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Simulated annealing and related Monte Carlo-type optimization algorithms are used to apply statistical
physics concepts, in particular ideas from the statistical mechanics of spin glasses, to find optimal configura-
tions for combinatorial optimization problems. There are formal proofs showing that these algorithms converge
asymptotically(i.e.—possibly—for infinitely long simulation tim¢so a global optimum. Practical implemen-
tations, however, only allow for finite simulation times, and, thus, the annealing process is often trapped in
energetically higher, suboptimal configurations. In this work we present an algorithm—we call it bouncing—
which takes the final low-energy configuration of, e.g., a conventional monotonically cooled annealing run as
an input and subjects it to a schedule of repeatedly reheating and cooling. The maximum of a susceptibility and
a specific-heat-like quantity sampled during the initial monotonic cooling process serve as lower and upper
starting temperature bounds for this secondary heating and cooling. We present, in addition to a serial imple-
mentation, a recipe for a parallel computer, and provide a number of results showing the success of the
bouncing method for a particularly prominent example of a combinatorial optimization problem: the traveling
salesman probleniS1063-651X98)04707-2

PACS numbsefs): 02.70.Lg, 02.50-r, 02.50.Ga, 89.26-a

[. INTRODUCTION the energy induced by moves of that cl@8§ and the deci-
sion of accepting or rejecting the moves is based on a gen-
There are two possible approaches to solving combinatosralized Metropolis criterion. Depending on the control pa-
rial optimization(CO) problems: Either one can use an op- rameter this method accepts deteriorations of the system, i.e.
timization algorithm in the strict sense of the word, yielding configurations that correspond to an increase in the energy or
a globally optimal solution, or an approximation algorithm, cost function. There are formal proofs from a number of
yielding a very good opossiblyglobally optimal solution. A~ authors[4—6] that under certain conditions the algorithm
classical method to find low-energy states of complex physiconverges asymptoticallif.e., for long enough, maybe infi-
cal systems such as solids is to heat the system up to sorféely long, simulation timesto an optimal solution. Thus,
high temperature, where all states can be reached, and th@gymptotically, the algorithm is not only an approximation,
cool it down slowly. This annealing process lets the Systen'but also an optimization algorithm in the strict sense. In prac-
settle into regions of low energy, while not becoming tical applications, however, this kind of asymptoticity is usu-
trapped in higher-lying local minima. Simulated annealing@lly never attained, and, thus, an optimal solution cannot be
(SA), a Monte Carlo-type algorithm, is an optimization tech- reached within a given simulation time due to the extremely
nique that uses these methods from statistical physics. It wagdow convergence. Consequently, in practice, SA usually ap-
first employed successfully for these problems in Rigf?]. ~ pears to be an approximation algorithm only. For a discus-
The work of Kirkpatricket al. [1] is strongly based on this Sion on the convergence of SA, we refer the reader to Ref.
analogy between the annealing of a solid and the optimiza-7]-
tion of a system with many independent variables. In this
technique the states of a physical systepare generalized
to states of a system being optimized, the enéigy physi- IIl. SIMULATED ANNEALING: ALGORITHM
callpr.oblems is generalized to _the objecjtive function to be explore the state space, instead of doing an unguided
optimized, and the ter_np_eraFuTels generalized to a contrpl random walk in state space, known as simple sampling, in
parameter for the optimization process. To apply the simuga 5 sequence of Markov chains of states is constructed
lated annealing algorithm, a mechanism is used to generate, ghare each state ., is repeatedly generated out of the

new configuratior(i.e., @ new stafefrom a given one by a previous stater; with a suitable transition probabilitp( o,

small perturb:‘a‘tlpn,”l.e., by applying a set of moves to the, oi+1) depending on the difference of their energies
system. The “size” of a class of moves within the state

space of the system can be defined as the average change in
AH=H(oi+1)—H(oy). 2.1
"Author to whom correspondence should be addressed.
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1 H(ay) T=Tea', (2.6)

71'eqL(a'i):Z exp(—W), 2.2

B with an initial temperaturél ;>0 and the cooling factor 0
<a<1. For finite simulations, this schedule is believed to be
an excellent cooling recipe, since it provides a rather good
compromise between a computationally fast schedule and the
ability to reach low-energy states. Catdai] reported that
suitably adjusted exponential cooling schedules have inter-

with the Boltzmann constarg [8], the system temperature
T, and the physical partition functian [9]. A sufficient con-
dition is the principle of detailed balance,

Teqd 01)P(0i— 7)) = Teq 0j)P(0j—0i). (2.3 esting robustness properties as soon as one deals with a finite
amount of available computing time. Almost all practical
The most common choice fqr is uses of SA, as documented in the literature, rely on exponen-
tial cooling schedules, and it is our method of choice for SA
exp(—AH/T) if AH>0 and threshold accepting too. Several other decrement rules

(2.4  for the control parameter temperature can be found in the
literature; see, e.g., Ref14]; another useful source is the

detailed study by Bonomet al. for the traveling salesman
which satisfies the condition of detailed balance. This accepproblem[15]. y by g

tance criterion allows for intermediate deteriorations in the' \y/o are interested in the value of the energy or cost
optimization objective(i.e., an increase of the enejgyhus  ¢,nction [8] at a temperaturd
enabling the algorithm to escape from local minima depend- ’
ing on the value of the control parameter temperafure 1 M

A variation of the above principle is called threshold ac- <H>T:—2 H(oy), 2.7
cepting(TA): here a control parameter called the threshiold =1

is introduced much in the same way as a pseudo- . .
. where the summation goes over a sequenci ahdepen-
temperature, ang can be written as

dent configurationsr;, and a quantityC;, which we asso-
ciate in analogy to the statistical physics equivalents with a

Ploi—0ig)= 1 otherwise,

1 ifAHST -
specific heat
POi=0i)=1 o Giherwise. (2.5 pect
Although TA does not satisfy the condition of detailed bal- gt '

ance, it leads to very low-energetic minima or even the . ) . )
ground state, usually in shorter simulation time than simuJt IS Straightforward to show that this specific heat, defined as
lated annealing10]. the der!vat|ve of the energy with respect to temperaluyris
Among other criteria the quality of the final solution ob- Proportional to the variance of the energy
tained by the algorithm is determined by the convergence of 1 1
the algorithm, .wh|ch is controlled py a set of parameters, Cr= 5 {(H 1= (H)3} = var{H}. (2.9
called the cooling schedule. In the literatiifel] the behav- T T
ior of the simulated annealing algorithm as an approximatio
algorithm is usually analyzed in an empirical way. This in-
volves the analysis of computation time and quality of fina
solutions obtained by running the algorithms on a set o
problem instances, e.g., from ReineltspLiB [12], and the
comparison of the results to those obtained by other met
ods.

r]I'his particular identity is strictly valid only for SA; never-
Itheless we also adopt this definition of(j@seudd specific
]heat measuring the fluctuations for TA.

As test instances for CO problems, we focus on traveling
hs_,alesman probleméTSP’y, since most other examples of
CO problems can be easily transformed into a formulation
Commonly, one refers to an implementation of the SAql.Jite similar FO a TSP V\./ith so.me_additi_onal constrgints.

' Since a TSP is defined via entries in a distance matrix, an

algorithm in which a sequence of Markov chains of finite i | ) v tak bstitute f
length is generated at monotonically decreasing values of th@Symmetric overlap; IS generally taken as a substitute for

temperaturg(usually called “sequential SA” in the litera- an order parameter like, e.g., the magnetization in Ising prob-

ture, e.g.[7]). Optimization is carried out by starting off at lems. To calculatey, an edge matrie is constructed from

an initial value of the control parameter, and repeatedly gent® ground state permutationof the N cities as follows:

erating a Markov chain f_or decreasing vaIuesTotJnu_I_T_ 1 if y"X(1)—=1="%k) mod N
—0. Ideally, the system is allowed to approach equilibrium )

at each temperature level; then the temperature is reduced, e(k,)={ =1 ify *(k)—=1=y"*1) mod N

the system is allowed to equilibrate again, and so on. The 0 otherwise,

procedure is stopped at a temperature low enough that no (2.10

further improvements can be expected. This protocol is gov-

erned by the cooling schedule, with an appropriate startingvith k and| being city numbers, angt~* being the inverse

valueT,, a decrement prescription for the control parameterpermutation ofy. Thereforee(k,l)=1 if | is the successor

and a finite length of the individual chains. of kin y ande(k,l)=—1 if | is predecessor &f. Let o; be
Since the early publications on simulated annealing arthe current state, i.e., the actual permutation of the cities, and

exponential cooling schedule has been often proposed, j a counter; then
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1N_l 4000 T T T T T T
n(o)=|g & oo+l (213
3500 S
with ;(0)=0;(N). A susceptibility yt, corresponding to ]
7, is defined as 3000 | —
|
12 2 _1 2500 ) .-
xr=F(r=(mf=qvanin), (212

which can be achieved for SA by formally adding a term 2000

‘H,= —\ 7 to the HamiltonianH, with A—0, and deriving
(m)7 for N. For TA, we simply adopt definitio2.12). 1500
A well-known TSP instance is the benchmark problem to
find the shortest tour through 442 drilling holes in an IBM
printed circuit board. It was proposed by @&chel and
solved by Holland[16], and it is usually referred to as
PCB442, e.g., in Reinelt’s library of TSP instandgspPLIB) 500
[12]. Its optimum has a length of 50 783.%L7. in
REAL*8 metric [17] (which is used throughout this paper

)

1000

O 1 1 1 1 1 1

or of 50 778 in the rounded integer metfi2]. This problem 0 500 1000 1500 2000 2500 3000
has a highly degenerate ground stdfé], and there is a very
large amount of nearly optimai.e., approximatesolutions FIG. 1. 84 “backbones” of the PCB442 problem. Out of these

energetically close to the global optima. Moreover, it isbackbones all optimal solutions can be constructed. We arbitrarily
known that there are many optimization algorithms whichfixed the direction of one of the long backbones which, in turn,
suffer from severe difficulties treating this problem. We re_automati.cally determiqes the directions of most of the other back-
strict ourselves in the following discussion on the PCB442 Pones(with the exception of 18 blinkers, as described in the)text
Although, intuitively, it seems to be very easy to solve at a”!! lengths (i.e., energiesof the TSP instances are measured in
first glance, PCB442 has a very complicated search Spa%(bltrary, dimensionless unitg.u), which makes most expressions
structure, and shows properties which are well known from imensionles$8].

other physical problems.

Because of the highly degenerate ground state of There are different approaches to “free” a simulation fro-
PCB442, one has to adapt the calculationyofdAs shown in  zen in at a suboptimal valley in the energy landscape, and
an earlier referencil7] a complete set of degenerate groundthus to obtain better resultse., results closer to or identical
states of this problem can be built out of 84 pie¢dsack-  with the global optimum One method in this category calls
bones”). Thirty-four of these consist only of one city, so that for a very complex set of cleverly constructed moves in order
50 backbones of length>1 remain. If we fix the direction to give the system more degrees of freedom; this leads to a
of a long backbone, we automatically determine the direclargely extended neighborhood of a certain state, and is be-
tions of all other backbones with the exception of 18 “blink- lieved to provide “escape routes” in state space where oth-
ers,” each of them consisting of only two citiésee Fig. L erwise the MC walker would become stuck in a suboptimal
These 32 backbones form one “superbackbone” consistingnergy valley. This can easily be seen at the traveling sales-
of 340 edges, out of which an edge matexs built. Fur- man problem: It has been shown that with the lin-2-opt,
thermore, the 18 blinkers are explicitly considered in a symwhich changes the direction of a part of the tour, one usually

metric edge matriX, leading us finally to obtains better results than with a simple move exchanging
two points in a solutiori19]. An already more complicated
1 (N2 move is then=3 lin-3-opt. There are four possibilities to

ﬂ(ai):ﬁ( JEO eloi(j),oi(j+ 1)]‘ perform a lin-3-opt: the most effective one is to exchange a

part of the tour with its succeeding part without changing

their directions; at least three lin-2-opt moves are needed to
) (2.13  build the same configuration out of the previous one,

whereas the other three versions of the lin-3-opt can be con-

structed with two lin-2-opts only. Further higher order lin-
To generate an appropriate neighborhood structure in searchopts are possible, but already lin-4-opts do not have a sig-
space, we use moves of the Lin-Kernighan-tyi8] lin- nificant influence on the results because the number of trial
n-opt, mostly lin-2-opt and lin-3-opt. moves has to be systematically increased in such a way that

Finite Markov chain length, SA-like Monte CarldIC)  the higher order moves can find improvements at low tem-

optimization algorithms cannot guarantee that the globaperatures which are not found with the described low
minimum of a combinatorial optimization problem is moves. We should mention that this method can be useful for
reached. On cooling, the system would probably be trappedpecific instances, but the construction of an appropriate
in a suboptimal configuration because of the rough energgombination of moves is unfortunately highly problem spe-
landscape of the problem. cific. As a result, it has not been widely used.

N—-1

+,Zo floi(j),oi(j+1)]
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FIG. 2. Energyi.e., length (H) (upper pantand specific heat
Cr (lower pary vs T for simulated annealingSA, solid ling and FIG. 3. Asymmetric overlag 7)) with the ground state and
threshold acceptingTA, dashed ling PCB442 traveling salesman corresponding susceptibilityr vs T for simulated annealingSA,
problem. The vertical lines in th€; curve mark the five tempera- solid line) and threshold acceptin@A, dashed ling PCB442.
ture values used as “bouncing temperaturdg’in this paper. The
gray curve is a least square fit 6%" to a parabola, with an arrow with the distance matrixi. At high but finite temperatures,
marking the maximum. SA does still not allow deteriorations of any magnitude, and

Other approaches, like, e.g., “basin hopping20] or f[hus the Ieng.th at corresponding temperatures i§ smallef than
“search space smoothind'21,22], which belong to the fam- in TA. Certqml_y _there must be an Energy maximum, since
ily of “hypersurface deformation” methods, can be used tothe system is finite, and some conflgurathn prowde§ a f|.n|te
try to transform a complex rough energy landscape into &PPer bound on the energy. Beyond this, in the infinite-
smoother surface with fewer minima, which allows an effi- temperature limit, any attempted move will be accefj@d
cient relaxation to the global minimum. Such “smooth” sur-  Lowering the temperature, there is a characteristic transi-
faces are ideally characterized by only one deep “funnel’tion into a low-energy regime; the TA energy decrease is
leading to the global optimum, and any optimization methodsteeper than in the run with SA, so that both curves cross
should find surfaces with a single funnel relatively easy toeach other. There is also a finite global minimum because the
tackle. The difficulty of this technique is the choice of ansystem is finite; the values id(i,j)] are finite, and, since
appropriate mapping, which relates the global minima of thehe tour is a spanning tree with an additional edge to close it,

original and transformed surfaces. therefore each configuration has a larger length than the
The idea which we present in the following sections isminimum spanning tree.
based on a different approach. To discuss it in depte In the affiliated specific heaE; we find a peak with the

Sec. I, we first analyze a sequential SA/TA run for a TSP: maximum located at a temperatlife, in case of TA the

In Fig. 2, we provide the energy.e., tour length (H)r and  absolute height of the peak is lower than for SA. Moreover,
the specific heaCy vs temperaturéthreshold both for SA  the TA peak appears to be at a higher value than the SA
and TA. This figure shows a typical annealing curve forpeak, which is located at a temperatilie= 180 for SA. In
these types of problems, many of which have been studiethe specific heat figure, we include a nonlinear least square
and show similar curves, and each has similar overall feafit for C; 55. The peak of the specific heéhe arrow in Fig.
tures. If we look at the energy decrease as a function op for SA) marks the temperature range where the most im-
decreasing temperature, we see that for TA the length iportant rearrangementi terms of the proportionality spe-
roughly constant at high thresholds. Because the TA criterioiific heatoc variance of the system happen. Stretching the
allows one to accept every move at larffeeach edge has previous analogy between solid state and statistical physics
the same probability to appear in the actual configurationand the MC algorithms, we naively associate the peak with a

and therefore the energy oscillates around the value transition region between a partially ordered solid, where
1 N rearrangements up to a certain scale are still possible, and a
— i totally disorderd liquidlike regime.
H)o= ddi.i), 21 . . ,
{H) N_li,'zzl (1) 219 Figure 3 provides the asymmetric overlgpand the cor-
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responding susceptibility vs temperatutiereshold, both for 52400 [ - y
SA and TA. These plots show a typical behavior for an order ;
parameter:n increases from 0 in the high-temperature re- 52200 |- -
gime to 1 for low temperatures in a narrow transition range,
with a characteristic spontaneotts symmetry breaking be-
tween the two possible tour orientatiofisackward-forward .
traveling. It is nonzero only in the ordered phase. The affili- &
ated susceptibility has its peak at a temperafilye 32 for Y 1500
SA, much lower thanT;. The peak of the susceptibility
gives the temperature range where the system tries to anneal
due to the additionally imposed constraint given7y. It is
the range where it converges against the bottom of the valley
in which the ground state lies. In this sense, it may be re- 51400
garded as a classical susceptibility according to the definition
of Ref.[23], measuring the system response to constfdint

We are aware that, until now, there has not been stringent FIG. 4. Ensemble mean of the energ¥{;)e vs indexi of the
evidence of a critical temperature in precise phase transitiopouncing iteration for different bouncing temperatufgs TA, and
terminology, as noted earlier in Ref&4,25 (There, consid- PCB442.
erable evidence for such a critical temperature below the
specific heat peak was deduced from spin glass analpgiespecific heat has a maximum at a valtig of the control
Nevertheless, we would like to point to the fact that all parameter, corresponding to a freezing temperature between
quantities—energy, specific heat, overlagich is a kind of 5 gisordered high-temperature and a partigilg., locally
magnetization of the systemand susceptibility—are plotted o qereq |ow-temperature regime, and the order parameter

}N'ti.a IP?(gnthmfm teThperatgrf "’:(X'S.’ Wh'(ffh ﬁwes ta “nqtt_ural susceptibility has a peak @t , which corresponds to a tran-
Or? sl,lncgs elgur(?n rtcr:r; fiel% g‘f)'g ig \I/;esvs;é;] phase transtlion giion to a long-range ordered regime. As mentioned above,
physics, €., bin g ) we do not use the term transition temperature in the strict

If we carry on the initial physical annealing picture we . I
might be able to improve the basic algorithm considerablysense of a physical phase transition theory. For that purpose,

The idea arises naturally if we look at the techniques of Jyrther investigations on the nature of the particular transi-
blacksmith; after cooling down the molten iron rather 0N are necessary. _ _
quickly into a particular shape, the craftsman uses a sophis- USing these basic informations we come to the following
ticated heat treatment schedule consisting of repeatedly rélgorithm. Instead of using a cooling schedule with a mono-
heating and cooling the workpiece. This cyclic reheating istohically decreasing value of the control parameter only, we
done only up to a certain temperatuieg., red gloy, and add a second part to the prescription: After a first conven-
then the piece is either slowly cooled or quickly quenchedtional simulation, where the temperature is lowered mono-
Depending on the particular treatment, the craftsman is abltonically (T—0), according to some of the above-mentioned
to produce the desired major structural rearrangements in thechedules, e.g., the exponential one, the simulation reaches a
workpiece, without “crossing” back over the phase transi-point where no further decrease of the energy can be
tion line from the solid to the totally disordered liquid. achieved within a finite simulation time. We call this first
In Sec. lll, we will show how this “craftsman’s ap- part “primary monotonic cooling.” At this point we instan-
proach” to the annealing type algorithms can be used taaneously increase the value of the control parameter again
improve_finit_e Iength MC optimizations. In tri_bute to this (“inverse quench’) up to ava|ueTB, Virtua”y similar to the
blacksmith picture we call the method “bouncing.” blacksmith in the above cited technical analogy. Thereby, the
system regains its “ability to move” in state space, depend-
ing on the new value of the control parametég&T=0).
The main advantage of this second stage is that—in contrast
Due to the fact that finite length Markov chains lead to anto the previous start of the simulation at a very high tempera-
approximation algorithm only, as stated above, a simulatioture in a totally disordered state—the system has already
often does not reach the global minimum of an energy landgained a high degree of order. Connected with this is a cer-
scape. Instead, the system “freezes” in an energeticallyain degree of remaining information about the system stored
high-lying minimum at a small value of the control param- in the ordered configuration. The question now is the follow-
eter (temperature or thresholdi.e., the system is no longer ing: How far should this second “heat-up” go, i.e., what is
able to find a sufficient move to “escape” from a local en- the appropriate starting temperatdrg for the bouncing pro-
ergy valley. cess schedul@—0=Tgz? The local order information must
On the other hand, there is a basic finding of Romeo andbe retained, as few as possible of the structures should be
Sangiovanni-Vincentelli26]: They observed that, in order to “broken” up.
obtain a final configuration close to the globally minimal ~ We can distinguish three temperature regimesTip(Fig.
one, there should always be a sufficiently large probability to4), which we will discuss in Sec. IV using a set of represen-
leave any configuration, possibly a local minimum, foundtative simulations of the PCB442 TSP sample instance.
during the execution of the algorithm. (1) Slight warming: the reheating after the first monotonic
Finally, there is the further conceptual ingredient that thecooling will be only very slightly, i.e. in a temperature win-

52000

51600

1 10 100
Iteration i

IIl. BOUNCING
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~ FIG. 5. Minimal energyH ™ vs indexi of the bouncing itera- FIG. 7. Overlapo; between the resulting configurations of suc-
tion for different bouncing temperaturd@g, TA, and PCB442. cessive bouncing iteratiorisandi— 1 for different bouncing tem-

peratureslg, TA, and PCB442the error bars are of the size of the

dow below the temperature where the initial ordering transi-Symbols.
tion took placeTg=<T,.

(2) Bouncing to theCy maximum: the reheating goes =1000, and continues with bouncing iterations using differ-
back up to(almos} the freezing temperaturé . <Tg<T;. It ent starting values of. The technique used is TA. After
covers the whole temperature range of the partially orderedonventional monotonic cooling, more than 100 bouncing
phase, but avoids the transition into the totally disorderedterations are performed. There the system is instantaneously
regime, similar to the craftsman, who reheats his workpiecéeated up to the particuldiy, and then the temperature is
to gain maximal structural rearrangements without leavindowered with an exponential cooling schedule from the indi-
the solid phase and thus losing the shape of the piece.  catedTg value by a factor of 0.9 in 120 discrete steps. In

(3) Bouncing beyond; : finally, we will show the effects each step 240 lin-2-opt sweeps and 1200 lin-3-opt sweeps
of a bouncing process crossifg, i.e., Tg>T;. are performed. Finally, at the end of each iteration, a

Technically, for the bouncing process a certain number ofgreedy” step is performed to reach the bottom of the local
reheating and cooling iterations are performed after the firsénergy valley, and the obtained configuration is taken again
monotonic cooling, and at the end of each iterationas an initial input for the next iteration. We find the follow-
071Tg\,0, the actual low-temperature configuration serves aing results.
an initial configuration for the next bouncing iteration. (1) (H;) decreases with an increasing number of itera-

Figure 4 shows five regimes fdrg, Tg=12.5, 25, 50, tions if Tg=100, i.e., Tg=<T;.

100, and 200, as indicated by vertical lines in the specific (2) If Tg<T,, the mean value of the energy of succeed-
heat graphFig. 2). The valueTg=200 is the only one be- ing iterations is roughly constant, except for seldom fluctua-
yond theT; transition. We present the ensemble mean entions. This can be nicely seen in the graphsTge=12.5 and
ergy(H;)e (i.e., the mean TSP tour lengtim Fig. 4, and the ~ 25. The system is therefore trapped in a local valley. There is
minimum energyH{"™" in Fig. 5, of an ensemble of 128 certainly a dependency of the bouncing results on the result-
statistically independent TA optimization runs. Each runing configuration of the initial cooling process, which does
starts initially with different random start configurations. not disappear folg<T,.

Each one starts with an initial monotonic cooling &t

1.4
! ' ' 13
05 | 12
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04 | %
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A
m
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©o2y S 08
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0.0 |
06 \ . , \ .
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1 10 100 In(t) .
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FIG. 8. Grest hypothesis: 1/k(;)e— Hop) VS In (i7) for different
FIG. 6. Gaing; vs the indexi of the bouncing iteration for bouncing temperaturegg, TA, and PCB442. The thin solid lines
different bouncing temperaturg, TA, and PCB442. are fits, giving an exponerdt= 0.8, both forTg=100 andTz=50.
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52400 [ r - the final energy of the initial monotonic optimization jun
Here the success of the bouncing idea becomes evident.

(1) We can achieve a significant gain over the simple
monotonic cooling schedul@s it is still used in the primary
stage.

(2) The gain strongly depends oFg, the criterion for
choosingTg is due to the evaluation of the specific h€st
and the susceptibilityt during the initial cooling process.
The largest gain can be obtained oy slightly belowT; (in
our cas€eTg=100 and 50, whereas the gain completely dis-
appears foif g>T; (Tg=200). Also, the gain becomes mar-

. . . ginal and ultimately vanishes in the limig—0, as ex-
1 10 100 pected, since the local energy valley in which the MC walker
Treration i sits cannot be left. A good estimate for a lower boundTigr
is the width of the specific heat peak, its low-temperature leg

FIG. 9. Ensemble mean of the enerd¥{;)e vs indexi of the  extends in case of the PCB442 instance to a temperature of
bouncing iteration foif =100 (squaresand Tz =50 (circles, TA, roughly 40 in case of SA. This is in good agreement with the
and PCB442. Filled symbols denote simulation runs with a doublecpeak of yt, which marks the lower bound, too.
calculation time in contrast to the originally obtained débaen In Fig. 7, we provide the overlap; between final con-
symbols. figurations of the succeeding bouncing iteratioresdi — 1.

) This quantity measures the percentage of TSP edges present
(3) For Tg>T; we find no decrease of the energy as aj, thg final );esults of succepeding boguncing iterati%ns,pthus

;ung:tlont of b°“”°'”9 lterations; “bﬁ)UpClng t}eyﬁnd tbhe or- giving an estimate of how strongly the configurations are
ering temperature” causes OSC'.aE'PUS O,,t eo Ject'vechanged between succeeding iterations. Interestingly, this
only, since the Markovian walker is “kicked” up into the

disord high . he beainni ¢ hoverlap becomes nearly constant after a few iterations, i.e.,
(disordered high-energy regime at the beginning of eachy,q rate of change remains constant during the bouncing pro-
bouncing iteration.

cess for a certainfg. We clearly find that the overlap
§trong|y depends ofig (i.e., the smaller the bouncing tem-
peratureTg, the larger the overlgp and thus only a few

: . _rearrangements take place. We want to point to the fact that
length for Tg=200 oscillates strongly, even approaching although the overlap folTg=>50 is rather large, the gain is

min :
value_s 50_90&Hi <51 000'_ They are usually lost In t_h_e also large. This regime is very interesting for technical opti-
next iteration, whereas the minimal energy decreases initially,i;aion applications, since it allows an optimization of an
and then remains in a certain range Ty<T. Finally, for  existing process—e.g., a tour schedule or production envi-

Tp<T, itis virtually constant. ronment, which would serve as the input configuration for a

In Fig. 6, we show the absolute improvement due to thg,qyncing treatment—without the introduction of major rear-
bouncing process. As a measure for the improvement WBingements in large partsee Fig. 7.

define a normalized gain An interesting point is the question whether for the

52200

52000

<Hp>,

51800

51600

51400

for all Tg's besidesTg=200, i.e.,Tg>T;; there the energy
is virtually constant. Nevertheless, the minimal eneftpur

g:<H1>E—<Hi>E . bouncing algorithm the Grest hypothef&y]
I <H1>E_Hopt '
(i denotes the index of the current iteratidf;)e the en- ;'x[ln (i1’ (3.2
semble average of the energy in iteratipandi =1 refers to (HiYe— Hopt

51400

51200 |

min
Hl

51000

50800

L L
1 10 100
Iteration i Iteration i

FIG. 10. Minimal length valueg{ imi”, data, and notation correspond to the previous figliges 100 (left par) and Tg=50 (right par},
TA, and PCB442.
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10 100
Iteration i

FIG. 11. Gaing; vs indexi of the bouncing iteration foilg

=100(squarepandTg= 50 (circles, TA, and PCB442. Filled sym-

In(it)

FIG. 13. Grest hypothesis: 1K(;)e—Hop) VS In(7) for Tg
=100(squaresandTg=50 (circles, TA, and PCB442. Filled sym-

bols denote simulation runs with a doubled calculation time, inbols denote simulation runs with a doubled calculation time, in
contrast to the originally obtained dafapen symbols

contrast to the originally obtained dafapen symbols

[where 7 is the calculation time in each bouncing iteration, ) ) )
and {~1] is able to describe the quality of the results Tg=100 the runs with more computation time produce the

achieved after a certain time. Interestingly, we obtain relaletter results in the first few bouncing iterations offfjgs. 9

tively small values forZ, e.g.,{~0.8 for Tg=50 and 100,

and {~0.2 for Tg=25. { vanishes forTg>T; and for

and 10. Later, for Tg=100, the runs with the original
amount of calculation time become superifig. 11, the
runs with additional time cannot provide further improve-

In a further step, we want to study the effect of additionalments, ano_l the gain is nearly c_onstant after a few iterations.
computation time on the results discussed earlier. For this €omparing the two runs which lead us to the lowest en-
purpose we use a nonuniform computation time distributiorfrgies(these are thds=50 run with doubled computation
within the bouncing iterations, i.e., in addition to the previ- ime, and theTg=100 bouncer with the original settingse
ously used time we spend the same amount of computation§PMe to the following findingsTg=50 with the enlarged
effort at the first temperature stdy, the beginning of the ~Calculation time has a significantly lower mean energy and
iteration, only. In our example we have initialindex i ! i B8~ +
=2) 121 steps alg, 119 steps at @ T<Tg, and one step putational investmengwhich, in turn, has been much better

atT=0. The monotonically cooled run in front of the bounc- than the unchangedg=50 run. However, the enhanced
ing procesgindexi=1), however, remains unchanged, i.e. Tg=50 calculation does not lead to solutions with an energy

we bounce the same input configurations as previously.

The most challenging results are achieved Tgr= 100

and 50, which we want to discuss in Figs. 9-13. Ha@r

larger gain than even thE;= 100 run with the original com-

"below 50 850 within its total of 60 iterations, whereas the
unchangedi.e., nonprolongedTg= 100 bouncer was able to
break below the 50 850 value at least six times within its

=50, we obtain far lower energies for each bouncing iteraiNitial 119 bouncing iterationgwhich, in turn, correspond to
tion i using the additional computation time, whereas forth® same calculation time as the time-doubleg=50 run.

1.00

Overlap o,
[=4
&

=8 T,-100 |
W O TE=50
o T =50
10 100

Iteration i

In Fig. 12, we show the overlapg for the runs withTg
=100 and 50, both for the original and doubled calculation
times. If additional time is used, the overlap niveau de-
creases. This is quite clear because the system has more time
to walk around afTz, and therefore results of succeeding
bouncing iterations show larger differences. Hg=200
and 12.5(not shown herg the overlap remains roughly con-
stant; there is no significant gain. But fog= 25 with addi-
tional calculation time, we obtained nearly the same gain and
overlap as fofTg=50 with the original calculation time.

In conclusion, an overlap below 0.75 leads to a gain
which is either zero from the beginning or converges against
a constant greater than zero, and an overlap between 0.78
and 0.962 leads to a strong and continuous increase of the
gain (at least in the observed rangegain, for an overlap
larger than 0.962, the gain is relatively smdlfhese num-

FIG. 12. Overlam; between the resulting configurations of suc- bers are, of course, only valid for the PCB442 problem in
cessive bouncing iteratiorisandi—1 for Tg=100 (squares and

Tg=50 (circles, TA, and PCB442. Filled symbols denote simula-

combination with TA)
In order to show that our bouncing method also works

tion runs with a doubled calculation time, in contrast to the origi- with SA, we also performed 128 runs with SA with the origi-
nally obtained datdopen symbols

nal number of steps, but a smaller number of bouncing itera-
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FIG. 14. Ensemble mean of the enerd¥{;)c vs indexi of the FIG. 16. Overlam; between the resulting configurations of suc-
bouncing iteration for different bouncing temperatufgs SA, and  cessive bouncing iteratiorisandi— 1 for different bouncing tem-
PCB442. peraturesy, SA, and PCB44Zthe error bars are of the size of the
symbols.

tions. We took the same configurations from the initial mo-
notonous iteration(therefore, the values for the iteration
indexi=1 are the sameand bounced it then with SA. In

Fig. 14, we provide the mean energy, which decreases fof~1:2 for Tg=25. ForTg=12.5 or forTg=100, the expo-
Te<50. Comparing Fig. 14 with Fig. 4, we see tHBg nent{ is very small and nearly vanishes. A cross-check of
=100 with TA andTg=50 with SA lead to nearly the same these results with other instances from Reinelt's library al-

curve, similarlyTg=25 with TA andTg=12.5 with SA. The 10wed us to draw similar conclusions.

curve for Tg=25 with SA lies in between the curveks

=50 and 100 with TA. Interestingly, tiEz=100 curve with IV. PARALLEL BOUNCING

SA stays nearly constant. From this we _conclud_e thatlthe There is a simple path to extend bouncing for an imple-
temperature ranges are renor_mahzed using SA mstegd of T%entation on a parallel computer. Several parallelization
down to smaller values. We interpret this as follows: SA 'Sstrategies are suitable

gble to climb with a certain probability over high mountains At the end of the primary cooling process, the configura-
in the energy landscape even at snilland therefore to tion obtained by the monotonic cooling is distributed over a

as described for TA. Very interesting are the results concern-
ing Grest, shown in Fig. 17: we obtaifr~~1 for Tz=50 and

be fextr;t:ted dfr'?z] the f]h'ft O_f t:‘f pegk pgs?itl?n?:(‘_l}f ir;d best-so-far configuration among the processors is distributed
X Tor and A, as shown In Figs. = and s. In F1g. 15, we again over all processors, and the previous iteration is re-
provide the gain achieved with SA. The results can be 'nterbeated

preted S|m|_larly to those in Fig. 14 of mtgrest, howeyer, 'S" The results of a number of bouncing iterations can serve
that the gain foff ;=100 stays positive during _aII Iterations. ¢ g input for mutations of a parallel genetic algorithm or of

The results for the SA overlap in Fig. 16 confirm our earllera parallel evolution strategy

TA results: The bouncing temperature regime splits into '

three ranges, with corresponding effects on gain and overlap 1 . . . . :

£ Ty=200

05k o0 Ty=100 ]

O=0 Ty=50 %

=0 Ty=25 =

0.4 | . o

y

w03 F 1 =

S oal | S
0.1 | J
0.0 J

In(it)

1 : . .
Iltgmﬁoni 100 FIG. 17. Grest hypothesis: 1/{;)e— Hop) Vs In (i7) for differ-
ent bouncing temperaturélg, SA, and PCB442. The thin solid

FIG. 15. Gaing; vs the indexi of the bouncing iteration for lines are fits, giving exponents=1 for Tg=50 and{=1.2 for
different bouncing temperaturdg, SA, and PCB442. Tg=25.
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FIG. 18. Mean energy V35 for the parallel ensemble based  FIG. 19. Minimal energy vqg for the parallel ensemble based
bouncing algorithm, ensemble size 128, with controlled decremenbouncing algorithm, ensemble size 128, with controlled decremen-
tation of Tg, TA, and PCB442. tation of T, TA, and PCB442.

Ensemble based bouncit§BB), which is the schedule we reached at an optimum, and in six iterations energies
we will use and describe in this section. smaller than 50 800, which we have not reached with the
In the nonparallelized bouncing algorithm described inserial bouncing method at the abalg. (With the serial TA

Sec. lll, we chose a fixed bouncing temperatlige, up to  algorithm, we came several times to the optimum with
which the system is instantaneously heated and then cooled 120, but we had to invest much more calculation time.
down. In a further step we propose an adaptive selection, i.e., Finally we want to control the effort, i.e., the MC time or
a decremental lowering oz from an initial high value rather the number of bouncing iterations spentfagr using
down to zero, leading to a kind of “second” control param- the EBB concept, again in analogy to the original EBSA
eter with a second “cooling schedule.” Moreover, we areconcept. Figure 20 depicts a tifiehich in fact is a measure
able to control and change the compute time continuouslytor the iterations spent at a particulBg) in arbitrary units vs
@.e., t_he number of MC steps spent at a particular bouncing, . It increases whefizg— T;, as expected. At the end, for
iteration. Tg—0, the bouncing process dies out. Most of the compu-
For both purposes we use a parallel computer running agation time is invested in the important temperature range

ensemble of independent bouncers, and extend the initial efretweenT, and T;. Thus the bouncing process can be auto-
semble based cooling idea of Ruppeireral. [ensemble  matically controlled.

based simulated annealii§BSA) [28]]: the bouncing tem- It is certainly possible to apply the ensemble based cool-
peratureTg is lowered if the condition ing rule twice, for decreasinfg between bouncing iterations
as well as for decreasin within a bouncing iteration, com-
(Hi+e=(Hi)e (4. bining ensemble based bouncing and ensemble based thresh-

old accepting. It is possible to save a large amount of CPU
becomes true; here- --)g denotes the ensemble averagetime using “conventional” EBSA-TA alone; however, this
over independent bouncers at thk iteration. Note that we approach does not necessarily provide results very close to or
do not decrease the temperature as in EBSA or the threshold
as in the TA version EBTA inside a bouncing iteration using 3.0
the ensemble based rule: only the starting temperatgrs
decreased according to the adaptive kind of the ensemble
based ansatz. Therefore we do not use the energies after each 25 ¢
sweep for(---)g in contrast to Ref[28], but we take the
average over the lengths of the final results of different runs.
Inside the bouncing iteration we work with TA; parameters
such as the number of steps are the same as afigves
decreased by factors of 0.99.

Figure 18 shows the mean energye., TSP lengthvs 151 .
bouncing temperatur€g: We find a decrease, quite similar
to the initially obtained decrease of the energy during the
simple monotonic cooling, as shown in Fig. 2 for TA. Al- 1.0 N M MANY - .
though it seems to be identical at a first glance, we want to ol 10 100 1000 10000
make a strong point out of the fact that the temperature and
energy ranges are completely different. Figure 19 shows the F|G. 20. Effort: Time(i.e., the number of bouncing iterations
minimal energy vs the bouncing temperatirg: we find  spent pefTg using a parallel ensemble based bouncing algorithm
that with this parallelized version of bouncing we are able to(EBB) (ensemble size 128TA, and PCB442; the data are binned
obtain even better results than with the serial bouncing, e.gtp reduce statistical noise.

time
[}
1=}

B
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even identical with the ground state. Combining EBB and The energy, i.e., the optimization objective, decreases, if
EBTA, we obtain the same quasioptimal quality of resultswe take a bouncing temperatufg closely below the peak

compared to EBB alone, but saving 95% of the computatiorof the specific heat. The algorithm is described in detail, and

time. its efficiency is demonstrated for a particular class of com-

binatorial optimization problems. The procedure can be eas-

V. CONCLUSION ily transferred to other CO problems; we have applied it to,

i i ) ) e.g., vehicle routing and production lines optimization prob-

~ We provide an algorithm to improve results obtained bylems among others. Therefore, it provides a rather univer-

finite Markov chain length Monte Carlo optimization proce- gajly applicable scheme. Finally we introduce an efficient

dures: the bouncing algorithm. It is based on the concept Ofytension of the bouncing scheme for parallel computers

simulated annealing type MC optimization algorithms. After ased on the ensemble parallelization concept, which allows
a first conventional monotonic cooling process, a second Cysn almost automatic control.

clic heating-cooling treatment is applied, using the final con-

figuration of the initial process as an input. The specific heat

maximum thalned in the initial cooling process determines ACKNOWLEDGMENTS
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