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Bouncing towards the optimum: Improving the results of Monte Carlo optimization algorithms
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Simulated annealing and related Monte Carlo-type optimization algorithms are used to apply statistical
physics concepts, in particular ideas from the statistical mechanics of spin glasses, to find optimal configura-
tions for combinatorial optimization problems. There are formal proofs showing that these algorithms converge
asymptotically~i.e.—possibly—for infinitely long simulation times! to a global optimum. Practical implemen-
tations, however, only allow for finite simulation times, and, thus, the annealing process is often trapped in
energetically higher, suboptimal configurations. In this work we present an algorithm—we call it bouncing—
which takes the final low-energy configuration of, e.g., a conventional monotonically cooled annealing run as
an input and subjects it to a schedule of repeatedly reheating and cooling. The maximum of a susceptibility and
a specific-heat-like quantity sampled during the initial monotonic cooling process serve as lower and upper
starting temperature bounds for this secondary heating and cooling. We present, in addition to a serial imple-
mentation, a recipe for a parallel computer, and provide a number of results showing the success of the
bouncing method for a particularly prominent example of a combinatorial optimization problem: the traveling
salesman problem.@S1063-651X~98!04707-2#

PACS number~s!: 02.70.Lq, 02.50.2r, 02.50.Ga, 89.20.1a
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I. INTRODUCTION

There are two possible approaches to solving combin
rial optimization~CO! problems: Either one can use an o
timization algorithm in the strict sense of the word, yieldin
a globally optimal solution, or an approximation algorithm
yielding a very good orpossiblyglobally optimal solution. A
classical method to find low-energy states of complex ph
cal systems such as solids is to heat the system up to s
high temperature, where all states can be reached, and
cool it down slowly. This annealing process lets the syst
settle into regions of low energy, while not becomin
trapped in higher-lying local minima. Simulated anneali
~SA!, a Monte Carlo-type algorithm, is an optimization tec
nique that uses these methods from statistical physics. It
first employed successfully for these problems in Refs.@1,2#.
The work of Kirkpatricket al. @1# is strongly based on this
analogy between the annealing of a solid and the optim
tion of a system with many independent variables. In t
technique the states of a physical systems i are generalized
to states of a system being optimized, the energyH in physi-
cal problems is generalized to the objective function to
optimized, and the temperatureT is generalized to a contro
parameter for the optimization process. To apply the sim
lated annealing algorithm, a mechanism is used to genera
new configuration~i.e., a new state! from a given one by a
small perturbation, i.e., by applying a set of moves to
system. The ‘‘size’’ of a class of moves within the sta
space of the system can be defined as the average chan
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the energy induced by moves of that class@3#, and the deci-
sion of accepting or rejecting the moves is based on a g
eralized Metropolis criterion. Depending on the control p
rameter this method accepts deteriorations of the system
configurations that correspond to an increase in the energ
cost function. There are formal proofs from a number
authors @4–6# that under certain conditions the algorith
converges asymptotically~i.e., for long enough, maybe infi
nitely long, simulation times! to an optimal solution. Thus
asymptotically, the algorithm is not only an approximatio
but also an optimization algorithm in the strict sense. In pr
tical applications, however, this kind of asymptoticity is us
ally never attained, and, thus, an optimal solution cannot
reached within a given simulation time due to the extrem
slow convergence. Consequently, in practice, SA usually
pears to be an approximation algorithm only. For a disc
sion on the convergence of SA, we refer the reader to R
@7#.

II. SIMULATED ANNEALING: ALGORITHM

To explore the state space, instead of doing an ungui
random walk in state space, known as simple sampling
SA a sequence of Markov chains of states is construc
where each states i 11 is repeatedly generated out of th
previous states i with a suitable transition probabilityp(s i
→s i 11) depending on the difference of their energies

DH5H~s i 11!2H~s i !. ~2.1!

With this choice, the distribution functionp(s i) of the states
tends toward the Boltzmann equilibrium distribution
5085 © 1998 The American Physical Society
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pequ~s i !5
1

Z
exp S 2

H~s i !

kBT D , ~2.2!

with the Boltzmann constantkB @8#, the system temperatur
T, and the physical partition functionZ @9#. A sufficient con-
dition is the principle of detailed balance,

pequ~s i !p~s i→s j !5pequ~s j !p~s j→s i !. ~2.3!

The most common choice forp is

p~s i→s i 11!5H exp ~2DH/T! if DH.0

1 otherwise,
~2.4!

which satisfies the condition of detailed balance. This acc
tance criterion allows for intermediate deteriorations in
optimization objective~i.e., an increase of the energy!, thus
enabling the algorithm to escape from local minima depe
ing on the value of the control parameter temperatureT.

A variation of the above principle is called threshold a
cepting~TA!: here a control parameter called the thresholdT
is introduced much in the same way as a pseu
temperature, andp can be written as

p~s i→s i 11!5H 1 if DH<T

0 otherwise.
~2.5!

Although TA does not satisfy the condition of detailed b
ance, it leads to very low-energetic minima or even
ground state, usually in shorter simulation time than sim
lated annealing@10#.

Among other criteria the quality of the final solution o
tained by the algorithm is determined by the convergence
the algorithm, which is controlled by a set of paramete
called the cooling schedule. In the literature@11# the behav-
ior of the simulated annealing algorithm as an approximat
algorithm is usually analyzed in an empirical way. This i
volves the analysis of computation time and quality of fin
solutions obtained by running the algorithms on a set
problem instances, e.g., from Reinelt’sTSPLIB @12#, and the
comparison of the results to those obtained by other m
ods.

Commonly, one refers to an implementation of the S
algorithm in which a sequence of Markov chains of fin
length is generated at monotonically decreasing values o
temperature~usually called ‘‘sequential SA’’ in the litera
ture, e.g.,@7#!. Optimization is carried out by starting off a
an initial value of the control parameter, and repeatedly g
erating a Markov chain for decreasing values ofT until T
→0. Ideally, the system is allowed to approach equilibriu
at each temperature level; then the temperature is redu
the system is allowed to equilibrate again, and so on.
procedure is stopped at a temperature low enough tha
further improvements can be expected. This protocol is g
erned by the cooling schedule, with an appropriate star
valueT0, a decrement prescription for the control parame
and a finite length of the individual chains.

Since the early publications on simulated annealing
exponential cooling schedule has been often proposed,
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T5T0at, ~2.6!

with an initial temperatureT0.0 and the cooling factor 0
,a,1. For finite simulations, this schedule is believed to
an excellent cooling recipe, since it provides a rather go
compromise between a computationally fast schedule and
ability to reach low-energy states. Catoni@13# reported that
suitably adjusted exponential cooling schedules have in
esting robustness properties as soon as one deals with a
amount of available computing time. Almost all practic
uses of SA, as documented in the literature, rely on expon
tial cooling schedules, and it is our method of choice for S
and threshold accepting too. Several other decrement r
for the control parameter temperature can be found in
literature; see, e.g., Ref.@14#; another useful source is th
detailed study by Bonomiet al. for the traveling salesman
problem@15#.

We are interested in the value of the energy or cost
function @8# at a temperatureT,

^H&T5
1

M(
i 51

M

H~s i !, ~2.7!

where the summation goes over a sequence ofM indepen-
dent configurationss i , and a quantityCT , which we asso-
ciate in analogy to the statistical physics equivalents wit
specific heat

CT5
]^H&T

]T
. ~2.8!

It is straightforward to show that this specific heat, defined
the derivative of the energy with respect to temperatureT, is
proportional to the variance of the energy

CT[
1

T2 $^H 2&T2^H&T
2%5

1

T2varT$H%. ~2.9!

This particular identity is strictly valid only for SA; never
theless we also adopt this definition of a~pseudo! specific
heat measuring the fluctuations for TA.

As test instances for CO problems, we focus on travel
salesman problems~TSP’s!, since most other examples o
CO problems can be easily transformed into a formulat
quite similar to a TSP with some additional constrain
Since a TSP is defined via entries in a distance matrix,
asymmetric overlaph is generally taken as a substitute f
an order parameter like, e.g., the magnetization in Ising pr
lems. To calculateh, an edge matrixe is constructed from
the ground state permutationg of the N cities as follows:

e~k,l !5H 1 if g21~ l !215g21~k! mod N

21 if g21~k!215g21~ l ! mod N

0 otherwise,
~2.10!

with k and l being city numbers, andg21 being the inverse
permutation ofg. Therefore,e(k,l )51 if l is the successo
of k in g ande(k,l )521 if l is predecessor ofk. Let s i be
the current state, i.e., the actual permutation of the cities,
j a counter; then
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h~s i !5U1

N (
j 50

N21

e@s i~ j !,s i~ j 11!#U, ~2.11!

with s i(0)5s i(N). A susceptibility xT , corresponding to
h, is defined as

xT5
1

T
$^h2&T2^h&T

2%5
1

T
varT$h%, ~2.12!

which can be achieved for SA by formally adding a te
H152lh to the HamiltonianH, with l→0, and deriving
^h&T for l. For TA, we simply adopt definition~2.12!.

A well-known TSP instance is the benchmark problem
find the shortest tour through 442 drilling holes in an IB
printed circuit board. It was proposed by Gro¨tschel and
solved by Holland@16#, and it is usually referred to a
PCB442, e.g., in Reinelt’s library of TSP instances~TSPLIB!
@12#. Its optimum has a length of 50 783.5475 . . . in
REAL*8 metric @17# ~which is used throughout this paper!,
or of 50 778 in the rounded integer metric@12#. This problem
has a highly degenerate ground state@17#, and there is a very
large amount of nearly optimal~i.e., approximate! solutions
energetically close to the global optima. Moreover, it
known that there are many optimization algorithms wh
suffer from severe difficulties treating this problem. We r
strict ourselves in the following discussion on the PCB4
Although, intuitively, it seems to be very easy to solve a
first glance, PCB442 has a very complicated search sp
structure, and shows properties which are well known fr
other physical problems.

Because of the highly degenerate ground state
PCB442, one has to adapt the calculation ofh. As shown in
an earlier reference@17# a complete set of degenerate grou
states of this problem can be built out of 84 pieces~‘‘back-
bones’’!. Thirty-four of these consist only of one city, so th
50 backbones of lengthl .1 remain. If we fix the direction
of a long backbone, we automatically determine the dir
tions of all other backbones with the exception of 18 ‘‘blin
ers,’’ each of them consisting of only two cities~see Fig. 1!.
These 32 backbones form one ‘‘superbackbone’’ consis
of 340 edges, out of which an edge matrixe is built. Fur-
thermore, the 18 blinkers are explicitly considered in a sy
metric edge matrixf , leading us finally to

h~s i !5
1

358S U (j 50

N21

e@s i~ j !,s i~ j 11!#U
1 (

j 50

N21

f @s i~ j !,s i~ j 11!# D . ~2.13!

To generate an appropriate neighborhood structure in se
space, we use moves of the Lin-Kernighan-type@18# lin-
n-opt, mostly lin-2-opt and lin-3-opt.

Finite Markov chain length, SA-like Monte Carlo~MC!
optimization algorithms cannot guarantee that the glo
minimum of a combinatorial optimization problem
reached. On cooling, the system would probably be trap
in a suboptimal configuration because of the rough ene
landscape of the problem.
-
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There are different approaches to ‘‘free’’ a simulation fr
zen in at a suboptimal valley in the energy landscape,
thus to obtain better results~i.e., results closer to or identica
with the global optimum!. One method in this category call
for a very complex set of cleverly constructed moves in or
to give the system more degrees of freedom; this leads
largely extended neighborhood of a certain state, and is
lieved to provide ‘‘escape routes’’ in state space where o
erwise the MC walker would become stuck in a suboptim
energy valley. This can easily be seen at the traveling sa
man problem: It has been shown that with the lin-2-o
which changes the direction of a part of the tour, one usu
obtains better results than with a simple move exchang
two points in a solution@19#. An already more complicated
move is then53 lin-3-opt. There are four possibilities t
perform a lin-3-opt: the most effective one is to exchang
part of the tour with its succeeding part without changi
their directions; at least three lin-2-opt moves are neede
build the same configuration out of the previous on
whereas the other three versions of the lin-3-opt can be c
structed with two lin-2-opts only. Further higher order lin
n-opts are possible, but already lin-4-opts do not have a
nificant influence on the results because the number of
moves has to be systematically increased in such a way
the higher order moves can find improvements at low te
peratures which are not found with the described lown
moves. We should mention that this method can be usefu
specific instances, but the construction of an appropr
combination of moves is unfortunately highly problem sp
cific. As a result, it has not been widely used.

FIG. 1. 84 ‘‘backbones’’ of the PCB442 problem. Out of the
backbones all optimal solutions can be constructed. We arbitra
fixed the direction of one of the long backbones which, in tu
automatically determines the directions of most of the other ba
bones~with the exception of 18 blinkers, as described in the tex!.
All lengths ~i.e., energies! of the TSP instances are measured
arbitrary, dimensionless units~a.u.!, which makes most expression
dimensionless@8#.
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Other approaches, like, e.g., ‘‘basin hopping’’@20# or
‘‘search space smoothing’’@21,22#, which belong to the fam-
ily of ‘‘hypersurface deformation’’ methods, can be used
try to transform a complex rough energy landscape int
smoother surface with fewer minima, which allows an e
cient relaxation to the global minimum. Such ‘‘smooth’’ su
faces are ideally characterized by only one deep ‘‘funn
leading to the global optimum, and any optimization meth
should find surfaces with a single funnel relatively easy
tackle. The difficulty of this technique is the choice of a
appropriate mapping, which relates the global minima of
original and transformed surfaces.

The idea which we present in the following sections
based on a different approach. To discuss it in depth~see
Sec. III!, we first analyze a sequential SA/TA run for a TS
In Fig. 2, we provide the energy~i.e., tour length! ^H&T and
the specific heatCT vs temperature~threshold! both for SA
and TA. This figure shows a typical annealing curve
these types of problems, many of which have been stud
and show similar curves, and each has similar overall f
tures. If we look at the energy decrease as a function
decreasing temperature, we see that for TA the lengt
roughly constant at high thresholds. Because the TA crite
allows one to accept every move at largeT, each edge has
the same probability to appear in the actual configurati
and therefore the energy oscillates around the value

^H&`5
1

N21 (
i , j 51

N

d~ i , j !, ~2.14!

FIG. 2. Energy~i.e., length! ^H&T ~upper part! and specific heat
CT ~lower part! vs T for simulated annealing~SA, solid line! and
threshold accepting~TA, dashed line! PCB442 traveling salesma
problem. The vertical lines in theCT curve mark the five tempera
ture values used as ‘‘bouncing temperatures’’TB in this paper. The
gray curve is a least square fit ofCT

SA to a parabola, with an arrow
marking the maximum.
a
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with the distance matrixd. At high but finite temperatures
SA does still not allow deteriorations of any magnitude, a
thus the length at corresponding temperatures is smaller
in TA. Certainly there must be an energy maximum, sin
the system is finite, and some configuration provides a fin
upper bound on the energy. Beyond this, in the infini
temperature limit, any attempted move will be accepted@3#.

Lowering the temperature, there is a characteristic tra
tion into a low-energy regime; the TA energy decrease
steeper than in the run with SA, so that both curves cr
each other. There is also a finite global minimum because
system is finite; the values in@d( i , j )# are finite, and, since
the tour is a spanning tree with an additional edge to clos
therefore each configuration has a larger length than
minimum spanning tree.

In the affiliated specific heatCT we find a peak with the
maximum located at a temperatureTf , in case of TA the
absolute height of the peak is lower than for SA. Moreov
the TA peak appears to be at a higher value than the
peak, which is located at a temperatureTf'180 for SA. In
the specific heat figure, we include a nonlinear least squ
fit for CT,SA. The peak of the specific heat~the arrow in Fig.
2 for SA! marks the temperature range where the most
portant rearrangements~in terms of the proportionality spe
cific heat} variance! of the system happen. Stretching th
previous analogy between solid state and statistical phy
and the MC algorithms, we naively associate the peak wit
transition region between a partially ordered solid, whe
rearrangements up to a certain scale are still possible, a
totally disorderd liquidlike regime.

Figure 3 provides the asymmetric overlaph and the cor-

FIG. 3. Asymmetric overlap̂ h&T with the ground state and
corresponding susceptibilityxT vs T for simulated annealing~SA,
solid line! and threshold accepting~TA, dashed line! PCB442.
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responding susceptibility vs temperature~threshold!, both for
SA and TA. These plots show a typical behavior for an or
parameter:h increases from 0 in the high-temperature
gime to 1 for low temperatures in a narrow transition ran
with a characteristic spontaneous6 symmetry breaking be
tween the two possible tour orientations~backward-forward
traveling!. It is nonzero only in the ordered phase. The affi
ated susceptibility has its peak at a temperatureTc'32 for
SA, much lower thanTf . The peak of the susceptibility
gives the temperature range where the system tries to an
due to the additionally imposed constraint given byH1. It is
the range where it converges against the bottom of the va
in which the ground state lies. In this sense, it may be
garded as a classical susceptibility according to the defini
of Ref. @23#, measuring the system response to constraintH1.

We are aware that, until now, there has not been string
evidence of a critical temperature in precise phase trans
terminology, as noted earlier in Refs.@24,25# ~There, consid-
erable evidence for such a critical temperature below
specific heat peak was deduced from spin glass analog!
Nevertheless, we would like to point to the fact that
quantities—energy, specific heat, overlap~which is a kind of
magnetization of the system!, and susceptibility—are plotted
with a logarithmic temperature axis, which gives a ‘‘natu
looking’’ figure from the point of view of phase transitio
physics, e.g., in the field of spin glasses@24#.

If we carry on the initial physical annealing picture w
might be able to improve the basic algorithm considerab
The idea arises naturally if we look at the techniques o
blacksmith; after cooling down the molten iron rath
quickly into a particular shape, the craftsman uses a sop
ticated heat treatment schedule consisting of repeatedly
heating and cooling the workpiece. This cyclic reheating
done only up to a certain temperature~e.g., red glow!, and
then the piece is either slowly cooled or quickly quench
Depending on the particular treatment, the craftsman is a
to produce the desired major structural rearrangements in
workpiece, without ‘‘crossing’’ back over the phase tran
tion line from the solid to the totally disordered liquid.

In Sec. III, we will show how this ‘‘craftsman’s ap
proach’’ to the annealing type algorithms can be used
improve finite length MC optimizations. In tribute to th
blacksmith picture we call the method ‘‘bouncing.’’

III. BOUNCING

Due to the fact that finite length Markov chains lead to
approximation algorithm only, as stated above, a simula
often does not reach the global minimum of an energy la
scape. Instead, the system ‘‘freezes’’ in an energetic
high-lying minimum at a small value of the control param
eter ~temperature or threshold!, i.e., the system is no longe
able to find a sufficient move to ‘‘escape’’ from a local e
ergy valley.

On the other hand, there is a basic finding of Romeo
Sangiovanni-Vincentelli@26#: They observed that, in order t
obtain a final configuration close to the globally minim
one, there should always be a sufficiently large probability
leave any configuration, possibly a local minimum, fou
during the execution of the algorithm.

Finally, there is the further conceptual ingredient that
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specific heat has a maximum at a valueTf of the control
parameter, corresponding to a freezing temperature betw
a disordered high-temperature and a partially~i.e., locally!
ordered low-temperature regime, and the order param
susceptibility has a peak atTc , which corresponds to a tran
sition to a long-range ordered regime. As mentioned abo
we do not use the term transition temperature in the st
sense of a physical phase transition theory. For that purp
further investigations on the nature of the particular tran
tion are necessary.

Using these basic informations we come to the followi
algorithm. Instead of using a cooling schedule with a mon
tonically decreasing value of the control parameter only,
add a second part to the prescription: After a first conv
tional simulation, where the temperature is lowered mo
tonically (T→0), according to some of the above-mention
schedules, e.g., the exponential one, the simulation reach
point where no further decrease of the energy can
achieved within a finite simulation time. We call this fir
part ‘‘primary monotonic cooling.’’ At this point we instan
taneously increase the value of the control parameter a
~‘‘inverse quench’’! up to a valueTB , virtually similar to the
blacksmith in the above cited technical analogy. Thereby,
system regains its ‘‘ability to move’’ in state space, depen
ing on the new value of the control parameter (TB>T>0).
The main advantage of this second stage is that—in con
to the previous start of the simulation at a very high tempe
ture in a totally disordered state—the system has alre
gained a high degree of order. Connected with this is a c
tain degree of remaining information about the system sto
in the ordered configuration. The question now is the follo
ing: How far should this second ‘‘heat-up’’ go, i.e., what
the appropriate starting temperatureTB for the bouncing pro-
cess scheduleT→0
TB? The local order information mus
be retained, as few as possible of the structures should
‘‘broken’’ up.

We can distinguish three temperature regimes forTB ~Fig.
4!, which we will discuss in Sec. IV using a set of represe
tative simulations of the PCB442 TSP sample instance.

~1! Slight warming: the reheating after the first monoton
cooling will be only very slightly, i.e. in a temperature win

FIG. 4. Ensemble mean of the energy,^Hi&E vs index i of the
bouncing iteration for different bouncing temperaturesTB , TA, and
PCB442.
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dow below the temperature where the initial ordering tran
tion took place:TB<Tc .

~2! Bouncing to theCT maximum: the reheating goe
back up to~almost! the freezing temperature,Tc,TB,Tf . It
covers the whole temperature range of the partially orde
phase, but avoids the transition into the totally disorde
regime, similar to the craftsman, who reheats his workpi
to gain maximal structural rearrangements without leav
the solid phase and thus losing the shape of the piece.

~3! Bouncing beyondTf : finally, we will show the effects
of a bouncing process crossingTf , i.e., TB.Tf .

Technically, for the bouncing process a certain numbe
reheating and cooling iterations are performed after the
monotonic cooling, and at the end of each iterati
0↑TB↘0, the actual low-temperature configuration serves
an initial configuration for the next bouncing iteration.

Figure 4 shows five regimes forTB , TB512.5, 25, 50,
100, and 200, as indicated by vertical lines in the spec
heat graph~Fig. 2!. The valueTB5200 is the only one be
yond theTf transition. We present the ensemble mean
ergy^Hi&E ~i.e., the mean TSP tour length! in Fig. 4, and the
minimum energyH i

min in Fig. 5, of an ensemble of 12
statistically independent TA optimization runs. Each r
starts initially with different random start configuration
Each one starts with an initial monotonic cooling atT

FIG. 5. Minimal energyH i
min vs indexi of the bouncing itera-

tion for different bouncing temperaturesTB , TA, and PCB442.

FIG. 6. Gaingi vs the indexi of the bouncing iteration for
different bouncing temperaturesTB , TA, and PCB442.
i-

d
d
e
g

f
st

s

c

-

51000, and continues with bouncing iterations using diff
ent starting values ofT. The technique used is TA. Afte
conventional monotonic cooling, more than 100 bounc
iterations are performed. There the system is instantaneo
heated up to the particularTB , and then the temperature
lowered with an exponential cooling schedule from the in
catedTB value by a factor of 0.9 in 120 discrete steps.
each step 240 lin-2-opt sweeps and 1200 lin-3-opt swe
are performed. Finally, at the end of each iteration,
‘‘greedy’’ step is performed to reach the bottom of the loc
energy valley, and the obtained configuration is taken ag
as an initial input for the next iteration. We find the follow
ing results.

~1! ^Hi&E decreases with an increasing number of ite
tions if TB<100, i.e.,TB<Tf .

~2! If TB<Tc , the mean value of the energy of succee
ing iterations is roughly constant, except for seldom fluctu
tions. This can be nicely seen in the graphs forTB512.5 and
25. The system is therefore trapped in a local valley. Ther
certainly a dependency of the bouncing results on the res
ing configuration of the initial cooling process, which do
not disappear forTB<Tc .

FIG. 7. Overlapoi between the resulting configurations of su
cessive bouncing iterationsi and i 21 for different bouncing tem-
peraturesTB , TA, and PCB442~the error bars are of the size of th
symbols!.

FIG. 8. Grest hypothesis: 1/(^Hi&E2Hopt) vs ln (it) for different
bouncing temperaturesTB , TA, and PCB442. The thin solid lines
are fits, giving an exponentz50.8, both forTB5100 andTB550.
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~3! For TB.Tf we find no decrease of the energy as
function of bouncing iterations; ‘‘bouncing beyond the o
dering temperature’’ causes oscillations of the object
only, since the Markovian walker is ‘‘kicked’’ up into the
~disordered! high-energy regime at the beginning of ea
bouncing iteration.

The energies drop as a function of the bouncing iterati
for all TB’s besidesTB5200, i.e.,TB.Tf ; there the energy
is virtually constant. Nevertheless, the minimal energy~tour
length! for TB5200 oscillates strongly, even approachi
values 50 900,H i

min,51 000. They are usually lost in th
next iteration, whereas the minimal energy decreases initi
and then remains in a certain range forTB,Tf . Finally, for
TB,Tc it is virtually constant.

In Fig. 6, we show the absolute improvement due to
bouncing process. As a measure for the improvement
define a normalized gain

gi5
^H1&E2^Hi&E

^H1&E2Hopt
~3.1!

( i denotes the index of the current iteration,^Hi&E the en-
semble average of the energy in iterationi , andi 51 refers to

FIG. 9. Ensemble mean of the energy,^Hi&E vs index i of the
bouncing iteration forTB5100 ~squares! andTB550 ~circles!, TA,
and PCB442. Filled symbols denote simulation runs with a doub
calculation time in contrast to the originally obtained data~open
symbols!.
e

s

ly

e
e

the final energy of the initial monotonic optimization run!.
Here the success of the bouncing idea becomes evident

~1! We can achieve a significant gain over the simp
monotonic cooling schedule~as it is still used in the primary
stage!.

~2! The gain strongly depends onTB , the criterion for
choosingTB is due to the evaluation of the specific heatCT

and the susceptibilityxT during the initial cooling process
The largest gain can be obtained forTB slightly belowTf ~in
our caseTB5100 and 50!, whereas the gain completely dis
appears forTB.Tf (TB5200). Also, the gain becomes ma
ginal and ultimately vanishes in the limitTB→0, as ex-
pected, since the local energy valley in which the MC walk
sits cannot be left. A good estimate for a lower bound forTB
is the width of the specific heat peak, its low-temperature
extends in case of the PCB442 instance to a temperatur
roughly 40 in case of SA. This is in good agreement with t
peak ofxT , which marks the lower bound, too.

In Fig. 7, we provide the overlapoi between final con-
figurations of the succeeding bouncing iterationsi and i 21.
This quantity measures the percentage of TSP edges pre
in the final results of succeeding bouncing iterations, th
giving an estimate of how strongly the configurations a
changed between succeeding iterations. Interestingly,
overlap becomes nearly constant after a few iterations,
the rate of change remains constant during the bouncing
cess for a certainTB . We clearly find that the overlap
strongly depends onTB ~i.e., the smaller the bouncing tem
peratureTB , the larger the overlap!, and thus only a few
rearrangements take place. We want to point to the fact
although the overlap forTB550 is rather large, the gain i
also large. This regime is very interesting for technical op
mization applications, since it allows an optimization of
existing process—e.g., a tour schedule or production e
ronment, which would serve as the input configuration fo
bouncing treatment—without the introduction of major rea
rangements in large parts~see Fig. 7!.

An interesting point is the question whether for th
bouncing algorithm the Grest hypothesis@27#

1

^Hi&E2Hopt
}@ ln ~ i t!#z, ~3.2!

d

FIG. 10. Minimal length valuesH i
min , data, and notation correspond to the previous figure,TB5100 ~left part! andTB550 ~right part!,

TA, and PCB442.
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@wheret is the calculation time in each bouncing iteratio
and z'1] is able to describe the quality of the resu
achieved after a certain time. Interestingly, we obtain re
tively small values forz, e.g.,z'0.8 for TB550 and 100,
and z'0.2 for TB525. z vanishes forTB.Tf and for
TB→0 ~Fig. 8!.

In a further step, we want to study the effect of addition
computation time on the results discussed earlier. For
purpose we use a nonuniform computation time distribut
within the bouncing iterations, i.e., in addition to the pre
ously used time we spend the same amount of computati
effort at the first temperature stepTB , the beginning of the
iteration, only. In our example we have initially~index i
>2) 121 steps atTB , 119 steps at 0,T,TB , and one step
at T50. The monotonically cooled run in front of the boun
ing process~index i 51), however, remains unchanged, i.
we bounce the same input configurations as previously.

The most challenging results are achieved forTB5100
and 50, which we want to discuss in Figs. 9–13. ForTB
550, we obtain far lower energies for each bouncing ite
tion i using the additional computation time, whereas

FIG. 11. Gaingi vs index i of the bouncing iteration forTB

5100~squares! andTB550 ~circles!, TA, and PCB442. Filled sym-
bols denote simulation runs with a doubled calculation time,
contrast to the originally obtained data~open symbols!.

FIG. 12. Overlapoi between the resulting configurations of su
cessive bouncing iterationsi and i 21 for TB5100 ~squares! and
TB550 ~circles!, TA, and PCB442. Filled symbols denote simul
tion runs with a doubled calculation time, in contrast to the ori
nally obtained data~open symbols!.
,
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TB5100 the runs with more computation time produce t
better results in the first few bouncing iterations only~Figs. 9
and 10!. Later, for TB5100, the runs with the origina
amount of calculation time become superior~Fig. 11!, the
runs with additional time cannot provide further improv
ments, and the gain is nearly constant after a few iteratio

Comparing the two runs which lead us to the lowest e
ergies~these are theTB550 run with doubled computation
time, and theTB5100 bouncer with the original settings! we
come to the following findings:TB550 with the enlarged
calculation time has a significantly lower mean energy a
larger gain than even theTB5100 run with the original com-
putational investment~which, in turn, has been much bette
than the unchangedTB550 run!. However, the enhance
TB550 calculation does not lead to solutions with an ene
below 50 850 within its total of 60 iterations, whereas t
unchanged~i.e., nonprolonged! TB5100 bouncer was able to
break below the 50 850 value at least six times within
initial 119 bouncing iterations~which, in turn, correspond to
the same calculation time as the time-doubledTB550 run!.

In Fig. 12, we show the overlapsoi for the runs withTB
5100 and 50, both for the original and doubled calculati
times. If additional time is used, the overlap niveau d
creases. This is quite clear because the system has more
to walk around atTB , and therefore results of succeedin
bouncing iterations show larger differences. ForTB5200
and 12.5~not shown here!, the overlap remains roughly con
stant; there is no significant gain. But forTB525 with addi-
tional calculation time, we obtained nearly the same gain
overlap as forTB550 with the original calculation time.

In conclusion, an overlap below 0.75 leads to a g
which is either zero from the beginning or converges aga
a constant greater than zero, and an overlap between
and 0.962 leads to a strong and continuous increase of
gain ~at least in the observed range!; again, for an overlap
larger than 0.962, the gain is relatively small.~These num-
bers are, of course, only valid for the PCB442 problem
combination with TA.!

In order to show that our bouncing method also wor
with SA, we also performed 128 runs with SA with the orig
nal number of steps, but a smaller number of bouncing ite

-

FIG. 13. Grest hypothesis: 1/(^Hi&E2Hopt) vs ln (it) for TB

5100~squares! andTB550 ~circles!, TA, and PCB442. Filled sym-
bols denote simulation runs with a doubled calculation time,
contrast to the originally obtained data~open symbols!.
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tions. We took the same configurations from the initial m
notonous iteration~therefore, the values for the iteratio
index i 51 are the same! and bounced it then with SA. In
Fig. 14, we provide the mean energy, which decreases
TB<50. Comparing Fig. 14 with Fig. 4, we see thatTB
5100 with TA andTB550 with SA lead to nearly the sam
curve, similarlyTB525 with TA andTB512.5 with SA. The
curve for TB525 with SA lies in between the curvesTB
550 and 100 with TA. Interestingly, theTB5100 curve with
SA stays nearly constant. From this we conclude that theTB
temperature ranges are renormalized using SA instead of
down to smaller values. We interpret this as follows: SA
able to climb with a certain probability over high mountai
in the energy landscape even at smallT, and therefore to
reach better configurations easily. This is not possible for
at similar threshold values. This factor 2 can correspondin
be extracted from the shift of the peak positions ofCT and
xT for SA and TA, as shown in Figs. 2 and 3. In Fig. 15, w
provide the gain achieved with SA. The results can be in
preted similarly to those in Fig. 14. Of interest, however,
that the gain forTB5100 stays positive during all iterations
The results for the SA overlap in Fig. 16 confirm our earl
TA results: The bouncing temperature regime splits i
three ranges, with corresponding effects on gain and ove

FIG. 14. Ensemble mean of the energy,^Hi&E vs indexi of the
bouncing iteration for different bouncing temperaturesTB , SA, and
PCB442.

FIG. 15. Gaingi vs the indexi of the bouncing iteration for
different bouncing temperaturesTB , SA, and PCB442.
-
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as described for TA. Very interesting are the results conce
ing Grest, shown in Fig. 17: we obtainz'1 for TB550 and
z'1.2 for TB525. ForTB512.5 or forTB>100, the expo-
nent z is very small and nearly vanishes. A cross-check
these results with other instances from Reinelt’s library
lowed us to draw similar conclusions.

IV. PARALLEL BOUNCING

There is a simple path to extend bouncing for an imp
mentation on a parallel computer. Several parallelizat
strategies are suitable.

At the end of the primary cooling process, the configu
tion obtained by the monotonic cooling is distributed ove
number of processors, each of which performs one or sev
statistically independent bouncing iterations. After that,
best-so-far configuration among the processors is distribu
again over all processors, and the previous iteration is
peated.

The results of a number of bouncing iterations can se
as an input for mutations of a parallel genetic algorithm or
a parallel evolution strategy.

FIG. 16. Overlapoi between the resulting configurations of su
cessive bouncing iterationsi and i 21 for different bouncing tem-
peraturesTB , SA, and PCB442~the error bars are of the size of th
symbols!.

FIG. 17. Grest hypothesis: 1/(^Hi&E2Hopt) vs ln (it) for differ-
ent bouncing temperaturesTB , SA, and PCB442. The thin solid
lines are fits, giving exponentsz51 for TB550 andz51.2 for
TB525.
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Ensemble based bouncing~EBB!, which is the schedule
we will use and describe in this section.

In the nonparallelized bouncing algorithm described
Sec. III, we chose a fixed bouncing temperatureTB , up to
which the system is instantaneously heated and then co
down. In a further step we propose an adaptive selection,
a decremental lowering ofTB from an initial high value
down to zero, leading to a kind of ‘‘second’’ control param
eter with a second ‘‘cooling schedule.’’ Moreover, we a
able to control and change the compute time continuou
i.e., the number of MC steps spent at a particular bounc
iteration.

For both purposes we use a parallel computer running
ensemble of independent bouncers, and extend the initia
semble based cooling idea of Ruppeineret al. @ensemble
based simulated annealing~EBSA! @28##: the bouncing tem-
peratureTB is lowered if the condition

^Hi 11&E>^Hi&E ~4.1!

becomes true; herê•••&E denotes the ensemble avera
over independent bouncers at thei th iteration. Note that we
do not decrease the temperature as in EBSA or the thres
as in the TA version EBTA inside a bouncing iteration usi
the ensemble based rule: only the starting temperatureTB is
decreased according to the adaptive kind of the ensem
based ansatz. Therefore we do not use the energies after
sweep for^•••&E in contrast to Ref.@28#, but we take the
average over the lengths of the final results of different ru
Inside the bouncing iteration we work with TA; paramete
such as the number of steps are the same as above.TB is
decreased by factors of 0.99.

Figure 18 shows the mean energy~i.e., TSP length! vs
bouncing temperatureTB : We find a decrease, quite simila
to the initially obtained decrease of the energy during
simple monotonic cooling, as shown in Fig. 2 for TA. A
though it seems to be identical at a first glance, we wan
make a strong point out of the fact that the temperature
energy ranges are completely different. Figure 19 shows
minimal energy vs the bouncing temperatureTB : we find
that with this parallelized version of bouncing we are able
obtain even better results than with the serial bouncing, e

FIG. 18. Mean energy vsTB for the parallel ensemble base
bouncing algorithm, ensemble size 128, with controlled decrem
tation of TB , TA, and PCB442.
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we reached at an optimum, and in six iterations energ
smaller than 50 800, which we have not reached with
serial bouncing method at the aboveTB . ~With the serial TA
algorithm, we came several times to the optimum withTB
5120, but we had to invest much more calculation time.!

Finally we want to control the effort, i.e., the MC time o
rather the number of bouncing iterations spent perTB , using
the EBB concept, again in analogy to the original EBS
concept. Figure 20 depicts a time~which in fact is a measure
for the iterations spent at a particularTB) in arbitrary units vs
TB . It increases whenTB→Tf , as expected. At the end, fo
TB→0, the bouncing process dies out. Most of the com
tation time is invested in the important temperature ran
betweenTc andTf . Thus the bouncing process can be au
matically controlled.

It is certainly possible to apply the ensemble based co
ing rule twice, for decreasingTB between bouncing iteration
as well as for decreasingT within a bouncing iteration, com-
bining ensemble based bouncing and ensemble based th
old accepting. It is possible to save a large amount of C
time using ‘‘conventional’’ EBSA-TA alone; however, thi
approach does not necessarily provide results very close

n-
FIG. 19. Minimal energy vsTB for the parallel ensemble base

bouncing algorithm, ensemble size 128, with controlled decrem
tation of TB , TA, and PCB442.

FIG. 20. Effort: Time~i.e., the number of bouncing iterations!
spent perTB using a parallel ensemble based bouncing algorit
~EBB! ~ensemble size 128!, TA, and PCB442; the data are binne
to reduce statistical noise.
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even identical with the ground state. Combining EBB a
EBTA, we obtain the same quasioptimal quality of resu
compared to EBB alone, but saving 95% of the computat
time.

V. CONCLUSION

We provide an algorithm to improve results obtained
finite Markov chain length Monte Carlo optimization proc
dures: the bouncing algorithm. It is based on the concep
simulated annealing type MC optimization algorithms. Aft
a first conventional monotonic cooling process, a second
clic heating-cooling treatment is applied, using the final co
figuration of the initial process as an input. The specific h
maximum obtained in the initial cooling process determin
an appropriate upper bound for the ‘‘bouncing temperatu
TB , i.e., an upper bound for the cyclic reheating-cooli
process. The susceptibility corresponding to an asymme
overlap with the ground state delivers a lower bound. Th
is considerable evidence that within this temperature wind
the most dramatic rearrangements take place. The boun
process enables the Markovian walker in state space to
cape from local energetic minima, ‘‘forcing’’ a relaxatio
into energetically lower configurations.
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The energy, i.e., the optimization objective, decreases
we take a bouncing temperatureTB closely below the peak
of the specific heat. The algorithm is described in detail, a
its efficiency is demonstrated for a particular class of co
binatorial optimization problems. The procedure can be e
ily transferred to other CO problems; we have applied it
e.g., vehicle routing and production lines optimization pro
lems among others. Therefore, it provides a rather univ
sally applicable scheme. Finally we introduce an efficie
extension of the bouncing scheme for parallel comput
based on the ensemble parallelization concept, which all
an almost automatic control.
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