implemented wif#@"ds and Technology, for valuable discussions.
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